Content:

TS – Tectonics & Structural Geology

TS1.1 – Temperature in sedimentary basins: a tool for geodynamics

EGU2020-2386 | Displays | TS1.1

DIAGENETIC HISTORY VS. THERMAL EVOLUTION OF PALAEZOIC RESERVOIR ROCKS IN THE ILLIZI BASIN (Algeria)

Andrea Di Giulio, Chiara Nicola, Domenico Grigo, Paolo Scotti, Massimiliano Zattin, Chiara Amadori, Silvia Tamburelli, Alberto Consonni, and Andrea Ortenzi

Unravelling the time-space distribution of diagenetic events modifying the pore network of reservoir rocks is a classical task of hydrocarbon research. Nevertheless, it is not always easy to reach that picture, as it needs to constraint a number of variables driving that distribution along the geological history of sedimentary basins.

Here we present the results of an integrated study performed on 15 samples of Palaeozoic reservoir sandstones coming from 3 hydrocarbon wells in the Illizi Basin. In particular, the topic of debate that promoted this study is the possible thermal effect on the Illizi Basin reservoirs rocks of the Cenozoic magmatic activity occurred in Hoggar dome, south of the studied region, and in other sector of the basin as pointed out by several magmatic intrusions.

The study was performed by combining: i) the reconstruction of the relative diagenetic timing obtained by petrographic observations; ii) microthermometric analyses of fluid inclusions trapped in diagenetic minerals; iii) low-T thermochronology (both Fission tracks and U-Th/H analyses) on clastic apatite grains; iv) vitrinite reflectance analysis; v) geohistory analysis of sampled wells. These data were used to constrain different thermal models, focussing in particular to the possible evidence of a Tertiary thermal overprint.

The results of the study can be summarized as follows:

  • Several diagenetic minerals precipitated in the pore network of the studied rocks; among these, precipitation conditions for quartz, calcite, ankerite and to a minor degree feldspars were constrained through fluid inclusion microthermometric analyses;
  • All these phases precipitated in a relatively narrow range of temperatures nicely correlated with burial depth of samples, from fluids with quite homogenous salinity (78-113 °C and 9.2-14.5 NaCl eq. %) suggesting a relatively limited time in which most of cements precipitated;
  • The data on the thermal maturity of organic matter (vitrinite reflectance along the Mesozoic sequence, and vitrinite reflectance equivalent, mainly from chitinozoans, for the Silurian-Devonian sequence) seem to suggest a heating higher than the one currently observed. This may be compatible both with an episode of magmatic activity or with a late Cretaceous-Tertiary burial now eroded (in the wells studied, no more than 500-700m);
  • Thermochronology shows a continuous burial until temperatures compatible with those observed by vitrinite reflectance although a minor thermal episode (i.e. with a temperature variation of the order of 10°C) is allowed.

Based on this integrated data set, different thermal scenarios have been tested, excluding or including a Cenozoic additional heating, in order to estimate the effect of the adopted thermal model on the age of cement precipitation in the pore system of studied reservoir rocks.

How to cite: Di Giulio, A., Nicola, C., Grigo, D., Scotti, P., Zattin, M., Amadori, C., Tamburelli, S., Consonni, A., and Ortenzi, A.: DIAGENETIC HISTORY VS. THERMAL EVOLUTION OF PALAEZOIC RESERVOIR ROCKS IN THE ILLIZI BASIN (Algeria), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2386, https://doi.org/10.5194/egusphere-egu2020-2386, 2020.

Evaporitic salt is prevailed in marine sedimentary basins, and the discovered hydrocarbon reservoirs are generally associated with salt structures in the world; accordingly salt structures have attracted much attention from academic and industry during the past decade. Tarim Basin that locates in northwest China, is the largest marine sedimentary basin in China with great hydrocarbon resources potential. Previous studies of salt structures in this basin mainly focus on its strong sealing capacity and structural traps created by salt structures. However, besides its extreme impermeability and low viscosity, rock salt has another unique thermal properties, featured by a large thermal conductivity as high as 5~6 W/(m.K), usually 2~3 times greater than that of other common sedimentary rocks, but a relatively low radiogenic heat production. This strong contrast in thermal properties could change the evolving thermal regime and associated thermal history of the source rocks around salt bodies, but has not been understood well. Herein based on the theoretical models and interpreted salt bearing seismic profiles from the Kuqa Foreland Basin, northern Tarim Basin, we use the 2D finite element numerical experiments to investigate the impacts of salt structures on basin geothermal regime and associated hydrocarbon thermal evolution. Our results show that, owing to its high efficiency in heat conduction, the salt rocks would result in obviously positive temperature anomalies (3~13%) above the salt body and negative temperature anomalies (11~35%) in the subsalt, enhancing and restraining the thermal maturation of source rocks above and below the salt body, respectively. The amplitude and extent of geothermal effects of salt structures depend on the thermal conductivity, geometry, thickness and burial depth of the salt bodies. The thermally affected area around the salt body can be 2 time of salt radius laterally and 2~3 times of salt thickness vertically. Salt structures in the Kuqa Foreland Basin can prominently cool the subsalt formation temperature and accordingly reduce the thermal maturity (Ro) of Jurassic source rocks as much as 18%, enabling the source rocks to be still of gas generation other than over-mature stage as expected previously, which is favor for deep hydrocarbon preservation below salt. In particular, salt structures in the west and east Kuqa Foreland Basin show strong differences in their thickness, geometric pattern, burial depth and composition, the thermal effects of salt structures on thermal maturation of subsalt source rocks should differ accordingly, which is supported by the observed tempo-spatial variation of Ro for Jurassic source rocks in this basin. Finally, we propose that the geothermal effects of salt structures will be of great importance in the deep hydrocarbon resources potential assessment and exploration in marine sedimentary basins in China.

How to cite: Liu, S. and Wang, L.: Quantifying the Effects of Salt Structures on Source Rocks Thermal Evolution of the Marine Sedimentary Basins, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4584, https://doi.org/10.5194/egusphere-egu2020-4584, 2020.

EGU2020-5815 | Displays | TS1.1

Unexpected thermal history of a syn-collisional basin revealed by geo- and thermochronology: the case of the Tertiary Piedmont Basin (Western Alps, Italy)

Chiara Amadori, Antonio Langone, Mattina Marini, Reguzzi Simone, Barbara Carrapa, Matteo Maino, and Andrea Di Giulio

The Tertiary Piedmont Basin (TPB) in NW Italy represents an episutural basin developed since the Late Eocene in the retrobelt of the Western Alps and in the foreland of the Northern Apennine. During Oligo-Miocene time, up to 3 km-thick clastic deposits filled the basin recording the tectonics associated with the shift from the Alpine collisional thickening and the progressive NE-migration of the Apennine. The continental thickening was also accompanied by the opening of the Liguro-Provençal Basin and the drift of the Corsica-Sardinia block. Because of this key-position, the tectono-sedimentary and thermochronological history of the TPB has been the object of extensive investigations (Maino et al., 2013 and reference therein). However, several questions regarding its burial-exhumation history are still open. In order to define the thermal history of the source-sink system, we combined literature data with new detrital apatite fission-track analyses and zircon U-Pb dating from Upper Priabonian to Lower Miocene syn-tectonic deposits. Results from AFT analysis show: i) a single reset population at 24.8 ± 1.2 Ma (Late Chattian) in the lowermost Late Priabonian sample; ii) partially annealed apatite grains from Early Rupelian sample; iii) unannealed Late Rupelian-Miocene samples with AFT age populations spanning from Late Cretaceous to Late Oligocene in time. Data from the Ligurian Alps crystalline massifs report similar AFT cooling ages between 22.9 ± 5.3 - 24.0 ± 1.4 Ma. This, combined with our data, shows that the bottom of the TPB sequence experienced ~110 °C heating and subsequent cooling together with its nearby margin. The heating experienced by the basin combined with reconstructed sedimentary thickness (before the exhumation/cooling event) of ca. < 3 km, implies an elevated geothermal gradient of about 60 °C/Km, which is anomalous for a thickened orogenic crust. Furthermore, one sample from Upper Oligocene sedimentary rocks contains an AFT detrital population age (33.6 ± 2 Ma) consistent with a youngest U-Pb age peak of 33.6 Ma from co-magmatic zircon grains, which likely reflects the age of volcanites today buried under the Po Plain (Di Giulio et al., 2001). Detrital zircon U-Pb ages show two main populations at ca. 290 and ca. 460 Ma, which are expected products of a Variscan source now exposed in the Ligurian Alps and Southern Alps. Our new geo-thermochronological data overall suggests a distributed Oligocene thermal signal, the origin of which is discussed. Possible explanations are: 1) a > 3 km of focused erosion associated with tectonic deformation occurred in the TPB and nearby margin and/or 2) an anomalously high heat flow event driven by asthenospheric rise as a consequence of the Liguro-Provençal rifting.

Maino M., Decarlis A., Felletti F., Seno S. (2013) Tectono-sedimentary evolution of the Tertiary Piedmont Basin (NW Italy) within the Oligo–Miocene central Mediterranean geodynamics. Tectonics, 32, 593–619.

Di Giulio, A., Carrapa B., Fantoni R., Gorla L., Valdisturlo L. (2001) Middle Eocene to Early Miocene sedimentary evolution of the western segment of the South Alpine foredeep (Italy). Int. J. Earth Sci., 90, 534-548.

How to cite: Amadori, C., Langone, A., Marini, M., Simone, R., Carrapa, B., Maino, M., and Di Giulio, A.: Unexpected thermal history of a syn-collisional basin revealed by geo- and thermochronology: the case of the Tertiary Piedmont Basin (Western Alps, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5815, https://doi.org/10.5194/egusphere-egu2020-5815, 2020.

EGU2020-7205 | Displays | TS1.1 | Highlight

Repurposing Britain’s Coal Measures: insights from seismic and borehole-based mapping, and geothermal modelling

Louis Howell, Stuart Egan, Bernard Besly, Graham Leslie, and Surika Sooriyathasan

As a consequence of 19th and 20th century coal mining, a vast quantity of subsurface data has been accumulated on Britain’s late Carboniferous Coal Measures and the basins in which they have accumulated. Here we discuss current understanding of the geological evolution of the British Isles during this period, as well as how these data can be repurposed as the UK seeks to reduce its greenhouse gas emissions.

It is widely assumed that Britain’s Coal Measures accumulated during a period of tectonically quiescent, thermally induced post-rift subsidence and that the lateral extent of the Variscan foreland in southern England and Wales was restricted. Burial history curves constructed from stratigraphic successions across the UK suggest, however, that during the late Carboniferous the UK was characterised by accelerated subsidence rates as far north as northern England and Scotland, beyond any perceivable flexure-induced foredeep. On local scales, seismic and borehole-based mapping shows that many individual depocentres were strongly influenced by syn-depositional faulting, folding and positive inversion. This influence is illustrated by repeated local unconformities within the late Carboniferous succession across England and Scotland as well as variable isochore thickness trends. We propose that this succession was influenced by a combination of both local tectonic controls and regional controls such as supralithospheric orogenic loading and sublithospheric dynamic loading. In this sense, we believe that the British Variscan foreland system, as the British Isles should be referred to as during the late Carboniferous, resembled a ‘broken’ foreland system such as that of Patagonia, South America.

Understanding the nature of Britain’s Coal Measures has gained renewed importance given the need to reduce carbon emissions and seek alternative sources of energy. Across the UK, there are a number of active projects aiming to harness latent heat from abandoned underground coalmines. In addition, coupled CO2 sequestration and enhanced coal bed methane recovery offers a further, if riskier, low carbon subsurface energy prospect. To aid deep geothermal exploration, subsurface data from northern England is being compiled in order to construct regional 3D geothermal models. Our models highlight hot areas within the subsurface more realistically than equivalent maps based on contouring around individual borehole temperature measurements that are skewed by sparsely distributed data points and, potentially, inaccurate measurements. Deep heat-producing granite bodies and the variable thickness of thermally resistive rock units, such as the Pennine Coal Measures Group, are highlighted as dominant controls on the distribution of deep geothermal energy in northern England.

How to cite: Howell, L., Egan, S., Besly, B., Leslie, G., and Sooriyathasan, S.: Repurposing Britain’s Coal Measures: insights from seismic and borehole-based mapping, and geothermal modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7205, https://doi.org/10.5194/egusphere-egu2020-7205, 2020.

EGU2020-13606 | Displays | TS1.1

A Bayesian approach for thermal history reconstruction in basin modeling

Andrea Licciardi, Kerry Gallagher, and Stephen Anthony Clark

Vitrinite reflectance and apatite fission track) and borehole data (bottom hole temperature and porosi ty) for thermal history reconstruction in basin modeling.  The approach implements a trans-dimensional and hierarchical Bayesian formulation with a reversible jump Markov chain Monte  Carlo (rjMcMC) algorithm. The main objective of the inverse problem is to infer the heat flow history below a borehole given the data and a set of geological constraints (e.g. stratigraphy , burial histories and physical properties of the sediments).  The algorithm incorporat es an adaptive, data-driven parametrization of the heat flow history, and allows for automatic estimation of relative importance of each data type in the inversion and for robust quantification of parameter uncertainties and trade-offs. In addition, the algorithm deals with uncertainties on the imposed geological constraints in two ways. First, the amount of erosion and timing of an erosional event are explicitly treated as independent parameters to be inferred from the data. Second, uncertainties on compaction parameters and surface temperature histo ry are directly propagated 
into the final probabilistic solution.

How to cite: Licciardi, A., Gallagher, K., and Clark, S. A.: A Bayesian approach for thermal history reconstruction in basin modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13606, https://doi.org/10.5194/egusphere-egu2020-13606, 2020.

EGU2020-18462 | Displays | TS1.1 | Highlight

Middle Miocene onset of thrusting along the basal décollement of the Jura Mountains: Evidence from carbonate U-Pb dating and clumped isotope thermometry

Nathan Looser, Herfried Madritsch, Marcel Guillong, Oscar Laurent, Stephan Wohlwend, and Stefano M. Bernasconi

During its late-stage evolution, the European Alpine orogen witnessed a northwest-directed propagation of its deformation front along an evaporitic basal décollement into the foreland. This resulted in the decoupling of the northern Alpine Molasse Basin from its basement and the formation of the Jura fold-and-thrust belt. Here, we present the first absolute age and temperature constraints on deformation along this major décollement by using combined carbonate U-Pb dating by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and clumped isotope thermometry. We analyzed calcite veins associated with a secondary thrust fault branching off from the basal décollement in a deep borehole within the Swiss Molasse Basin providing evidence for three brittle deformation events related to Alpine contraction: Vein formation at ~14 Ma ago, thrust faulting with cataclasis ~13 Ma ago, and another vein formation event ~9 Ma ago. Clumped isotope data reveal vein calcite precipitation at temperatures of ~100 °C from fluids equilibrated with the host rock during all deformation intervals. These temperatures are in good agreement with temperature estimates from microfabrics of anhydrite mylonites in the basal décollement. Our data demonstrate that the propagation of Alpine deformation into its distal foreland occurred significantly earlier than previously inferred, at middle Miocene (Langhian) times at the latest, contributing to the debate about the late-stage geodynamics of the central Alps. The deformation sequence indicated by our results underpins fundamental kinematic models of viscous décollement-based foreland thrust belts. Beyond that, we demonstrate the potential of our methodological approach applied to foreland thrust systems in resolving the late-stage evolution of convergent orogens.

How to cite: Looser, N., Madritsch, H., Guillong, M., Laurent, O., Wohlwend, S., and Bernasconi, S. M.: Middle Miocene onset of thrusting along the basal décollement of the Jura Mountains: Evidence from carbonate U-Pb dating and clumped isotope thermometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18462, https://doi.org/10.5194/egusphere-egu2020-18462, 2020.

EGU2020-18533 | Displays | TS1.1

Metamorphosed Permian vertebrate fossils: geochemistry and mineralogy of “white” sharks

Anthea Arns, Frank Tomaschek, Edith Alig, Katrin Weber, Hubert Vonhof, Jan Fischer, Sebastian Voigt, and Thomas Tütken

The intra-mountainous Saar-Nahe Basin (SNB), SW Germany, a strike-slip-fault basin formed during the Variscian orogeny, was filled by a large freshwater lake system during the Early Permian. The SNB experienced intense syn- and post-depositional magmatic activity, resulting in a complex volcano-sedimentary sequence of magmatic intrusions, lava flows and tephra deposits intercalating in continental red beds and limno-fluvial sediments. Fossils preserved in white color are found in Permo-Carboniferous fluvio-lacustrine siliciclastic floodplain sediments with thin intercalated limestone banks, of the Remigiusberg Formation in the SNB. The oldest amniote fossil of Germany and other partly articulated tetrapod remains were recovered from it at the Remigiusberg quarry near Kusel (e.g., Fröbisch et al., 2011; Voigt et al. 2014). These terrestrial tetrapods were discovered together with aquatic vertebrate fossils in close proximity (< 5 m; within the contact aureole) to an underlying decameter thick sill of kuselite, an auto-hydrothermally altered andesite. We aim to assess the thermal and chemical impact of post-depositional contact metamorphism and hydrothermal activity associated with this sill on the bioapatite of vertebrate skeletal remains by characterizing the elemental, isotopic and mineralogical composition of these fossils. White-colored, likely hydrothermally altered teeth of the freshwater shark Lebachacanthus were analyzed and compared to shark teeth of the same species retaining their original black color, from contemporaneous unmetamorphosed lacustrine black shale deposits in the SNB.

 

In situ Electron Microprobe analysis and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) elemental profiles reveal distinct diagenetic histories for the black- and white-colored shark teeth. This is further supported by apatite 18O and 13C values, which indicate different secondary alteration by fluids for both facies. Raman spectroscopy and X-ray diffraction on bulk powder samples identify fluorapatite as the major mineral phase in all teeth. Apatite crystallinity of both dentin and enameloid is higher in white- than in black-colored fossils, consistent with crystallite growth due to thermal overprint of > 500 °C. For both, white- and black-colored shark teeth, LA-ICP-MS U-Pb analyses yield inconclusive data and unexpectedly young ages inconsistent with known ages of deposition or metamorphism.

 

We are currently analyzing the petrology of the kuselite to constrain the metamorphic evolution of sediments in the contact aureole by modelling. Additionally, heating experiments of modern bioapatite samples are performed to further constrain the alteration temperature. Altogether, these data will enhance our understanding of the particular thermometamorphic/hydrothermal conditions required to form white-colored, recrystallized vertebrate fossils in the context of the magmatic-metamorphic evolution of the SNB.

 

References

FRÖBISCH, J., SCHOCH, R.R., MÜLLER, J., SCHINDLER, T. & SCHWEISS, D.J. (2011): The oldest amniote from Germany: a sphenacodontid synapsid from the Saar-Nahe Basin. Acta Palaeontologica Polonica, 56: 113–120.

 

VOIGT, S., FISCHER, J., SCHINDLER, T., WUTTKE, M., SPINDLER, F. & RINEHART, L. (2014): On a potential fossil hotspot for Pennsylvanian-Permian nonaquatic vertebrates in Europe. Freiberger Forschungshefte, C548: 39–44.

How to cite: Arns, A., Tomaschek, F., Alig, E., Weber, K., Vonhof, H., Fischer, J., Voigt, S., and Tütken, T.: Metamorphosed Permian vertebrate fossils: geochemistry and mineralogy of “white” sharks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18533, https://doi.org/10.5194/egusphere-egu2020-18533, 2020.

EGU2020-19279 | Displays | TS1.1

Structural styles of the External Rif and Flysch Domain (Rif belt, northern Morocco) through thermal maturity and structural data

Andrea Schito, Achraf Atouabat, Sveva Corrado, Faouziya Haissen, Geoffroy Mohn, and Dominique Frizon De Lamotte

Located in northern Morocco, the Rif belt represents the western edge of the Maghrebides system. This domain underwent a significant Cenozoic alpine compressional deformation, due to the collision between the North African margin and the south-western margin of the exotic Alboran Domain. This collision led to the development of a nappe stack during the Miocene.

This contribution aims to characterize the main tectonic mechanisms driving the evolution of the Rifain wedge, its burial-exhumation paths and to understand the former architecture of the North African paleo-margin. The work focuses mainly on the Flysch domain, originated from the Maghrebian branch of the Tethys and on the External domain (namely Intrarif, Mesorif and Prerif) that belong to the former north African margin. To define the thrust sheet stacking pattern and their burial-exhumation paths, a regional transect from Chefchaouen and Ouezzane towns (Central Rif), crossing the orogenic wedge from the Flysch to the Prerif Units is constructed.

The methodological approach consists in combining petrography and Raman micro-spectroscopy on organic matter and 1D thermal modelling, together with field structural data.

A new paleo-thermal data set of vitrinite reflectance (Ro%) and Raman micro-spectroscopy displays levels of thermal maturity between early and deep diagenetic conditions (Ro% ranges from 0.50% to 1.15%).

Preliminary results show an abrupt change in the thermal maturity and the rate of shortening in the Loukkos sub-unit (Intrarif Domain) that is structurally squeezed between Tangier sub-unit (Intrarif Domain) and the “Izzaren Duplex” (Mesorif).

Furthermore, previous studies show that the thickest crust below the Rif fold-and-thrust belt is located below the Izzaren area, suggesting a deep crustal imbrication at the transition between the Intrarif and the Mesorif. These observations joined with the thermal maturity data and 1D thermal modelling allow revisiting the structural evolution of the central part of the Rif belt, by defining the rate of shortening and proposing a new geological restoration with respect to the Mesozoic North African margin structural original setting.

How to cite: Schito, A., Atouabat, A., Corrado, S., Haissen, F., Mohn, G., and Frizon De Lamotte, D.: Structural styles of the External Rif and Flysch Domain (Rif belt, northern Morocco) through thermal maturity and structural data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19279, https://doi.org/10.5194/egusphere-egu2020-19279, 2020.

EGU2020-20672 | Displays | TS1.1

A Pyrenean-like model for the Variscan belt in NW Africa : insights from thermometry-based Raman spectroscopy study in the Khenifra Basin

Rémi Leprêtre, Andrea Schito, Rachid Ouchaou, Mohamed El Houicha, and Francis Chopin

The Variscan belt in NW Africa is an intracontinental belt, resulting from far-field compressional stress during the closure of the Rheic Ocean between the Late Carboniferous and the Early Permian. In the classical view, this orogen building was preceded by a pre-orogenic stage, namely the Eo-variscan stage, suggested to have occurred at the Late Devonian-Early Carboniferous transition.

This view is now questioned, for multiple reasons. A first structural reason aims at re-interpreting the so-called Eovariscan features as extensional ones. Indeed, although many structures have been described, their integration into a compressional setting is not straightforward. A second reason is geodynamical, since this peculiar stage is bracketed between two general extensional phases recorded at the scale of NW Africa, and this leaves a very short time interval to proceed to a compressional phase that is geodynamically not integrated until today. At last, a third reason stems from early findings from metamorphic works in the Western Meseta that demonstrated the occurrences of previously unnoticed high geothermal gradients inside numerous Early Carboniferous basins (Chopin et al., 2014 ; Wernert et al., 2016 ; Delchini et al., 2018 ; Lahfid et al., 2019).

In this work, we sampled the Khenifra Basin within the easternmost part of the Western Meseta, where the Eovariscan deformation was defined (Allary et al., 1972). We carried on structural observations into the basement and sampled both the Ordovician basement and the Middle(?)-Late Visean series of the basin, which is thought the be extensional. Maximum temperatures reached by the 77 sampled rocks were obtained from the analysis of organic matter with the use of the Raman spectroscopy. The examination of this new dataset demonstrates that the Ordovician series acquired temperatures through a single event, consistently with their common record of the Eovariscan deformation. Instead, the unconformable Visean series on top of the basement show a pronounced basinal asymmetry, from low temperatures (< 160°C) to temperatures equivalent to the Ordovician ones (> 250°C). The Visean series do not record the Eovariscan deformation, and their thermal structure was acquired before the Variscan event, regarding their repartition within the basin. The examination of the different hypotheses for the timing of the maximal temperature acquisition (Variscan, compressional Eovariscan and extensional Eovariscan) leads to a single option only compatible with an extensional Eovariscan context.

The renewal on the knowledge about the early stages of the Variscan orogeny in NW Africa allows us to consider a Pyrenean-like model for the formation of this intraplate belt, resulting from the inversion of hot Early Carboniferous rifted basins.

How to cite: Leprêtre, R., Schito, A., Ouchaou, R., El Houicha, M., and Chopin, F.: A Pyrenean-like model for the Variscan belt in NW Africa : insights from thermometry-based Raman spectroscopy study in the Khenifra Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20672, https://doi.org/10.5194/egusphere-egu2020-20672, 2020.

EGU2020-20718 | Displays | TS1.1

Joint application of fluid inclusion and clumped isotope (Δ47) thermometry to burial carbonate cements from Upper Triassic reservoirs of the Paris Basin

Natalia Amanda Vergara, Marta Gasparrini, Sveva Corrado, and Stefano Bernasconi

A realistic reconstruction of the time-temperature history of sedimentary basins is critical to understand basin evolution and to predict oil maturation as well to assess reservoir quality. Carbonate rocks undergo diagenetic processes that modify their mineralogical and petrophysical properties. Understanding the temperature at which those processes occur and determining the geochemistry of the driving fluids is critical to constrain their occurrence and evolution in space and time.

Here, we put to the test the joint application of two independent techniques: the traditional fluid inclusion microthermometry (FIM) and the more recent clumped isotopes thermometer (∆47). We compare thermal information acquired by Δ47 thermometer and FIM on diagenetic carbonates having precipitated at temperatures between 60°C and 130°C in Upper Triassic reservoirs (depths of 1820-2450 m) from the well-known Paris Basin, and having suffered 120°C during maximum burial for about 20 Ma. A conventional diagenesis study (petrography, O-C isotope geochemistry) has been accomplished in samples from three different cores drilled in carbonate-cemented siliciclastic reservoir units of Norian age (Grés de Chaunoy Formation) and located in the northern part of the basin depocenter. A complete cement paragenesis was reconstructed highlighting three different burial cements: two non-ferroan blocky calcite phases (Cal1 and Cal2) and one non-ferroan dolomite phase of saddle type (Dol1). The progressively more negative δ18Ocarb suggests a possible increase in temperature, going from Cal1 to Dol1, whereas the consistently negative δ13C could indicate the involvement of continental fluids.

FIM indicates homogenization temperatures (Th) spanning from 60°C to 95°C (mode 67.5°C) for Cal1, 70°C to 110°C (mode 84°C) for Cal2, and 100°C to 130°C (mode 115°C) for Dol1. Δ47 measurements overall reveals lower temperatures for calcite cements, indicating probable thermal re-equilibration of the fluid inclusions, and a fairly similar temperature for the saddle dolomite cement. Uncertainties in the temperatures obtained through FIM and ∆47 thermometry and in the successively calculated δ18Ofluid, may lead to an erroneous assessment of the time of precipitation of the different diagenetic phases and to an erroneous thermal history and fluid-flow reconstruction. 

This work emphasizes the necessity of better understanding the limitations and applicability fields of these thermometric tools, especially when applied to burial diagenetic phases precipitated at temperatures above 100°C and/or in reservoirs having experienced temperatures in the gas window.

How to cite: Vergara, N. A., Gasparrini, M., Corrado, S., and Bernasconi, S.: Joint application of fluid inclusion and clumped isotope (Δ47) thermometry to burial carbonate cements from Upper Triassic reservoirs of the Paris Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20718, https://doi.org/10.5194/egusphere-egu2020-20718, 2020.

EGU2020-21703 | Displays | TS1.1

Sedimentological features and thermal maturity signature of the upper Triassic Streppenosa and Noto Formations, source rocks in the Hyblean Plateau (SE Sicily, Italy)

Rosanna Maniscalco, Sveva Corrado, Martina Balestra, Andrea Schito, Claudio Ivan Casciano, Martina Forzese, Sergio Montalbano, Alessandra Pellegrino, Andang Bachtiar, Giuseppe Palmeri, and Agata Di Stefano

The upper Triassic Streppenosa and Noto Formations are considered the main source rocks of the Hyblean Plateau in south-eastern Sicily, that represents the present-day deformed foreland of the Sicilian fold-and-thrust belt. This work focusses on the Upper Triassic Streppenosa and Noto Formations, penetrated by the Eureka 1 onshore well (south-eastern Sicily, Italy) in order to constrain the burial-thermal history of this basin of the western Tethys. According to previous paleogeographic reconstructions, starting from Norian, the palaeogeographic scenario consisted, moving from north to south, of a wide carbonate platform (Sciacca Fm.), adjacent to two different domains: the euxinic lagoon/basin of the Noto Formation, and, to the south, the basin of the Streppenosa Formation. Eureka 1 well is located in the inner portion of the platform-basin system and its Triassic succession consists of alternation of black shales and micritic, microbial dolomitic laminated limestones. A detailed description of the sedimentological facies from cores samples has been performed together with detailed organic petrography/Raman spectroscopy and clay mineralogy on fine grained sediments to assess thermal maturity of the Streppenosa and Noto Fms. The main facies consist of light-grey limestones (wackestone-mudstone) with scattered sub-angular intraclast, light grey finely laminated limestones, dark grey-black laminated mudstones, brownish undulated algal laminae saturated with bitumen. The cores are often bitumen saturated and interrupted by different sets of open microfractures, veins filled with calcite, and stylolites (parallel and vertical with respect to lamination) that may enhance and/or inhibit at places the fluid flow. Concerning thermal maturity, the studied interval falls in the lower-mid portion of the oil window, with robust agreement among the geothermometers derived from the three adopted techniques.

How to cite: Maniscalco, R., Corrado, S., Balestra, M., Schito, A., Casciano, C. I., Forzese, M., Montalbano, S., Pellegrino, A., Bachtiar, A., Palmeri, G., and Di Stefano, A.: Sedimentological features and thermal maturity signature of the upper Triassic Streppenosa and Noto Formations, source rocks in the Hyblean Plateau (SE Sicily, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21703, https://doi.org/10.5194/egusphere-egu2020-21703, 2020.

TS2.3 – Deformation processes, microstructures and physical properties

EGU2020-2773 | Displays | TS2.3

When minerals fight back: The relationship between back stress and geometrically necessary dislocation density

Christopher Thom, David Goldsby, Kathryn Kumamoto, and Lars Hansen

The dynamics of several geophysical phenomena, such as post-seismic deformation and post-glacial isostatic readjustment, are inferred to be controlled by the transient rheology of olivine in Earth’s mantle. However, the physical mechanism(s) that underlie(s) this behavior remain(s) relatively unknown, and most experimental studies focus on quantifying steady-state rheology. Recent studies have suggested that back stresses caused by long-range elastic interactions among dislocations could play a role in transient deformation of olivine. Wallis et al. (2017) identified an internal back stress in olivine single crystals deforming at 1573 K, which gave rise to anelastic transient deformation in stress dip experiments. Hansen et al. (2019) quantified the room-temperature strain hardening of olivine deforming by low-temperature plasticity and measured a back stress that gave rise to a Bauschinger effect, a well-known phenomenon in materials science wherein the yield stress is reduced upon reversing the sense of direction of the deformation.

To explore deformation at very high dislocation density, we have developed a novel nanoindentation load drop method to measure the back stress in a material at sub-micron length scales. Using a self-similar Berkovich tip, we measure back stresses in single crystals of olivine, quartz, and plagioclase feldspar at a range of indentation depths from 100–1700 nm, corresponding to geometrically necessary dislocation (GND) densities of order 1014–1015 m-2. Our results reveal a power-law relationship between back stress and GND density with an exponent ranging from 0.44-0.55 for each material, with an average across all materials of 0.48. Normalizing back stress by the shear modulus measured during the indentation test results in a master curve with a power-law exponent of 0.44, in close agreement with the theoretical prediction (0.5) derived from the classical Taylor hardening equation (Taylor, 1934). For olivine, the extrapolation of our fit quantitatively agrees with other published data spanning over 5 orders of magnitude in GND density and temperatures ranging from 298-1573 K. This work provides the first experimental evidence in support of Taylor hardening in a geologic material, supports the assertion that strain hardening is an athermal process that can occur during high-temperature creep, and suggests that back stresses from long-range interactions among dislocations must be considered in rheological models of transient creep.

How to cite: Thom, C., Goldsby, D., Kumamoto, K., and Hansen, L.: When minerals fight back: The relationship between back stress and geometrically necessary dislocation density, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2773, https://doi.org/10.5194/egusphere-egu2020-2773, 2020.

EGU2020-21694 | Displays | TS2.3

The role of grain boundary energy anisotropy on the grain size evolution during normal grain growth.

Hesham Salama, Katharina Marquardt, Julia Kundin, Oleg Shchyglo, and Ingo Steinbach

Many regions of the Earth’s mantle deform in grain size-sensitive creep regimes. The grain size right below the transition zone is believed to be very small, and the grain size should in subsequent depths be mainly controlled by normal grain growth. The grain size evolution is commonly predicted using either existing grain growth laws in combination with grain boundary diffusion coefficients or by extrapolating empirically determined grain growth laws. Effects of Zenner pinning and different ratios of second phases have been studied, while the role of anisotropic grain boundary properties is currently neglected1.  The grain boundary energy varies with the orientation of the grain boundary plane, as expressed through the typical crystal habitae (Wulff-shapes). Individual crystals in a polycrystalline material maintain a grain boundary energy anisotropy during grain growth. Here we study how grain boundary anisotropy impacts grain boundary migration and normal grain growth rates by three-dimensional phase-field simulations2. We imply grain boundary energy minimization by faceting/varying the grain boundary plane to minimize the grain boundary energy. The ideal grain boundary energy anisotropy for the solid-solid interface is taken from experimentally investigated grain boundary plane distributions and grain boundary energy distributions on periclase (MgO). We compare the grain size evolution in simulations with isotropic and anisotropic grain boundary energy of cubic crystal symmetry. We found that the grain boundary energy anisotropy has a significant influence on grain boundary migration and grain growth kinetics2.

<r>2- <r0>2= kt

The change in grain size is given as variation between the initial and final average grain radius, r. The time is t, and a material-specific parameter that accounts for the grain boundary energy anisotropy is extracted from the simulations as

k = A·µgb·σgb

Where, the grain boundary energy, σgb varies with orientation, and the grain boundary mobility, µgb assumed to be isotropic. We found that the rate of grain growth for periclase, A is a factor of 3 smaller compared to an isotropic material.

These results are of three-fold importance:

A better prediction of grain size evolution will need to develop an anisotropic theory for grain growth, that address our lake in knowledge regarding pressure effects on both grain boundary energy anisotropy and diffusion.

1. Rohrer, G. S. Annu. Rev. Mater. Res. 2005

2. Salama et al. Acta Materialia 2020

How to cite: Salama, H., Marquardt, K., Kundin, J., Shchyglo, O., and Steinbach, I.: The role of grain boundary energy anisotropy on the grain size evolution during normal grain growth., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21694, https://doi.org/10.5194/egusphere-egu2020-21694, 2020.

EGU2020-13710 | Displays | TS2.3

Relocated micas in marble – indicators for postdeformational microfabric modification

Rebecca Kühn, Florian Duschl, Bernd Leiss, and Torben Schulze

A relocation of mica grains in marbles can be observed as trace of newly precipitated calcite material in cathodoluminescence microscopy analysis. Mica grains relocate by rotation and/or translation from foliation parallel to new irregular orientations. The mica grains can be either located at calcite grain boundaries or within large calcite grains.

The process erases deformed, inclusion-rich calcite material and creates undeformed and mostly inclusion-free grains and can therefore be regarded as postdeformational. Not every mica present relocates and the choice of whether a specific mica relocates cannot be related to a specific primary orientation. Furthermore, no significant difference in composition between relocated and non-relocated mica grains can be observed. Newly precipitated calcite has less Mg than the dissolved grain material.

The precipitation of new calcite material at the calcite-mica interface is supposed to be the initial trigger leading to dissolution of inclusion-rich, deformed calcite material at the opposite side of the mica grain. The newly precipitated calcite material inherits the already existing calcite grain‘s crystallographic orientation.

Assuming this process occurs to a larger extent in a material, it might modify a deformation-related microfabric. Therefore, an interpretation in terms of deformation conditions should be done carefully, considering postdeformational dissolution-precipitation processes.

How to cite: Kühn, R., Duschl, F., Leiss, B., and Schulze, T.: Relocated micas in marble – indicators for postdeformational microfabric modification, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13710, https://doi.org/10.5194/egusphere-egu2020-13710, 2020.

EGU2020-7681 | Displays | TS2.3

Shear coupled grain boundary migration as a deformation mechanism in minerals.

Gill Pennock and Martyn Drury

A grain boundary can move under stress by a mechanism called shear coupled grain boundary migration (SC GBM) and contribute to strain. SC GBM is considered to be a general property of all grain boundaries over a wide range of misorientation angles, although higher deformation temperatures favour grain boundary sliding. Apart from a structured boundary interface, SC also requires a critical shear stress. We examine evidence for SC GBM in ice. An extensive literature study showed that SC GBM of high angle boundaries does occur in ice bicrystals that were probably deformed under conditions close to those found in nature. We conclude that SC GBM is likely to be an important deformation mechanism for geological materials, where extensive GBM occurs and also in nano sized materials, such as fault gauges.

How to cite: Pennock, G. and Drury, M.: Shear coupled grain boundary migration as a deformation mechanism in minerals., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7681, https://doi.org/10.5194/egusphere-egu2020-7681, 2020.

EGU2020-871 | Displays | TS2.3

The upper 2121 m at EastGRIP - Results from physical properties of NEGIS

Nicolas Stoll, Ilka Weikusat, Johanna Kerch, Jan Eichler, Wataru Shigeyama, Tomoyuki Homma, Daniela Jansen, Steven Franke, Ernst-Jan Kuiper, David Wallis, Julien Westhoff, Tomotaka Saruya, Sérgio Henrique Faria, Sepp Kipfstuhl, Kumiko Goto Azuma, Nobuhiko Azuma, and Dorthe Dahl-Jensen

Here we present the ice microstructure and CPO (c-axes fabric) data from the upper 2121 m of the EastGRIP ice core, an on-going deep drilling project on the North East Greenland Ice Stream. Understanding ice flow behaviour of fast flowing ice streams is crucial for accurate projections of future global sea level rise, but is still poorly understood due to e.g. missing observational fabric data from ice streams.

The presented CPO patterns found at EastGRIP show (1) a rapid evolution of c-axes anisotropy compared to deep ice cores from less dynamic sites, (2) a CPO evolution towards a strong vertical girdle and (3) CPO patterns that have not previously been directly observed in ice. Furthermore, data regarding grain properties (e.g. grain size) and indications of dynamic recrystallization, already at shallow depths, are presented.

The ice CPO shows a clear evolution with depth. In the first measurements at 111 m depth a broad single maximum distribution is observed, which transforms into a crossed girdle CPO (196-294 m). With increasing depth, an evolution towards a vertical girdle c-axes distribution occurs. Below 1150 m the CPO evolves into a vertical girdle with a higher density of c-axes oriented horizontally, a novel CPO in ice. These CPO patterns indicate a depth-related change in deformation modes, from vertical compression to extensional deformation along flow.

Grain size values are similar to results from other Greenlandic deep ice cores. Grain size evolution is characterized by an increase until 500 m depth, a decrease until 1360 m depth and mainly constant values in the Glacial. These findings are accompanied by indications of an early onset of dynamic recrystallisation e.g. irregular grain shapes, protruding grains and island grains.

The presented high-resolution data enable, for the very first time, a detailed and data- based look into a fast-flowing ice stream and are an important step towards a better understanding of the rheology of ice and its flow behaviour.

How to cite: Stoll, N., Weikusat, I., Kerch, J., Eichler, J., Shigeyama, W., Homma, T., Jansen, D., Franke, S., Kuiper, E.-J., Wallis, D., Westhoff, J., Saruya, T., Faria, S. H., Kipfstuhl, S., Azuma, K. G., Azuma, N., and Dahl-Jensen, D.: The upper 2121 m at EastGRIP - Results from physical properties of NEGIS , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-871, https://doi.org/10.5194/egusphere-egu2020-871, 2020.

Small grain size and a well-mixed phase assemblage are key features of upper mantle (ultra)mylonitic layers. In those layers, Zener pinning inhibits grain growth, which could lead to diffusion creep. This increases the strain rate for a given stress significantly. Prerequisite is phase mixing which can occur by dynamic recrystallization (dynRXS) plus grain boundary sliding (GBS), metamorphic or melt/fluid-rock reactions, creep cavitation plus nucleation, or by a combination of those processes. In order to get insights into the interplay of phase mixing and dynRXS we investigate microfabrics (EBSD, optical microscopy) displaying the transition from clasts to mixed assemblages. Samples are taken from the Lanzo peridotite shear zone (Italy).

Olivine dynamically recrystallizes from protomylonitic to ultramylonitic samples. Its grain size varies systematically between monomineralic (~20µm) and polymineralic layers (~10µm). Olivine is the dominant mixing phase for both, dynamically recrystallizing orthopyroxene (ol~55vol.%) and clinopyroxene clasts (ol~45vol.%). In contrast, recrystallizing olivine clasts show little evidence of phase mixing. In phase mixtures, olivine neoblasts show weak (J-index ~1.8) C-Type and weak (J-Index ~1.5) B-type CPO’s. Both types suggest the presence of water during deformation.

Isolated, equiaxial orthopyroxene clasts are present in all samples. DynRXS of opx starts in mylonites. Some clasts and tips of extensively elongated opx bands (max. axial ratios 1:50) are bordered by fine-grained (min. ECD~5µm) mixtures of olivine, opx ± anorthite/ cpx/ pargasite. Mixing intensities seem to depend on the connection to the olivine-rich matrix. Clast grain boundaries are highly lobate with indentations of secondary phases (mostly olivine). Opx neoblasts have no internal deformation and show large misorientations close to their host clast (misorientation angle >45° at ~20µm distance). Their grain shape is either flat and elongated or equiaxial. Both shapes have lobate boundaries. Their CPO depends on the host clast orientation. In ultramylonites, opx bands disappeared completely.

Clinopyroxene porphyroclasts dynamically recrystallize in protomylonite to ultramylonite samples. Olivine is the dominant mixing phase (~45vol.%). Cpx mixed area grain sizes tend to be coarser (~10µm) than in corresponding opx areas (~6µm). Ultramylonitic cpx-ol assemblages have a higher mixing percentage (phase boundaries/grain boundaries ~70%) than mylonitic assemblages (~40%). In the mylonitic layers, clusters of cpx neoblasts form ‘walls’ parallel to their host grain borders. Olivine neoblasts between these clusters show no CPO. The overall cpx CPO varies from [001] perpendicular and [010] parallel to the foliation with (J -Index ~2.5) to [100] perpendicular and [001] parallel to the foliation (J-Index ~1.2).

Beside few thoroughly mixed areas, bands of cpx+ol and of opx+ol are still distinguishable in ultramylonitic layers. This suggests their origin to be dynamically recrystallized opx and cpx clasts. Therefore, phase mixing is assumed to occur simultaneously to clast recrystallization. Beside a small gradient of opx/cpx abundance depending on the distance from their host clast there is little evidence for phase mixing by dynRXS+GBS only. High abundances of olivine neoblasts at grain boundaries of recrystallizing clasts and their instant mixed assemblage with host phase neoblasts suggest phase mixing being strongly dependent on olivine nucleation during dynRXS of opx and cpx.

How to cite: Tholen, S. and Linckens, J.: Phase mixing in upper mantle shear zones: Olivine nucleation during dynamic recrystallization of orthopyroxene and clinopyroxene porphyroclasts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4983, https://doi.org/10.5194/egusphere-egu2020-4983, 2020.

EGU2020-9953 | Displays | TS2.3

Strain localisation during diffusion creep: influence of grain coarsening and grain boundary sliding

John Wheeler, Lynn Evans, Robyn Gardner, and Sandra Piazolo

Diffusion creep and the wet low temperature version, pressure solution, are major deformation mechanisms in the Earth. Pressure solution operates in many metamorphosing systems in the crust and may contribute to slow creep on fault surfaces. Diffusion creep prevails in areas of the upper mantle deforming slowly, and possibly in most of the lower mantle. Both mechanisms contribute to localisation since small grain sizes can deform faster.

However, there has been limited attention paid to the evolution of microstructure during diffusion creep. In some experiments grains coarsen; in some but not all experiments grains remain rather equant. We have developed a grain-scale numerical model for diffusion creep, which indicates that those processes are very important in influencing evolving strength. Our models illustrate three behaviours.

  1. Strain localises along slip surfaces formed by aligned grain boundaries on all scales. This affects overall strength.
  2. Diffusion creep is predicted to produce elongate grains and then the overall aggregate has intense mechanical anisotropy. Thus strength during diffusion creep, and localisation on weak zones, is influenced not just by grain size but by other aspects of microstructure.
  3. Grain coarsening increases grain size and strength. Our most recent work shows how it interacts with ongoing deformation. In particular grain growth can lead to particular grain shapes which are directly related to strain rate, and influence strength. Consequently, understanding localisation during diffusion creep must encompass the effects of diffusion itself, grain boundary sliding and grain coarsening.

How to cite: Wheeler, J., Evans, L., Gardner, R., and Piazolo, S.: Strain localisation during diffusion creep: influence of grain coarsening and grain boundary sliding, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9953, https://doi.org/10.5194/egusphere-egu2020-9953, 2020.

EGU2020-4273 | Displays | TS2.3

Ductile shear zones – future perspectives

Christoph Schrank

About 50 years ago, John Ramsay and colleagues established the thorough foundation for the field-scale observational and mathematical description of the structures, deformation, and kinematics in ductile shear zones. Since then, these probably most important instabilities of the ductile lithosphere enjoyed an almost explosive growth in scientific attention. It is perhaps fair to say that this tremendous research effort featured four main themes:

 

[1] The historic scientific nucleus – quantification of shear-zone geometry, strain and associated kinematic history from field observations

 

[2] Qualitative and quantitative analysis of microphysical deformation mechanisms in the field and the laboratory

 

[3] Shear-zone rheology

 

[4] The development of physically consistent mathematical models for shear zones, mainly using continuum mechanics.

 

In concert, these four cornerstones of shear-zone research enabled tremendous progress in our understanding of why and how ductile shear zones form. So, what are some of the outstanding problems?

 

A truly comprehensive model for ductile shear zones must account for the vast range of length and time scales involved, each easily covering ten orders of magnitude, as well as the associated intimate coupling between thermal, hydraulic, mechanical, and chemical processes. The multi-scale and multi-physics nature of ductile shear zones generates scientific challenges for all four research themes named above. This presentation is dedicated to highlighting exciting challenges in themes 2, and 3 and 4.

 

In the microanalytical arena [2], the nano-scale is an exciting new frontier, especially when it comes to the interplay between metamorphism and ductile deformation. The nano-frontier can be tackled with new synchrotron methods. I showcase some applications to fossil shear-zone samples and discuss opportunities for in-situ experiments. In the domain of rheology [3], I present some simple experiments with strain-softening materials and field observations that support the notion: transient rheological behaviour is very important for shear localisation. In the modelling domain [4], some recent examples for the intriguing physical consequences predicted by new multi-physics and cross-scale coupling terms in ductile localisation problems are illustrated.

How to cite: Schrank, C.: Ductile shear zones – future perspectives, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4273, https://doi.org/10.5194/egusphere-egu2020-4273, 2020.

EGU2020-5250 | Displays | TS2.3

Evidence that viscous shear zones spontaneously establish hydro-mechanical anisotropy

James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh

We revisit large shear strain deformation experiments on Carrara marble and observe that anisotropic porous domains develop spontaneously during shearing. Specifically, as samples are deformed periodic porous sheets are documented to emerge and are found to transfer mass. These results imply that viscous shear zones may naturally partition fluids into highly anisotropic bands. As this hydro-mechanical anisotropy is produced by creep, each porous sheet is interpreted to represent a transient dynamic pathway for fluid transport. It is unclear how long each porous domain is uniquely sustained but it is clear that sheets are persistently present with increasing strain. Our results forward the idea that viscous shear zones have dynamic transport properties that are not related to fracturing or chemical reaction. We believe these new results provide experimental foundation for changing the paradigm of viscosity in rocks to include dynamic permeability. In our view making this change in perspective could alter many classical interpretations in natural banded mylonite zones, for example shear zone parallel syn-kinematic veining may be the result of pore sheet instability and ductile fracturing.

How to cite: Gilgannon, J., Waldvogel, M., Poulet, T., Fusseis, F., Berger, A., Barnhoorn, A., and Herwegh, M.: Evidence that viscous shear zones spontaneously establish hydro-mechanical anisotropy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5250, https://doi.org/10.5194/egusphere-egu2020-5250, 2020.

Present exposure of the ductile Caledonian retrowedge in northwestern Scotland records the evolution of a shear zone that was exhuming while actively deforming, providing a natural laboratory to study strain localization in a progressively cooling system. Examination of rocks from two detailed transects across this region consistently show a transition from microstructures that are dominated by interconnected phyllosilicate networks in a quartz-rich matrix with feldspar porphyroclasts, to interconnected fine-grained regions of mixed quartz + phyllosilicate + feldspar. These polyphase regions are demonstrably weaker than surrounding quartz layers and likely deform by grain-size sensitive mechanisms including diffusion-accommodated grain boundary sliding.

Microstructures characterized by a quartz-rich matrix and interconnected phyllosilicates undergo quartz recrystallization by high temperature grain boundary migration and are dominated by prism a slip. In contrast, fine-grained polyphase microstructures record quartz recrystallization dominated by subgrain rotation and activation of rhomb a and basal a slip systems. We propose transient hardening occurs in quartz-dominated regions as quartz with a strong Y-axis maximum undergoes the switch from prism a easy slip to basal a easy slip during cooling, and thus partitions strain into interconnected phyllosilicate layers. In response, interconnected phyllosilicate layers undergo mechanical comminution, becoming increasingly mixed by grain-size sensitive creep processes to form polyphase layers as they accommodate an increased proportion of strain. This transition from quartz-rich matrix with phyllosilicate interconnected weak layers to fine-grained, polyphase weak layers could be of first-order importance in strain localization within polyphase mylonitic and ultramylonitic rocks.

How to cite: Lusk, A. and Platt, J.: Development of interconnected fine-grained polyphase networks during progressive exhumation of a shear zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12715, https://doi.org/10.5194/egusphere-egu2020-12715, 2020.

EGU2020-19297 | Displays | TS2.3

On the causes of brittle nucleation of shear zones: the example of Cap de Creus, Eastern Pyrenees (Spain)

Claudio Rosenberg, Loïc Labrousse, Nicolas Landry, Elena Druguet, and Jordi Carreras

The area of Cap de Creus, at the eastern termination of the Axial Zone of the Pyrenean Belt, exposes some of the most famous outcrops of ductile shear zones and shear zone networks (Carreras, 2001). Recent studies proposed that the nucleation and growth of such shear zones may have taken place by brittle processes (Fusseis et al., 2006; Fusseis and Handy, 2008).

The present study investigates the geometrical relationships between fracture systems and some shear zones, the deformation temperature of these shear zones, and the processes leading to the nucleation and growth of shear zones along fracture planes. We selected two areas of the Cap de Creus, the Cala d’Agulles, and the Punta de Cap de Creus, because they are most intensely dissected by subparallel sets of shear zones and fractures. The orientation of the average shear zone planes is sub-parallel to the orientation of the major set of fractures, and the great extent and close spacing of some shear zones that we characterized by aerial photos from a drone, is similar to the distribution and extent of the fracture planes. These observations, in addition to those of Fusseis et al. (2006) suggest that the shear zones nucleated on previous fracture planes. 

These fractures are surrounded by haloes of nearly 1 cm thickness affecting the fabric of the country rock, an amphibolite-facies, biotite-andalusite bearing schist. Microscopic observations show that the haloes correspond to the wide-spread presence of thin (less than 2µm thickness) phosphate seams coating the grain boundaries, preferentially those oriented at low angle to the fracture plane, and to the alteration of plagioclase to white mica and sericite, and to the growth of tourmaline, also related to grain boundaries and micro-fractures.

Deformation temperature in the shear zones is assessed by white mica thermometry and pseudosections. The calculated T of at least 350-400° C is consistent with qualitative observations showing the presence of stable biotite within very fine-grained (<< 10 µm) shear bands and the recrystallization of quartz by rotation of sub-grain boundaries.

In summary, fractures formed at high temperature, possibly associated with the intrusion of tourmaline-bearing pegmatites and fluids, which predate the ductile mylonitic event (Druguet, 2001; Van Lichtervelde et al., 2017). Fluids altered and weakened a volume of approximately 2 cm thickness all along the fracture planes, whose extent may reach > 100 m. The inferred, relatively high T of ca.  400° C indicates that fracturing is not due to the proximity of the brittle-ductile transition. In addition, no significant micro-fracturing of the mylonites is observed in thin sections. Therefore, fracturing precedes the ductile shear zones, which nucleate on some of the “inherited” sets of thin, planar, weakened structures, the large majority of which remains undeformed. These observations raise the question on whether nucleation and propagation of ductile shear zones is mechanically unrelated to brittle fracturing. Their weakening of planar structures would originate from fluid migration along fracture planes, but fracturing would no longer be active during ductile deformation.

How to cite: Rosenberg, C., Labrousse, L., Landry, N., Druguet, E., and Carreras, J.: On the causes of brittle nucleation of shear zones: the example of Cap de Creus, Eastern Pyrenees (Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19297, https://doi.org/10.5194/egusphere-egu2020-19297, 2020.

EGU2020-9155 | Displays | TS2.3

Carbon ordering in an aseismic shear zone: implications for crustal weakening and Raman spectroscopy

Lauren Kedar, Clare Bond, and David Muirhead

Multi-layered stratigraphic sequences present ample opportunity for the study of strain localization and its complexities. By constraining mechanisms of crustal weakening, it is possible to gain a sounder understanding of the dynamic evolution of the Earth’s crust, especially when applied to realistic, field-based scenarios. One such mechanism is that of strain-related carbon ordering. This is the process whereby the amorphous nanostructure of fossilized organic matter contained within the rock is progressively organized towards a more sheet-like structure, similar to that of graphite. One common method of studying this process is through Raman spectroscopy. This is a non-destructive tool which makes use of the relative positions and intensities of two key spectral peaks, where one peak represents graphitic carbon and the other disordered (or amorphous) carbon. The intensity ratio between these two peaks suggests the degree to which the carbon has progressed from its original kerogen-like structure towards that of graphite. This progression can be due to increasing temperature or increasing strain, and until now, these two contributory factors have been difficult to separate, particularly in field examples.

Previous field-based studies have focused on carbon ordering on fault planes, while experimental studies have monitored the effects of strain-related ordering in organic carbon on both fault surfaces and more distributed shear zones. These studies confirmed the occurrence of strain-related ordering at seismic rates, particularly in the form of graphitization of carbon. However, these experiments showed the effects of strain-related ordering at aseismic rates to be limited when distributed shear zones were considered, in part due to the geological timescales required to emulate true conditions.

In this study, Raman spectroscopy is used to compare the relative nanostructural order of organic carbon within a recumbent isoclinal fold formed of interbedded limestones and marls. The central, overturned fold limb forms a 170m wide, 1km long aseismic shear zone, with evidence of increased strain recorded in calcite grains relative to the upper and lower limbs. Raman spectroscopy intensity ratios (I[d]/I[g]) are compared across the fold, showing a marked 23% decrease in the overturned limb. Such a decrease in I[d]/I[g] suggests increased carbon ordering within the overturned limb, which in combination with evidence for increased strain in calcite, suggests that the carbon ordering here is derived directly from strain-related ordering. This has important implications. We infer, from previous studies, that strain-related carbon ordering encourages further strain partitioning in carbonaceous material, and may enhance zones of weakness in the rock. This ordering in aseismic shear zones has so far been unreported in nature, and so our field-based results are significant in supporting previous experimental evidence for this phenomenon. Our results also have implications for understanding dynamic crustal evolution, and will play an important role in the development of Raman thermobarometry, especially since current methods do not distinguish between strain-related and temperature-related ordering.

How to cite: Kedar, L., Bond, C., and Muirhead, D.: Carbon ordering in an aseismic shear zone: implications for crustal weakening and Raman spectroscopy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9155, https://doi.org/10.5194/egusphere-egu2020-9155, 2020.

EGU2020-13110 | Displays | TS2.3

The flow-to-sliding transition in crystalline magma

Zhipeng Qin and Jenny Suckale

Magmatic flows are rarely, if ever, entirely free of crystals. If these crystals distribute in an approximately homogeneous way, their impact on flow can be captured by defining a suitable effective viscosity for the suspension. A spatially heterogeneous crystal distribution, however, can build up to the degree that the flow behavior of the crystal-bearing magma becomes substantially different from that of a pure melt. One example is the transition from flow to sliding, in which the deformation in the crystalline magma is concentrated almost entirely in a thin interfacial layer as opposed to being distributed in a typical flow profile throughout the domain. The transition is particularly consequential for the large-scale dynamics of the system, because it can be associated with transport rates increasing by orders of magnitudes.

 

Most conduit models associate the flow-to-sliding transition with a critical crystal fraction, often in the 60% range. Here, we hypothesize that the flow to sliding transition can occur at crystal fraction as low as a few percents under certain conditions. We test our hypothesis by numerically reproducing existing laboratory measurements of the effective viscosity of plagioclase-bearing basalt in a rotational viscometer. We utilize a direct numerical method to resolve the interactions between the crystals and the magmatic melt at the scale of individual interfaces in 2D. Our numerical approach only requires assumptions about the pure phase including the crystal fraction and crystal shape. All phase interactions and their aggregate effect on the flow emerge self-consistently from the simulation itself. 

 

Our simulations suggest that the behavior of multiphase suspensions at low fluid Reynolds number is highly variable and depends sensitively on the characteristics of the immersed phases and the geometry of the flow domain. We show that there is no meaningful dilute limit in which the phase interactions can be neglected or captured by adjusting the effective rheology of the suspension in a way that removes dependencies on the properties of the immersed phase. Since our models operate at the scale of individual crystals, our model results are testable in both field and laboratory settings. In fact, they suggest that observations of microstructure provide valuable constraints on the large scale flow dynamics at the time. Particularly important is the degree of preferential crystal alignment and the existence of force chains or crystal clusters.

How to cite: Qin, Z. and Suckale, J.: The flow-to-sliding transition in crystalline magma, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13110, https://doi.org/10.5194/egusphere-egu2020-13110, 2020.

EGU2020-13160 | Displays | TS2.3

Influence of initial preferred orientations on strain localisation and fold patterns in non-linear viscous anisotropic materials

Tamara de Riese, Paul D. Bons, Enrique Gomez-Rivas, Albert Griera, Maria-Gema Llorens, and Ilka Weikusat

Deformation localisation in rocks can lead to a variety of structures, such as shear zones and shear bands that can range from grain to crustal scale, from discrete and isolated zones to anastomosing networks. The heterogeneous strain field can furthermore result in a wide range of highly diverse fold geometries.

We present a series of numerical simulations of the simple-shear deformation of an intrinsically anisotropic non-linear viscous material with a single maximum crystal preferred orientation (CPO) in dextral simple shear. We use the Viscoplastic Full-Field Transform (VPFFT) crystal plasticity code (e.g. Lebensohn & Rollett, 2020) coupled with the modelling platform ELLE (http://elle.ws) to achieve very high strains. The VPFFT-approach simulates viscoplastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses. The approach is well suited for strongly non-linear anisotropic materials (de Riese et al., 2019). We vary the anisotropic behaviour of the material from isotropic to highly anisotropic (according to the relative critical resolved shear stress required to activate the different slip systems), as well as the orientation of the initial single maximum orientation, which we vary from parallel to perpendicular to the shear plane. To visualize deformation structures, we use passive markers, for which we also systematically vary the initial orientation.

At relatively low strains the amount of strain rate localisation and resulting deformation structures highly depend on the initial single maximum orientation in the material in all anisotropic models. Three regimes can be recognised: distributed shear localisation, synthetic shear bands and antithetic shear bands. However, at very high strains localisation behaviour always tends to converge to a similar state, independent of the initial orientation of the anisotropy.

In rocks, shear localisation is often detected by the deflection and/or folding of layers, which may be parallel to the anisotropy (e.g. cleavage formed by aligned mica), or by deflection/deformation of passive layering, such as original sedimentary layers. The resulting fold patterns vary strongly, depending on the original orientation of layering relative to the deformation field. This can even result in misleading structures that seem to indicate the opposite sense of shear. Most distinct deformation structures tend to form when the layering is originally parallel to the shear plane.

 

de Riese, T., Evans, L., Gomez-Rivas, E., Griera, A., Lebensohn, R.A., Llorens, M.-G., Ran, H., Sachau, T., Weikusat, I., Bons, P.D. 2019. Shear localisation in anisotropic, non-linear viscous materials that develop a CPO: A numerical study. J. Struct. Geol. 124, 81-90.

Lebensohn, R.A., Rollett, A.D. 2020. Spectral methods for full-field micromechanical modelling of polycrystalline materials. Computational Mat. Sci. 173, 109336.

How to cite: de Riese, T., Bons, P. D., Gomez-Rivas, E., Griera, A., Llorens, M.-G., and Weikusat, I.: Influence of initial preferred orientations on strain localisation and fold patterns in non-linear viscous anisotropic materials , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13160, https://doi.org/10.5194/egusphere-egu2020-13160, 2020.

EGU2020-45 | Displays | TS2.3

Ultrahigh resolution 3D imaging and characterisation of nanoscale pore structure in shales and its control on gas transport

Mohamed Garum, Paul Glover, Piroska Lorinczi, and Ali Hassanpour

 

Cost-effective and environmentally sensitive shale gas production requires detailed knowledge of the petrophysical characteristics of the shale from which the gas is extracted. Parameters such as the kerogen fraction, pore size distributions, porosity, permeability, the frackability of the rock and the degree to which natural fracturing already occurs are required in order to be able to estimate potential gas reserves and how easily it can be extracted. Innovative imaging techniques, including Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) and Nanoscale X-Ray Tomography (nano-CT), can be used to characterise the microstructural properties of shale. Here we report using FIB-SEM serial sectioning and nano-CT on approximately cubic samples of side length about 25 µm. The resolution of the FIB-SEM scanning is approximately 20 nm, while that of the nano-CT is about 50 nm, providing between 125 and 1953 million voxels per scan. These ultra-high resolution techniques have been shown to be effective methods for the analysis and imaging of shale microstructure. Each technique can provide data over a different and separate range of scales, and with different resolutions. Results analysed so far indicate that pores which seem to be unconnected when imaged on a micrometre scale by micro-CT scanning, are connected by thin pathways when imaged at these higher resolutions. This nano-scale connectivity is responsible for the small but non-zero permeability of gas shales to gas flow, which is typically measured in the range 5 nD – 200 nD. The volume, size, aspect ratios, surface area to volume ratio and orientations have all been calculated from the scanned data as a function of scale. These data indicate an extremely complex, heterogeneous, anisotropic and multimodal pore nanostructure and microstructure for the shales, with structure at all scales contributing to both gas storage and gas flow. Further work analysing the connectivity of the microscale and nanoscale pore spaces within the rock is underway. We believe that the combination of nano-CT with FIB-SEM on the same sample has the potential for providing an enhanced understanding of shale microstructure, which is necessary for modelling elastic behaviour, gas storage, gas desorption and gas flow in gas shales.

Keywords: Gas shale, FIB-SEM, nano-CT, porosity, permeability, Kerogen, pore volume, size distribution, pore aspect ratio and surface area to pore volume.

How to cite: Garum, M., Glover, P., Lorinczi, P., and Hassanpour, A.: Ultrahigh resolution 3D imaging and characterisation of nanoscale pore structure in shales and its control on gas transport , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-45, https://doi.org/10.5194/egusphere-egu2020-45, 2020.

Hydrocarbon exploration is extending from the shallowly buried to deeply buried strata with increasing demands for fossil fuels. The variable storage and percolation capacities that intrinsically depend on the pore geometry restrict the hydrocarbon recovery and displacement efficiency and trigger studies on the micro-scale pore structure, fluid flow capacity, and their controlling factors. Minerals within sandstone are the results of the coupling control of depositional factors and diagenetic alternations, which determine the microscopic pore geometry and subsequently affect the fluid flow capacity. In order to investigate the impacts of mineralogy on the pore structure and fluid flow capacity, integrated analyses including porosity and permeability measurements, casting thin section (CTS), scanning electron microscopy (SEM), pressure-controlled mercury porosimetry (PCP), rate-controlled mercury porosimetry (RCP), nuclear magnetic resonance (NMR), and X-ray diffraction (XRD) are conducted on the deeply buried sandstone samples in the Jurassic Sangonghe Formation of the Junggar Basin. Microscopic pore structure is characterized by the combination of SEM, CTS, PCP, and RCP and fractal theory. Fluid flow capacity is evaluated by the innovative application of film bound water model in NMR and mineralogy is quantitatively measured by XRD. The results indicate that the deeply buried sandstone is rich in quartz (54.2%), feldspar (25.1%), and clay (14.2%), with dominant kaolinite (5.04%) and chlorite (5.38%) cementation. The reservoir has a wide pore-throat diameter distribution with three peaks in the ranges 0.01–1, 10–80, and 200–1000 μm. Pores are tri-fractal and can be divided into micropores, mesopores, and macropores, with average porosity contributions of 50.11, 21.83, and 28.04%, respectively. The movable porosity of deeply buried sandstone ranges from 1.75 to 8.24%, primarily contributed by intergranular (avg. 2.34%) and intragranular pores (avg. 2.56%). Most of the fluids are movable in intergranular pores but are irreducible in intragranular pores. Correlation analyses between mineralogy and pore structure suggest that quartz provides preservation to intergranular porosity, which increases pore size and macropores porosity and reduces heterogeneity of the pore system. The influence of feldspar reverses and becomes poor owing to the simultaneous clay precipitation and complex roles of feldspar dissolution in microporosity. Chlorite, kaolinite, and illite, all act as destructions to intergranular porosity. They enhance the mesopores and micropores porosities, reduce the pore size, and increase the microscopic heterogeneities of the macropores, micropores, and whole pore system. The relationships between mineralogy and fluid flow capacity indicate that quartz is favorable for the fluid flow capacity, but feldspar and clay play negative roles. The reversed impacts of quartz and feldspar lay in their opposite controls on pore size. However, both pore size and hydrophilia should be taken into account when considering the effects of clay minerals. These negative effects are associated with types, contents, and hydrophilic degrees of clay minerals, in which I/S and illite exhibit the strongest negative impacts. The fluid flow in the intergranular and intragranular pores is generally enhanced by higher quartz content, but reduced by higher clay content. Irreducible fluids in the intergranular and intragranular pores are determined by chlorite and kaolinite contents, respectively.

How to cite: Qiao, J., Zeng, J., and Feng, X.: Impacts of mineralogy on micro-scale pore structure and fluid flow capacity of deeply buried sandstone reservoirs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1516, https://doi.org/10.5194/egusphere-egu2020-1516, 2020.

EGU2020-6968 | Displays | TS2.3

Synchrotron multi-modal, multi-scale chemical and structural imaging of vein-bearing shales

Christoph E. Schrank, Michael W. M. Jones, Cameron M. Kewish, and Grant A. van Riessen

The coupling between fluid transport, chemical reactions, and deformation constitutes one of the frontiers of geoscientific research. From an analytical perspective, a fundamental challenge is posed by the fact that sub-nanometre- to micrometre-scale structures play a vital role in the macroscopic (centimetre- to metre-scale) response of deforming, reacting, fluid-bearing rocks. Sample analysis with conventional laboratory techniques quickly becomes prohibitively expensive and laborious when more than four orders of magnitude in length scales need to be resolved. This issue is particularly challenging in very fine-grained rocks such as mylonites and shales.

 

Here, we investigate calcite-vein-bearing shales to illustrate how synchrotron X-ray fluorescence microscopy, ptychography, and small- and wide-angle transmission scattering can be used for the quantitative multi-scale analysis of micro- and nano-textures in rock. These analytical techniques are applied to thin sections or thin rock slabs on the centimetre-scale and provide information on length scales from hundreds of micrometres down to angstroms. Therefore, the considered array of synchrotron techniques covers up to eight orders of magnitude in length scale in terms of chemical and structural information. In our case study, we demonstrate how this suite of analytical techniques can be employed to reveal, for example, the relative timing of mineralisation events, trace-element chemistry, texture, and the structural width of fluid pathways such as grain boundaries.

How to cite: Schrank, C. E., Jones, M. W. M., Kewish, C. M., and van Riessen, G. A.: Synchrotron multi-modal, multi-scale chemical and structural imaging of vein-bearing shales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6968, https://doi.org/10.5194/egusphere-egu2020-6968, 2020.

EGU2020-21109 | Displays | TS2.3

Weakening mechanisms and the role of easy slip horizons in thrust belt development: a microstructural approach

Aimee Guida Barroso, Eddie Dempsey, Bob Holdsworth, and Nicola De Paola

The Late Silurian Moine Thrust Zone (MTZ) of the NW Highlands of Scotland has long been fundamental to the understanding of the nature and processes that occur during thrust tectonics in the upper continental crust. This complex imbrication zone formed during final Scandian stages of the Caledonian orogeny when collision of Baltica and Laurentia led to WNW-ESE tectonic foreshortening of >100km. The MTZ juxtaposed greenschist to amphibolite facies Neoproterozoic metamorphic rocks of the Moine Supergroup over sequences of little metamorphosed Cambro-Ordovician and Neoproterozoic sedimentary rocks and their Neoarchean to Paleoproterozoic gneissic basement in a zone ranging from <1km to >20km wide.

The mechanical problems represented by thrust wedges being transported over such great distances without losing their internal cohesion has highlighted the role played by detachment structures and the need for mechanisms that create significant weakening along basal detachments that allow overthrusts to accommodate major horizontal displacements in the shallow crust. Field studies and use of section balancing techniques have highlighted that a substantial proportion of the displacement seems to be accommodated along detachments that follow specific stratigraphic levels.

Other than the Moine Thrust Mylonites and the mylonitised parts of the Cambrian Quartzites, relatively little is known about the grain scale deformation and potential weakening processes that have occurred in other parts of the MTZ. New lithological descriptions of the fault rocks and sedimentary protoliths observed in the Assynt, Durness and Eriboll areas are presented here and provide detailed microstructural evidence for the long-term weakening mechanisms that were operating at the time. These mechanisms are consistently related to the onset of grain size reduction, triggered by both chemical enhanced and geometric processes. These include feldspar alteration to fine phyllosilicates associated with cataclasis and dynamic recrystallization of quartz.

Pressure solution, evidenced by changes in the shape of minerals along cleavage surfaces and the presence of dissolution seams and caps, is widespread throughout the studied rock sequences. The profuse occurrence of this grain-scale mechanism makes it very likely that syn-deformational fluid-influx lead to the destruction of load bearing microstructural frameworks and the development of interconnected weak layers due to alteration, explaining the occurrence of detachments within impure layers of the predominantly quartzose Pipe Rock and Salterella Grit members. The progressive development of these interconnecting fine-grained weak layers resulting from incongruent diffusive mass transfer is enhanced in the more mineralogically heterogeneous units of the Cambro-Ordovician sedimentary sequence (in particular, Fucoid Beds dolomitic siltstones and Durness limestones) explaining the consistently observed slip localization in these horizons.

How to cite: Guida Barroso, A., Dempsey, E., Holdsworth, B., and De Paola, N.: Weakening mechanisms and the role of easy slip horizons in thrust belt development: a microstructural approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21109, https://doi.org/10.5194/egusphere-egu2020-21109, 2020.

EGU2020-9086 | Displays | TS2.3

Graphitic material in fault zones: Implication for strain localization and rheological weakening

Shuyun Cao, Franz Neubauer, and Meixia Lv

Graphitic carbon exhibits a large range of structures and chemical compositions, from amorphous-like compounds to crystalline graphite. The graphitic carbon-bearing rocks are widely occurred in low- to high- grade metamorphic massif and fault zone. The carbonaceous material in the rock will gradually transform from an amorphous into an ordered crystalline structure by thermal metamorphism, which is called graphitization. The degree of graphitization is believed to be a reliable indicator of peak temperature conditions in the metamorphic rock. In many low-grade metamorphic rocks, graphitic carbon (e.g., soot, low-grade coal) is often associated with brittle fault gouge whereas in high-grade metamorphic rocks, graphitic carbon (crystalline granite) are most commonly seen in marble, schist or gneiss. In recent years, graphitic carbon-bearing rocks have been reported from natural fault zones (reviwers paper see Cao and Neubauer 2019 and references therein). The graphitic carbon grains in our samples tend to enrich in slip-surface or micro-shear zone with strain localization in fault, performed as dislocation glide of deformation. The graphite LPO shows slip system in the direction of basil <a> combined basil <a> slip and weak prism <a> slip systems, suggesting a low-temperature to a medium to high temperature deformation conditions, which is in consistent with the results of Raman Spectra of Carbonaceous material (RSCM) thermometry. We also proposed that the graphitic carbon formed in the rocks can significantly affect the mechanical properties of the fault during the process of faulting. This process can effectively cause reaction weakening and strain localization, which is thought to play an important role as solid lubrication in fault weakening.

How to cite: Cao, S., Neubauer, F., and Lv, M.: Graphitic material in fault zones: Implication for strain localization and rheological weakening, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9086, https://doi.org/10.5194/egusphere-egu2020-9086, 2020.

EGU2020-960 | Displays | TS2.3

Development of C- shear bands in brittle-ductile shear zones: Insights from analogue and numerical models.

Arnab Roy, Nandan Roy, Puspendu Saha, and Nibir Mandal

Development of brittle and brittle-ductile shear zones involve partitioning of large shear strains in bands, called C-shear bands (C-SB) nearly parallel to the shear zone boundaries. Our present work aims to provide a comprehensive understanding of the rheological factors in controlling such SB growth in meter scale natural brittle- ductile shear zones observed in in Singbhum and Chotonagpur mobile belts.  The shear zones show C- SB at an angle of 0°- 5° with the shear zone boundary. We used analogue models, based on Coulomb and Viscoplastic rheology to reproduce them in experimental conditions.

These models produce dominantly Riedel (R) shear bands. We show a transition from R-shearing in conjugate to single sets at angles of ~15o by changing model materials. However, none of the analogue models produced C-SB, as observed in the field. To reconcile the experimental and field findings, numeral models have been used to better constrain the geometrical and rheological parameters. We simulate model shear zones replicating those observed in the field, which display two distinct zones: drag zone where the viscous strains dominate  and the core zone, where both viscous and plastic strains come into play.  Numerical model results suggest the formation of  C- SB for a specific rheological condition. We also show varying shear band patterns as a function of the thickness ratio between drag and core zones.

How to cite: Roy, A., Roy, N., Saha, P., and Mandal, N.: Development of C- shear bands in brittle-ductile shear zones: Insights from analogue and numerical models., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-960, https://doi.org/10.5194/egusphere-egu2020-960, 2020.

EGU2020-3938 | Displays | TS2.3

On the Origin of Ultramylonites

Jacques Précigout

Deformation of lithospheric rocks regularly localizes into high-strain shear zones that include fine-grained ultramylonites. Occurring as quasi-straight layers of intimately mixed phases that often describe sharp transitions with the host rock, these structures may channelize fluid flow[1,2] and could serve as precursors for deep earthquakes[3]. However, although intensively documented, ultramylonites originate from still unknown processes. Here I focus on a mylonitic complex that includes numerous mantle ultramylonites in the Ronda peridotite (Spain). Among them, I was able to highlight one of their precursors that I better describe as a long and straight grain boundary, along which four-grain junctions are observed with randomly oriented grains of olivine and pyroxenes. This precursor starts from a pyroxene porphyroclast and extends to an incipient, weakly undulated ultramylonite, where intimate phase mixing arises with asymmetrical grain size distribution. While the finer grain size locates on one side, describing a sharp – but continuous – transition with the host rock, the grain size gradually increases towards the other side, giving rise to a smooth transition. All phases have a very weak lattice preferred orientation (LPO) in the ultramylonite, which strongly differs from the host rock where olivine is highly deformed with evidence of high dislocation densities and a strong LPO. Altogether, these features shed light on the origin of mantle ultramylonites that I attribute to a migrating grain boundary, the sliding of which continuously produces new grains by phase nucleation, probably at the favor of transient four-grain junctions. Nucleated grains then grow and progressively detach from the precursor as it keeps on migrating depending on the dislocation densities in the host rock. Although such an unusual grain boundary remains to be understood in terms of source mechanism, these findings provide new constraints on the appearing and development of ultramylonites.

 

[1] Fusseis, F., Regenauer-Lieb, K., Liu, J., Hough, R. M. & De Carlo, F. Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones. Nature 459: 974–977 (2009)

[2] Précigout, J., Prigent, C., Palasse, L. & Pochon, A. Water pumping in mantle shear zones. Nat. commun. 8: 15736, https://doi.org/10.1038/ncomms15736 (2017)

[3] White, J. C. Paradoxical pseudotachylyte – Fault melt outside the seismogenic zone. J. Struct. Geol. 38: 11-20 (2012)

How to cite: Précigout, J.: On the Origin of Ultramylonites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3938, https://doi.org/10.5194/egusphere-egu2020-3938, 2020.

EGU2020-3508 | Displays | TS2.3

Processes, properties, and microstructures in faults active at retrograde conditions

Ake Fagereng, Christian Stenvall, Matt Ikari, Johann Diener, and Chris Harris

Faults that are active at retrograde conditions tend to contain metastable fault rock assemblages that are prone to undergo fluid-consuming reactions. These reactions typically lead to growth of minerals that are viscously and frictionally weaker than the reactants. This is illustrated in the well-studied Outer Hebrides Fault Zone (OHFZ) of Scotland, and we add observations from the Kuckaus Mylonite Zone (KMZ), Namibia. In both locations, deformation is localised in anastomosing networks of phyllosilicates that developed during deformation of amphibolite and/or granulite assemblages at greenschist facies conditions. Microstructures of these phyllonites show generally well aligned phyllosilicates wrapping around fractured feldspars and quartz with features indicating dislocation creep.

In the KMZ, further localization occurred in ultramylonites within the mylonite zone. These are characterised by a similar phyllosilicate proportion to surrounding mylonites, but lack interconnected phyllosilicate networks. Instead, they contain a very fine-grained assemblage of quartz, feldspar, and phyllosilicate, where both quartz and feldspar lack a CPO. We interpret this assemblage as having deformed through grain-size sensitive creep, at lower shear stress than the surrounding mylonite. It is possible that the ultramylonites developed by dismembering an earlier interconnected weak phase microstructure with increasing finite strain, as has been suggested experimentally by Cross and Skemer (2017).

Whereas these exhumed fault zones deformed at greenschist facies conditions, continued activity would exhume similar fault rocks to shallower depth. We explored frictional properties and microstructure of greenschist facies fault rock at low temperature conditions by deforming chlorite-amphibole-epidote assemblages in single-direct shear at room temperature and 10 MPa normal stress under fluid saturated conditions. As inferred at greater depth, presence of chlorite weakens and promotes aseismic creep along these experimental faults. Presence of chlorite also correlates with the development of striations on fault surfaces. Lack of chlorite, on the other hand, leads to velocity-weakening behaviour and, in epidotite, a fault surface containing very fine grains that do not develop when ≥ 50 % chlorite is present. We suggest that chlorite supresses wear at contact asperities between stronger minerals, and therefore also supresses velocity-weakening behaviour.

Overall, we see that growth of retrograde phyllosilicates lead to profound weakening, strain localisation, and frictional stabilisation of major shear zones, from greenschist facies to near-surface conditions. These processes and properties are, however, reliant on external fluids to allow hydration reactions in otherwise relatively dry host rocks. From scattered syn-deformational quartz veins, in the KMZ, such fluids appear to be of surface origin, whereas in the OHFZ, fluids were likely of a deeper, metamorphic or magmatic origin. Ready incorporation of such fluids into retrograde minerals would prevent substantial or widespread fluid overpressures from developing. These fluid sources are similar to present-day inferred fluid regimes in the Alpine and San Andreas Faults, respectively. We speculate that the variable slip behaviour seen on active retrograde faults relate to their degree of retrogression, and the development of time and strain-dependent microstructures with specific strengths and behaviours.

How to cite: Fagereng, A., Stenvall, C., Ikari, M., Diener, J., and Harris, C.: Processes, properties, and microstructures in faults active at retrograde conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3508, https://doi.org/10.5194/egusphere-egu2020-3508, 2020.

EGU2020-7480 | Displays | TS2.3

Microstructural evolution of amphibolite-eclogite facies quartz veins under low greenschist facies deformation condition

Michel Bestmann, Benjamin Huet, Bernhard Grasemann, and Giorgio Pennacchioni

Quartz veins in poly-metamorphic settings often accommodate the latest deformation state and therefore can provide important information. Identification of microfabric (microstructure and crystallographic preferred orientation, CPO) evolution of quartz during mylonitization, and especially of the grain-scale interplay between brittle and crystal-plastic processes, has different relevant implications: e.g., on understanding the efficiency of fluid mobility through deforming quartz that can dramatically influence the rheology and the degree of chemical exchange. However, in order to interpret the microstructure and the related deformation processes it is necessary to relate these especially to the deformation temperature. Particularly the CPO and the Ti-in-qtz geothermometry is used to constrain the deformation temperature. However, both methods have to be applied with great caution because even when many times used some fundamental processes are not fully understood yet.

 

Here we present results from deformed quartz veins from the Prijakt Nappe (Autroalpine Unit, Schober Mountains, Central Eastern Alps). These veins localized ductile shear and eventually seismic faulting (recorded by the occurrence of pseudotachylytes) within Eo-Alpine eclogite-facies shists. The veins formed shortly after the eclogitic peak, but the temperature of their deformation remains unconstrained. CL imaging reveals critical details for understanding the role of microfracturing and fluid-rock interaction during initial stages of shear localization, the onset of dynamic recrystallization and the resetting of the Ti-in-quartz geochemistry. Even when optical-light-microscopy and EBSD analysis indicate crystal plastic deformation by subgrain rotation CL and orientation contrast (OC) imaging gives evidence of brittle stage of deformation at least for some of the deformation microstructure. Microshear zones show a bulk dark-CL, but still bright tones in cores of new recrystallized grains similar to the CL signature of the host coarse quartz crystals. CL dark tones also match with the pattern of subgrain boundaries. This reflects fluid permeability pathways along subgrain and grain boundaries (identified by widespread fluid inclusions) and the associated partial resetting of Ti concentrations. The CPO of the new grains within the micro-shear zones rotate with the sense of shear around the kinematic Y-axis and cannot be related to the activity of specific slip systems. In contrast the partial single girdle of c-axis within the ultramylonite with its elongated substructured grains and its characteristic layered microstructure can be related to the activity of several slip systems. Misorientation axis analysis indicates that prism

 

 

 

How to cite: Bestmann, M., Huet, B., Grasemann, B., and Pennacchioni, G.: Microstructural evolution of amphibolite-eclogite facies quartz veins under low greenschist facies deformation condition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7480, https://doi.org/10.5194/egusphere-egu2020-7480, 2020.

Stress and strain are different physical entities. Do the stress and strain determined from e-twins in a sample of polycrystalline calcite have similar principal orientations and similar shape ratios? Köpping et al. (2019) tackled this question by applying Turner’s (1953) classical method of paleostress analysis to natural data. However, despite the assumption of the method, the orientations of P- and T-axes of an e-twin lamella do not have a one-to-one correspondence with the principal orientations of the stress that formed the lamella. And, the method cannot determine a shape ratio. Another difficulty arises when one tackles the question: Natural calcite has usually been subjected to polyphase tectonics with different stress conditions. One has to separate stresses and to evaluate corresponding strains from a sample. Once lamellae are grouped according to the stresses, the strain achieved by the formation of a group of twin lamellae is easily evaluated by the method of Conel (1962) if the total strain represented by a group is small.

The present authors tackled the question by combining Conel’s strain analysis method with a novel method of paleostress analysis of mechanical twins, which clusters the directional data of e-twins by means of a statistical mixture model and determines stresses for each group of data. And, the appropriate number of stresses is determined by means of Bayesian information criterion. The method also determines the probabilities of each lamella to be formed by the stresses, which are called the memberships of the lamella. The strain achieved under a stress condition can be computed using the memberships. We applied this integrated stress-strain analysis method to Data Sets I and II from two calcite veins in a Miocene forearc basin deposit in central Japan. Since the sampling area was close to a triple-trench junction, the young formation has experienced polyphase tectonics.

As a result, we obtained the consistent stress and strains from both of the data sets. Three stresses were obtained from Data Set I, and the corresponding strains were 0.17, 0.25 and 0.13%. Two stresses were obtained from Data Set II, and the strains were 0.39 and 0.42%. The stress and strain determined from the data sets for each deformation phase were consistent with each other. That is, the principal axes had difference as small as < 20 degrees, and the shape ratios of stress and strain had also similar values. It is not straightforward to generalize this result, but both the stress and strain analyses seem to give appropriate results, providing that polyphase deformations are coped with.

How to cite: Wakamori, K. and Yamaji, A.: The integrated stress-strain analysis of calcite twins: Consistent stress and strain determined from natural data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12819, https://doi.org/10.5194/egusphere-egu2020-12819, 2020.

EGU2020-13523 | Displays | TS2.3

Dissolution precipitation creep as a process for the strain localisation in gabbro

Amicia Lee, Holger Stunitz, Matheus Ariel Battisti, and Jiri Konopasek

Strain localisation and fabric development in the lower crust is controlled by the active deformation mechanisms. Understanding the driving forces of such deformation aids in quantifying the stresses and rates of the deformation processes. Here we show that diffusion creep plays a major role in deformation of gabbro lenses at upper amphibolite facies conditions. The Kågen gabbro in the North Norwegian Caledonides intruded the Vaddas Nappe at 439 Ma at pressures of 7-9 kbar, temperatures of 650-900°C (depths of ∼26-34 km). The Kågen gabbro on south Arnøya is made up of undeformed gabbro lenses with sheared margins wrapping around them. This contribution analyses the evolution of the microstructures and fabric of the low strain gabbro to high strain margins. Microstructural and textural data indicate that preferential crystal growth of amphibole grains in the extension direction has produced the deformation microstructure and the CPO. Dissolution precipitation creep is inferred to be the dominant deformation mechanism, where dissolution of the gabbro took place in reacting phases of clinopyroxene and plagioclase, and precipitation took place in the form of new minerals: amphibole, garnet and zoisite. Synchronous deformation and mineral reactions of clinopyroxene suggests mafic rocks can become mechanically weak during the general transformation weakening process, i.e. the interaction of mineral reaction and deformation by diffusion creep. Deformation and metamorphic reaction were both important transformation processes during diffusion creep deformation of the margins of the gabbro lenses. The weakening is directly connected to a transformation process that facilitates diffusion creep deformation of strong minerals (pyroxene, garnet, zoisite) at far lower stresses than dislocation creep. Initially strong lithologies can become weak, provided that reactions can proceed during deformation, the transformation process itself is an important weakening mechanism in mafic (and other) rocks, facilitating deformation at low differential stresses.

How to cite: Lee, A., Stunitz, H., Battisti, M. A., and Konopasek, J.: Dissolution precipitation creep as a process for the strain localisation in gabbro, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13523, https://doi.org/10.5194/egusphere-egu2020-13523, 2020.

EGU2020-8851 | Displays | TS2.3

Microstructure evolution of plagioclase-hosted Fe-Ti-oxide microinclusions in oceanic gabbro

Olga Ageeva, Olga Pilipenko, Alexey Pertsev, and Rainer Abart

Microinclusions of Fe-Ti-oxides in rock-forming plagioclase are protected from subsea-floor alterations by the silicate matrix and are stable carriers of the paleomagnetic record of oceanic gabbros. We studied plagioclase-hosted microinclusions in oceanic gabbro (“gabbro 1241” from the Vema Lithospheric section, Mid-Atlantic ridge, Pertsev et al., 2015) with a complex petrogenetic history. Important events in the gabbro evolution caused consecutive transformations of the micro-inclusions and presumably affected their paleomagnetic records.

The earliest generation of the microinclusions was present as ulvospinel and presumably titanomagnetite which were probably formed by sub-solidus oxidation exsolution of early-magmatic plagioclase (An#42-45). An increase of the anorthite component around the early generation of microinclusions to typical values of late-magmatic plagioclase (An#53) suggest involvement of the late-magmatic fluid accompanying residual melt at 800-900°С (Pertsev et al., 2015). Subsequently, the gabbro was locally affected by hydrothermal alteration at about 600°С as a result of interaction of the gabbro with reduced brine containing 20-21% NaCl. The reducing conditions of this process ensured a “non-oxidative” character and primarily cooling driven exsolution of the microinclusions and transformation of the titanomagnetite microinclusions into ulvospinel-magnetite (“Usp-Mt1”) intergrowths at about 500°С, which is close or higher than the Curie temperature (Tc) of the exsolving titanomagnetite but lower than the Tc of the newly forming Mt1, and the acquired magnetisation may be referred to chemical remanence. The further evolution of the micro-inclusions correlates with low-temperature hydrothermal alteration induced by inflow of seawater-derived fluids during tectonic unroofing of the lithospheric section (Pertsev et al., 2015). The homogeneous ulvospinel inclusions and ulvospinel of the “Usp-Mt1”-inclusions were replaced by “Ilm-Mt2” -aggregates under more oxidizing conditions: 3 Fe2TiO4(Ulv) + 0.5 O2= 3 FeTiO3(Ilm) + Fe3O4(Mt2). The Mt1 was more stable to increase of fO2 that resulted in simultaneous presence of the “Ilm-Mt2”-, “Mt1/Ilm-Mt2“- and “Usp-Mt1” -inclusions with two generations of magnetic phases (magnetite) within a single plagioclase grains.

Thus, despite of protection by silicate matrix the microinclusions of Fe-Ti-oxides in rock-forming plagioclases evolve under the influence of petrogenetic processes. It is important to note that bulk-rock AF demagnetization of 14 specimens (extracted from “gabbro-1241“) in the interval 100-250 Oersted (Oe) and 300-700 Oe revealed both moderately-grouped (k=27.4) and variable (deviated with angle 40-104°) directional components of magnetisation, which may have resulted from the presence of different generations of magnetite. Further magnetic investigation of separates of plagioclase single grains will allow to evaluate capacities of plagioclase-hosted Fe-Ti-micro-inclusions to save initial and “newfound” paleomagnetic information and to serve as stable sources of paleomagnetic record in regions of mid-oceanic ridges.

Funding by RFBR project 18-55-14003 and FWF project I 3998-N29 is acknowledged.

Pertsev, A. N., Aranovich, L. Y., Prokofiev, V. Y., Bortnikov, N. S., Cipriani, A., Simakin, S. S., & Borisovskiy, S. E. (2015). Signatures of residual melts, magmatic and seawater-derived fluids in oceanic lower-crust gabbro from the Vema lithospheric section, Central Atlantic. Journal of Petrology, 56(6), 1069-1088.

How to cite: Ageeva, O., Pilipenko, O., Pertsev, A., and Abart, R.: Microstructure evolution of plagioclase-hosted Fe-Ti-oxide microinclusions in oceanic gabbro, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8851, https://doi.org/10.5194/egusphere-egu2020-8851, 2020.

EGU2020-5297 | Displays | TS2.3

A database for the seismic properties of slow spreading mid-ocean ridges gabbros

Luiz F. G. Morales, Maël Allard, and Benoit Ildefonse

Gabbros are the main component of the oceanic crust and represent ~2/3 of the total magmatic crustal thickness. At the interface between magmatic, tectonic and hydrothermal processes, gabbros from slow spreading ridges may have a complex mineralogy and microstructural evolution. This includes structures that vary from purely magmatic fabrics, with layering and magmatic alignment of minerals, to rocks deformed from subsolidus temperatures to the lower-T brittle-ductile conditions. Such a variation is normally accompanied with changes in mineralogy, microstructures and crystallographic preferred orientations (CPO) of the main phases of these rocks, which in turn affect their seismic properties. Here we present a database of the CPO-derived seismic properties of 70 samples collected during the IODP Expedition 360 (site U1473). Initial results show that the dominant phases are plagioclase and clinopyroxene[MOU1] , and different samples may have different contents of olivine, enstatite, magnetite, ilmenite, chlorite and amphibole. Maximum velocities can be either parallel to the strongest concentration of (010) poles of plagioclase or olivine/clinopyroxene [001], depending on the proportions between these phases. Anisotropy of P waves vary from ~5% in the more isotropic gabbros with weak magmatic fabric to a maximum of ~10% in more mylonitic terms. A similar effect is observed for the S-waves. Destructive interference between plagioclase CPO vs. clinopyroxene/olivine reducing anisotropy is possibly observed. This is because the maximum Vp in a foliated gabbro is parallel to the maximum concentration of poles to (010), and perpendicular to olivine and clinopyroxene. As the lineation in our gabbros is generally marked by olivine and clinopyroxene [001] (instead of the fast direction [100]), this possibly cause anisotropy reduction. When present in the more mylonitized gabbros, amphibole has strong CPOs and help to increase the general anisotropy of P and S waves. The elastic constants calculated from these aggregates will be used as input for more physically robust calculations using differential effective medium approaches to better understand the effect of melt inclusions in these rocks by the time of their deformation in the lower crust.

 

How to cite: Morales, L. F. G., Allard, M., and Ildefonse, B.: A database for the seismic properties of slow spreading mid-ocean ridges gabbros, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5297, https://doi.org/10.5194/egusphere-egu2020-5297, 2020.

EGU2020-10312 | Displays | TS2.3

Strain localization in abyssal peridotites from a magma-starved mid-ocean ridge: a microstructural study

Manon Bickert, Mathilde Cannat, Andréa Tommasi, Suzon Jammes, and Luc Lavier

Detachment faults are large offset normal faults that exhume mantle-derived rocks on the seafloor at slow spreading ridges. They are assumed to root at the base of the brittle lithosphere. Magma, if present, can help localize strain at the base of the axial brittle lithosphere by its own presence or crystallization of weaker phases such as plagioclase. This is the case of the Mid-Atlantic Ridge, where ductile shear zones are preferentially formed in and next to magmatic veins (Boschi et al., 2006; Cannat, 1991; Cannat & Casey, 1995; Ceuleneer & Cannat, 1997; Dick et al., 2002; Hansen et al., 2013; Picazo et al., 2012, Schroeder & John, 2004).

Here we focus of a nearly amagmatic case, the eastern part of the Southwest Indian Ridge (SWIR). Partially serpentinized peridotites recovered from dredging on and off axis record variable degrees of a heterogeneous high stress deformation. Orthopyroxene is primarily brittle (kinks, fractures), while olivine displays a wide range of plastic to semi-brittle deformation, ranging from weak to strong with development of extensively recrystallized anastomosing microshear zones. These microshear zones, which are a few mm to cm wide, represent the highest strain localization recorded in these samples. No further evidence of high strain localization, such as high temperature mylonites, has been recovered in this area. The fine-grained microshear zones are preferentially located along orthopyroxene grains or around kinked olivines. Both represent stronger grains (rheological contrast at the grains scale) that produce stress concentrations. Rock-scale thermo-mechanical models using orthopyroxene and olivine flow laws reproduce the observations: ductile shear zones in olivine also initiate preferentially next to brittle orthopyroxene.

We propose that this deformation is linked to the rooting of the detachment faults at depth, where an anastomozed network of microshear zones localizes strain at the base of the lithosphere, allowing the exhumation of variably deformed rocks.

How to cite: Bickert, M., Cannat, M., Tommasi, A., Jammes, S., and Lavier, L.: Strain localization in abyssal peridotites from a magma-starved mid-ocean ridge: a microstructural study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10312, https://doi.org/10.5194/egusphere-egu2020-10312, 2020.

EGU2020-19034 | Displays | TS2.3

Reaction-induced strain localisation in garnet pyroxenites during mantle corner flow: an example from the Ulten Zone (Eastern Alps, N Italy)

Stefano Zanchetta, Luca Menegon, Luca Pellegrino, Simone Tumiati, and Nadia Malaspina

In the Ulten Zone (Tonale nappe, Eastern Alps, N Italy), numerous peridotite bodies occur within high-grade crustal rocks. Peridotites show a transition from coarse protogranular spinel-lherzolites to fine-grained mylonitic garnet-amphibole peridotites (Obata and Morten, 1987). Pyroxenites veins and dikes, transposed along the peridotite foliation, show a similar evolution from coarse garnet-free websterites to fine-grained garnet + amphibole clinopyroxenites (Morten and Obata, 1983). This evolution has been interpreted to reflect cooling and pressure increase of pyroxenites and host peridotites from spinel- (1200 °C, 1.3-1.6 GPa) to garnet-facies conditions (850 °C and 2.8 GPa) within the mantle corner flow (Nimis and Morten, 2000).

The newly formed garnet occurs as exsolution within porphyroclastic, high-T pyroxenes, and crystallises along the pyroxenite and peridotite foliation.

Textural evidence and crystallographic orientation data indicate that the transition from spinel- to garnet-facies conditions was assisted by intense shearing and deformation. Pyroxene porphyroclasts in garnet clinopyroxenites show well-developed crystallographic preferred orientation (CPO), high frequency of low-angle misorientations, and non-random distribution of the low-angle misorientation axes. These features indicates that pyroxene porphyroclasts primarily deform by dislocation creep on the (100) [010] slip system. Dislocation creep is accompanied by subgrain rotation recrystallisation, which promotes the formation of new, smaller and equant pyroxene grains around porphyroclasts. The grain size reduction promotes a switch in the deformation mechanism from grain-size insensitive creep (i.e. dislocation creep) in the porphyroclasts to grain-size sensitive (GSS) creep in the small recrystallised grains. The switch from dislocation to GSS creep is accompanied not only by grain size reduction of pyroxenes, but also by the formation of garnet exsolutions in pyroxenes and garnet crystallisation along foliation. We suggest that garnet crystallisation triggers the pinning of the recrystallised matrix, stabilising the fine-grained microtexture for GSS creep process, and finally contributes to the rheological weakening of pyroxenites.

Pyroxenites and peridotites of Ulten Zone thus offer a unique opportunity to investigate the effects of mantle deformation and weakening on the processes that control the material exchange between crust and mantle at subduction zones.

 

Morten, L., & Obata, M. (1983). Bulletin de Minéralogie, 106(6), 775-780.

Nimis, P. & Morten, L. (2000). Journal of Geodynamics, 30(1-2), 93-115

Obata, M., & Morten, L. (1987). Journal of Petrology, 28(3), 599-623.

How to cite: Zanchetta, S., Menegon, L., Pellegrino, L., Tumiati, S., and Malaspina, N.: Reaction-induced strain localisation in garnet pyroxenites during mantle corner flow: an example from the Ulten Zone (Eastern Alps, N Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19034, https://doi.org/10.5194/egusphere-egu2020-19034, 2020.

EGU2020-18346 | Displays | TS2.3

Pressure dependence of olivine grain growth at upper mantle conditions

Filippe Ferreira, Marcel Thielmann, and Katharina Marquardt

The convective motion of Earth’s upper mantle is controlled by two main deformation mechanisms: grain size-insensitive dislocation creep and grain size sensitive diffusion creep. Grain size thus plays a key role in upper mantle deformation, as it has a significant impact on the viscosity of the upper mantle. Moreover, grain size also affects seismic velocities as well as seismic attenuation.

Despite the importance of grain size and its evolution during deformation, there is still a lack of experimental data on grain growth of olivine at upper mantle pressures. For this reason, we here investigate olivine grain growth at pressures ranging from 1 GPa to 12 GPa and temperatures from 1200 to 1400ºC. The experiments were done using piston cylinder and multi-anvil apparatuses. We used as a starting material olivine aggregates with small amounts of pyroxene (<10%) produced via sol-gel method.

Our results indicate that grain growth is reduced at increasing pressures.  This suggests that the enhanced grain growth due to the temperature increase with depth may be offset, thus facilitating a change from dislocation to diffusion creep in the deep upper mantle. This might have an important impact on the dynamics of the upper mantle.

How to cite: Ferreira, F., Thielmann, M., and Marquardt, K.: Pressure dependence of olivine grain growth at upper mantle conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18346, https://doi.org/10.5194/egusphere-egu2020-18346, 2020.

EGU2020-9859 | Displays | TS2.3

The solid medium deformation apparatus – reloaded

Renée Heilbronner, Holger Stunitz, Jacques Précigout, and Hugues Raimbourg

Rock deformation experiments are used to compile mechanical data sets for minerals and rocks and to study microstructure and texture development.

The Griggs apparatus, a solid medium piston cylinder machine was designed about 60 years ago to investigate rock deformation mechanisms and rheology at elevated confining pressures. In a typical experiment today, the confining medium is NaCl, with confining pressures up to 3 GPa, temperatures up to 1100°C, and displacement rates between 10-8 and 10-2 ms-1 (equivalent to strain rates of 10-7 to 10-3 s-1). In axial tests, the cylindrical samples are 12 to 15 mm long with a diameter of 0.625 mm. In shearing test, split cylinder assemblies are used with 0.5 to 1 mm thick samples introduced along the 45° pre-cut. Reasonable total strains are limited to 30% axial shortening or shear strains of gamma 4. (Higher strains can be attained but are difficult to analyse mechanically. Unlike for gas rigs, torsion is not available for solid medium machines).

As of now, the operational fleet of solid medium deformation apparatus comprises worldwide over 20 machines in different labs (mainly in Europe, U.S.A. and Japan), providing the scientific community with an ever-growing rheological and microstructural data base.

In view of numerous developments in experimental design, as well as improvements of hardware and software for data acquisition and processing, the experimental community was recently invited to a two-day workshop, hosted by the experimental group of Orléans University. The main goal was to discuss the following points:

- how to further improve the apparatus, increase its scope and improve calibrations; 
- how to further improve data processing, and the precision and reliability of the results;
- how to maintain consistency among the labs and through time (backwards compatibility);
- how ensure compatibility of results from axial and shearing experiments;
- how to make the data available to the community.

The poster represents a condensed report of the meeting highlighting a few issues of special interest to the structural community. Visitors to the poster are invited to share their thoughts and to give us feed-back.

How to cite: Heilbronner, R., Stunitz, H., Précigout, J., and Raimbourg, H.: The solid medium deformation apparatus – reloaded, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9859, https://doi.org/10.5194/egusphere-egu2020-9859, 2020.

EGU2020-5595 | Displays | TS2.3

Effect of confining pressure on the strength of wet quartzite revisited

Lucille Nègre, Holger Stünitz, Hugues Raimbourg, Jacques Précigout, Petr Jeřábek, and Petar Pongrac

The ability of water to enhance plastic deformation of a quartz aggregate has been experimentally demonstrated during the sixties (e.g. Griggs and Blacic 1965), however the processes involved are still questioned. Notably the processes combining the effect of water and pressure during the deformation are still not completely understood. Pressure strongly influences the strength of fine-grained (3.6 - 4.9 µm) wet quartz aggregates (Kronenberg and Tullis 1984), where diffusion creep operates (Fukuda et al. 2018) but its effect on coarser-grained material expected to deform only by dislocation creep is not well constrained. To re-assess the effect of pressure on quartz crystal plastic deformation, natural wet quartzite samples from the Tana quarry in northern Norway (grain size ≈ 150 µm) have been deformed using a Griggs-type apparatus at varying confining pressures (from 0.6 to 2.0 GPa). All the samples with 0.1 wt. % H2O added were shortened coaxially up to 30% strain at constant strain rate (≈10-6 s-1) and temperature (900°C).

All mechanical records show that quartzite flow stresses decrease systematically with increasing pressure. These results allow to determine the strength of quartzite as a function of water fugacity, such as introduced in the flow law by Kohlstedt et al. (1995) to account for both pressure and water effects. In our case, the fugacity coefficient is m≈1 when using a stress exponent of n=2.

Microstructure and image analyses of samples reveal that the bulk strain results mainly from crystal plastic deformation of original grains whereas the recrystallization processes are limited volumetrically (less than 5%) and restricted to the boundaries of original grains. Deformation is not strongly partitioned into recrystallized domains compared to flattened original grains. Optical and SEM-cathodoluminescence images revealed the presence of cracks in conjunction with recrystallization (even for high-pressure samples) and associated chemical/fluid interaction, but the cracks do not contribute significantly to the bulk strain of the samples.

In order to determine the amount of water used for the deformation and the redistribution of H2O during deformation, the H2O content of the quartzite has been calculated from FTIR (Fourier Transform InfraRed spectroscopy) measurements for both, grain interiors and grain boundaries. The H2O concentrations decrease inside grains with the onset of deformation with respect to the starting material. H2O is primarily stored in the grain boundary region. There is no systematic correlation with pressure. Thus, pressure dependence of H2O weakening is not restricted to fine-grained materials at high pressure and temperature. Deformation redistributes water from the grain interiors to their grain boundaries.

References:
Fukuda, J., Holyoke III, C.W., and Kronenberg, A.K. (2018). J. Geophysical Res.: Solid Earth, 123(6), 4676-4696.
Griggs, D. T., and Blacic J. D. (1965). Science, 147(3655), 292‑295.
Kohlstedt, D. L., Evans B., and Mackwell S. J. (1995). J. Geophysical Res.: Solid Earth, 100(B9), 17587-17602.
Kronenberg, A. K., and Tullis J. (1984). J. Geophysical Res.: Solid Earth, 89(B6), 4281‑4297.

How to cite: Nègre, L., Stünitz, H., Raimbourg, H., Précigout, J., Jeřábek, P., and Pongrac, P.: Effect of confining pressure on the strength of wet quartzite revisited, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5595, https://doi.org/10.5194/egusphere-egu2020-5595, 2020.

EGU2020-13172 | Displays | TS2.3

Behaviour of wet quartzite: deformation experiments revisited

Petar Pongrac, Petr Jeřábek, Holger Stünitz, Hugues Raimbourg, Lucille Nègre, and Jacques Précigout

Since quartz is among the most abundant minerals in continental crust and one of the first to show plasticity with increasing pressure and temperature, understanding its mechanical behavior is crucial for estimates on crustal strength and modeling of geodynamic processes. Since discovery of significantly lower mechanical strength of quartz as a consequence of H2O presence in the crystal (Griggs & Blacic, 1965), remarkable amount of work has been done in order to improve knowledge about processes and mechanisms responsible for so called H2O weakening effect. As the weakening effect depends on molecular H2O, it is a disequilibrium weakening process that is difficult to incorporate into existing flaw laws.

In order to estimate mechanical behavior of quartz in presence of H2O, we performed deformation experiments in solid-medium Griggs-type apparatus in coaxial setting under controlled laboratory conditions using very pure natural quartzite from Tana quarry in northern Norway. Behavior of as-is and 0.1 wt% H2O added samples was studied in 1) eight shortening experiments at 900 °C, 1 GPa and constant strain rate of 10-6 s-1 reaching 5% and 30% strain, 2) six strain rate stepping experiments covering 10-5, 10-6 and 10-7 s-1, 3) two temperature stepping experiments covering 750, 850 and 950 °C and 4) one hot-pressing experiment maintaining the starting experimental conditions for 14 hours.

There is a negligible strength difference between the as-is and H2O added samples. Both H2O added and as-is strain rate steeping experiments had shown surprisingly low stress exponent, with the highest value of 2.26. Temperature stepping experiments gave activation energy values of 177 kJ/mol and 198 kJ/mol. In all studied samples, strain increases towards the sample centers exhibiting grain size decrease from initial 250 – 300 µm. Three principal deformation mechanisms contributing to the bulk strain were identified: 1) crystal plasticity of original grains manifested by flattening, undulatory extinction, and development of subgrains, 2) cracking of original grains demonstrated by fluid inclusion trails and minor grain offset and 3) dynamic recrystallization via subgrain rotation recrystallization indicated by misorientation analysis from EBSD data. FTIR spectroscopy was applied to evaluate H2O speciation, quantity and distribution. Regardless of added H2O, most of deformed original grains showed relative H2O concentration between 0 and 400 H/106Si, implying significant decrease of H2O content from original 600 to 2000 H/106Si measured in undeformed grains. Average H2O concentration in grain boundaries showed 750 H/106Si for as-is samples and 1300 H/106Si for H2O added. Plasticity is most visible in CL-images, as well as higher degree of grain fragmentation and crack density in samples with added H2O. Ubiquitous presence of fluid along the grain boundaries, demonstrated by FTIR results, may have facilitated sliding along grain boundaries which, in turn, could explain the low stress exponent derived from strain rate stepping experiments.

REFERENCES:

Griggs, D. T. & Blacic, J. D. (1965): Quartz: Anomalous Weakness of Synthetic Crystals. Science 147(3655):292-95.

How to cite: Pongrac, P., Jeřábek, P., Stünitz, H., Raimbourg, H., Nègre, L., and Précigout, J.: Behaviour of wet quartzite: deformation experiments revisited, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13172, https://doi.org/10.5194/egusphere-egu2020-13172, 2020.

EGU2020-8179 | Displays | TS2.3

The effect of garnet and muscovite on the recrystallized grain size of quartz from general shear experiments

Leif Tokle, Greg Hirth, Luiz Morales, and Holger Stunitz

To investigate the role of strong and weak secondary phases on the recrystallized grain size of quartz, we performed grain size analyses on quenched samples from general shear experiments on quartz-garnet and quartz-muscovite mixtures. Six general shear experiments were conducted in the Griggs apparatus; three with mixtures of quartz-garnet (vol.% garnet 5, 15, 30) and three with mixtures of quartz-muscovite (vol.% muscovite 5, 10, 25). The starting powders for both set of experiments were synthetic mixtures of quartz-muscovite or quartz-garnet with 0.1 wt.% water added. The quartz-garnet experiments were conducted at 900°C, a pressure of 1.2 GPa, and a shear strain rate of ~10-5 s-1, while the quartz-muscovite experiments were conducted at 800°C, a pressure of 1.5 GPa, and a shear strain rate of ~10-5 s-1. At these deformation conditions quartz is stronger than muscovite and weaker than garnet. We observed that the bulk strength of the aggregate decreases with a greater volume percent of muscovite and increases with a greater volume percent of garnet. Garnet at these conditions does not deform plastically. The presence of secondary phases within the deforming aggregate causes stress concentrations and partitioning of strain rate between the different phases relative to the measured bulk stress and strain rate. The degree of partitioning is primarily related to the rheology and volume percent of the phases. Due to the piezometric relationship between recrystallized grain size and stress, we can use the quartz recrystallized grain size to determine the local stress of quartz in the experiments and compare it to the measured bulk stress. The results from these analyses will provide new insight into the effect of strain partitioning in general and of strong and weak secondary phases on quartz rheology.

How to cite: Tokle, L., Hirth, G., Morales, L., and Stunitz, H.: The effect of garnet and muscovite on the recrystallized grain size of quartz from general shear experiments , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8179, https://doi.org/10.5194/egusphere-egu2020-8179, 2020.

EGU2020-14067 | Displays | TS2.3

Do local kinematics have an effect on the recrystallized grain size piezometer?

Rüdiger Kilian and Michael Stipp


The quartz recrystallized grain size piezometer was determined by axial shortening experiments on Black Hills quartzite in Griggs type triaxial deformation apparatus (Stipp & Tullis, 2003). The analysis of general shear experiments on Black Hills quartzite (Heilbronner & Kilian, 2017) reveal a striking discrepancy between both experimental  setups; at a given differential stress, recrystallized grains are much larger in the general shear experiments than in axial shortening.
A major difference between both sets of experiments is, that the finite grain volume of quartz in the general shear experiments almost entirely consists of recrystallized grains while the here investigated axial shortening experiments have fractions of recrystallized grains in the range of 15 to 30% in the high stress experiments and up to 60% in the low stress experiments. Quartz in the general shear experiments developed a moderate to strong crystallographic preferred orientation (CPO) while, apart from a Dauphiné-induced ordering of poles to {10-11} and {01-11}, no overall significant CPO developed in the axial shortening experiments.
Based on the analysis of the EBSD data of Cross et al. (2017), we observed that the dispersion axes of large quartz grains in the axial shortening experiments correspond to the global kinematic reference frame. The dispersion axes of the fraction of small, recrystallized grains depend on the local kinematics between the porphyroclasts. Slip transparency indicates that boundaries between the largest grains are rather hard while recrystallized grains can accommodate strain induced by crystal plastic slip more effectively and homogeneously.
These results suggest that recrystallized grains in the axial shortening experiments, at least in those with low fractions of recrystallized grains, correspond to a material deforming at a rate higher than the imposed shortening rate while the axial load is predominantly supported by the porphyroclasts. In contrast, recrystallized grains in general shear experiments deform at the imposed (global) rate and derived stresses correspond on average to the deforming zone. Due to strain and strain rate inhomogeneities in the latter experiments, however, there is a systematic variation in recrystallized grain size across the general shear zone. We compare these local microstructural variations and discuss their significance for the recrystallized grain size piezometer calibration.

How to cite: Kilian, R. and Stipp, M.: Do local kinematics have an effect on the recrystallized grain size piezometer?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14067, https://doi.org/10.5194/egusphere-egu2020-14067, 2020.

EGU2020-8629 | Displays | TS2.3

HP/HT deformation experiments of garnet-omphacite aggregates – influence of volume fractions on deformation mechanisms.

Stefanie Klackl, Katrin Kraus, Jörg Renner, Bernhard Grasemann, and Anna Rogowitz

Forming in oceanic and continental subduction zones during high to ultra-high-pressure metamorphism, eclogites play an important role in convergent settings. To improve our understanding of eclogite deformation behaviour with respect to its phase abundance of omphacite and garnet, synthetic eclogite samples containing 25, 50 and 75% volume fraction of garnet have been deformed in a modified Griggs-type solid-medium apparatus. Deformation conditions were set to a confining pressure of 2.5 GPa, 900 °C and 3*10-6 s-1. Detailed microstructure analysis via optical and electron microscope imaging (SE, BSE and EBSD) served for identification of the dominant active deformation mechanism.
All eclogite samples show a foliation which is defined by a shape preferred orientation (SPO) of omphacite and intercalated foliation sub-parallel garnet aggregates. Another common feature is a weak crystallographic preferred orientation (CPO) of omphacite which is present throughout all samples. In accordance to uniaxial shortening the CPO resembles an s-type texture with a point maximum of [001] axis parallel to the foliation and a maximum of [010] axis perpendicular to the foliation. The stereographic projection of garnet crystallographic orientation is almost distributed randomly. Nevertheless, both phases show an intracrystalline misorientation, indicating activation of crystal plastic processes. With increasing garnet content the grain average misorientation is increasing in both omphacite and garnet crystals. On the other hand, deformation twinning in omphacite is decreasing with increasing garnet content. Further, all samples show indication of brittle deformation of both garnet and omphacite, increasing with increasing garnet content. In samples with a 25% volume fraction of garnet micro-cracks are primarily orientated perpendicular to the foliation, getting more randomly distributed in samples with a 50 and 75% volume fraction of garnet.
In conclusion, all samples show similar microstructures and textures indicating that similar mechanism are active during deformation. However, the overall dominant deformation behaviour is switching from crystal plastic to brittle with increasing garnet content.

How to cite: Klackl, S., Kraus, K., Renner, J., Grasemann, B., and Rogowitz, A.: HP/HT deformation experiments of garnet-omphacite aggregates – influence of volume fractions on deformation mechanisms., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8629, https://doi.org/10.5194/egusphere-egu2020-8629, 2020.

EGU2020-11145 | Displays | TS2.3

Exploitation of unsuitably oriented foliation by localized mylonites and pseudotachylytes (Tauern Window, Eastern Alps)

Giovanni Toffol, Giorgio Pennacchioni, Luiz Fernando Grafulha Morales, and Simone Papa

During exhumation, metamorphic rocks change their rheological behavior from dominantly ductile to brittle. Especially at the “brittle-ductile transition” at the bottom of the brittle crust, which coincides roughly with the domain where most “shallow” earthquakes nucleate, rocks exhibit a close interplay between ductile flow and fracturing.

In the Neves area (Tauern window, Eastern Alps) the exhumation across the brittle-ductile transition of amphibolite-facies meta-granitoids during the Alpine cycle is recorded by the association of pseudotachylyte veins and localized low-grade mylonites (stage-2 deformation). The stage-2 structures exploited the precursor amphibolite-facies foliation within meter-thick mylonites (stage-1 deformation) and were in turn overprinted by epidote-chlorite-bearing shear fractures and veins (stage-3 deformation). The kinematics and orientation of stage-1 and stage-3 structures indicate a slight rotation of the regional shortening direction from 345° to about 360°. This implies that stage-2 mylonites and pseudotachylytes developed at a high angle to the shortening direction.

The syn-kinematic metamorphic assemblage of stage-2 mylonites includes quartz, oligoclase (Ab75), biotite, epidote, and minor muscovite and K-feldspar; garnet was not stable. This assemblage constrains the deformation at upper greenschist facies condition and temperatures of around 400 °C. During mylonitization the coarse-grained (mm-sized) amphibolite-facies quartz recrystallized by subgrain rotation to ultra-fine (~ 3 µm average grain size determined from EBSD maps) aggregates. Such a small grain size yields differential stress > 200 MPa during stage-2 mylonitization, considering the piezometer of Cross et al., 2017 1.

Pseudotachylytes are in a close spatial association with stage-2 mylonites and share the same sense of shear. There is no evidence of a ductile overprint of pseudotachylytes. The stage-2 structures developed at a very high angle to the inferred shortening direction, which implies that the coseismic slip occurred on planes with a very low friction coefficient (estimated <0.3), contradicting the high differential stress estimated for the mylonites. We infer a genetic relationship between stage-2 mylonite and pseudotachylyte. Mylonites progressively formed the mica-rich foliation planes, continuous over large distances, that provided the weak mechanical anisotropy eventually leading to coseismic slip.

 

Reference:

1: Cross, et al., 2017, The recrystallized grain size piezometer for quartz: An EBSD‐based calibration. Geophys. Res. Lett., 44(13), 6667-6674.

How to cite: Toffol, G., Pennacchioni, G., Grafulha Morales, L. F., and Papa, S.: Exploitation of unsuitably oriented foliation by localized mylonites and pseudotachylytes (Tauern Window, Eastern Alps), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11145, https://doi.org/10.5194/egusphere-egu2020-11145, 2020.

EGU2020-6714 | Displays | TS2.3

Quantitative texture analysis by neutron diffraction in deformed crystalline aggregates: Contín Shear Zone, Morais Complex, N Portugal.
not presented

Manuela Durán Oreja, Jeremie Malecki, and Juan Gómez Barreiro

Two samples of mylonitic-ultramylonitic ortogneisses collected along the Contín shear zone were investigated for crystal preferred orientation and seismic anisotropy. Neutron diffraction data obtained at the D1B beamline at ILL (Institute Laue-Langevin, Grenoble) were analyzed with the Rietveld method as implemented in the code MAUD, to obtain the orientation distribution functions (ODF) of the principal phases (quartz, K-feldspar, plagioclase, phlogopite, muscovite and riebeckite). Texture and microstructure are compatible with the plastic deformation of the aggregates under medium to low-temperature conditions. Kinematic analysis supports a top-to-the SE sense of shear, suggesting a thrust character. Using preferred orientation data and single crystal elastic tensors, P and S-waves velocities and elastic anisotropy have been calculated. We have explored the role of several factors controlling the elastic properties of rocks, particularly the role of strain state and mineral changes in a shear zone. Those factors have a direct impact on the medium impedance and consequently on the interphase reflectivity. P-wave velocities, S-wave splitting and anisotropy increase with muscovite content. Seismic anisotropy is linked with the texture symmetry, which can result in large deviations between actual anisotropy and that measured along Cartesian XYZ sample directions (lineation/foliation reference frame). This is significant for the prediction and interpretation of seismic data. (Research support CGL2016-78560-P)

How to cite: Durán Oreja, M., Malecki, J., and Gómez Barreiro, J.: Quantitative texture analysis by neutron diffraction in deformed crystalline aggregates: Contín Shear Zone, Morais Complex, N Portugal., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6714, https://doi.org/10.5194/egusphere-egu2020-6714, 2020.

EGU2020-11703 | Displays | TS2.3

Quantitative microstructural analysis of western Mediterranean strike-slip kinematics: the Palmi Shear Zone, southern Calabria, Italy

Gaetano Ortolano, Eugenio Fazio, Roberto Visalli, Ian G. Alsop, Mario Pagano, and Rosolino CIrrincione

We apply Quantitative Microstructural Analysis (QMA) to a selection of mylonitic rocks that originate from different protoliths, ranging from tonalite to skarn and passing through migmatitic paragneiss. These rocks, that at the end of Paleozoic originally belonged to the lower crustal portion of the southern European Variscan chain, were successively involved in deep-seated strike-slip kinematics of the western Mediterranean realm, created by the relative movement in the Paleocene of the African-European colliding plates. This geodynamics leads to the roto-translation of the Sardinia-Corsica block and the drifting of the kabilo-clabride microplate system (Cirrincione et al., 2015). Remnants of these high strain-rate strike-slip zones are characterized by rheological behaviours controlled by the selective activation of their specific interconnecting weakening phase, as well as by the rheology and abundance of porphyroclasts. QMA is generated by means of new semi-automated GIS-based tools that allow us to extrapolate statistically meaningful kinematic and rheological properties of this meso-Alpine strike-slip mylonitic shear zone (i.e. Palmi Shear Zone). This, in turn, constrains the Alpine evolutionary stages of southern Calabrian geodynamics (Ortolano et al., 2020). Semi-automated image analysis of mXRF maps, combined with high-resolution thin-section scans involving new GIS-based tools developed for structural analysis (e.g. Ortolano et al., 2018; Visalli, 2018), was performed on a selection of three different mylonitic rock-types. These tools permit the user to quantitatively extrapolate rock-fabric parameters such as grain size, aspect ratio and orientation, which allows the nature and relative percentage of the weakening vs. hardening layers, as well as their kinematics, to be derived. Our results allow us to distinguish the porphyroclastic domain levels constituted alternatively by feldspar, amphibole, pyroxene or scapolite, from the weakening phase ones dominated by quartz, biotite plus quartz, or by calcite when the weakening layer is controlled by skarns. Image analysis of porphyroclastic domains has been used to infer the dominant shear-type through Rigid Grain Analysis, revealing a pure shear component of 66 to 68 % for the mylonitic tonalites; 62 to 66 % for the mylonitic paragneisses; and 58 to 62 % for the mylonitic skarn. Image analysis conducted on quartz-rich domains allows an estimate of the shear strain rate, which ranges on average from 1.14*10-12 (1/s) for mylonitic paragneiss to 5.91*10-12 (1/s) for mylonitic tonalite, and is in accord with high strain zones in natural settings. Our results provide new insights into the kinematics and rheology of this exhumed relic of the deep-rooted early-Alpine strike-slip tectonics of the western Mediterranean.

 

References

Cirrincione R., Fazio E., Fiannacca P., Ortolano G. & Pezzino A., Punturo R. 2015. Period. Mineral., 84(3B), 701-749.

Ortolano G., Visalli R., Godard G. & Cirrincione R. 2018. Comput. Geosci., 115, 56-65.

Ortolano, G., Fazio, E., Visalli, R., Alsop, G.I., Pagano, M., Cirrincione, R. 2020. Journal of Structural Geology, 131, art. no. 103956.

Visalli R. 2018. Plinius, vol 44, DOI:10.19276/plinius.2018.01014.

How to cite: Ortolano, G., Fazio, E., Visalli, R., Alsop, I. G., Pagano, M., and CIrrincione, R.: Quantitative microstructural analysis of western Mediterranean strike-slip kinematics: the Palmi Shear Zone, southern Calabria, Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11703, https://doi.org/10.5194/egusphere-egu2020-11703, 2020.

EGU2020-15152 | Displays | TS2.3

Thermal history modelling of the western margin of the Bohemian Massif using high-resolution apatite fission-track thermochronology

Lucie Novakova, Raymond Jonckheere, Bastian Wauschkuhn, and Lothar Ratchbacher

The Naab area is situated on the western border of the Bohemian Massif, 60 km south of the KTB (Kontinentalen Tiefbohrung). The main super-deep borehole of the KTB reached a depth of 9,101 meters in the Earth's continental crust. The fission-track data for the KTB and the Naab area present contrasting signatures. The apatite fission-track ages in the upper section of the KTB borehole and surrounding area are in the range 50-70 Ma (Wagner et al., 1994; Wauschkuhn et al., 2015). The apatite fission-track ages of the Naab basement are older than those of the KTB area, and span a broader range: 120-200 Ma (Vercoutere, 1994). The distributions of the confined-track lengths range from unimodal over skewed and mixed to bimodal, with mean lengths in the range 11-13 µm. In broad terms, this can be interpreted as that the Naab samples contain both an older and younger (in particular pre- and post-late Cretaceous) fission-track population. The aim of our research is to investigate the applicability of lab-based models to geological data, using improved measurement techniques.

We studied eighteen samples dated by Vercoutere (1994) from the Palaeozoic basement and seven large rock samples from the Rotliegend strata north of the Luhe fault.  We intend to extend the confined-track length measurements of Vercoutere (1994), aiming to achieve higher resolution through methodological innovations made possible by computer-controlled motorized microscopes. Improved statistics increase the resolution of the modelled thermal histories, which permits to better distinguish systematic from statistical differences between the modelled palaeotemperatures and geological estimates. Experiments have shown that the rate of length increase permits to distinguish older from younger tracks (Jonckheere et al., 2017). This allows us to distinguish between tracks formed before and after the Late Cre­taceous to Palaeocene exhumation. The etch rate of a confined track is also an indicator of its individual thermal history, supplementing the information gleaned from its etchable length under fixed conditions. We compiled a comprehensive, high-resolution confined-track-length dataset. The Naab thermal histories were determined using modern modelling algorithms, implementing the most recent empirical equations.

References

Jonckheere R., Tamer M., Wauschkuhn F., Wauschkuhn B., Ratschbacher L., 2017. Single-track length measurements of step-etched fission tracks in Durango apatite: Vorsprung durch Technik.American Mineralogist 102, 987-996.

Vercoutere C., 1994. The thermotectonic history of the Brabant Massif (Belgium) and the Naab Basement (Germany):   an apatite fission track analysis. Ph. D. thesis, Universiteit Gent, pp. 191.

Wagner G.A., Hejl E., Van Den Haute P., 1994. The KTB fission-track project: Methodical aspects and geological implications. Radiation Measurements 23, 95-101.

Wauschkuhn B., Jonckheere R., Ratschbacher L., 2015. The KTB apatite fission-track profiles: building on a firm foundation? Geochimica et Cosmochimica Acta 167, 27-62.

How to cite: Novakova, L., Jonckheere, R., Wauschkuhn, B., and Ratchbacher, L.: Thermal history modelling of the western margin of the Bohemian Massif using high-resolution apatite fission-track thermochronology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15152, https://doi.org/10.5194/egusphere-egu2020-15152, 2020.

The Precambrian shield in southern Sweden exposes a granitic bedrock segment that represents a part of an ancient eroded mountain belt and expose a gradual change in metamorphic grade from cold (<300°C), little affected by recrystallization, to hot (>800°C) and partially molten sections at the west coast (Möller and Andersson, 2018). This area – the Eastern Segment – offers a large scale study of the interdependence of metamorphism, deformation, partial melting, and functional properties of crushed rock aggregates.

In the petrological community, it is well-known that the evolution of a metamorphic unit (e.g. a high-pressure unit) with respect to pressure, temperature, time, and deformation holds key information on its tectonic history. It has rarely been emphasized, however, that the same factors determine the physical properties of the rock and thus, its technical properties. Basic research in metamorphic petrology thus contributes with a fundament to applied and technical science, e.g. by providing data that lead to quarrying of proper materials.

This study assesses the variations of technical properties with the metamorphic state, primarily metamorphic temperature and partial melting during metamorphism. Our first results show the correlation between the petrological characteristics and technical properties of felsic orthogneiss within a migmatized eclogite-bearing terrane and its high-pressure granulite-bearing footwall.

Measurements include the Los Angeles and Micro-Deval value tests. The Los Angeles value is a measure of the resistance to fragmentation (EN 1097-2, 2010). The Micro-Deval test measures the resistance to wear.

High values of the Los Angeles and Micro-Deval analyses for felsic orthogneiss in the eclogite-bearing domain reflect poor technical properties and are largely linked to that the rocks underwent partial melting. Orthogneisses in the footwall, which recrystallized under high-temperature, dry conditions, and without partial melting, tend to have lower values. This group includes high-quality rocks for the production of aggregates suitable for asphalt base courses and unbound road layers.

Micro-textures in the orthogneisses are linked with these metamorphic conditions. The clinopyroxene-bearing orthogneisses have complex grain boundaries and micro-perthitic feldspars, finer average grain size, lower biotite content, and absence of migmatitic segregation or penetrative veining. These textures in the footwall orthogneisses contrast with those in the migmatitic orthogneisses from the eclogite-bearing domain, which have a coarser average grain size, even-grained and granoblastic texture, and lack of perthitic texture in feldspars. Thus, these petrographic parameters govern the technical differences.

Our ongoing research addresses the relations between macro-fabric, micro-texture and technical properties of felsic orthogneiss and metagabbro, respectively, along 120 km profile across the metamorphic field gradient from greenschist- to high-pressure granulite-facies in the Eastern Segment.

How to cite: Urueña, C., Möller, C., Andersson, J., Göransson, M., Lindqvist, J. E., and Åkeson, U.: Metamorphic micro-textural variations and their bearing on rock technical properties. A case study of the transition from greenschist- to high-pressure granulite-facies in the Eastern Segment, Sveconorwegian orogen, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-111, https://doi.org/10.5194/egusphere-egu2020-111, 2020.

EGU2020-5167 | Displays | TS2.3

Strain localization associated with brittle faulting in a natural clinoptilolite-tuff (open-pit mine Nižný Hrabovec, Slovak Republic)

Zhaoliang Hou, A. Hugh N Rice, Cornelius Tschegg, Thomas Berger, and Bernhard Grasemann

Clinoptilolite, a micro-porous natural zeolite comprising tetrahedra of silica and alumina that commonly occurs in volcanic tuffs through devitrification of natural glasses, has numerous uses in the manufacturing, agriculture and building industries; it also has applications in veterinary and human medicines. Field observations and microstructural investigations in the natural clinoptilolite-tuff from Nižný Hrabovec (Slovak Republic) – one of the world’s economically most important high-quality clinoptilolite deposits – show evidence of strain localization. Brittle faults formed along pre-existing joints with plumose structures that had acted as a pathway for local infiltration of iron-, manganese- and potassium-rich fluids. Fault displacement formed structures that are indicative of both velocity hardening, with dissolution precipitation creep (SC/SCC’ foliation), and velocity weakening, with several phases of ultra-cataclasites forming along principal slip surfaces. Rock-fluid interaction is characterized by a high-mobility of K, with K-feldspar decorating SC/SCC’ foliations, infiltrating fractures in fault damage zones and precipitating as idiomorphic crystals in open cavities and along fault surfaces. Microstructures such as polished slickensides, injection of fluidized cataclasites, clast cortex grains in cataclasites and truncated grains along principal slip surfaces suggest that seismic slip probably occurred along some of the faults.

How to cite: Hou, Z., Rice, A. H. N., Tschegg, C., Berger, T., and Grasemann, B.: Strain localization associated with brittle faulting in a natural clinoptilolite-tuff (open-pit mine Nižný Hrabovec, Slovak Republic), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5167, https://doi.org/10.5194/egusphere-egu2020-5167, 2020.

EGU2020-9231 | Displays | TS2.3

Deformation history of the Marmara Granitoid and implications for a dextral shear zone in NW Anatolia

Salim Birkan Bayrak, Işıl Nur Güraslan, Alp Ünal, Ömer Kamacı, Şafak Altunkaynak, and Erdinç Yiğitbaş

Marmara granitoid (47 Ma) is a representative example of the Eocene post-collisional magmatism which produced several granitic plutons in NW Anatolia, Turkey. It is a W-E trending sill-like magmatic body which was concordantly emplaced into the metamorphic basement rocks of Erdek Complex and Saraylar Marble. The granitoid is represented by deformed granodiorite which displays well-developed lineation and foliation in meso-scale defined by the elongation of mica and feldspar crystals and recrystallization of quartz however, in some places, magmatic textures are preserved. Deformed granodiorite is broadly cut by aplitic and pegmatitic dikes and contains mafic enclaves which display the same deformation indicators with the main granitoid.

Microstructural analysis shows that the solid-state deformation of the Marmara granitoid is classified as ductile deformation with high temperatures and ductile-to-brittle deformation with relatively lower temperatures. Evidence for the ductile deformation of the granitoid is represented by chessboard extinction of quartz, grain boundary migration (GBM) and subgrain rotation recrystallisation (SGR) which exhibits that the deformation temperature changed from 600 oC to 400oC. Bulging recrystallization (BLG), grain size reduction of amphibole, biotite and plagioclases and microcracks on plagioclases were considered as overlying ductile-to-brittle deformation signatures which develop between 300-<250 oC temperatures.

All of these field and micro-structural data collectively suggest that the shear sense indicators such as micafish structures and δ type mantled porphyroclasts displayed stair-steppings pointing out to a right lateral movement, indicating that the structural evolution and deformation history of Marmara granitoid was controlled by a dextral shear zone.

How to cite: Bayrak, S. B., Güraslan, I. N., Ünal, A., Kamacı, Ö., Altunkaynak, Ş., and Yiğitbaş, E.: Deformation history of the Marmara Granitoid and implications for a dextral shear zone in NW Anatolia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9231, https://doi.org/10.5194/egusphere-egu2020-9231, 2020.

Shear zones in the high-grade terranes represent the tectonic- fossils of strain history. One such shear zones, namely Balaram-Jogdadi shear zones defining the terrane boundary of the Ambaji granulites of the South Delhi terrane Aravalli –Delhi Mobile belt, NW India, provide evidence for strain variation during exhumation of lower-middle crustal rocks. Compilation of field and microscopic analysis of various samples of mylonite from shear zones suggest that the part of shear zone contains high-grade mineral assemblages such as cordierite, sillimanite, spinel, garnet in quartzo-feldspathic mylonite rock and exhibit signature of thrusting in which garnet behaved as brittle phase and quartz and feldspar grain show ductile deformation. 2D and 3D strain analysis estimate a plane to flattening type of strain pattern. Principal strain planes are used to calculate the strain ratios for estimation of variation of strain along the shear zone. This study indicates high-grade mylonite accommodates high strain. The flow of rigid porphyroclasts estimates mean kinematic vorticity number varies from 0.47 to 0.68, which indicates the dominance of pure shear during shearing. Vorticity by the Rs/θ method in quartz grain estimates ranges from 0.7 to 0.95, suggesting a non-steady strain towards the end of deformation. High-grade mylonites were overprinted by low-temperature mylonitisation marked by minerals like quartz, feldspar, biotite in which feldspar porphyroclast shows brittle deformation and quartz, biotite show ductile deformation. Several shear kinematics indicate top-to-NW sinistral strike-slip shearing. Thus it has been interpreted that the shear zone had undergone non-steady strain. The initial thrusting phase was dominated by more pure shear component. The strike-slip shearing part was dominated by more simple shear component. Monazite geochronology sets the age of shearing at 834-778 Ma suggesting the exhumation was a transition event between Grenville to Pan-African orogeny.

Keywords: Shear zone, Deformation, Vorticity, 3D strain analysis, Monazite dating

How to cite: Saraswati, R. and Biswal, T. K.: Non-steady strain in the terrane boundary shear zone of the Ambaji Granulite, NW India: Implications for understanding towards the dynamics of emplacement of the lower-middle crustal rocks., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2897, https://doi.org/10.5194/egusphere-egu2020-2897, 2020.

EGU2020-7397 | Displays | TS2.3

The kinematic vorticity analysis of ductile shear zones of Ambaji Granulite, NW India and its tectonic implications

Sudheer Kumar Tiwari, Anouk Beniest, and Tapas Kumar Biswal

The Neoproterozoic (834 – 778 Ma) Ambaji granulite witnessed four deformation phases (D1- D4), of which the D2 deformation phase was most significant for the exhumation of granulites in the ductile regime. We performed a field study to investigate the tectonic evolution of the D2 deformation phase and investigated the deformation evolution of the ductile extrusion of the Ambaji granulite by estimating the vorticity of flow (Wm) with the Rigid Grain Net and strain ratio/orientation techniques.

During the D2 deformation phase, the S1 fabric was folded by F2 folds that are coaxial with the F1 folds. The F2 folds were produced in response to NW-SE compression. Because the large shear zones are oriented parallel to the axial plane of the F2 folds, they likely formed simultaneously during the D2 deformation phase. Compression during the D2 deformation phase accommodated most of the exhumation of the granulite along the shear zones. D2 shearing was constrained between 834 ± 7 to 778 ± 8 Ma (Monazite ages).

The shear zones evolved from a high temperature (>700 °C) thrust-slip shearing event in the lower-middle crust to a low temperature (450 °C) retrograde sinistral shearing event at the brittle-ductile-transition (BDT). The Wm estimates of 0.32–0.40 and 0.60 coincide with the high temperature event and suggests pure shear dominated deformation. The low temperature phase coincides with Wm estimates of 0.64–0.87 and ~1.0, implying two flow regimes. The shear zone was first affected by general non-coaxial deformation and gradually became dominated by simple shearing.

We interpreted that the high temperature event happened in a compressive tectonic regime, which led to horizontal shortening and vertical displacement of the granulite to the BDT. The low temperature event occurred in a transpressive tectonic setting that caused the lateral displacement of the granulite body at BDT depth. The Wm values indicate a non-steady strain during the exhumation of granulite. From the BDT to surface, the Ambaji granulite exhumed through the NW-SE directed extension for normal faults via brittle exhumation through crustal extension and thinning.

How to cite: Tiwari, S. K., Beniest, A., and Biswal, T. K.: The kinematic vorticity analysis of ductile shear zones of Ambaji Granulite, NW India and its tectonic implications, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7397, https://doi.org/10.5194/egusphere-egu2020-7397, 2020.

TS2.5 – The energy budget of tectonic systems

Small seismological events recorded in southern Norway in the period of 2017-2018 were used to calculate the sudden co-seismic temperature increase using a simple stress-drop model. In order to estimate the net production of thermal energy, both, industry explosions and natural events were included.  The range of resultant average temperature rise, with a maximum of ~ 143 ° C for a Mw =3.5, is proposed as an additional constituent that explain the weakness areas related to the high amount of intracrustal seismicity, mainly regarding the anisotropic thermal expansion of rocks and the flash heating thermal process produced by historical earthquakes with magnitudes over . The temperature values were subsequently used to estimate the thermal energy in 2D and 3D cumulative patterns in the area, as well as the total amount of energy that is available regarding seismic activity. The results were correlated with existing geological information, considering lineaments and heat flux data. Areas with high values of thermal energy seems to be spatially linked with both high heat flux zones and high density of lineaments, mainly to the south of the Trøndelag Platform as well as to the south of the Møre basin.

How to cite: Estay, R.: Thermal energy pattern related with the temperature increasing due to intraplate and induced seismicity, Southern Norway, 2017-2018, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10759, https://doi.org/10.5194/egusphere-egu2020-10759, 2020.

Frictional energy generating during an earthquake has been well studied in the last decades and quite a few laboratory experiments have been carried out recently with the objective to quantify and describe this type of energy in a better way.  In our research we modelled the temperature rise during a simulated seismic event and the consequent equivalent heat released using the ANSYS® Mechanical software. Our approach is using the Finite Element Method to model a symmetrical fault plane where several parameters such as density, pressure, structural and thermal material characteristics are set according the conditions of a compressional tri-axial test. Natural and forced models were explored applying the Mohr-Coulomb failure criteria. Using a temporal window similar to a realistic situation, we are capable to observe the differences that occur during the stick-slip behavior in the co-seismic rupture process. On the other hand, the time lapse allows us to observe model and infer how the heat is generated and transferred around the fault plane. As a preliminary result, a variation of approximately 1.5°C was obtained simulating the conditions for a laboratory induced micro-seismic event modelled as a tri-axial test under 10 MPa of confining pressure and 20 MPa as vertical pressure, with velocities in the order of 1.5 mm/s.

How to cite: Uslar, A.: Simulation of frictional heat generation due to underground motion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10795, https://doi.org/10.5194/egusphere-egu2020-10795, 2020.

EGU2020-14142 | Displays | TS2.5

Heat transfer through the nappes of the Lepontine Dome

Alessia Tagliaferri, Filippo Luca Schenker, Stefan Markus Schmalholz, and Silvio Seno

The heat transfer through the nappes of the Lepontine Dome (Central Alps, Ticino, Switzerland) produced metamorphic amphibolite-facies isogrades that locally dissect the tectonic contacts. This large-scale observation, suggesting a thermal amphibolite-facies event after thrusting and nappe formation, is however at odd with the extremely pervasive mineral and stretching lineation (NW-SE directed) that attests non-coaxial deformation during shearing at similar metamorphic conditions.

To solve this apparent paradox we performed 2D thermo-kinematic simulations in which we investigated the relationships between nappe geometry and the geometries of isogrades. The numerical simulations are based on the finite difference method. We evaluate the relative importance of velocity, thermal diffusion and advection, and geometry of the thrust sheets, on the geometrical relation between tectonic contacts and isogrades. We calculate the thermal evolution and peak temperatures in order to compare the numerical results with field and petrological data collected along the Simano and Cima Lunga nappes.

In the field, the alternation of lithotypes is parallel to the nappe boundaries and constant over their whole length (order of kms). Passing from the Simano to the Cima-Lunga nappe, the transition between the nappes is marked by a progressive change in the texture of gneisses, in which the porphyroblasts become more stretched from the bottom to the top, and by the change in the constituent lithotypes. In the studied area, the Simano nappe is formed mainly by metagranitoids and by minor paragneisses. The Cima Lunga nappe is made of metasediments, mainly quartz-rich gneisses intercalated with amphibolite-gneisses, peridotitic lenses and local calcschists and/or marbles. Finally, the widespread paragneisses forming both the nappes frequently contain garnets of different sizes and internal microstructure. Published and own petrological data of these garnet-bearing rocks will be used to restrict the physical parameters of the numerical results.

We intend to test multiple geological scenarios related to different sources of heat production, such as: internal heat sources (radiogenic heating); additional heat flux at the bottom of the nappes, such in the case of a magmatic underplating, slab break-off, lower crust delamination; and in situ-produced heat due to shear heating mechanisms at the tectonic boundary between the nappes (thrust surface).

How to cite: Tagliaferri, A., Schenker, F. L., Schmalholz, S. M., and Seno, S.: Heat transfer through the nappes of the Lepontine Dome, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14142, https://doi.org/10.5194/egusphere-egu2020-14142, 2020.

EGU2020-18763 | Displays | TS2.5

From Elastic Deformation Loading Rates to Heat Flow Anomalies: Constraints on Seismic Efficiency and Friction Coefficient

Malte J. Ziebarth, John G. Anderson, Sebastian von Specht, Oliver Heidbach, and Fabrice Cotton

A long standing debate in seismology revolves around the nonexistent heat flow anomaly across the San Andreas fault. Given the fault’s average slip rate and age, a strong San Andreas fault, i.e. characterized by a relatively high static friction coefficient of µ>=0.6, should produce a significant local heat flow anomaly across the fault [1]. Since the work of Lachenbruch and Sass [1], this anomaly has not been observed and although many possible causes for the lack of a heat flow anomaly have been explored, the static or dynamic weakness of the San Andreas fault remains a favorable explanation [2,3].

Recently, we have introduced the ENergy COnserving Seismicity (ENCOS) framework that relates elastic deformation energy loading rates to the long-term average energy release of the seismic process. Within the presented implementation of ENCOS for Southern California with an elastic loading rate between 300 MW and 1.9 GW, the two most significant parameters are the static friction coefficient and the average efficiency. In particular, they are the most significant sources of uncertainty in harnessing the GPS-derived strain rates and the stress data within the ENCOS framework.

Here, we show how ENCOS can be leveraged in combination with the constraints from heat flow measurements and observed seismicity to restrict the parameter space of the average efficiency and the static friction coefficient. This can help to reduce the uncertainty of the ENCOS model parameters, such as the elastic deformation energy loading rate, and opens a new viewpoint on the heat flow paradox.

[1] Lachenbruch, A. H., and Sass, J. H. (1980), Heat flow and energetics of the San Andreas Fault Zone, J. Geophys. Res., 85(B11), 6185–6222.

[2] Scholz, C. H. (2013). The Strength of the San Andreas Fault: A Critical Analysis. In Earthquakes: Radiated Energy and the Physics of Faulting (eds R. Abercrombie, A. McGarr, G. Di Toro and H. Kanamori).

[3] E. E. Brodsky et al. (2020), The State of Stress on the Fault Before, During, and After a Major Earthquake, Annu. Rev. Earth Planet. Sci. 48:2.1–2.26.

How to cite: Ziebarth, M. J., Anderson, J. G., von Specht, S., Heidbach, O., and Cotton, F.: From Elastic Deformation Loading Rates to Heat Flow Anomalies: Constraints on Seismic Efficiency and Friction Coefficient, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18763, https://doi.org/10.5194/egusphere-egu2020-18763, 2020.

We present a study on the paleoseismic Gole Larghe Fault Zone (GLFZ), composed of hundreds of sub-parallel faults hosted in tonalites of the Adamello Massif (Italian Southern Alps), where we collected a complete transect across the fault zone, including the background host rocks, over a thickness of >1km.

Along this transect, we studied the correlation between fracture spacing (for “fracture” here we mean joints, veins, faults, shear fractures, and all other brittle structures) and position with a robust non-parametric approach. This analysis, new for fracture distribution studies, allows detecting volumes of the fault zone with clustering or a trend in spacing, versus volumes where the spatial distribution is stationary. The analysis reveals that the GLFZ can be subdivided in “stationary volumes” where fractures shows stationary statistical properties. Each one of these volumes can be completely characterized with scanline and/or scanarea surveys to obtain a complete and statistically sound estimate of all fracture parameters (spacing, intensity, density, length, height, orientation, topology, etc.).

Within the GLFZ we have two main classes of structures: (i) “master” faults that are sub-parallel to the fault zone and are always characterized by pseudotachylytes and/or cataclasites, and (ii) minor “fractures” (e.g. Riedel fractures, joints, veins, etc.) that are oblique to the fault zone and interconnect the former. Out of the GLFZ we observe a background fracturing that is associated to the cooling of the Adamello tonalites under deviatoric tectonic stress (“cooling joints”).

By comparing fracture statistics within and outside the fault zone, we demonstrated that master faults within the GLFZ were almost completely inherited from the “cooling joints” of the host rocks. The cooling joints just grew in length and became completely interconnected at the scale of the seismic rupture. This means that, at least in the case of the GLFZ, the large faults and fractures along which seismic ruptures were running do not add significantly to the earthquake energy budget, because they were already present in the system before the onset of seismic activity. The only fractures to be considered in this budget are the minor interconnecting fractures (e.g. Riedel fractures, joints, veins, etc.) that are coated with pseudotachylytes.

These observations confirm once again the classical assumption that seismic ruptures propagate along pre-existing discontinuities and do not, in general, tend to fracture intact rocks.

How to cite: Bistacchi, A., Mittempergher, S., Smith, S. A. F., Di Toro, G., and Nielsen, S.: Detailed statistical analysis of the Gole Larghe Fault Zone fracture network (Italian Southern Alps) improves estimates of the energy budget for intraplate earthquakes in basement rocks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13800, https://doi.org/10.5194/egusphere-egu2020-13800, 2020.

EGU2020-8030 | Displays | TS2.5 | Highlight

Impact of coseismic off-fault damage on the overall energy budget.

Marion Y. Thomas and Harsha S. Bhat

In the brittle part of the crust, deformation is usually perceived to be the result of displacement along fault planes, whose behaviors are controlled by their frictional properties. However, fault zones not only consist of a narrow fault core where slip occurs, they are also surrounded by a complex structure which is of key importance in the mechanics of faulting, hence in determining the overall energy budget. Indeed, as pointed out by the numerous field, geophysical, mechanical and laboratory observations, if the behavior of fault zones is intrinsically linked to the properties of the main sliding plane, it also depends on those of the surrounding medium.  In parallel, fault displacements may induce a substantial change in the physical properties of the surrounding medium. As a consequence, to improve our understanding of active fault zones, fault slip and the evolving physical properties must be studied as a unique system of stress accommodation and no longer as two distinct entities. To tackle this problem, we have developed a micromechanics-based constitutive model, thermodynamically argued, that can determine the inelastic behavior at macroscopic scale that arises from structural rearrangements at microscale. It is therefore the compulsory tool to emulate the strong coupling between the bulk and the fault that prevails during earthquakes. With this code, we can reproduce the strain rate sensitive, non-linear stress-strain relationship that leads to off-fault damage as a seismic event is propagating. We explore different scenarii and we show that there is a unique off-fault damage pattern associated with supershear transition of an earthquake rupture, that is also observed in the field.  We define, in return, the impact of damage on the propagation of the earthquake in itself and the generated waves. We conclude by assessing the kinetic energy, the dissipated energy and the radiated energy to define how energy is consumed within crustal systems during seismic events.

How to cite: Thomas, M. Y. and Bhat, H. S.: Impact of coseismic off-fault damage on the overall energy budget., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8030, https://doi.org/10.5194/egusphere-egu2020-8030, 2020.

EGU2020-16230 | Displays | TS2.5

Energy budget of laboratory earthquakes: a comparison between linear elastic fracture mechanics approach and experimental approach.

Marie Violay, Federica Paglialunga, and François X. Passelègue

Earthquakes correspond to a sudden release of elastic energy stored during inter-seismic period by tectonic loading around fault. The earthquake energy budget consists of four non-independent terms: the energy release rate (by unit crack length), the fracture energy, the heat term and finally the radiated energy. These terms depend on the rupture and sliding velocities, the amount of slip and the stress drop. Because of the impossibility to access to stress and strain conditions at depth, the earthquake energy budget cannot be fully constrained from seismological data, limiting our understanding of its influence on rupture propagation.

To address this issue, we conducted stick-slip experiments with large samples in a biaxial configuration apparatus. By imposing constant normal load and increasing shear load, seismic events were produced on a 20 cm long fault, for which the energy budget was estimated using different methods.

Fracture energy was estimated by recording the strain field around the crack tip through high frequency (2 MHz) strain gage rosettes array and comparing it to the theoretical LEFM strain field predictions obtained for same conditions (i.e. rupture velocity, distance from the fault). Fracture energies were then inverted and found to range in between 1 and 10 J/m2. At the same time the energy partitioning was estimated through stress-slip evolution during rupture. The fracture energies obtained from this method are almost one order of magnitude larger than the ones inverted from LEFM and range in between 1 and 90 J/m2. Moreover, the energy partitioning shows the radiated energy ranging between 80 and 300 J/m2 and finally the heat/thermal energy as the largest fraction of the energy partitioning with values ranging from 200 to 2500 J/m2. Our preliminary results highlight the importance of understanding the contribution of heat energy in frictional processes, since this term cannot be estimated from seismological data.

How to cite: Violay, M., Paglialunga, F., and Passelègue, F. X.: Energy budget of laboratory earthquakes: a comparison between linear elastic fracture mechanics approach and experimental approach., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16230, https://doi.org/10.5194/egusphere-egu2020-16230, 2020.

EGU2020-18255 | Displays | TS2.5

On the energy balance behind frictional ruptures

Fabian Barras

Earthquake ruptures are driven by the dynamic weakening of frictional strength along faults. This drop of frictional stress toward a residual level is at the origin of the slip-weakening model, which became a well-established framework to study seismic ruptures and their energy budget. In this framework, the part of frictional energy associated to the rupture propagation (i.e. the fracture energy) corresponds to the excess of frictional dissipation on top of the residual stress, also referred as the breakdown work.

In this study, we test this energy partition for friction models that do not impose the magnitude of the residual stress. For example, rate-and-state models are a class of generic friction laws for which the residual stress after the rupture emerges from the interplay with the bulk elastodynamics. In this context, we simulate a frictional rupture at the interface between two linearly elastic solids and study the energy balance driving its propagation. Using dynamic fracture mechanics, we independently measure throughout the rupture the energy release rate from the bulk elastic fields and the frictional dissipation along the interface. From the comparison between these two quantities, we identify the part of interface dissipation corresponding to the fracture energy and show how the latter can be significantly smaller than the total breakdown work.

In a second phase, we test the generality of these results along another type of interface representative of mature fault zones filled with gouge.

This study shines new light on the energy budget of frictional ruptures and finds implications in the estimation of the fracture energy during earthquakes.

How to cite: Barras, F.: On the energy balance behind frictional ruptures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18255, https://doi.org/10.5194/egusphere-egu2020-18255, 2020.

EGU2020-11253 | Displays | TS2.5

Predicting the propagation and interaction of frontal accretionary thrust faults with work optimization

Michele Cooke, Jess McBeck, and Laura Fattaruso

This study assesses the ability of work optimization to predict the spatial and temporal initiation of faults. We focus on the growth of flaws that develop into thrust faults at the toe of accretionary prisms because observations from physical laboratory accretion experiments provide rich data with which to validate the models, and the processes of accretionary thrust fault initiation remain unclear. In order to model these systems, we apply new implementations to the fault growth code GROW that improve its prediction of fault interaction using work optimization, including: 1) CPU parallelization, 2) a new growth algorithm that propagates only the most efficient fault in each growth increment, the single run mode, and 3) a new growth algorithm that only considers fault propagation from fault tips that host high sums of modes I and II stress intensity factors, KG, the limiting mode. The single and limiting mode produce the geometries that best match the observed geometries, rather than the previous algorithm that allows all the faults to propagate simultaneously, regardless of KG, the multiple and non-limiting mode. The single limiting models predict that frontal accretionary thrusts initiate at the midpack or shallower depths, consistent with findings of previous studies. The thrusts propagate upward, link with the surface, and then propagate downward and link with the detachment. The backthrust tends to propagate before the forethrust, and then influence the forethrust propagation. This temporal and spatial sequence of faulting arises from the lower compression, higher shear strain, higher Coulomb stress and higher strain energy density that develop near the wedge surface and the inflection of the wedge slope. The models reveal that the final slip distributions do not reliably indicate the initiation location of the faults, in contrast to the assumptions of previous analyses.

How to cite: Cooke, M., McBeck, J., and Fattaruso, L.: Predicting the propagation and interaction of frontal accretionary thrust faults with work optimization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11253, https://doi.org/10.5194/egusphere-egu2020-11253, 2020.

TS3.4 – Strain localisation, deformation, fluid flow and seismic activity in subduction zones

EGU2020-3373 | Displays | TS3.4 | Highlight

Hydration- and dehydration-induced rheological heterogeneities on the deep subduction interface, and possible relationships to episodic tremor and slow slip

Whitney Behr, Carolyn Tewksbury-Christle, Alissa Kotowski, Claudio Cannizzaro, Robert Blass, and Taras Gerya

Episodic tremor and slow slip (ETS) is observed in several subduction zones down-dip of the locked megathrust, and may provide clues for preparatory processes before megathrust rupture. Exhumed rocks provide a unique opportunity to evaluate the sources of rheological heterogeneity on the subduction interface and their potential role in generating ETS-like behavior. We present data from two subduction interface shear zones representative of the down-dip extent of the megathrust: the Condrey Mountain Schist (CMS) in northern CA (greenschist to blueschist facies conditions) and the Cycladic Blueschist Unit (CBU) on Syros Island, Greece (blueschist to eclogite facies). Both complexes highlight the propensity for fluid-mediated metamorphic reactions to produce strong rheological heterogeneities:

In the CMW, hydration reactions led to progressive serpentinization of peridotite bodies that were entrained from the overriding plate and underplated along with oceanic-affinity sediments. The margins of each peridotite-serpentinite lens show extreme strain localization accommodated by dislocation glide and minor pressure solution in antigorite, whereas lens interiors show evidence for more distributed, alternating, frictional-viscous deformation, with abundant crack-seal veins occupied by antigorite, brucite and oxides that are in some places also ductilely sheared. Deformation in the surrounding metasedimentary matrix was purely viscous.

In the CBU on Syros Island, dehydration reactions in MORB-affinity basalts, subducted and underplated with oceanic and continental-affinity sediments, led to progressive development of strong eclogitic lenses within a weaker blueschist and metasedimentary matrix. The eclogite lenses are commonly coarse-grained and massive and show brittle deformation in the form of dilational and shear fractures/veins filled with quartz, white mica, glaucophane and/or chlorite. Brittle deformation in the eclogites is coeval with ductile deformation in the surrounding blueschist and metasedimentary matrix, indicating concurrent frictional-viscous flow.

Although we cannot easily distinguish transient deformation processes in exhumed rocks, we can use the following three approaches to assess whether these heterogeneities could have generated deformation behaviors similar to deep ETS: 1) We measure displacements within, and dimensions of the heterogeneities in outcrop/map-scale to estimate the maximum possible seismic moment that would be released when the frictional heterogeneities slip;  2) We compare deformation mechanisms inferred from field and microstructural observations to their expected mechanical behavior from rock deformation experiments; and 3) We use seismo-thermo-mechanical modeling to examine expected slip velocities and moment-duration ratios for frictional-viscous shear zones that are scaled to observations from nature and the lab.  

All three approaches suggest that frictional-viscous heterogeneities of the types and length-scales we observe in the exhumed rock record are compatible with ETS as documented in modern subduction zones.

How to cite: Behr, W., Tewksbury-Christle, C., Kotowski, A., Cannizzaro, C., Blass, R., and Gerya, T.: Hydration- and dehydration-induced rheological heterogeneities on the deep subduction interface, and possible relationships to episodic tremor and slow slip, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3373, https://doi.org/10.5194/egusphere-egu2020-3373, 2020.

The plate interface in subduction zones accommodates a wide range of seismic styles over different depths as a function of pressure-temperature conditions, compositional and fluid-pressure heterogeneities, deformation mechanisms, and degrees of strain localization. The shallow subduction interface (i.e. ~2-10 km subduction depths), in particular, can exhibit either slow slip events (e.g. Hikurangi) or megathrust earthquakes (e.g. Tohoku). To evaluate the factors governing these different slip behaviors, we need better constraints on the rheological properties of the shallow interface. Here we focus on exhumed rocks within the Chugach Complex of southern Alaska, which represents the Jurassic to Cretaceous shallow subduction interface of the Kula and North American plates. The Chugach is ideal because it exhibits progressive variations in subducted rock types through time, minimal post-subduction overprinting, and extensive along-strike exposure (~250 km). Our aims are to use field structural mapping, geochronology, and microstructural analysis to examine a) how strain is localized in different subducted protoliths, and b) the deformation processes, role of fluids, and strain localization mechanisms within each high strain zone. We interpret these data in the context of the relative ‘strengths’ of different materials on the shallow interface and possible styles of seismicity.  

Thus far we have characterized deformation features along a 1.25-km-thick melange belt within the Turnagain Arm region southeast of Anchorage.  The westernmost melange unit is sediment poor and consists of deep marine rocks with more chert, shale and mafic rocks than units to the east. The melange fabric is variably developed (weakly to strongly) throughout the unit and is steeply (sub-vertical) west-dipping with down-dip lineations. Quartz-calcite-filled dilational cracks are oriented perpendicular to the main melange fabric.

Drone imaging and structural mapping reveals 3 major discrete shear zones and 6-7 minor shear zones within the melange belt, all of which exhibit thrust kinematics. Major shear zones show a significant and observable strain gradient into a wide (~1 m) region of high strain and deform large blocks while minor shear zones are generally developed in narrow zones (~10-15 cm) of high strain between larger blocks. One major shear zone is developed in basalt and has closely-spaced, polished slip surfaces that define a facoidal texture; the basalt shear zone is ~1 m thick. Preserved pillows are observable in lower strain areas on either side of the shear zone but are deformed and indistinguishable within the high strain zone. The other two major shear zones are developed in shale and are matrix-supported with wispy, closely-spaced foliation and rotated porphyroclasts of chert and basalt; the shale shear zones are ~0.5-2 m thick.  

Abundant quartz-calcite veins parallel to the melange fabric and within shale shear zones record multiple generations of fluid-flow; early veins appear to be more silicic and later fluid flow involved only calcite precipitation. At the west, trench-proximal end of the mélange unit there is a 5-10 m thick silicified zone of fluid injection that is bound on one side by the basalt shear zone. Fluid injection appears to pre-date or be synchronous with shearing.

How to cite: Braden, Z. and Behr, W.: Rheological properties of the shallow subduction interface: insights from the Chugach Complex, Alaska, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5646, https://doi.org/10.5194/egusphere-egu2020-5646, 2020.

EGU2020-3285 | Displays | TS3.4

Rock record constraints on the seismic signature of subduction interface shear zones

Carolyn Tewksbury-Christle, Whitney Behr, and Mark Helper

The low velocity layer (LVL) in modern subduction zones is a 3-5 km thick region that parallels the top of the downgoing slab and is characterized by anomalously high Vp/Vs ratios (1.8-2.5) consistent with 2.5-4% fracture porosity at near-lithostatic pore fluid pressures. The LVL has been previously interpreted as partially hydrated, relatively undeformed oceanic crust at the top of the downgoing slab, but collocation of the LVL with episodic tremor and slow slip events (ETS) in modern subduction zones suggests that the LVL may alternatively represent the seismic signature of a subduction interface shear zone. 

To test this hypothesis, we use field & structural observations, geochronology, and seismic velocity calculations to compare and contrast the bulk seismic properties of a fossil subduction interface shear zone (Condrey Mountain Schist, CMS, northern CA) to properties of modern LVLs. Specifically, we 1) determined thicknesses of underplated packages (interpreted to represent the maximum thickness of the actively deforming interface) using depositional age discontinuities and high resolution structural mapping, 2) averaged the bulk rock seismic velocities weighted by mapped lithologic proportions and corrected for pressure-temperature effects, and 3) used field evidence of modifying factors (e.g., microcracks, fluid-filled veins, mineral anisotropy) to further refine the possible range of seismic velocities and effects on Vp/Vs ratio.

The CMS greenschist- to blueschist-facies units were subducted to ~25-35 km (450°C, 0.8-1.0 GPa) with limited retrogression or exhumational overprint. These rocks were underplated episodically at depth in three packages individually up to 4.5 km thick from 155-135 Ma, based on detrital zircon data. Each package is dominantly composed of metasedimentary rocks with m- to km-scale metamafic and serpentinized ultramafic lenses. Strain localization to ~1 km thick ductile shear zones between underplating episodes is collocated with km-scale serpentinized ultramafic lenses at the base of each package. Deformation was distributed and ductile with rare macro- or micro-scale prograde brittle failure in the metasedimentary or metamafic units. In the serpentinized ultramafics, ductile shear zones wrap massive blocks with prograde brittle fracture. Maximum fracture porosity estimated from relict veins is ~10%. Average Vp/Vs for the CMS is ~1.6 (lithology alone) but up to 3.0 (accounting for maximum fracture porosity).

The fossil subduction interface shear zone preserved in the CMS is consistent in both thickness and seismic signature with the LVL in modern subduction zones. Estimated Vp/Vs is higher than the LVL but assumes that all fractures are simultaneously open. The total thickness of the CMS (10+ km) is greater than the LVL, however, so previously underplated material must lose its anomalous seismic signature during underplating (e.g., due to fluid loss and transport up the slab during or after underplating). Our results support the hypothesis that LVLs in modern subduction zones represent the seismic signature of the subduction interface shear zone.

How to cite: Tewksbury-Christle, C., Behr, W., and Helper, M.: Rock record constraints on the seismic signature of subduction interface shear zones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3285, https://doi.org/10.5194/egusphere-egu2020-3285, 2020.

EGU2020-5472 | Displays | TS3.4

Record by quartz veins of earthquakes and slow slip events

Hugues Raimbourg, Vincent Famin, Kristijan Rajic, Saskia Erdmann, Benjamin Moris-Muttoni, and Donald Fisher

Veins that form contemporaneously with deformation are the best recorders of the fluids circulating in the depths of orogenic and subduction zones. We have analyzed syn-kinematic quartz veins from accretionary prisms (Shimanto Belt in Japan, Kodiak accretionary prism in Alaska) and tectonic nappes in collisional orogens (Flysch à Helminthoïdes in the Alps, the southern domain of the variscan Montagne Noire), which formed at temperature conditions between 250 and 350°C, i.e. spanning the downdip limit of large subduction earthquakes and the generation of slow slip events. In all geological domains, veins hosted in rocks with the lower temperature conditions (~250-300°C) show quartz grains with crystallographic facets and growth rims. Cathodoluminescence (CL) imaging of these growth rims shows two different colors, a short-lived blue color and a brown one, attesting to cyclic variations in precipitation conditions. In contrast, veins hosted in rocks with the higher temperature conditions (~350°C), show a homogeneous, CL-brown colored quartz, except for some very restricted domains of crack-seal structures of CL-blue quartz found in Japan, Kodiak and Montagne Noire. Based on laser ablation and electron microprobe mapping, the variations in CL colors appear correlated with the trace element content of quartz, the short-lived CL-blue being associated with the substitution of Si4+ by Al3++Li+/H+.

Due to their ubiquitous presence in various settings, the variations in CL colors in the lower T range reflect a common, general process. We interpret these cyclic growth structures as a reflection of deformation/fracturing events, which triggered transient changes in (1) the fluid pressure through fluid flow and (2) the chemistry of the fluid due to enhanced reactivity of the fractured material. The CL-blue growth rims delineate zones where quartz growth was rapid and crystals incorporated a large proportion of Al and Li. Crystal growth continued at a lower pace after fluid pressure and composition evolved to equilibrium conditions, leading to the formation of CL-brown quartz with few substitutions of tetrahedral Si. The variations in fluid pressure fluctuated at values close to lithostatic conditions, as indicated by growth in cavities that remained open.

The crack-seal microstructures have been interpreted as the result of slow-slip events near the base of the seismogenic zone (Fisher and Brantley, 2014; Ujiie et al., 2018). Our observations on quartz composition suggest that the quartz in crack-seal microstructures records episodic variation in fluid pressure and composition, similar to vein quartz at T<~300 °C. In contrast to the cooler and shallower domain, the variations are significantly smaller, as recorded by the very limited extent of the CL-blue domains, and most if not all of the quartz growth occurred under constant physico-chemical conditions, including a near lithostatic fluid pressure. 

We conclude that quartz trace element content is a useful tool to track variations in fluid conditions. In particular, at seismogenic depths (i.e. near 250°C), fluid pressure varies significantly around a lithostatic value. In contrast, deeper, near the base of the seismogenic zone where slow slip events occur (i.e. near 350°C), the variations in fluid pressure conditions are smaller.

How to cite: Raimbourg, H., Famin, V., Rajic, K., Erdmann, S., Moris-Muttoni, B., and Fisher, D.: Record by quartz veins of earthquakes and slow slip events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5472, https://doi.org/10.5194/egusphere-egu2020-5472, 2020.

EGU2020-6845 | Displays | TS3.4

The coupling of dehydration and deformation results in localised fluid flow in the accretionary wedge – a novel study of calcite veins

Ismay Vénice Akker, Christoph E. Schrank, Michael W.M. Jones, Cameron M. Kewish, Alfons Berger, and Marco Herwegh

In plate-convergent settings, fluid-saturated sediments dehydrate during subduction. The sediments are subsequently accreted to the upper plate. Along their dehydration-deformation path, the initial unconsolidated soft marine sediments become thick, foliated, impermeable meta-sedimentary sequences. Fluid flow through such ‘non’-porous low-permeability rocks is concentrated in fracture networks, ranging from the mm- to the km-scale. We study the interplay between ductile and brittle deformation processes and fluid flow by investigating calcite veins in slates from the exhumed European Alpine accretionary wedge across scales (µm to km). These slates experienced peak metamorphic temperatures between 200°C and 330°C and represent the transition between the upper aseismic and seismic zone. With the use of Synchrotron X-ray Fluorescence Microscopy (SXFM), we investigate the slates by visualizing trace-element distributions. This technique shows that alternating cycles of slow pressure-dissolution processes and brittle fracturing persist over long time scales. At the micron-scale, pressure solution of the initial carbonate-rich slates is indicated by an enrichment of newly recrystallized phyllosilicates on cleavage planes and in pressure shadows. These ductile deformation features are mutually overprinted by calcite veins (aperture 10 µm), which are nicely visualized with Sr-SXFM maps. Increasing compaction and recrystallization in the slate-rich matrix leads to progressed dehydration resulting in an increased pore fluid pressure and subsequent hydrofracturing. The micron-sized fractures are immediately filled in with minerals, which are oversaturated at that time in the fluid, resulting in the formation of (i) micron-veinlets. Micron-veinlets collect (ii) into mm-cm sized veins, which themselves form (iii) vein arrays and (iv) mega-arrays, respectively at the 50-100 m and 300-400 m scale. This upscaling of fluid pathways indicates a localised fluid transport through the accretionary wedge, which has important implications for the understanding of the mechanical stability of the accretionary wedge and related seismic activity.

How to cite: Akker, I. V., Schrank, C. E., Jones, M. W. M., Kewish, C. M., Berger, A., and Herwegh, M.: The coupling of dehydration and deformation results in localised fluid flow in the accretionary wedge – a novel study of calcite veins, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6845, https://doi.org/10.5194/egusphere-egu2020-6845, 2020.

EGU2020-11961 | Displays | TS3.4

Heterogeneous stresses and deformation mechanisms at shallow crustal conditions, Hungaroa Fault Zone, Hikurangi Subduction Margin, New Zealand

Carolyn Boulton, Marcel Mizera, Maartje Hamers, Inigo Müller, Martin Ziegler, André Niemeijer, and Timothy Little

The Hungaroa Fault Zone (HFZ), an inactive thrust fault along the Hikurangi Subduction Margin, accommodated large displacements (~4–10 km) at the onset of subduction in the early Miocene. Within a 40 m-wide high-strain fault core, calcareous mudstones and marls display evidence for mixed-mode viscous flow and brittle fracture, including: discrete faults; extensional veins containing stretched calcite fibers; shear veins with calcite slickenfibers; calcite foliation-boudinage structures; calcite pressure fringes; dark dissolution seams; stylolites; embayed calcite grains; and an anastomosing phyllosilicate foliation.

Multiple observations indicate a heterogeneous stress state within the fault core. Detailed optical and electron backscatter diffraction-based texture analysis of syntectonic calcite veins and isoclinally folded limestone layers within the fault core reveal that calcite grains have experienced intracrystalline plasticity and interface mobility, and local subgrain development and dynamic recrystallisation. The recrystallized grain size in two calcite veins of 6.0±3.9 µm (n=1339; 1SD; HFZ-H4-5.2m_A;) and 7.2±4.2µm (n=406; 1SD; HFZ-H4-19.9m) indicate high differential stresses (~76–134 MPa). Hydrothermal friction experiments on a foliated, calcareous mudstone yield a friction coefficient of μ≈0.35. Using this friction coefficient in the Mohr-Coulomb failure criterion yields a maximum differential stress of 55 MPa at 4 km depth, assuming a minimum principal stress equal to the vertical stress, an average sediment density of 2350 kg/m3, and hydrostatic pore fluid pressure. Interestingly, calcareous microfossils within the foliated mudstone matrix are undeformed. Moreover, calcite veins are oriented both parallel to and highly oblique to the foliation, indicating spatial and/or temporal variations in the maximum principle stress azimuth.

To further constrain HFZ deformation conditions, clumped isotope geothermometry was performed on six syntectonic calcite veins, yielding formation temperatures of 79.3±19.9°C (95% confidence interval). These temperatures are well below those at which dynamic recrystallisation of calcite is anticipated and exclude shear heating and the migration of hotter fluids as an explanation for dynamic recrystallisation of calcite at shallow crustal levels (<5 km depth).

Our results indicate that: (1) stresses are spatiotemporally heterogeneous in crustal fault zones containing mixtures of competent and incompetent minerals; (2) heterogeneous deformation mechanisms, including frictional sliding, pressure solution, dynamic recrystallization, and mixed-mode fracturing accommodate slip in shallow crustal fault zones; and (3) brittle fractures play a pivotal role in fault zone deformation by providing fluid pathways that promote fluid-enhanced recovery and dynamic recrystallisation in the deforming calcite at remarkably low temperatures. Together, field geology, microscopy, and clumped isotope geothermometry provide a powerful method for constraining the multiscale slip behavior of large-displacement fault zones.

How to cite: Boulton, C., Mizera, M., Hamers, M., Müller, I., Ziegler, M., Niemeijer, A., and Little, T.: Heterogeneous stresses and deformation mechanisms at shallow crustal conditions, Hungaroa Fault Zone, Hikurangi Subduction Margin, New Zealand, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11961, https://doi.org/10.5194/egusphere-egu2020-11961, 2020.

EGU2020-17557 | Displays | TS3.4

Episodic fluid pressure cycling controls the interplay between Slow Slip Events and Large Megathrust Earthquakes

Claudio Petrini, Luca Dal Zilio, and Taras Gerya

Slow slip events (SSEs) are part of a spectrum of aseismic processes that relieve tectonic stress on faults. Their occurrence in subduction zones have been suggested to trigger megathrust earthquakes due to perturbations in fluid pressure. However, examples to date have been poorly recorded and physical observations of temporal fluid pressure fluctuations through slow slip cycles remain elusive. Here, we use a newly developed two-phase flow numerical model — which couples solid rock deformation and pervasive fluid flow — to show how crustal stresses and fluid pressures within subducting megathrust evolve before and during slow slip and regular events. This unified 2D numerical framework couples inertial mechanical deformation and fluid flow by using finite difference methods, marker-in-cell technique, and poro-visco-elasto-plastic rheologies. Furthermore, an adaptive time stepping allows the correct resolution of both long- and short-time scales, ranging from years to milliseconds during the dynamic propagation of earthquake rupture.

Here we show how permeability and its spatial distribution control the degree of locking along the megathrust interface and the interplay between seismic and aseismic slip. While a constant permeability leads to more regular seismic cycles, a depth dependent permeability contributes substantially to the development of two distinct megathrust zones: a shallow, locked seismogenic zone and a deep, narrow aseismic segment characterized by SSEs. Furthermore, we show that without requiring any specific friction law, our model shows that permeability, episodic stress transfer and fluid pressure cycling control the predominant slip mode along the subduction megathrust. Specifically, we find that the up-dip propagation of episodic SSEs systematically decreases the fault strength due to a continuous accumulation and release of fluid pressure within overpressured subducting interface, thus affecting the timing of large megathrust earthquakes. These results contribute to improve our understanding of the physical driving forces underlying the interplay between seismic and aseismic slip, and demonstrate that slow slip events may prove useful for short-term earthquake forecasts.

How to cite: Petrini, C., Dal Zilio, L., and Gerya, T.: Episodic fluid pressure cycling controls the interplay between Slow Slip Events and Large Megathrust Earthquakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17557, https://doi.org/10.5194/egusphere-egu2020-17557, 2020.

EGU2020-12087 | Displays | TS3.4

Episodic stress tensor and fluid pressure cycling in subducting oceanic crust during Northern Hikurangi slow slip events

Emily Warren-Smith, Bill Fry, Laura Wallace, Enrique Chon, Stuart Henrys, Anne Sheehan, Kimihiro Mochizuki, Susan Schwartz, Katherine Woods, John Ristau, and Spahr Webb

The occurrence of slow slip events (SSEs) in subduction zones has been proposed to be linked to the presence of, and fluctuations in near-lithostatic fluid pressures (Pf) within the megathrust shear zone and subducting oceanic crust. In particular, the 'fault-valve' model is commonly used to describe occasional, repeated breaching of a low-permeability interface shear zone barrier, which caps an overpressured hydrothermal fluid reservoir. In this model, a precursory increase in fluid pressure may therefore be anticipated to precede megathrust rupture. Resulting activation of fractures during slip opens permeable pathways for fluid migration and fluid pressure decreases once more, until the system becomes sealed and overpressure can re-accumulate. While the priming conditions for cyclical valving behaviour have been observed at subduction zones globally, and evidence for post-megathrust rupture drainage exists, physical observations of precursory fluid pressure increases, and subsequent decreases, particularly within the subducting slab where hydrothermal fluids are sourced, remain elusive.

Here we use earthquake focal mechanisms recorded on an ocean-bottom seismic network to identify changes in the stress tensor within subducting oceanic crust during four SSEs in New Zealand’s Northern Hikurangi subduction zone. We show that the stress, or shape ratio, which describes the relative magnitudes of the principal compressive stress axes, shows repeated decreases prior to, and rapid increases during the occurrence of geodetically documented SSEs. We propose that these changes represent precursory accumulation and subsequent release of fluid pressure within overpressured subducting oceanic crust via a ‘valving’ model for megathrust slip behaviour. Our observations indicate that the timing of slow slip events on subduction megathrusts may be controlled by cyclical accumulation of fluid pressure within subducting oceanic crust.

Our model is further supported by observations of seismicity preceding a large SSE in the northern Hikurangi Margin in 2019, captured by ocean-bottom seismometers and absolute pressure recorders. Observations of microseismicity during this period indicate that a stress state conducive to vertical fluid flow was present in the downgoing plate prior to SSE initiation, before subsequently returning to a down-dip extensional state following the SSE. We propose this precursory seismicity is indicative of fluid migration towards the interface shear zone from the lower plate fluid reservoir, which may have helped triggering slip on the megathrust.

We also present preliminary results of a moment tensor study to investigate spatial and temporal patterns in earthquake source properties in SSE regions along the Hikurangi Margin. In particular, earthquakes near Porangahau – a region susceptible to dynamic triggering of tremor and where shallow SSEs occur every 5 years or so – exhibit distinctly lower double couple components than elsewhere along the margin. We attribute this to elevated fluid pressures within the crust here, which is consistent with recent observations of high seismic reflectivity from an autocorrelation study. Such high fluid pressure may control the broad range of seismic and aseismic phenomena observed at Porangahau.

How to cite: Warren-Smith, E., Fry, B., Wallace, L., Chon, E., Henrys, S., Sheehan, A., Mochizuki, K., Schwartz, S., Woods, K., Ristau, J., and Webb, S.: Episodic stress tensor and fluid pressure cycling in subducting oceanic crust during Northern Hikurangi slow slip events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12087, https://doi.org/10.5194/egusphere-egu2020-12087, 2020.

EGU2020-20603 | Displays | TS3.4

Stress orientation variability along the Hikurangi Subduction Margin: Insights from borehole image logging

Effat Behboudi, Ivan Lokmer, David McNamara, Tom Manzocchi, Laura Wallace, Demian Saffer, Philip Barnes, Ingo Pecher, Hikweon Lee, Gil Young Kim, Hung-Yu Wu, Katerina Petronotis, Leah LeVay, Iodp Expedition372 Scientists, and Iodp Expedition375 Scientists

The Hikurangi Subduction Margin (HSM) of New Zealand is well-known for its variable seismic behaviour along strike, and across the Pacific-Australian subduction interface. Pacific-Australian plate motion is accommodated by a combination of slow slip and normal seismic events. The mechanics of slow slip earthquakes and their relationship to normal earthquakes are not well constrained, and so they represent a challenge to the development of hazard models for this region of New Zealand.Variability in a number of aspects of the stress state along the HSM may play a role in controlling the observed spatially variable seismic behaviour. Here we present preliminary analysis of stress orientation information from borehole image logs acquired from oil and gas exploration wells, and scientific wells drilled as part IODP Expedition 372. Orientations of borehole breakouts (BOs) and drilling-induced tensile fractures (DITFs) from these image logs are used to determine orientations of the minimum and maximum horizontal stress directions respectively within the upper 3 km of the over-riding Australian Plate (hanging wall of the HSM subduction interface). Our analysis reveals that present day maximum horizontal compressive stress orientation (SHmax) within the subduction hangingwall varies along the HSM strike, from NE-SW (oblique to Pacific-Australian plate motion, parallel to HSM strike) in the northern HSM, to NW-SE (oblique to Pacific-Australian plate motion and HSM strike) in the southern HSM. Some deviation from this trend can be observed in both regions. At the frontal thrust in the northern HSM, SHmax is oriented N-S, and in the southern HSM one well shows a shallow E-W oriented SHmax. The borehole image log SHmax orientations in the northern HSM are consistent with SHmax orientations derived from shallow focal mechanism inversion. In contrast, borehole image logs SHmax orientations in the south of HSM are oblique to focal mechanisms derived shallow SHmax orientations. Borehole SHmax orientations are compatible with the maximum horizontal contraction strain rate direction determined from campaign GPS surface velocities, though in the southern HSM multiple directions are determined from this technique. The difference in stress orientations along the HSM is consistent with the variation in seismic behaviour linked to changes in coupling at the subduction interface. Interestingly, it is the southern HSM, where the subduction interface is considered strongly coupled, that stress field orientations are not consistent with depth and show variability. In the northern HSM, where the subduction interface is considered to be weakly coupled, stress orientations appear broadly consistent with depth. 

How to cite: Behboudi, E., Lokmer, I., McNamara, D., Manzocchi, T., Wallace, L., Saffer, D., Barnes, P., Pecher, I., Lee, H., Kim, G. Y., Wu, H.-Y., Petronotis, K., LeVay, L., Expedition372 Scientists, I., and Expedition375 Scientists, I.: Stress orientation variability along the Hikurangi Subduction Margin: Insights from borehole image logging, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20603, https://doi.org/10.5194/egusphere-egu2020-20603, 2020.

EGU2020-12631 | Displays | TS3.4

Stable and Unstable Shear in Altered Downgoing Slabs: Predicted Strain Localization in Magnesian Carbonates and Wadati-Benioff Seismicity

Abhishek Prakash, Caleb W Holyoke III, Peter B Kelemen, William M Lamb, Stephen H Kirby, and Andreas K Kronenberg

Seismicity of subduction zones at upper-mantle depths is commonly explained by dehydration reactions of serpentine and hydrous silicates and reductions in effective pressure. However, the conditions of Wadati-Benioff zone seismicity do not strictly correspond to temperatures and depths of serpentine dehydration, and there is no independent evidence that seawater penetrates the lithosphere to form serpentine at depths >30km below the seafloor. Altered lithosphere may contain magnesian carbonates in addition to hydrous silicates, both at the top of plates, where CO2 of seawater reacts with mantle rocks and at the base of plates where CO2 is introduced by mantle plumes.

Adapting the thermal softening model of Kelemen and Hirth (2007), we model the strain localization and shear heating within magnesite horizons embedded within an olivine host using flow laws determined experimentally for dislocation creep and diffusion creep of the carbonate layer and olivine host (Hirth and Kohlstedt, 2003; Holyoke et al., 2014). Strain rates predicted within carbonate-rich layers of downgoing slabs are much higher than those of the surrounding olivine at all conditions. However, shearing may be either stable or unstable depending on the relative rates of shear heating and conductive heat loss from the shear zone. Localized strain rates reach a steady state when shear heating and heat flow are balanced, while unstable strain rates are calculated where shear heating exceeds heat flow. Modeled strain rates accelerate to 10+1 s-1, as temperatures reach melting conditions, and stresses drop, corresponding to a seismic event. Applications of this model to the double Benioff zones of the NE Japan trench predict unstable seismic shear for both upper and lower seismic zones to subduction depths of ~300 km. For cold downgoing slabs, such as the Tonga subduction system, unstable seismic shear is predicted for carbonate horizons of altered downgoing slabs to depths exceeding 400 km.

How to cite: Prakash, A., Holyoke III, C. W., Kelemen, P. B., Lamb, W. M., Kirby, S. H., and Kronenberg, A. K.: Stable and Unstable Shear in Altered Downgoing Slabs: Predicted Strain Localization in Magnesian Carbonates and Wadati-Benioff Seismicity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12631, https://doi.org/10.5194/egusphere-egu2020-12631, 2020.

In subduction zones, megathrust seismicity depends on the hydrogeological, thermal, physical and mechanical properties of the sediments before they enter the subduction zone and how these properties evolve through the subduction process. In particular, fluids are progressively released by compaction and/or mineral dehydration reactions as burial increases, resulting in the build-up of pore fluid pressure in low-permeability sediments that strongly affects fault behavior through its control on effective normal stress.

We use porosity, logging and chemical data to characterize compaction state and bound water content of sediments at Site C0024. This site was drilled in March 2019 during International Ocean Discovery Program Expedition 358 in the anticline overlying the frontal thrust of the Nankai margin, a few kilometers landward of Sites C0006 and C0007 that were previously drilled during the NanTroSEIZE project. Sites C0024, C0006 and C0007 transect the décollement and overlying accreted Upper Shikoku Basin and wedge slope deposits. At Site C0024, the main frontal thrust at ~820 mbsf, the top of its footwall (up to ~870 mbsf) and its hanging-wall were logged. Two intervals were cored in the hanging-wall (~0-320 mbsf and ~510-652 mbsf). Four sedimentary facies were identified : (1) the slope apron (~0-4 mbsf) composed of silty clay to clayey silt hemipelagites, (2) accreted trench wedge sediments (~4–519 mbsf) composed of hemipelagites with volcanic ash layers, silt and sand turbidites, (3) outer trench-wedge sediments (~519-555 mbsf) mainly composed of hemipelagites with rare silt turbidites and volcanic ash layers and (4) accreted Upper Shikoku Basin (>555mbsf) composed of hemipelagites and volcanic ash layers. The Pliocene to Miocene accreted Upper Shikoku Basin deposits at the frontal thrust are correlated with undeformed Upper Shikoku Basin deposits at reference Sites C0011 and C0012 seaward in the incoming Shikoku Basin.

Following previous studies, we use Cation Exchange Capacity (CEC) to determine bound water content and interstitial porosity in the cored interval. Unlike total porosity commonly measured onboard, interstitial porosity is representative of the compaction state of sediments. We use interstitial porosity data to calibrate resistivity-derived porosity through the hanging-wall, the décollement and below. Resistivity-derived porosity is obtained with a resistivity model accounting for the high surface conductivity of clays based on CEC, exchangeable cation composition, LWD resistivity and gamma ray logs. We also document the evolution of the structure of micro- to macropores with depth using low pressure nitrogen adsorption/desorption, mercury injection capillary pressure and nuclear magnetic resonance.  Finally, we compare the porosity dataset at Site C0024 with that of Sites C0006 and C0007 in the frontal thrust and reference Sites C0011 and C0012 in the entering Shikoku Basin to characterize the evolution of the compaction state of sediments during accretion.

How to cite: Dutilleul, J., Conin, M., Bourlange, S., and Géraud, Y. and the Expedition 358 Science Party: Characterization of porosity from Cation Exchange Capacity and resistivity data at IODP Expedition 358 Site C0024: insights on compaction state, stress and deformation history at the frontal thrust of the Nankai margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11685, https://doi.org/10.5194/egusphere-egu2020-11685, 2020.

EGU2020-3231 | Displays | TS3.4

Recent advances in GNSS-A observation technology and networks and latest observation results around Japan Islands

Yusuke Yokota, Tadashi Ishikawa, Shun-ichi Watanabe, and Yuto Nakamura

Our research group has been studying advanced GNSS-A (Global Navigation Satellite System – Acoustic ranging combination) technique over two decades. In recent years, detection sensitivity of GNSS-A observations has been sophisticated by improving the accuracy and frequency of analysis technology and acoustic systems [e.g., Yokota et al., 2018, MGR; Ishikawa et al., in prep]. The current observation frequency is more than 4 times/year, the observation accuracy for each observation is less than 2 cm, and it can detect a steady deformation rate of 1 cm/year or less and an unsteady fluctuation of 5 cm or less. Also, efforts are being made to strengthen the observation network.

GNSS-A observations for the 2011 Tohoku-oki earthquake and its postseismic field revealed the details of the crustal deformation field on the Japan Trench side [Sato et al., 2011, Science; Watanabe et al., 2014, GRL]. The long-term observation data in the Nankai Trough region revealed the strain accumulation process at the interseismic period [Yokota et al., 2016, Nature; Watanabe et al., 2018, JGR; Nishimura et al., 2018, Geosphere]. Furthermore, detection and monitoring of large-scale slow slip events (SSEs) in the shallow part of the Nankai Trough was achieved by recent sensitivity improvements [Yokota & Ishikawa, 2020, Science Advances]. The detected postseismic fields, coupling condition and shallow SSEs contain universal features that should be shared in many subduction zones. Here, along with the latest observations, we discuss spatial and temporal relationships of these events, strain accumulations and releases along subduction zones around Japan by GNSS-A and its impact on slow earthquake science.

Recently, because of the need for continuous monitoring a shallow SSE, the monitoring ability of GNSS-A was also investigated. It was confirmed that relatively large-scale shallow SSE (surface deformation: > 5 cm) could be monitored. However, the ability to determine the time constant of an SSE is poor. For monitoring the detail of an SSE, it is essential to improve the observation frequency in the future. Here, we also discuss the technical issues to be considered and their solution plans (e.g., new platform and system).

How to cite: Yokota, Y., Ishikawa, T., Watanabe, S., and Nakamura, Y.: Recent advances in GNSS-A observation technology and networks and latest observation results around Japan Islands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3231, https://doi.org/10.5194/egusphere-egu2020-3231, 2020.

EGU2020-864 | Displays | TS3.4

An investigation on possibilty of creep on the Makran subduction zone based on deformation data

Homa Ghadimi Moghaddam, Alireza Khodaverdian, and Hamid Zafarani

Long term crustal flow of the Makran subduction zone is computed with a kinematic finite element model based on iterated weighted least squares fits to data. Data include 91 fault traces, 56 fault offset rates, 76 geodetic velocities, 1962 principal stress azimuths, and velocity boundary conditions. Model provides long-term fault slip rates, velocity, and distributed permanent strain rates between faults in the Makran region from all available kinematic data. Due to low seismicity of western Makran compared to its eastern part we defined two models to evaluate the possibility of creep in the Iranian Makran subduction. One model assumes that geodetic velocities measured adjacent to the Makran subduction zone reflect a temporarily locked subduction zone will be referred to as the “seismic deformation model”. In contrast, another model called the “half creeping deformation model” assumes that the western part of Makran may creep smoothly without any locking. In order to verify the models, the estimates of fault slip rates are compared to slip rates from merely analysing geodetic benchmark velocities or paleoseismological studies or published geological rates which have not been used in the model. Our estimated rates are all in the range of geodetic rates and are even more consistent with geological rates than previous GPS-based estimates. Another verification for the model is comparison of the computed interseismic velocities at GPS benchmarks to GPS measurements. While neither model accurately predicts these interseismic velocities at benchmarks, the half creeping deformation model is more accurate for Chabahar station than the seismic deformation model. These results have important earthquake and tsunami hazard implications. For example, Fault slip rates are the main component of time-dependent seismic hazard studies and can be used to estimate activity rates for more sophisticated earthquake models.

How to cite: Ghadimi Moghaddam, H., Khodaverdian, A., and Zafarani, H.: An investigation on possibilty of creep on the Makran subduction zone based on deformation data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-864, https://doi.org/10.5194/egusphere-egu2020-864, 2020.

EGU2020-8315 | Displays | TS3.4

Sounds of the deep subduction zone plumbing system: modeling non-volcanic tremor activity in a fault-valve, pore-pressure diffusive system

Gaspard Farge, Nikolai Shapiro, Claude Jaupart, and Édouard Kaminski

The activity of slow-earthquakes in subduction zones have been closely linked to fluid circulation processes — like hydro fracturation and pore-pressure pulses — on the one hand by geological observations and on the other hand by slow-earthquake triggering and interaction models. In deep fault zone environments, where slow slip events and various regimes of tremor are observed, fluids coming from metamorphic dehydration of slab sediments are channeled towards the surface. Geological observations indicate that fluid transport conditions vary significantly on short time scales, and along dip, strike and width of the fault zone. In homogeneously permeable systems where fluids transit under stable conditions, pore-pressure can be described by a diffusion equation. We use a time and space bimodal description of the transport properties to model a tremor generating, permeable fault zone. Thin zones of low permeability acting as valves are distributed along the 1D channel with a higher background permeability. When a threshold pore-pressure differential is reached, the valve permeability is brought to background levels, until the barrier is healed and closes again. In this model, the opening of a valve occurs at the same time as the source of a low-frequency earthquake (LFE) is triggered. In such a set up, sources interact uniquely due to the channeling of stress through pore-pressure diffusion, and the interaction characteristics in time/space are described in the framework of a diffusive system. When the number of sources is high, the model can reproduce clustering behaviours observed for LFE activity in subduction zones. The transition from a Poisson process description of seismicity to highly clustered, cascading events is governed by the source interaction distances, directly relating to the transport properties of the medium. In time, such a model is meant to diagnose the transport conditions in a subduction zone or a magmatic system, provided that it can be characterized by clustering statistics on the low-frequency seismicity it generates.

How to cite: Farge, G., Shapiro, N., Jaupart, C., and Kaminski, É.: Sounds of the deep subduction zone plumbing system: modeling non-volcanic tremor activity in a fault-valve, pore-pressure diffusive system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8315, https://doi.org/10.5194/egusphere-egu2020-8315, 2020.

EGU2020-11486 | Displays | TS3.4

Methane hydrate saturations at the Southern Hikurangi margin (New Zealand) estimated from seismic and rock physics inversion

Francesco Turco, Andrew Gorman, Gareth Crutchley, Leonardo Azevedo, Dario Grana, and Ingo Pecher

Geophysical data indicate that the Hikurangi subduction margin on New Zealand’s East Coast contains a large gas hydrate province. Gas hydrates are widespread in shallow sediments across the margin, and locally intense fluid seepage associated with methane hydrate is observed in several areas. Glendhu and Honeycomb ridges lie at the toe of the Hikurangi deformation wedge at depths ranging from 2100 to 2800 m. These two parallel four-way closure systems host concentrated methane hydrate deposits. The control on hydrate formation at these ridges is governed by steeply dipping permeable strata and fractures, which allow methane to flow upwards into the gas hydrate stability zone. Hydrate recycling at the base of the hydrate stability zone may contribute to the accumulation of highly concentrated hydrate in porous layers.
To improve the characterisation of the hydrate systems at Glendhu and Honeycomb ridges, we estimate hydrate saturation and porosity of the concentrated hydrate deposits. We first estimate elastic properties (density, compressional and shear-wave velocities) of the gas hydrate stability zone through full-waveform inversion and iterative geostatistical seismic amplitude versus angle (AVA) inversion. We then perform a petrophysical inversion based on a rock physics model to predict gas hydrate saturation and porosity of the hydrate bearing sediments along the two ridges.
Our results indicate that the high seismic amplitudes correspond to the top interface of highly concentrated hydrate deposit, with peak saturations around 35%. Because of the resolution of the seismic data we assume that the estimated properties are averaged over layers of 10 to 20 meters thickness. These saturation values are in agreement with studies conducted in other areas of concentrated hydrate accumulations in similar geologic settings.

How to cite: Turco, F., Gorman, A., Crutchley, G., Azevedo, L., Grana, D., and Pecher, I.: Methane hydrate saturations at the Southern Hikurangi margin (New Zealand) estimated from seismic and rock physics inversion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11486, https://doi.org/10.5194/egusphere-egu2020-11486, 2020.

TS3.5 – Faults and fractures in rocks : mechanics, occurrence, dating, stress history and fluid flow

EGU2020-18248 | Displays | TS3.5

Hydrofractures and crustal-scale fluid flow

Paul D. Bons, Tamara de Riese, Enrique Gomez-Rivas, Isaac Naaman, and Till Sachau

Fluids can circulate in all levels of the crust, as veins, ore deposits and chemical alterations and isotopic shifts indicate. It is furthermore generally accepted that faults and fractures play a central role as preferred fluid conduits. Fluid flow is, however, not only passively reacting to the presence of faults and fractures, but actively play a role in their creation, (re-) activation and sealing by mineral precipitates. This means that the interaction between fluid flow and fracturing is a two-way process, which is further controlled by tectonic activity (stress field), fluid sources and fluxes, as well as the availability of alternative fluid conduits, such as matrix porosity. Here we explore the interaction between matrix permeability and dynamic fracturing on the spatial and temporal distribution of fluid flow for upward fluid fluxes. Envisaged fluid sources can be dehydration reactions, release of igneous fluids, or release of fluids due to decompression or heating.

 

Our 2D numerical cellular automaton-type simulations span the whole range from steady matrix-flow to highly dynamical flow through hydrofractures. Hydrofractures are initiated when matrix flow is insufficient to maintain fluid pressures below the failure threshold. When required fluid fluxes are high and/or matrix porosity low, flow is dominated by hydrofractures and the system exhibits self-organised critical phenomena. The size of fractures achieves a power-law distribution, as failure events may sometimes trigger avalanche-like amalgamation of hydrofractures. By far most hydrofracture events only lead to local fluid flow pulses within the source area. Conductive fracture networks do not develop if hydrofractures seal relatively quickly, which can be expected in deeper crustal levels. Only the larger events span the whole system and actually drain fluid from the system. We present the 10 square km hydrothermal Hidden Valley Mega-Breccia on the Paralana Fault System in South Australia as a possible example of large-scale fluid expulsion events. Although field evidence suggests that the breccia formed over a period of at least 150 Myrs, actual cumulative fluid duration may rather have been in the order of days only. This example illustrates the extreme dynamics that crustal-scale fluid flow in hydrofractures can achieve.

How to cite: Bons, P. D., de Riese, T., Gomez-Rivas, E., Naaman, I., and Sachau, T.: Hydrofractures and crustal-scale fluid flow, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18248, https://doi.org/10.5194/egusphere-egu2020-18248, 2020.

EGU2020-14590 | Displays | TS3.5

Fault-controlled diagenesis and fluid circulation along a major syn-rift border fault system – insights from the Dombjerg Fault, Wollaston Forland Basin, NE Greenland

Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Axel Gerdes, and Richard Albert Roper

In marine rift basins, rift-climax deep-water clastics in the hanging wall of rift- or basin-bounding fault systems are commonly juxtaposed against crystalline basement rocks in the footwall. Displacing highly permeable, unconsolidated sediments against low-permeable rock distinguishes these faults significantly from others displacing hard rock. Due to limited surface exposure of such fault zones, studies elucidating their structure and evolution are rare. Consequently, their impact on fluid circulation and in-fault, near-fault, and hanging wall sediment diagenesis are also poorly understood. Motivated by this, we here investigate a well-exposed strand of a major basin-bounding fault system in the East Greenland rift system, namely the Dombjerg Fault which bounds the Wollaston Forland Basin, NE Greenland. Here, Upper Jurassic and Lower Cretaceous syn-rift deep-water clastics are juxtaposed against Caledonian metamorphic basement.

Previously, a ~1 km-wide zone of increased calcite cementation of the hanging wall sediments along the Dombjerg fault core was identified (Kristensen et al., 2016). Now, based on U/Pb calcite dating, we are able to show that cementation and formation of this zone started during the rift climax in Berrisian/Valanginian times. Using clumped isotope analysis, we determined cement formation temperatures of ~30-70˚C. Temperatures likely do not relate to the normal geothermal gradient, but to elevated fluid temperatures of upward directed circulation along the fault.

Vein formation within the cementation zone clusters between ~125-100 Ma in the post-rift stage, indicating that fracturing in the hanging wall is not directly related to the main phase of activity of the adjacent Dombjerg Fault. Vein formation temperatures range between ~30-80˚C, signifying a shallow burial depth of the hanging wall deposits. Further, similar minor element concentrations of veins and adjacent cements argue for diffusional mass transfer, which in turn infers a subdued fluid circulation and low permeability of the fracture network. These results imply that the chemical alteration zone formed an impermeable barrier quickly after sediment deposition and maintained this state even after fracture formation.

We argue that the existence of such a cementation zone should be considered in any assessments that target basin-bounding fault systems for, e.g., hydrocarbon, groundwater, geothermal energy, and carbon storage exploration. Our study highlights that the understanding fluid flow properties as well as fault-controlled diagenesis affecting the fault itself and/or adjacent basinal clastics is of great fundamental and economic importance.

 

References:

Kristensen, T. B., Rotevatn, A., Peacock, D. C. P., Henstra, G. A., Midtkandal, I., and Grundvag, S. A. (2016). Structure and flow properties of syn-rift border faults: The interplay between fault damage and fault-related chemical alteration (Dombjerg Fault, Wollaston Forland, NE Greenland), J. Struct. Geol., 92, 99-115, doi:10.1016/j.jsg.2016.09.012.

How to cite: Salomon, E., Rotevatn, A., Kristensen, T. B., Grundvåg, S.-A., Henstra, G. A., Meckler, A. N., Gerdes, A., and Roper, R. A.: Fault-controlled diagenesis and fluid circulation along a major syn-rift border fault system – insights from the Dombjerg Fault, Wollaston Forland Basin, NE Greenland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14590, https://doi.org/10.5194/egusphere-egu2020-14590, 2020.

EGU2020-660 | Displays | TS3.5

Comb-veins as a marker for crustal-scale fluid circulation: insight from geochronological (U-Th dating), geochemical, and field to microstructural analyses along the seismogenic Val Roveto Fault (central Apennines, Italy)

Luca Smeraglia, Stefano M. Bernasconi, Fabrizio Berra, Andrea Billi, Chiara Boschi, Antonio Caracausi, Eugenio Carminati, Francesca Castorina, Carlo Doglioni, Francesco Italiano, Andrea Luca Rizzo, Ibrahim Tonguç Uysal, and Jian-xin Zhao

Comb-veins are mineral-filled fractures oriented perpendicular to fault surfaces, with their intersection with the fault surface generating lineations that are perpendicular to the downdip slip direction. Despite the large occurrence along normal faults within seismogenic extensional tectonic settings (i.e. Greece, Turkey, Italy), their origin, geochemical signature, and kinematics are still poorly constrained. Here we present the first multidisciplinary study, combining field to microscale observations (optical microscope and cathodoluminescence) with geochemical-geochronological analyses (U-Th dating, stable-clumped isotopes, Strontium isotopes, whole-rock geochemistry, and fluid inclusions), on calcite-filled comb-veins cutting through the principal surface of the seismogenic Val Roveto Fault in the central Apennines, Italy. We show that comb-veins precipitated in Late Pleistocene time (between 300 ky and 140 ky) below the present-day outcrop level at a maximum depth of ∼350 m and temperatures between 32 and 64°C from deep-seated fluids modified by reactions with crustal rocks and with a mantle contribution (up to ∼39%). The observed geochemical signature and temperatures are not compatible which those of cold meteoric water and/or shallow groundwater (maximum temperature of 12 °C) circulating within shallow aquifers (≤ 500 m depth) in the study region. Therefore, we propose that deep-seated crust/mantle-derived warm fluids were squeezed upward during earthquakes and were hence responsible for calcite precipitation at shallow depths in co-seismic comb fractures. As comb-veins are rather common, particularly along seismogenic normal faults, we suggest that further studies are necessary to test whether these veins are often of co-seismic origin. If so, they may become a unique and irreplaceable tool to unravel the seismic history and crustal-scale fluid circulation of active faults.

How to cite: Smeraglia, L., Bernasconi, S. M., Berra, F., Billi, A., Boschi, C., Caracausi, A., Carminati, E., Castorina, F., Doglioni, C., Italiano, F., Rizzo, A. L., Uysal, I. T., and Zhao, J.: Comb-veins as a marker for crustal-scale fluid circulation: insight from geochronological (U-Th dating), geochemical, and field to microstructural analyses along the seismogenic Val Roveto Fault (central Apennines, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-660, https://doi.org/10.5194/egusphere-egu2020-660, 2020.

EGU2020-970 | Displays | TS3.5

Deciphering orogenic and post-orogenic fluid-assisted deformations by coupling structural, mineralogical, geochemical, and geochronological investigation methods. An example from Zannone Island, Italy

Manuel Curzi, Andrea Billi, Eugenio Carminati, Richard Albert, Luca Aldega, Stefano Bernasconi, Chiara Boschi, Antonio Caracausi, Luca Cardello, Alessia Conti, Kristian Drivenes, Stefania Franchini, Axel Gerdes, Andrea Luca Rizzo, Federico Rossetti, Luca Smeraglia, Bjørn Eske Sørensen, Roelant Van der Lelij, Gianluca Vignaroli, and Giulio Viola

Zannone is a very important island, located in the Neogene-Quaternary extensional domain of the Tyrrhenian back-arc basin, as it is the unique spot where the Paleozoic (?) crystalline basement is hypotesized to be exposed in central Apennines. The exposure of such hypothetical basement in the Zannone Island is very problematic as it implies very large normal displacements (> 3 km) along surrounding faults. No such displacements are known along faults close to Zannone Island.

In this work, we study the hypothetical Paleozoic crystalline basement exposed in the Zannone Island with the main aim of understanding its geological nature and relationships with the surrounding rocks. We use a multidisciplinary approach including 1) interpretation of seismic reflection profile; 2) field survey; 3) petro-textural observations; 4) microthermometry on fluid inclusions; 5) geochemical analyses of stable and clumped isotopes; 6) Illite crystallinity and mineralogical analyses of clays and host rocks; 7) analyses of minor gaseous species (He, Ne, and Ar concentrations and isotope ratios) in fluid inclusions; 8) U-Pb geochronology of syn-tectonic calcite, and 9) K-Ar dating of syn-kinematic clay minerals.

Our results show that the hypothetical Paleozoic (?) crystalline basement exposed on the Zannone Island is, instead, represented by siliciclastic rocks of very low metamorphic grade. This is testified by the quartzarenites nature of the rocks, the presence of chloritoid and by the observed incipient foliation marked by fine-grained white micas and disposed parallel to the bedding. The contact between such siliciclastic rocks and the overlapping Triassic Dolostone is represented by a low-angle thrust cut by sets of high-angle normal faults with associated calcite mineralizations. K-Ar dating on clay minerals in fault gouge reveals that at least one event of authigenesis (i.e. fluid-assisted tectonic activity) occurred in Zannone Island <22 Ma ago. U-Pb dating on sin-tectonic calcite mineralizations allowed to constrain the compressional deformation and subsequent normal faulting in the study area at around 7 Ma. This result is consistent with the 1) described emplacement of imbricate thrust sheets onshore close to Zannone Island and 2) syn-tectonic sediments-filling basins observed by seismic reflection studies. Microthermometry on fluid inclusions and stable isotopes analyses on syn-tectonic mineralizations highlighted the involvement of two different fluids during tectonic processes. One characterized by low salinity (as NaCl equivalent; i.e. meteoric-derived fluids) and one by high salinity (as NaCl equivalent; i.e. deep crustal-derived fluids). Microthermometry on fluid inclusions allowed to constrain a wide range of P-T entrapment conditions. For this reason, we highlighted a transition from lithostatic toward hydrostatic pressure during precipitation of syn-tectonic mineralizations.

How to cite: Curzi, M., Billi, A., Carminati, E., Albert, R., Aldega, L., Bernasconi, S., Boschi, C., Caracausi, A., Cardello, L., Conti, A., Drivenes, K., Franchini, S., Gerdes, A., Rizzo, A. L., Rossetti, F., Smeraglia, L., Sørensen, B. E., Van der Lelij, R., Vignaroli, G., and Viola, G.: Deciphering orogenic and post-orogenic fluid-assisted deformations by coupling structural, mineralogical, geochemical, and geochronological investigation methods. An example from Zannone Island, Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-970, https://doi.org/10.5194/egusphere-egu2020-970, 2020.

EGU2020-2866 | Displays | TS3.5

Cyclicity of paleofluid infiltration in the active Mount Morrone Fault System (central Apennines, Italy) constrained by carbonate concretions

Gianluca Vignaroli, Valentina Argante, Federico Rossetti, Lorenzo Petracchini, Michele Soligo, Mauro Brilli, Tsai-Luen Yu, and Chuan-Chou Shen

Active faults are characterized by creation/destruction of secondary (tectonic) permeability in response to a continuous interplay between deformation and fluid pressure fluctuations during the seismic cycle. The study of the paleofluid circulation in fault rocks can thus provide insights into the hydraulic and mechanical behavior of the seismogenic crust.

This work integrates data from field geology with geochemical and geochronological constraints to understand the spatio-temporal evolution of the paleofluid circulation in the Mount Morrone Fault System (MMFS), a ~25 km-long tectonic structure activated during the extensional Quaternary phase of the central Apennines (Italy). The MMFS cuts through a Mesozoic-Cenozoic multilayer carbonate succession for a cumulative stratigraphic offset of about 2 km. Fluvio-lacustrine and slope deposits (Middle-Late Pleistocene) occur at its hanging wall and are variably involved by faulting. The MMFS is currently classified as a silent seismic fault, with an estimated Mw= 6.5-7.0 potential magnitude and recurrence time at 2.4 ka for an expected earthquake.

The structural survey focused on the western strand of the MMFS cutting through a succession of Sinemurian dolomitized limestones. A composite network of NW-SE-striking, SW-dipping fault surfaces defines the structural architecture of the MMFS in the study outcrops, with high angle (dip > 55°) faults that systematically cut and displace medium-to-low angle (dip in the order of 30°-50°) faults. Both fault systems are characterized by dominant dip-slip movement and normal kinematics. Lenses of cm-thick cataclasites often occur along the slip surfaces. Cataclasites are made by sub-angular to sub-rounded carbonate clasts (up to 1 cm-wide) dispersed in a very fine-grained matrix. Layers of cm-thick carbonate concretions occur associated with the cataclasites, testifying for pulses of fluid discharge along the fault surface during the tectonic activity of the MMFS. Microstructural investigations document that: (i) carbonate concretions show an internal texture of fibrous vein having fiber growth direction roughly perpendicular to the vein wall, and (ii) the basal portions of the carbonate concretions are fractured and incorporated within the underlying cataclasites through the deposition of a new calcite cement. The geochemical (δ13C and δ18O stable isotope) analyses on selected samples attest for a progressive chemical shift of the mineralizing fluid from marine (in host rock and in cataclasites) to meteoric waters (in carbonate concretions). The U-Th dating of carbonate concretions and calcite slickenfibers constrains the fault-controlled fluid circulation to the Middle Pleistocene, with ages spanning from 270 to 180 ka. Significantly, the dating of carbonate concretions documents a 12-kyr cyclicity of the fluid infiltration in the fault zone.

The development of the secondary permeability in the MMFS thus corresponds to a combination of faulting and tensile fracturing, in response to a cyclic increasing of the shear stress and the pore pressure during the seismic cycle. The polyphasic deformation system of the MMFS constitutes a record of fault activation and reactivation episodes that could contribute to define the recurrence model of seismic events on regional-scale faults.

How to cite: Vignaroli, G., Argante, V., Rossetti, F., Petracchini, L., Soligo, M., Brilli, M., Yu, T.-L., and Shen, C.-C.: Cyclicity of paleofluid infiltration in the active Mount Morrone Fault System (central Apennines, Italy) constrained by carbonate concretions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2866, https://doi.org/10.5194/egusphere-egu2020-2866, 2020.

EGU2020-20149 | Displays | TS3.5

Isotope analysis of vein-hosted fluid inclusions: A case study on fracture-controlled fluid flow in the Albanian foreland fold-and-thrust belt

Stefan de Graaf, Casimir Nooitgedacht, Hubert Vonhof, Jeroen van der Lubbe, and John Reijmer

Vein-hosted fluid inclusions may represent remnants of subsurface paleo-fluids and therefore provide a valuable record of fracture-controlled fluid flow. Isotope data (δ2H and δ18O) of fluid inclusions are particularly useful for studying the provenance and type of paleo-fluids circulating in the subsurface. Although isotopic analysis of sub-microliter amounts of fluid inclusion water is not straightforward, major steps forward have been made over the past decade through the development of continuous-flow set-ups. These techniques make use of mechanical crushing at a relatively low-temperature (110˚C) and allow for on-line analysis of both δ2H and δ18O ratios of bulk fluid inclusion water. However, continuous-flow techniques have mostly been used in speleothem research, and have not yet found a widespread application on vein systems for hydrogeological reconstructions.

We used isotope data of fluid inclusions hosted in calcite vein cements to reconstruct regional fluid migration pathways in the Albanian foreland fold-and-thrust system. Tectonic forces during thrust emplacement typically instigate distinct phases of fracturing accompanied by complex fluid flow patterns. The studied calcite veins developed in a sequence of naturally fractured Cretaceous to Eocene carbonate rocks as a result of several fracturing events from the early stages of burial onward. Fluid inclusion isotope data of the veins reveal that fluids circulating in the carbonates were derived from an underlying reservoir, which consisted of a mixture of meteoric water and evolved marine fluids, probably derived from deep-seated evaporites. The meteoric fluids infiltrated in the hinterland before being driven outward into the foreland basin. The fluid inclusion isotope data furthermore show that meteoric water becomes increasingly dominant in the system through time as migration pathways shortened and marine formation fluids were progressively flushed out.

The diagenetic stability of fluid inclusions is of key interest in the study of their isotope ratios. Recrystallization, secondary fluid infiltration and isotope exchange processes could potentially drive alterations of fluid inclusion isotope signatures after entrapment. In this case, however, isotope signatures of fluid inclusions seem to have remained largely unaltered, despite the Cretaceous to Tertiary age of the vein system. Oxygen isotope exchange processes between the fluid inclusion water and host mineral could have been inhibited at the relatively low temperatures of vein formation (i.e. <80˚C). Although more research into the diagenetic stability of fluid inclusion isotope ratios is required, the fluid inclusion isotope record has potential as a powerful tool for fluid provenancing in subsurface fluid flow systems.

How to cite: de Graaf, S., Nooitgedacht, C., Vonhof, H., van der Lubbe, J., and Reijmer, J.: Isotope analysis of vein-hosted fluid inclusions: A case study on fracture-controlled fluid flow in the Albanian foreland fold-and-thrust belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20149, https://doi.org/10.5194/egusphere-egu2020-20149, 2020.

EGU2020-22180 | Displays | TS3.5

Influence of fluid-assisted micro-crack healing on fault permeability structure

Alissar Yehya and James R. Rice

Micro-cracks in fault damage zones can heal through diffusive mass transfer driven by differences in chemical potential, with rates controlled by temperature and pressure. The diffusion of pore fluid pressure in fault damage zones accelerates mass diffusion and assists healing processes. In this work, we use fluid flow model coupled with heat transfer and crack healing to investigate, through different scenarios, the role of subsurface warm fluid migration, along damage zones, in enhancing healing and re-shaping the fault permeability structure. Our results show that if the flow communication exists between the bed and only one side of the damage zone and not the other side, it leads to an asymmetric permeability structure caused by healing in the side circulated by fluids (ex: Rapolano geothermal area, Italy). Another scenario is when the damage zone adjacent to the fault core is not the interval with the highest permeability, as conventionally expected, which is the case of the Alpine Fault, New Zealand. As shown by our simulations, this can be due to healing by diffusive mass transfer, favored by the localized high geothermal gradients and the upward fluid migration through the fault relay structure.

How to cite: Yehya, A. and Rice, J. R.: Influence of fluid-assisted micro-crack healing on fault permeability structure, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22180, https://doi.org/10.5194/egusphere-egu2020-22180, 2020.

Detailed fluid inclusion analyses of fracture cements in tightly cemented hydrocarbon-bearing sandstones and shales reveal that natural fractures tend to form under conditions approaching maximum burial, coinciding with hydrocarbon generation, and during incipient exhumation. Fluid inclusion analyses also reveal that these fractures form under abnormal (above-hydrostatic) pore fluid pressures. While compaction disequilibrium can account for elevated pore fluid pressures that promote fracture growth during early prograde burial, hydrocarbon maturation is likely the primary driver for fracture growth under peak burial conditions. Tectonic processes and thermal stresses provide secondary drivers. Thermal contraction with exhumation and cooling of the rock mass can promote fracture growth depending on the PVT properties of the fluid phase. The possible contribution of hydrocarbon generation after peak burial as a driver for fracture growth during incipient exhumation is discussed.

How to cite: Eichhubl, P.: Fracture growth during exhumation in low-permeability rock formations—the role of fluid PVT properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11638, https://doi.org/10.5194/egusphere-egu2020-11638, 2020.

EGU2020-6520 | Displays | TS3.5

Permeability contrasts of fault zones - from conceptual model to numerical simulation

Ulrich Kelka, Thomas Poulet, and Luk Peeters

Fault and fracture networks can govern fluid flow patterns in the subsurface and predicting fluid flow on a regional scale is of interest in a variety of fields like groundwater management, mining engineering, energy, and mineral resources. Especially the pore fluid pressure can have a strong impact on the strength of fault zones and might be one of the drivers for fault reactivation. Reliable simulations of the transient changes in fluid pressure need to account for the generic architecture of fault zones that comprises strong permeability contrast between the fault core and damage zone.

Particularly, the distribution and connectivity of large-scale fault zones can have a strong impact on the flow field. Yet, modelling numerically such features in their full complexity remains challenging. Often faults zones are conceptualized as forming exclusively either barriers or conduits to fluid flow. However, a generic architecture of fault zones often comprises a discrete fault core surrounded by a diffuse damage zone and conceptualizing large scale discontinuities simply as a barrier or conduit is unlikely to capture the regional scale fluid flow dynamics. It is known that if the fault zone is hosted in low-permeability strata, such as clays or crystalline rocks, a transversal flow barrier can form along the fault core whereas the fracture-rich fault damage zone represents a longitudinal conduit. In more permeable host-rocks (i.e. sandstones or carbonates) the reverse situation can occur, and the permeability distributions in the damage zones can be governed by the abundance of low-permeability deformation features. A reliable numerical model needs to account for the difference and strong contrasts in fluid flow properties of the core and the damage zone, both transversally and longitudinally, in order to make prediction about the regional fluid flow pattern.

Here, we present a numerical method that accounts for the generic fault zone architecture as lower dimensional interfaces in conforming meshes during fluid flow simulations in fault networks. With this method we aim to decipher the impact of fault zone architecture on subsurface flow pattern and fluid pressure evolution in fractures and faulted porous media. The method is implemented in a finite element framework for Multiphysics simulations. We demonstrate the impact of considering the more generic geological structure of individual faults on the flow field by conceptualizing discontinuities either as barriers, conduits or as a conduit-barrier system and show were these conceptualizations are applicable in natural systems. We further show that a reliable regional scale fluid flow simulation in faulted porous media needs to account for the generic fault zone architecture. The approach is finally used to evaluate the fluid flow response of statistically parameterised faulted media, in order to investigate the impact and sensitivity of each variable parameter.

How to cite: Kelka, U., Poulet, T., and Peeters, L.: Permeability contrasts of fault zones - from conceptual model to numerical simulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6520, https://doi.org/10.5194/egusphere-egu2020-6520, 2020.

EGU2020-22014 | Displays | TS3.5

Upscaled modelling of natural fracturing and leakage due to high overpressures

Ane Elisabet Lothe, Arnt Grøver, and Ole-Andre Roli

In sedimentary basins highly overpressured formations and zones are observed worldwide. The high overpressures have been generated over millions of years due to sedimentation amount and rate, compaction, lateral fluid flow, diagenesis and other processes. The lateral fluid flow is often controlled by the fault pattern and sealing properties of the faults in the area, thus defining what is often termed pressure compartments. When high overpressures builds-up over time in such compartment, eventually natural hydraulic faulting and fracturing will start to develop to cease and relief the overpressure.

In this work we have aimed to simulate fracture generation, how they in an upscaled approach evolve and progress upwards, and how this will influence the water fluid flow and the pore pressure distribution. We use an in-house software (PressureAhead) to simulate three-dimensional water fluid pressure generation and dissipation over millions of years. Interpreted seismic horizons for the whole stratigraphy are back-stripped (decompaction) in order to provide the basin burial history as input to the forward simulator. Uplift and erosion events are included. For each timestep, the effect of pressure generation and dissipation is calculated. For the fault and failure development, the combined Griffith-Coulomb failure criteria are implemented to calculate when failure occurs, secondly, when the fracture has been formed and the cohesion is lost, the frictional sliding criteria is used. The fractures are in this approach working as a pressure valve, that will stay open as long as the pressure support is large enough. Compared to previous approach, the failure criteria is now evaluated for the whole stratigraphic column in 3D Using this approach, the effect of natural fracturing taking place in different parts of the basin at different geological events can be modelled.

The new simulation approach will be presented for a dataset from the deeper part of the Viking Graben, North Sea offshore Norway. The study area covers an NNE-SSW trending graben defined by large faults. Seventeen seismic horizons (resolution 50x50 m) from Middle Jurassic to seafloor have been used to set up the model. The modelling is carried out over the 150 My, with time steps of 250 000 years. Examples of varying key input parameters will be shown. Strength and weakness with such an upscaled modelling framework will be discussed.

How to cite: Lothe, A. E., Grøver, A., and Roli, O.-A.: Upscaled modelling of natural fracturing and leakage due to high overpressures , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22014, https://doi.org/10.5194/egusphere-egu2020-22014, 2020.

EGU2020-8644 | Displays | TS3.5

Porosity channeling and fracturing in fluid over-pressure zones

Daniel Koehn, Sandra Piazolo, Till Sachau, and Renaud Toussaint

It is important to understand the effects of fluid over-pressure in rocks because gradients in over-pressure can lead to failure of rocks and expulsion of fluids. Examples are hydro-fracturing in engineering as well as fluid generation during hydrocarbon maturation, metamorphic reactions or over-pressure below seals in sedimentary basins. In order to have an understanding of the complexity of effective stress fields, fracture, failure and fluid drainage the process was studied with a dynamic hydro-mechanical numerical model. The evolution of fluid pressure build up, fracturing and the dynamic interaction between solid and fluid is modeled. Three scenarios are studied: fluid pressure build up in a sedimentary basin, in a confined zone and in a horizontal layer that is offset by a fault. Results indicate that the geometry of the fluid-overpressure zone has a first order control on the patterns including porosity evolution and fracturing. If the over-pressure develops below a seal in a sedimentary basin, the effective differential and mean stress approach zero and the horizontal and vertical effective stresses flip in orientation leading to horizontal hydro-factures or breccia zones. If the over-pressure zone is confined vertically as well, the standard effective stress model develops with the effective mean stress decreasing while the differential stress remains mainly constant. This leads to semi-vertically aligned extensional and conjugate shear failure at much lower over-pressures than in the sedimentary basin. A perfectly aligned horizontal layer that increases in fluid pressure internally leads to a horizontal hydro-fracture within the layer. A faulted layer develops complex multi-directional failure with the fault itself being a location of early fracturing followed by brecciation of the layer itself. All simulations undergo a phase transition in porosity evolution with an initially random porosity reducing its symmetry and forming a static porosity wave with an internal dilation zone and the development of dynamic porosity channels within this zone that drain the over-pressure. Our results show that patterns of fractures, hence fluid release, that form due to high fluid overpressures can only be successfully predicted if the geometry of the geological system is known, including the fluid overpressure source and the position of seals and faults that offset source layers and seals.

How to cite: Koehn, D., Piazolo, S., Sachau, T., and Toussaint, R.: Porosity channeling and fracturing in fluid over-pressure zones , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8644, https://doi.org/10.5194/egusphere-egu2020-8644, 2020.

EGU2020-5538 | Displays | TS3.5

Permeability tensors of three-dimensional numerically grown geomechanical discrete fracture networks

Adriana Paluszny, Robin N Thomas, and Robert W Zimmerman

The mechanics of fracture propagation and interaction influence the growth and permeability of developing fracture networks. A set of initial flaws grows quasi-statically in response to a remote tensile stress. A finite element, stress intensity factor-based approach grows these flaws into non-planar three-dimensional discrete fracture networks (GDFNs). Their extension and growth angle is a function of local stress intensity factors along a fracture tip. Stress concentration increase when proximal fractures are aligned, and decreases when they are sub-coplanar. These interactions can result in the reactivation of fractures that were initially inactive, and the arrest of fractures that become entrapped by proximal growing fractures. Interaction can cause growth away from an intersection front between two fractures, resulting in evolving fracture patterns that become non-uniform and non-planar, forming dense networks. These GDFNs provide representations of subsurface networks that numerically model the physical process of concurrent fracture growth. Permeability tensors of the geomechanical 3D networks are computed, assuming Darcy flow. Growth influences apertures, and in turn, the hydraulic properties of the network. GDFNs provide a promising way to model subsurface fracture networks, and their related hydro-mechanical processes, where fracture mechanics is the primary influence on the geometric and hydraulic properties of the networks.

How to cite: Paluszny, A., Thomas, R. N., and Zimmerman, R. W.: Permeability tensors of three-dimensional numerically grown geomechanical discrete fracture networks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5538, https://doi.org/10.5194/egusphere-egu2020-5538, 2020.

EGU2020-4688 | Displays | TS3.5 | Highlight | TS Division Outstanding ECS Lecture

From Faults and Fluids to Mountain Belt Dynamics

Christoph von Hagke

For understanding the formation of mountain belts it is necessary to gain quantitative insights on fault and fracture mechanics on multiple scales. In particular, for addressing the role of fluids on larger processes, it is inevitable to constrain fault and fracture geometries at depth, as well as gain insights on how fluids influence fault mechanics. At least partly, the future of such analyses lies in exploiting large data sets, as well as in multi- and interdisciplinary research.

In this talk I will present results from variety of geological settings, including dilatant faults at Mid-Ocean Ridges, the Oman Mountains, the Khao Kwang fold-trust belt in Thailand, and the European Alps. I will show how multi-scale studies and the use of large data sets helps constraining fluid migration in mountain belts, fault geometries, as well as possible feedbacks between fluid flow and strain localization. Results are then applied to discuss the role of mechanical stratigraphy on structural style in foreland fold-thrust belts.

How to cite: von Hagke, C.: From Faults and Fluids to Mountain Belt Dynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4688, https://doi.org/10.5194/egusphere-egu2020-4688, 2020.

Naturally fractured reservoirs represent one of the most challenging resource in the oil and gas industry. The understanding based on centimeter scale observations is upscaled and modeled at 100-meter scale.

In this paper, we will illustrate with case study examples of conceptual fracture model elaborated using static and dynamic data, the disconnect between the scale of observation and the scale of modelling. We will also discuss the potential disconnect between the detail of fundamental, but necessary, research work in universities against the coarse resolution of the models built in the oil industry, and how we can benefit of the differences in scales and approaches.

 

The appraisal and development of fractured reservoirs offer challenges due to the variations in reservoir quality and natural fracture distribution. Typically, the presence of open, connected fractures is one of the key elements to achieve a successful development. Fracture modelling studies are carried out routinely to support both appraisal and development strategies of these fractured reservoirs.

Overall fracture modelling workflow consists first of a fracture characterization phase concentrating on the understanding of the deformation history and the evaluation of the nature, type and distribution of the fractures; secondly of a fracture modelling part where fracture properties for the dynamic simulation are generated and calibrated against dynamic data. The pillar of the studies is the creation of 3D conceptual fracture diagrams/concepts which summarize both the understanding and the uncertainty of the fracture network of interest. These conceptual diagrams rely on detailed observations at the scale of the wellbore using core and borehole image data which are on contrasting scale compare to the 10’s of meters to 100’s of meter scale of the grid cells of the dynamic models used for the production history match and forecast. These contrasting scales will be the thread of the presentation.

How to cite: Richard, P. and Bazalgette, L.: Scale discrepancy paradox between observation and modelling in fractured reservoir models in oil and gas industry., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20161, https://doi.org/10.5194/egusphere-egu2020-20161, 2020.

EGU2020-20010 | Displays | TS3.5

Forecasting the propagation paths of fluid-driven fractures, particularly dikes and inclined sheets

Agust Gudmundsson, Kyriaki Drymoni, Mohsen Bazargan, and Kayode Adeoye-Akinde

It is of great importance in many fields to be able to forecast the likely propagation paths of fluid-driven factures. These include mineral veins, human-made hydraulic fractures, and dikes/inclined sheets. The physical principles that control the propagation of all fluid-driven fractures are the same. Here the focus is on dikes and inclined sheets where the selected path determines whether, where, and when a particular dike/sheet reaches the surface to erupt. Here we provide analytical and numerical models on dike/sheet paths in crustal segments (including volcanoes) that include layers of various types (lava flows, pyroclastic flows, tuff layers, soil layers, etc) as well as mechanically weak contacts and faults. The modelling results are then compared with, and tested on, actual data of two types. (a) Seismic data on the paths of dikes/sheets as well as human-made hydraulic fractures, and (b) field data on the actual propagation paths of dikes/sheets in layered and faulted rocks

The numerical results show that, particularly in stratovolcanoes, the paths are likely to be complex with common deflections along layer contacts, in agreement with field observations.  Also, some dikes/sheets may use existing faults as parts of their paths, primarily steeply dipping and recently active normal faults. The propagation path is thus not entirely in pure mode I but rather partly in a mixed mode. The energy required to propagate the dike/sheet is mainly the surface energy needed to rupture the rock, to form two new surfaces and move them apart as the fracture propagates. The energy available to drive the fracture is the stored elastic energy in the hosting crustal segment.

From its point of initiation in the magma-chamber roof, a dike/sheet can, theoretically, select any one of an infinite number of paths to follow to its point of arrest or eruption. It is shown that the eventual path selected is the one of least action, that is, the path along which the time integral of the difference between the kinetic and potential energies is an extremum (normally a minimum) relative to all other possible paths with the same endpoints. If the kinetic energy is omitted, and there are no constraints, then least action becomes the minimum potential energy, which was postulated as a basis for understanding dike propagation by Gudmundsson (1986). Here it is shown how this theoretical framework can help us make reliable forecasts of dike/sheet paths and associated volcanic eruptions.

Gudmundsson, A., 1986. Formation of dykes, feeder-dykes, and the intrusion of dykes from magma chambers. Bulletin of Volcanology, 47, 537-550.

Gudmundsson, A., 2020. Volcanotectonics: Understanding the Structure, Deformation, and Dynamics of Volcanoes. Cambridge University Press, Cambridge.

Drymoni, K., Browning, J. Gudmundsson, A., 2020. Dyke-arrest scenarios in extensional regimes: insights from field observations and numerical models, Santorini, Greece. Journal of Volcanology and Geothermal Research (in press).

 

How to cite: Gudmundsson, A., Drymoni, K., Bazargan, M., and Adeoye-Akinde, K.: Forecasting the propagation paths of fluid-driven fractures, particularly dikes and inclined sheets , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20010, https://doi.org/10.5194/egusphere-egu2020-20010, 2020.

EGU2020-12447 | Displays | TS3.5

U-Th Dating of Syntectonic Calcite Veins Reveals the Dynamic Nature of Fracture Cementation and Healing in Faults

Randolph Williams, Peter Mozley, Warren Sharp, and Laurel Goodwin

Fracture cementation is an important control on the recovery of prefailure levels of permeability and strength in faults and reservoir rock. The timescales of this process, however, are almost entirely unknown from direct analysis of the rock record. We report U‐Th dating results that quantify rates of fracture cementation in syntectonic calcite veins from the Loma Blanca fault, New Mexico, USA. Measured cementation rates vary from ~0.05 to 0.80 mm/ka and exhibit a power function correlation with minimum fracture apertures. We argue that this correlation is the result of crystal growth in a transport‐limited system, where cementation rates were proportional to rates of fluid flow in individual fractures. We argue that such transport‐limited growth necessarily leads to a heterogeneous distribution of cementation rates as fluids migrate through fracture networks of variable and changing aperture. For this reason, individual fractures are not expected to seal at monotonic rates through time but could instead experience order‐of‐magnitude increases or decreases in sealing rate depending on their geometric properties (e.g., aperture, length/width, and orientation) and position within a continually evolving fracture network. We further argue that such transport‐limited, flux‐dependent cementation necessarily leads to a heterogeneous distribution of permeability and strength recovery as fluids migrate through fault‐zone fracture networks. These heterogeneities may influence rupture propagations pathways and the continual development of fault‐zone architecture/complexity.

How to cite: Williams, R., Mozley, P., Sharp, W., and Goodwin, L.: U-Th Dating of Syntectonic Calcite Veins Reveals the Dynamic Nature of Fracture Cementation and Healing in Faults, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12447, https://doi.org/10.5194/egusphere-egu2020-12447, 2020.

EGU2020-5387 | Displays | TS3.5

Dating faults, fractures and fluids with U-Pb calcite geochronology: Application to contrasting fracture and fluid-flow modes of the Cleveland Basin

Jack Lee, Nick Roberts, Robert Holdworth, Andrew Aplin, Richard Haslam, and Cedric John

Fractures and faults act as important permeable pathways in the subsurface and are of great significance to the petroleum industry and for future Carbon Capture and Storage. Fractures allow fluid-flow through impermeable units such as mudrocks and can affect how these lithologies act as top seals, source rocks and/or unconventional reservoirs. Natural fractures within mudrocks can strongly influence top seal integrity, primary migration and the performance of unconventional (e.g. shale gas) reservoirs. This project studies the exhumed, early-mature, Jurassic mudrock succession of the Cleveland Basin, NE England, combining structural geology with isotope geochemistry and geochronology. The primary objective is to provide an absolute chronology of faulting and fracturing through novel U-Pb geochronology of fracture-fill calcite. The abundance of well-exposed, natural fractures with different orientations and failure modes provides an opportunity to investigate the properties of these fractures, and provide a basin-wide temporal and spatial framework of evolving deformation. The second objective is to use trace element, stable isotope, and clumped isotope analyses, to constrain fluid composition and temperature. In combination, these objectives will provide an integrated understanding of fracturing, faulting and fluid migration during burial and exhumation of a sedimentary basin.

Current fracture-fill dates from U-Pb geochronology provide intriguing insights into the history of the Cleveland Basin. We have identified and dated three phases of deformation and associated fluid-flow that have contrasting kinematics and fluid-flow regimes. The E-W trending Flamborough Head Fault Zone (FHFZ) bounds the basin to the south, and calcite preserved in one of the major extensional faults provides ages of 64-56 Ma. Calcite from N-S to NNW-SSE trending normal faults and associated fractures in the north of the Cleveland Basin provide ages of 44-25 Ma, revealing a previously unknown phase of Cenozoic faulting, which we speculatively relate to salt-related deformation. Structural and petrographic information suggest that the E-W and N-S trending faults have contrasting fracture-fluid-flow systems. Large (up to 30 cm), chalk hosted, vuggy calcite cements with geopetal sediment-fills in the E-W fault zone suggest it acted as an open fluid conduit with voluminous fluid-flow, linking the shallow sub-surface with deeper levels of the stratigraphy. In contrast, typically thin (<5 mm) vein fills with varying crack-seal-slip type textures in the N-S mudstone-hosted fractures of the Cleveland Basin provide evidence of episodic slip of variable displacement (44-40 Ma); these fracture openings may partly be controlled by pore fluid pressures and pre-date fault movement along the regional Peak Fault and smaller scales N-S faults (40-25 Ma) which are characterised by damage zone calcite mineralisation and extensional jog structures. Initial stable isotopic results are giving indications of fluid temperatures and sourcing which will be built on further by clumped isotope and fluid inclusions work.

How to cite: Lee, J., Roberts, N., Holdworth, R., Aplin, A., Haslam, R., and John, C.: Dating faults, fractures and fluids with U-Pb calcite geochronology: Application to contrasting fracture and fluid-flow modes of the Cleveland Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5387, https://doi.org/10.5194/egusphere-egu2020-5387, 2020.

EGU2020-2192 | Displays | TS3.5

Full paleostress tensor determination: case of the Panasqueira Mine, Portugal.

Christophe Pascal, Luís Jaques, and Atsushi Yamaji

The quantification of tectonic forces or, alternatively, stresses represents a significant step towards the understanding of the natural processes governing plate tectonics and deformation at all scales. However, paleostress reconstructions based on the observation and measurement of natural fractures are traditionally limited to the determination of four out of the six parameters of the stress tensor. In the present study, we attempt to reconstruct full paleostress tensors by extending the methodologies advanced by previous authors. We selected Panasqueira Mine, Central Portugal, as natural laboratory, and focused on the measurement of sub-horizontal quartz veins, which are favorably exposed in three dimensions in the underground galleries of the mine. Inversion of the vein data allowed for quantifying the respective orientations of the stress axes and the shape ratio of the stress ellipsoid. In order to reconstruct an additional stress parameter, namely pressure, we extensively sampled vein material and combined fluid inclusion analyses on quartz samples with geothermometric analyses on sulphide minerals. Finally, we adjusted the radius of the obtained Mohr circle with the help of rupture laws, and obtained the six parameters of the paleostress tensor that prevailed during vein formation. Our results suggests a NW-SE reverse stress regime with a shape ratio equal to ~0.6, lithostatic pore pressures of ~300 MPa and differential stress lower than ~20 MPa.

How to cite: Pascal, C., Jaques, L., and Yamaji, A.: Full paleostress tensor determination: case of the Panasqueira Mine, Portugal., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2192, https://doi.org/10.5194/egusphere-egu2020-2192, 2020.

EGU2020-8688 | Displays | TS3.5

Fault slip envelope: A new parametric investigation tool for fault system strength and slip

Roger Soliva, Frantz Maerten, Laurent Maerten, and Jussi Mattila

The fact that inherited fault systems show strong variability in their 3D shape provides good reasons to consider the strength of the Earth’s brittle crust as variably anisotropic. In this work we quantify this strength anisotropy as a function of fault system complexity by combining 3D boundary element model, frictional slip theory and fast iterative computation method. This method allows to analyze together a very large number of scenarios of stress and fault mechanical properties variations through space and time. Using both synthetic and real fault system geometries we analyze a very large number of numerical simulations (125,000) to define for the first time macroscopic rupture envelopes for fault systems, referred to as “fault slip envelopes”. Fault slip envelopes are defined using variable friction, cohesion and stress state, and their shape is directly related to the fault system 3D geometry and the friction coefficient on fault surfaces. The obtained fault slip envelopes shows that very complex fault geometry implies low and isotropic strength of the fault system compared to geometry having limited fault orientations relative to the remote stresses, providing strong strength anisotropy. This technique is applied to the realistic geological conditions of the Olkiluoto high-level nuclear waste repository (Finland). The model results suggests that Olkiluoto fault system has a better probability to slip under the present day Andersonian thrust stress regime, than for the strike-slip and normal stress regimes expected in the future due to the probable presence of an ice sheet. This new tool allows to quantify the anisotropy of strength and probability of slip of 3D real fault networks as a function of a wide range of possible geological conditions an mechanical properties. This significantly helps to define the most conservative fault slip hazard case or to account for potential uncertainties in the input data for slip. This technique therefore applies to earthquakes hazard studies, geological storage, geothermal resources along faults and fault leaks/seals in geological reservoirs.

How to cite: Soliva, R., Maerten, F., Maerten, L., and Mattila, J.: Fault slip envelope: A new parametric investigation tool for fault system strength and slip, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8688, https://doi.org/10.5194/egusphere-egu2020-8688, 2020.

EGU2020-18032 | Displays | TS3.5

Scale dependency of segmentation along the strike of normal faults.

Vincent Roche, Tom Manzocchi, Giovanni Camanni, Conrad Childs, and Vasileios Papanikolaou

The present study provides insights on the segmented nature of normal faults as a function of scale, and attempts to identify whether segmentation is scale invariant, scale dependent or hierarchical. This is a topic of critical importance for studies of fault development and in modelling exercises where one needs to extrapolate observations at one scale to other scales. 

Results are based on data observed in the Blue Lias in Somerset (UK), in Fumanya mine (Spain) and in a 3D seismic reflection survey in the Bonaparte Basin (Australia). Fault segmentation is investigated quantitatively based on previously established methodologies and we focus on neutral relay zones observed between fault segments along the strike of the normal faults.

We found that there are quantitative indications that the shape of the relay zones, the breaching of the relays and the degree of segmentation are all scale independent in Kilve and Fumanya. We propose that this is related to the low variability across scales in the geological parameters controlling segmentation, due to the relative homogeneity of the rock medium across the studied scales, the lack of influence of pre-existing faults or fractures, and the similar deformation histories for all studied faults. By contrast, faults show scale dependency in the Bonaparte Basin where large faults are under the influence of an oblique reactivation of pre-existing faults. Independently of the area, segmentation observed continuously through scale stresses the need to take into account resolution of observation in discussing fault development.

How to cite: Roche, V., Manzocchi, T., Camanni, G., Childs, C., and Papanikolaou, V.: Scale dependency of segmentation along the strike of normal faults., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18032, https://doi.org/10.5194/egusphere-egu2020-18032, 2020.

EGU2020-491 | Displays | TS3.5

Factors controlling fracture distribution within a carbonate-hosted relay ramp: insights from the Tre Monti fault (Central Apennines)

Marco Mercuri, Eugenio Carminati, Maria Chiara Tartarello, Marco Brandano, Paolo Mazzanti, Alessandro Brunetti, Ken J. W. McCaffrey, and Cristiano Collettini

Fractures constitute the main pathway for fluids in fault damage zones hosted in low-porosity rocks. Understanding the factors controlling fracture distribution is hence fundamental to better assess fluids circulation in fault damage zones, with evident implications for fault mechanics, hydrogeology and hydrocarbon exploration. Being usually characterized by a strong damage and structural complexity, this is of particularly importance for relay zones.

We integrated classical and modern structural geology techniques to investigate the factors controlling fracture distribution within a portion of a relay ramp damage zone pertaining to the Tre Monti fault (Central Italy). The damage zone is hosted within peritidal carbonates and located at the footwall of the relay ramp front segment. We analysed the distribution of the fracture density in the outcrop through (1) scanlines measured in the field, (2) oriented rock samples, and (3) scan-areas performed on a virtual outcrop model obtained by aerial structure-from-motion.

Our results highlight structural and lithological control on fracture distribution. Scanlines and virtual scan-areas show that fracture density increases with the distance from the front segment of the relay ramp. Moreover, all the methods highlight that supratidal and intertidal carbonate facies exhibit higher fracture density than subtidal limestones.

This apparently anomalous trend of fracture density, that increases moving away from a main fault segment, has two main explanations. (1) The damage is associated with the relay ramp development: approaching the centre of the relay ramp (i.e., moving away from the front segment) an increase in the number of subsidiary faults with their associated damage zones promotes high fracture densities. (2) The increase in fracture density can be attributed to the increasing content in supratidal and intertidal carbonate facies that are more abundant in the centre of the relay ramp.

Our results provide important suggestions for factors controlling fracture distribution and fluid flow within relay ramps hosted by shallow water limestones. We show that the trend of fracture distribution with respect to a main fault is not easily predictable in presence of a relay ramp, because it can be modulated by the subsidiary faults formation and slip during the relay ramp development. Moreover, carbonate facies play a non-negligible role in fracture distribution within fault zones hosted in shallow-water carbonates.

How to cite: Mercuri, M., Carminati, E., Tartarello, M. C., Brandano, M., Mazzanti, P., Brunetti, A., McCaffrey, K. J. W., and Collettini, C.: Factors controlling fracture distribution within a carbonate-hosted relay ramp: insights from the Tre Monti fault (Central Apennines), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-491, https://doi.org/10.5194/egusphere-egu2020-491, 2020.

Fracture systems develop at different stages of progressive deformation and are often genetically associated with folding. The frontal Main Boundary thrust (MBT) sheet is folded in a fault bend fold (Ahmed et al., 2018) and is exposed in Siang window in far eastern Arunachal Himalayan fold-thrust belt (FTB). The Buxa dolomite of the Lesser Himalayan sequence forms part of the MBT sheet and records four different sets of fractures (Basa et al., 2019). We present results from Discrete Fracture Network (DFN) model from the Buxa dolomite. Integrating fold test, cross-cutting, offset and abutting relationships, we have established that the low-angle fracture set (0°-20°) formed as a result of early layer parallel shortening.  These low-angle and the two sets of medium angle fractures (20°-60°) formed prior to the fault-bend folding. The late stage, high-angle fractures (60°-90°) developed synchronous to the fault-bend fold (Basa et al., 2019). We model the fractures formed before and during the folding event using 3D MOVE’s Fracture Modeling module to evaluate how the properties of secondary porosity and permeability, induced by fracture sets, fracture area/unit volume (P32) and overall connectivity are affected by the folding event. The input parameters of fracture orientation, intensity, length and aperture were measured from the field. For the aspect ratio, theoretical value of 1:2 (Olding, 1997; Olson, 2003) was considered.

Results from DFN analysis indicate that the average porosity increases from pre-folding (model-1) (~0.0028) to syn- to post-folding (model-2) (~0.0071). The permeability also increases from ~231 Darcy in model-1 to ~3988 Darcy in model-2. There is also a significant rise in P32 (~2.8m2/m3 to ~4.3m2/m3) value from model-1 to model-2. The late high-angle fracture set led to increase in overall connectivity, including porosity, permeability and fracture intensity. This is also corroborated from the field results that reveal high-angle fractures are more conducive to vein formation (~41%) compared to the lower angle fracture-sets (~15 %).

How to cite: Ahmed, F. and Bhattacharyya, K.: Characterization of fracture networking and connectivity: Insights from Discrete Fracture Network Model and Multi-Scale analysis from the Buxa Dolomite of the Main Boundary thrust sheet, Siang widow, Arunachal Himalayan Fold thrust belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-924, https://doi.org/10.5194/egusphere-egu2020-924, 2020.

Fractures in rocks are sensitive cursers that may enhance porosity and permeability. This is particularly true in carbonates because background fractures might be ubiquitous after embrittlement at early burial (Lavenu & Lamarche, 2018). Barren fractures at depth are susceptible to chemical reactions with underground fluids and cementation that might totally or partially reduce porosity and permeability (Laubach et al., 2019; Aubert et al., 2019). Hence, early background fractures with long lasting tectonic history and structural diagenesis, in addition to fractures neo-formed at any time during burial, tectonic inversion and folding join the game of matrix/fracture permeability and porosity modification. To predict the fractures contribution to flow in Naturally Fractured Reservoirs, it is fundamental to know the fracture sequence and geometry resulting from the geological history in folded carbonates, from the host-rock embrittlement to the present-day situation. At any step, we intent quantifying the fracture geometry and estimating their contribution to the host reservoir properties.

 

The study is performed in Upper Jurassic to Lower Cretaceous carbonates (Oxfordian, Tithonian, Berriasian) formed in the South-Provençal Basin. From deposition to present-day, the platform carbonates underwent alternating subsidence, uplift, erosion and folding. We sampled a scan-line along a horizontal path across both flanks of the Mirabeau Anticline (SE France). We measured all tectonic and stratigraphic features crossed by the line, checked their nature and position. We deciphered their chronological relationships with respect to each other and to the bed tilting. We compiled all cross-cutting relationships into a coherent sequence of deformation of pre-, syn- and post-fold structures and correlated it to burial, uplift and folding of the host rock. At each brittle stage, the fracture pattern was characterized in terms of architecture, mechanical stratigraphy and reservoir properties in order to draw a time-path in a matrix versus fracture permeability and porosity table (Nelson Reservoir types) during 150My. After embrittlement, the host-rocks bear fractures, pressure-solution, faulting, folding and erosion. If it was a reservoir, its Nelson type would have evolved from IV to III during the burial and initial brittle deformation. The tectonic inversion and onset of multiple-scale brittle structures would have increased and decreased the fracture and matrix contribution respectively and the reservoir evolved to types II and I. During the 150My history, fracture porosity and permeability depends on their geometry (veins versus tension gashes) and cementation. This results in several switches from type II to I as a function of the fracture timing, geometry, connectivity and diagenesis.

 

Aubert I. et al. (2019). Imbricated structure and hydraulic path induced by strike-slip reactivation of a normal fault in carbonates. Fifth International Conference on Fault and Top Seals, 8-12 September 2019, Palermo, Italy.

Bestani L.et al. (2016) Reconstruction of the Provence Chain evolution, southeastern France., Tectonics Vol: 35, p.1506–1525

Laubach, S. E. et al. (2019) The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials. Reviews Geophysics, 57.

Lavenu A.P.C., Lamarche J. (2018) What controls diffuse fractures in platform carbonates? Insights from Provence (France) and Apulia (Italy), JSG 108, p. 94-107

How to cite: Lamarche, J., Espurt, N., Kaci, T., Lionel, M., and P. Pascal, R.: Impact of multiphase fracture sequence in folded carbonates on the evolution of naturally fractured reservoir types. An outcrop case study from Mirabeau Anticline (SE France), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2195, https://doi.org/10.5194/egusphere-egu2020-2195, 2020.

Deformation bands and structurally-related diagenetic heterogeneities, here named Structural Diagenetic Heterogeneities (SDH), have been recognized to affect subsurface fluid flow on a range of scales and potentially promoting reservoir compartmentalization, altering flow paths, influencing flow buffering, and sealing during production. Their impact on reservoir hydraulic properties depends on many factors, such as their permeability contrast with respect to the undeformed reservoir rock, their anisotropy, thickness, geometry as well as their physical connectivity and arrangement in the subsurface. Deformation bands offsets (from a few mm to 20-40 mm) and diagenetic heterogeneities (carbonate nodules) dimensions (from 0.2 to 15 m in length; from 0.1 to 1.0 m in thickness) make them SDH below seismic resolution.

We used Ground Penetrating Radar (GPR) for detection and analysis of the assemblage “deformation bands - carbonate nodules”, in high-porosity arkose sandstone of the Northern Apennines (Italy). Petrophysical (air-permeability) and mechanical (uniaxial compressive strength) properties of host rock, deformation bands, and calcite-cement nodules were evaluated along a 30-meters thick stratigraphic log to characterize the permeability and strength variations of those features. 2D GPR surveys allowed the description of the SDH spatial organization, geometry, and continuity in the subsurface. The assemblage “deformation bands – nodules” decreases porosity and permeability and produces a strengthening effect of the rock volume, inducing a strong mechanical and petrophysical heterogeneity to the pristine rock. Different textural, petrophysical, and geomechanical properties of deformation bands, nodules, and host rock result in different GPR response (dielectric permittivity; instantaneous attributes). We show that GPR can be useful to characterize variations in petrophysical and geomechanical properties other than characterize the geometry and spatial distribution of flow baffles and small-scale flow barriers in the subsurface such as deformation bands and cement-nodules. GPR showed its worth as a high-resolution and non-invasive tool to extend outcrop information (petrophysical and geomechanical data) to 3D subsurface volumes in a way to reconstruct realistic and detailed outcrop analogues. Such potential could be critical in assisting and improving the characterization of SDH networks in the study of faulted aquifers and reservoirs in porous sandstones.

How to cite: Del Sole, L., Calafato, A., and Antonellini, M.: Combining Ground-Penetrating Radar profiles with geomechanical and petrophysical in situ measurements to characterize sub-seismic resolution structural and diagenetic heterogeneities in porous sandstones (Northern Apennines, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3118, https://doi.org/10.5194/egusphere-egu2020-3118, 2020.

Based on cores, image logs and thin sections, five sets of fractures are developed in the study area, where faults are developed. Most of fractures are open without fillings, and some fractures are filled with calcite, quartz, bitumen, pyrite and mud. Fractures are mainly controlled by lithology, mechanical stratigraphy and faults. Based on mutual crosscutting relationships of fractures, mineral filling sequence of fracture fillings, fluid inclusion and carbon-oxygen isotope analysis of calcite fillings in fractures, and quartz spintronic resonance analysis of quartz fillings in fractures, in combination with thermal and burial history, the formation sequence and time of fractures were analyzed. The results show that fractures mainly formed over three period, that is, the late Triassic, Middle to Late Jurassic, and Late Cretaceous to Paleogene. Then,combined with the paleostress evolution and fracture characteristics of the study area, the formation mechanism of fractures was discussed.

How to cite: Lyu, W., Zeng, L., Chen, S., Tang, L., and Zhang, Y.: Controlling factors and formation mechanism of fractures in the tight-gas sandstones of the Upper Triassic Xujiahe Formation, western Sichuan Basin, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4123, https://doi.org/10.5194/egusphere-egu2020-4123, 2020.

EGU2020-19401 | Displays | TS3.5

Stress-based tomography: potential, open-questions and future developments

Peter Bayer, Mohammad Javad Afshari Moein, Márk Somogyvári, Lisa Ringel, and Mohammadreza Jalali

Fracture network characterization is critical for many subsurface engineering problems in petroleum, mining, nuclear waste disposal and Enhanced Geothermal Systems (EGS). Due to limited exposure, direct measurement of fracture network properties at great depth is not possible and geophysical imaging techniques cannot resolve the fractures. Therefore, tomographic imaging techniques have been proposed and applied to reconstruct the structural discontinuities of rock mass. Stress-based tomography is a novel concept aiming at probabilistic imaging of the fracture network using the stress perturbations along deep boreholes. Currently, this approach has only been successfully tested on two-dimensional fracture networks. However, its great potential to unravel the heterogeneous structure of fractured rocks at great depth motivates further scientific effort. Here, we present the potential, open questions, current challenges and necessary future developments in order to apply this methodology to image three-dimensional multiscale structure of the rock mass in the field. Other tomographic approaches such as tracer and hydraulic tomography invert tracer breakthrough curves (BTCs) and pressure response in an observational well. We suggest a joint and comparative tomographic analysis in a Bayesian inversion framework to reconstruct Discrete Fracture Networks (DFN). This is expected to provide a new view of the strengths of each tomographic variant.

How to cite: Bayer, P., Afshari Moein, M. J., Somogyvári, M., Ringel, L., and Jalali, M.: Stress-based tomography: potential, open-questions and future developments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19401, https://doi.org/10.5194/egusphere-egu2020-19401, 2020.

EGU2020-19487 | Displays | TS3.5

High-resolution 3D seismic investigation of fine scale faults and fractures along the Vestnesa Ridge, western Svalbard Margin

Frances Cooke, Andreia Plaza-Faverola, Stefan Bünz, and Sunny Singhroha

Methane seepage on continental margins derived from shallow gas reserves and gas hydrate stores is significant globally, with initial observations most commonly derived from pockmark expressions on the seafloor. The processes driving fluid flow (liquids and gases) through upper (200m) marine sediments is not well understood. Pockmarks signify present or past seepage events, and are prominent across Vestnesa Ridge. Not all pockmarks are active (venting), suggesting that the mechanism behind fluid flow varies across the ridge.  The main structures observed in the seismic are gas chimneys, faults and fractures. Here we study the characteristics of the observed features through attribute analysis at three significant horizons (age estimates: <0.2Ma, ~0.2Ma and ~1.5Ma). We extract fault orientations through the generation of 3D fault attributes and analysis of fault detect volumes. Attribute extracts at horizons, using amplitude and edge detection methods, together with spectral decomposition and RGB blending, have revealed fine-scale (<10m) faults. High amplitude lineaments at multiple depths match fault trends and radial fracturing is observed around gas chimneys. Small faults propagate outwards from gas chimneys and feed into larger tectonically derived faults, suggesting horizontal inter-connectivity at specific depths.  Enhanced imaging of gas chimneys and small scale features, contribute to our understanding of how fluids migrate through the sediment column. We hypothesize that the connecting fractures, forming between main fault zones may suggest sediment overpressure and restricted flow through tectonically induced faults resulting in horizontal fluid transport.

How to cite: Cooke, F., Plaza-Faverola, A., Bünz, S., and Singhroha, S.: High-resolution 3D seismic investigation of fine scale faults and fractures along the Vestnesa Ridge, western Svalbard Margin , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19487, https://doi.org/10.5194/egusphere-egu2020-19487, 2020.

EGU2020-22583 | Displays | TS3.5

Quantitative fracture characterization in the damage zone of the Victoria Fault, Malta

Anna Losa, Mattia Martinelli, and Andrea Bistacchi

Fault damage zones can be preferential conduits for geofluids, depending on the secondary permeability developed with fracturing. Large-scale outcrop analogues allow a complete characterization of fracture networks, that cannot be satisfactorily imaged in the subsurface (e.g. with seismics). In this project we mapped fractures in the damage zone of the Victoria Fault, a major normal fault crosscutting Miocene shallow-water carbonates of Malta, combining field analysis and a high resolution photogrammetric Digital Outcrop Model (DOM). This allowed characterizing (i) the damage zone width, (ii) its spatial organization, (iii) geometrical parameters of the fracture network and (iv) its connectivity, and (v) the variability of these parameters in different stratigraphic units.

How to cite: Losa, A., Martinelli, M., and Bistacchi, A.: Quantitative fracture characterization in the damage zone of the Victoria Fault, Malta, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22583, https://doi.org/10.5194/egusphere-egu2020-22583, 2020.

EGU2020-3360 | Displays | TS3.5

Permeability models for carbonate fault cores

Fabrizio Agosta

The present contribution focuses on carbonates fault cores exposed in central and southern Italy, which crosscut Mesozoic limestones and dolostones, pertain to 10’s of m- to 100’s of m-throw extensional fault zones, and include two main domains named as inner and outer fault cores, respectively. The inner fault cores are made up of main slip surfaces (MSS), matrix-supported cataclasites, and fault breccia. Cement-supported cataclasites, if present in the limestone-hosted fault cores, localize around the MSS. The outer fault cores mainly include grain-supported cataclasites, subsidiary slip surfaces, and lithons of fragmented host rocks. In order to assess the fluid flow properties of the carbonate fault cores, the results of microstructural, petrophysical, and ultrasonic studies are first presented, and then discussed in terms of pore type, geometry, textural anisotropy, and poro-perm relationships. Overall, the documented pore distribution is mainly function of both deformation micro-mechanisms and diagenetic processes, which took place in the carbonate fault cores during faulting and fault rock exhumation from depth. In the limestone-hosted fault cores, the experimental results show that the cross-fault fluid flow properties are affected by the the irregular geometry of the cement fronts. These fronts, which depart from the MSS, are due to calcite precipitation in vadose environments from meteoric-derived fault fluids. At depths of about 1 km, these fluids merge with the local freshwater aquifers, and cement the whole fault cores. Overall, these fault cores include a stiff pore networks, and are thought to behave like a granular medium. There, it is proposed that the cross-fault permeability can be computed by applying the Kozeny-Carmen correlation. For any given value of effective porosity, the value of permeability is therefore proportional to the average value of the pore throat, which characterize the aperture of capillary tubes with a geometrical tortuosity of ca. 2.5. On the contrary, the dolostone-hosted fault cores include a soft pore network made up of elongated pores, and are thought to behave like an elastic cracked medium. Accordingly, it is proposed that the cross-fault permeability can be computed by following percolation theory by considering the values of dynamic elastic moduli measured during ultrasonic tests at Pc=30 MPa, and almost isotropic fracture networks. Results of this work could be helpful during appraisal and development operations of hydrocarbon reservoirs, for freshwater aquifer protection, and activities of CO2 storage in depleted carbonate reservoirs.

How to cite: Agosta, F.: Permeability models for carbonate fault cores, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3360, https://doi.org/10.5194/egusphere-egu2020-3360, 2020.

Quantification of the geometry, distribution, and dimension of fracture networks is key to fully understand the petrophysical properties of outcrop-to-reservoir scales rock volumes. On these regards, Discrete Fracture Network (DFN) modeling is a very useful tool to compute the values of fracture porosity and equivalent permeability of geo-cellular volumes populated with stochastic or deterministic fracture networks. Independently of their size and cell dimensions, the single geocelullar volumes are populated by inputting the following parameters for each fracture set: (i) length; (ii) aspect ratio; (iii) mechanical and hydraulic apertures; (iv) fracture intensity, and (v) attitude. A sensitivity analysis is always carried out in order to test the seeding procedure of the employed software, and to check the validity of the fracture aperture values employed as input data. The latter values, in fact, are the most critical to assess from outcrop and laboratory analyses. The present contribution focuses on the results of recent works performed on the fractured limestone rocks of the Apulian Platform, which are widely exposed along the Italian peninsula. Outcrops are first introduced in order to define the fracture stratigraphy and fault architecture of the Meso-Cenozoic limestone rocks. Then, the criteria behind the construction of DFN models are illustrated. Methods employed for the build of individual fracture units and single fault damage zone domains are illustrated. Finally, the computed values of fracture porosity and equivalent horizontal permeability obtained for multiple DFN models are presented. Discussion of the data focuses on the fluid accumulation and migration properties of the fractured limestone rocks by considering their amount of exhumation experienced during Plio-Quaternary times. Results of DFN modeling could be helpful to optimize the appraisal and development operations of hydrocarbon reservoirs, and minimize the pollution of freshwater aquifer. In fact, the Apulian carbonates host in the underground significant amounts of freshwater of the Mediterranean Region, and the largest oil and gas reserves of continental Europe. Furthermore, the results could shed new lights into the role exerted by faults and fractures on subsurface CO2 storage in depleted carbonate reservoirs, a practice that envisioned to decrease the greenhouse gas concentration in the atmosphere in the next future.

How to cite: Agosta, F.: Fracture stratigraphy, fault architecture and DFN modeling of both diffuse and localized fracture networks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3370, https://doi.org/10.5194/egusphere-egu2020-3370, 2020.

EGU2020-4902 | Displays | TS3.5

Linking direct and continuum fluid flow models for fractured media: The intersection problem

Maximilian O. Kottwitz, Anton A. Popov, Steffen Abe, and Boris J. P. Kaus

Finding an adequate bridge between direct and continuum modeling approaches has been the fundamental issue of upscaling fluid flow in rock masses. Typically, numerical simulations of direct fluid flow (e.g. Stokes or Lattice-Boltzmann) in fractured or porous media serve as small-scale building blocks for larger-scale continuum flow simulations (e.g. Darcy). For fractured rock masses, the discrete-fracture-network (DFN) modeling approach is often used as an initial step to upscale flow properties by parameterizing the permeability of each fracture with its hydraulic aperture and solving steady-state flow equations within the fracture system. However, numerical simulations of Stokes flow in small fracture networks (FN) indicate that, depending on the orientation of the applied pressure gradient, fluid flow tends to localize at places where fractures intersect. This effect causes discrepancies between direct and equivalent continuum flow modeling approaches, which ought to be taken into account when modeling flow at the network scale.

In this study, we compare direct flow simulations of small fracture networks to their continuum representation obtained with several techniques in order to find an upscaling approach that takes these intersection effects into account. Direct flow simulations are conducted by solving the Stokes equations in 3D using our open-source finite-difference software LaMEM. Continuum flow simulations are realized with a newly developed parallel finite-element code, which solves fully anisotropic 3D Darcy flow with specific permeability tensors for each voxel. The direct flow simulations serve as benchmarks to optimize the continuum flow models by comparing resulting permeabilities. We tested two different schemes to generate the equivalent continuum representation: 

(1) Fully resolved isotropic permeability discretizations (fracture permeability is obtained from a refined cubic law) where voxel sizes are a fraction of the minimal hydraulic aperture of the FN or

(2) coarse anisotropic permeability discretizations (permeability tensors are rotated according to fracture orientation) with voxel sizes larger than the minimal hydraulic aperture of the FN.

We then assess different scenarios to incorporate the intersection effects by adding, averaging and/or multiplying the permeabilities of the intersecting fractures within intersection voxels. Preliminary results for scheme 1 suggest that a simple addition of both intersecting fracture permeabilities delivers the best fit to the results of the direct flow simulations, if the voxel size is about 68% of the minimal hydraulic aperture. Scheme 2 systematically underestimates the direct flow permeabilities by about 26%.

How to cite: Kottwitz, M. O., Popov, A. A., Abe, S., and Kaus, B. J. P.: Linking direct and continuum fluid flow models for fractured media: The intersection problem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4902, https://doi.org/10.5194/egusphere-egu2020-4902, 2020.

EGU2020-5677 | Displays | TS3.5

Modeling fluid flow through complex fracture network in geological media by using hierarchical hydraulic properties

Kyung Won Chang, Gungor Beskardes, and Chester Weiss

Hydraulic stimulation is the process of initiating fractures in a target reservoir for subsurface energy resource management with applications in unconventional oil/gas and enhanced geothermal systems. The fracture characteristics (i.e., number, size and orientation with respect to the wellbore) determines the modified permeability field of the host rock and thus, numerical simulations of flow in fractured media are essential for estimating the anticipated change in reservoir productivity. However, numerical modeling of fluid flow in highly fractured media is challenging due to the explosive computational cost imposed by the explicit discretization of fractures at multiple length scales. A common strategy for mitigating this extreme cost is to crudely simplify the geometry of fracture network, thereby neglecting the important contributions made by all elements of the complex fracture system.

The proposed “Hierarchical Finite Element Method” (Hi-FEM; Weiss, Geophysics, 2017) reduces the comparatively insignificant dimensions of planar- and curvilinear-like features by translating them into integrated hydraulic conductivities, thus enabling cost-effective simulations with requisite solutions at material discontinuities without defining ad-hoc, heuristic, or empirically-estimated boundary conditions between fractures and the surrounding formation. By representing geometrical and geostatistical features of a given fracture network through the Hi-FEM computational framework, geometrically- and geomechanically-dependent fluid flow properly can now be modeled economically both within fractures as well as the surrounding medium, with a natural “physics-informed” coupling between the two.

SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.

How to cite: Chang, K. W., Beskardes, G., and Weiss, C.: Modeling fluid flow through complex fracture network in geological media by using hierarchical hydraulic properties , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5677, https://doi.org/10.5194/egusphere-egu2020-5677, 2020.

EGU2020-6577 | Displays | TS3.5

Computational framework for discontinuity network characterization

Thomas Poulet, Ulrich Kelka, Stefan Westerlund, and Luk Peeters

The topological and geometrical description of fault and fracture networks is an essential first step in any investigation of fractured or faulted media. The spatial arrangement, density, connectivity, and geometry of the discontinuities strongly impact the physical properties of the media such as resilience and permeability. Obtaining reliable metrics for characterizing fault and fracture networks is of interest for mining engineering, reservoir characterization, groundwater management, and studies on the regional fluid flow history. During large-scale studies, we mostly rely on two-dimensional lineaments obtained through structural mapping, outcrop analysis, or remote sensing. An efficient and widely applicable framework for discontinuity network characterization should therefore be based on the analysis of the frequently available two-dimensional data sets.

Here, we present an automated framework for efficient and robust characterization of the geometric and topologic parameters of discontinuity networks. The geometry of the lineaments is characterised based on orientation, length, and sinuosity. The underlying distribution of these parameters are determined, and representative probability density functions are reported. The connection between the geometric parameters is validated, e.g. correlation between orientation and length. The spatial arrangement is determined by classical line- and window-sampling, by assessing the fractal dimension, and via graph-based topology analysis.

In addition to the statistical analysis of lineament networks, we show how the graph data structure can be utilized for further characterization by linking it to raster data such as magnetic, gravimetric, or elevation. This procedure not only yields an additional means for lineament characterization but also allows users to assess dominant pathways based, for instance, on hydraulic gradients. We demonstrate the applicability of our algorithm on synthetic data sets and real-world case studies on mapped fault and fracture networks.

We finally show how our framework can also be utilized to design detailed numerical studies on the fluid flow properties of analysed networks by conditioning mesh refinement on the type and number of intersections. In addition, due to known scaling relationships our framework can help to determine appropriate parameters for the simulations. We provide examples of statistically parametrized fluid flow simulations in natural discontinuity networks and show the impact of conceptualizing the lineaments as conduits, barriers or conduit-barrier systems.

How to cite: Poulet, T., Kelka, U., Westerlund, S., and Peeters, L.: Computational framework for discontinuity network characterization , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6577, https://doi.org/10.5194/egusphere-egu2020-6577, 2020.

EGU2020-19664 | Displays | TS3.5

Predictive DFN modelling for the Upper Muschelkalk aquifer in the northernmost Swiss Molasse Basin based on vertical and horizontal borehole records

Raphael Schneeberger, Bill Lanyon, Alan Herbert, Mario Habermüller, and Herfried Madritsch

The exploration of the underground is a complex, but common task. Structural characterisation of a given sub-surface volume is of interest, for many purposes including deep geological repositories for radioactive waste, exploitation of mineral resources and geothermal energy production. One major challenge in this regard relates to the identification of sub-seismic scale faults and fractures. Discrete fracture network modelling is one possible technique for this purpose. Ideally, it is supported by borehole data. Even so, the results of stochastic models require critical verification to determine resulting uncertainties and model robustness.

We present a case-study from the village of Schlattingen, located the northernmost Molasse Basin in Switzerland, that is devoted to such a verification aimed at improvement of the DFN modelling workflows. Two boreholes were drilled at this location, a vertical cored borehole reaching into the crystalline basement and a deviated borehole running sub-horizontally for 464 m in the Schinznach Formation (Upper Muschelkalk), a potential geothermal reservoir (Frieg et al. 2015). This borehole layout allows testing the workflow for discrete fracture network modelling from a single borehole and assessment of the the added value of a deviated borehole (and vice versa).

The modelling workflow used borehole data and outcrop descriptions from a range of locations as input data. The spatial distribution of features was simulated using a Poisson distribution. The aims of the study were to investigate the workflow’s ability to account for the different orientation biases in the two boreholes and develop understanding of spatial variability in fracture orientation and frequency.

It was found that reasonable consistency in orientation and overall frequency could be achieved using the borehole orientation distributions but that the spatial variability in fracture frequency and clustering of fractures were significant. It was also necessary to critically evaluate the borehole imagery from the deviated borehole.

Current efforts are focused on better constrain the spatial fracture distribution along the deviated borehole using correlation analysis (Marett et al. 2018, Gale at al. 2018) and assess its influence on the discrete fracture network model. In addition, it is anticipated to integrate observation from nearby outcrops into the modelling strategy.

References:

Frieg, B., Grob, H., Hertrich, M., Madritsch, H., Müller, H., Vietor, T., Vogt, T., and Weber, H.P. (2015). Novel Approach for the Extrapolation of the Muschelkalk Aquifer in Switzerland for the CO2-free production of vegetables. Proceedings World Geothermal Congress, Melbourne, Australia

Gale, J. F. W., Ukar, E., & Laubach, S. E. (2018). Gaps in DFN models and how to fill them. 2nd International Discrete Fracture Network Engineering Conference, DFNE 2018.

Marrett, R., Gale, J. F. W., Gómez, L. A., & Laubach, S. E. (2018). Correlation analysis of fracture arrangement in space. Journal of Structural Geology, 108, 16–33. https://doi.org/10.1016/j.jsg.2017.06.012

How to cite: Schneeberger, R., Lanyon, B., Herbert, A., Habermüller, M., and Madritsch, H.: Predictive DFN modelling for the Upper Muschelkalk aquifer in the northernmost Swiss Molasse Basin based on vertical and horizontal borehole records , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19664, https://doi.org/10.5194/egusphere-egu2020-19664, 2020.

EGU2020-4799 | Displays | TS3.5

An alternative method to evaluate fracture network efficiency to fluid flow

Giampaolo Proietti, Valentina Romano, Alessia Conti, Maria Chiara Tartarello, and Sabina Bigi

Fracture networks exist at a wide range of scale in the earth crust and strongly influence the hydraulic behaviour of rocks, providing either pathways or barriers for fluid flow. Many oil, gas, geothermal and water supply reservoirs form in fractured rocks. The main challenge is the development of numerical models that describe adequately the fracture networks and the constitutive equations governing the physical processes in fractured reservoir. The hydraulic properties of fracture networks, derived from Discrete Fracture Network (DFN), models are commonly used to populate continuum equivalent models at reservoir scale, to reduce the computational cost and the numerical complexity. However, the efficiency of fracture networks to fluid flow is strongly tied to their connectivity and spatial distribution, that continuum models are not able to capture explicitly.In this work we used field data and synthetic models to introduce a new parameter to evaluate the efficiency of fracture networks to fluid flow, reflecting a range of variability in fracture network characteristics (e.g. P32, number of fractures, stress field). This alternative method allows to model fractured systems at reservoir scale, in a variety of geological settings, using exclusively a DFN approach.

How to cite: Proietti, G., Romano, V., Conti, A., Tartarello, M. C., and Bigi, S.: An alternative method to evaluate fracture network efficiency to fluid flow , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4799, https://doi.org/10.5194/egusphere-egu2020-4799, 2020.

Fluid transport within the Earth’s crust is predominantly controlled by planar void space like fractures and crack networks. Characterizing the time dependent hydro-mechanical properties of these rock-structural elements therefore is of paramount importance for natural geosystem understanding and geotechnical applications alike.

In this contribution we outline the protocol and results of a long term flow-through experiment of more than 4 months conducted with one single-fractured, pure quartz, and centimeter-sized Fontainebleau sandstone sample displaying very low matrix permeability.

The cylindrical sample was axially split to generate one single and rough tensile fracture and the obtained sample halves were manually offset in axial direction by 200 µm resulting in geometric mismatch of the two fracture faces yielding asperity contacts and high contact stresses upon loading.

The experiment was conducted at constant temperature (333 K) and pore fluid pressure (1 MPa), three different confining pressure levels (2, 18, and 30 MPa), and with two different fluids (deionized water and 0.3 mM SiO2 solution).

The sample was continuously flown through and the experimental procedure consisted of several successive stages during which confining pressure and fluid type were systematically varied in time intervals of several weeks each.

The experiment yielded results of continuous sample and fracture permeability measurements, the derivation of time dependent changes in hydraulic fracture aperture, a complete ICP-OES chemical analysis of Si concentrations in the effluent in one day time intervals, and a full before/after microstructural investigation of mechanical aperture, contact area ratio, as well as asperity and free fracture face morphology.

Overall, this experiment yields evidenced insights into the low-temperature dynamics of fracture permeability when, concurrently, chemical interactions between fluid and rock are taking place. Moreover, the investigations emphasize the role of pressure solution (creep) in this context as opposed to, e.g., free face dissolution or subcritical crack growth. Finally, conclusions are drawn on the rate-limiting sub-process of pressure solution with possible implications for fluid history matching in quartz-rich fractured rock masses.

How to cite: Milsch, H. and Cheng, C.: Fluid flow through rock fractures undergoing chemical interactions: A look at pressure solution from an experimental perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4712, https://doi.org/10.5194/egusphere-egu2020-4712, 2020.

EGU2020-5791 | Displays | TS3.5

Stylolites:when they became conduits for fluid pathway ?

Giuseppe Repetto, Silvana Magni, Paul Sardini, Marja Siitari Sattari, Juuso Sammaljärvi, and Arnaud Mazurier

Dissolution process is a complex phenomenon controlled by several factors such as the nature of chemical dissolution, lithology, porosity, stress orientation, environmental conditions, networks of fractures. In the karst field, however, compressional tectonic structures, as like stylolites, are never been taken into consideration for fluid flow. Stylolites are formed by a pressure solution processes that dissolves the soluble particles and leads to an enrichment in insolvable, non-carbonate particles (NCP) along their surfaces. Potentially they play an important role in fluid circulation during carbonate deformation.

Although they seem macroscopically planar, stylolites have an extremely variable shape from the meso- to microscale, with variable porosity and permeability. Because of this, they have a strong effect on regional fluid flow and the formation of reservoirs since they can act as barriers or conduits for flow.

In this research we investigated the distribution of voids and pores present both within and near the stylolites.This task is challenging because the pore sizes are small and therefore difficult to investigate. To determine which role the NCP and these structures have on fluid circulation, a comparison is herein presented between two different methods used to map the submicroscopic arrangement of pores and voids in and around stylolites. Because the investigated stylolites are relatively narrow, around 30-50 µm, we decided to use a classical micro Computed Tomography (µCT) technique supported by the 14C-PMMA impregnation method on two marble samples. These two comprelementary methods characterize the spatial distribution of connected voids in and around stylolites. µCT analysis provide adequate information on the 3D distribution of voids even if nanometer scale pores and small fractures are difficult to observe using µCT.

14C-PMMA method is however able to reveal connected porosities from mineral areas that consist of nanometer scale pores. Methylmethacrylate intrudes into nanometer scale pores, and autoradiography is used to visualize the porosities thanks to 14C beta emissions. Combining these two techniques, CT tomography and PMMA autoradiography we can visualize the 3D pore structures of the studied samples.

The results show that the micro CT technique supported by the PMMA autoradiography technique provides a useful tool to characterize the voids and pore structures of geomaterials.

The results allowed a more accurate description of the behavior of stylolites in fluid-rock interaction.

 

Key words: stylolites, permeability, microCT and 14C-PMMA impregnation

 

How to cite: Repetto, G., Magni, S., Sardini, P., Sattari, M. S., Sammaljärvi, J., and Mazurier, A.: Stylolites:when they became conduits for fluid pathway ?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5791, https://doi.org/10.5194/egusphere-egu2020-5791, 2020.

A multi-scalar, multi-methodological approach has been used to characterize the deformation mechanisms and fluid-rock interaction processes within the Belluno Thrust (BT), a regional-scale thrust cutting through Mesozoic carbonates of the eastern Southern Alps of Italy. We report the first results of a systematic analysis of the deformation mechanisms that steered strain localization within the BT fault zone during seismogenic faulting. The WSW-ENE-striking BT contributed to development of the south-verging thrust-and-fold belt of the Southern Alps during the Late Oligocene – present time interval.        We studied an outstanding exposure of the BT in the greater Feltre region, where the BT juxtaposes an Early Jurassic oolitic and micritic limestone (the Calcari Grigi Group) in the hanging wall against an Upper Jurassic-Early Cretaceous pelagic and cherty limestone (the Maiolica Fm.). The BT is defined by a 2 m-thick damage zone formed at the expense of both the hanging wall and footwall blocks. Atop the damage zone is a millimetric principal slip surface (PSS) that strikes WSW-ENE and dips 40° to the NNW. Kinematic analysis confirms the top-to-the SSE transport along the BT. Several structural facies have been identified by means of detailed structural mapping and sampled from the damage zone (from within both the hanging- and the footwall blocks) and the PSS. The outcrop structural characterization has revealed a number of physically juxtaposed, yet different, structural facies: i) cohesive, weakly foliated proto- to ultracataclasite; ii) uncohesive, clay-rich gouge; iii) foliated domains with SC-C’ structures. Relatively unstrained host rock lithons are wrapped by these variably strained domains. Petrographic and microstructural analyses show evidence of pervasive pressure solution, with abundant stylolites, slickolites and foliated domains indicating an overall ductile behaviour. Calcite veins are also common in all recognised structural facies showing mutual cross-cutting relationships with the pressure-solution seams. This structural characterization has provided the basis for detailed image analysis of selected cataclastic textures to calculate fractal parameters for the particle size distribution (Ds) and morphology (Dr) of the clasts aiming at better understanding the cataclastic flow active in the BT fault rocks. Results from a range of representative samples suggest corrosive wear to be the main cataclastic process (Ds 1,41 ÷ 2,00; Dr 1,51 ÷ 1,88). Cathodoluminescence imaging revealed multiple generations of cement and permitted discriminating the first-order chemical characteristics of parental fluids and constraining the relationships between calcite veining and cementation. Two syn-tectonic cements have been identified: i) a bright-orange cement, preferentially surrounding carbonate clasts with highly irregular margins, indicative of the involvement of carbonate-reactive fluids; ii) a dull, homogeneous brown/black cement coexisting with a siliceous matrix, mantled clasts and local sigmoidal structures. The latter is at times observed as thin injections and fluidized structures.        Our preliminary results suggest that overall deformation was accommodated by creep and low-T crystal-plastic deformation possibly during inter-seismic phases as indicated by the presence of pressure-solution seams and foliated fabrics. Transient spikes of coseismic rupturing possibly promoted by multiple batches of overpressured fluids were accompanied by significant cataclasis and brittle strain localization.

How to cite: Diamanti, R., Zuccari, C., Bonini, S., Vignaroli, G., and Viola, G.: Textural evolution and fluid-rock interaction during upper crustal, seismic deformation: Insights from the carbonate-dominated fault rock suite of the Belluno Thrust, Italian Southern Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5851, https://doi.org/10.5194/egusphere-egu2020-5851, 2020.

EGU2020-19184 | Displays | TS3.5

Long-term burial history and orogenic-scale fluid flow depicted from stable isotopes and stylolite paleopiezometry in the Umbria-Marches arcuate belt (Northern Apennines, Italy).

Nicolas Beaudoin, Aurélie Labeur, Olivier Lacombe, Guilhem Hoareau, Marta Marchegiano, Cédric John, Daniel Koehn, Andrea Billi, Adrian Boyce, Christophe Pecheyran, and Jean-Paul Callot

Faults, joints and stylolites are ubiquitous features in fold-and-thrust belts, and have been used for decades to reconstruct the past fluid flow (or plumbing system) at the scale of folded reservoirs/basins. The textural and geochemical study of the minerals filling the fractures makes it possible to unravel the history of fluid flow in an orogen, when combined with a knowledge of the burial history and/or of the paleothermal gradient. In most cases, the latter derives from the former, itself often argued over, limiting the interpretations of past fluid temperatures. Yet, recent methodological developments applied to carbonates and calcite fillings provide new perspectives for a more accurate reconstruction of the temperature, pressure and timing of the fluids that were present in the strata at the time they deformed, at every stage of fold development. Indeed, the temperature at which fluids precipitated can be obtained by Δ47CO2 clumped isotopes while the timing of calcite precipitation in veins and faults is given by U-Pb absolute dating. Also, the maximum burial depth of strata before contraction can be estimated using sedimentary stylolite paleopiezometry, hence in a way free of any consideration about the geothermal gradient.

These techniques were jointly applied at the scale of the Umbria-Marches arcuate belt (UMAR, Northen Apennines, Italy). Mesoscale faults and vein sets were measured and sampled in the Cretaceous-Eocene rocks. Focusing on those fractures that developed during Layer Parallel Shortening (LPS, i.e. oriented NE-SW to E-W) and during folding (i.e. oriented parallel to local fold axis), paleofluid sources, temperatures and timing were reconstructed using U-Pb absolute dating, Δ47CO2 clumped isotopes as well as δ18O, δ13C, and 87/86Sr signatures of calcite veins. Results show a regional divide in the fluid system, with most of the belt including the foreland recording a fluid system involving basinal brines resulting at various degree from fluid-rock interactions (FRI) between pristine marine fluids (δ18Ofluid= 0‰ SMOW) and surrounding limestones (δ18Ofluid= 10‰ SMOW). Precipitation temperatures (35°C to 75°C) appear consistent with the burial history unraveled by sedimentary stylolite roughness paleopiezometry (600 m to 1500m in the range) and estimated geothermal gradient (23°C/km, Caricchi et al., 2004). As the degree of FRI increases forelandward, we propose a lateral, strata-bound, squeegee-type migration of fluids during folding and thrusting. In the western hinterland however, the fluid system rather involves hydrothermal fluids with a higher degree of FRI, the corresponding precipitation temperatures (100°C to 130°C) of which are inconsistent with local maximum burial (1500m). As the Sr radiogenic signatures preclude any deep origin of the fluids, we propose that the fluid system prevailing in the hinterland during LPS reflects the eastward migration of formational fluids originating from the Tuscan basin, located west from the UMAR, where studied Cretaceous rocks were buried under more than 4 km of sediments during the Miocene.


Beyond being the first combination of paleofluid geochemistry and burial estimates through paleopiezometry, this fluid flow model illustrates how the large scale structures may control the fluid system at the scale of a mountain belt.

How to cite: Beaudoin, N., Labeur, A., Lacombe, O., Hoareau, G., Marchegiano, M., John, C., Koehn, D., Billi, A., Boyce, A., Pecheyran, C., and Callot, J.-P.: Long-term burial history and orogenic-scale fluid flow depicted from stable isotopes and stylolite paleopiezometry in the Umbria-Marches arcuate belt (Northern Apennines, Italy)., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19184, https://doi.org/10.5194/egusphere-egu2020-19184, 2020.

EGU2020-8850 | Displays | TS3.5

Thermochronology and REE analyses as new tools to track thermal anomaly and fluid flow along a crustal scale fault (Têt fault, French Pyrenees)

Gaétan Milesi, Monié Patrick, Philippe Münch, Roger Soliva, Sylvain Mayolle, Audrey Taillefer, Olivier Bruguier, Mathieu Bellanger, Michaël Bonno, and Céline Martin

The Têt fault is a crustal scale major fault in the eastern Pyrenees that displays about 30 hot springs along its surface trace with temperatures between 29°C and 73°C. The regional process of fluid circulation at depth has previously been highlighted by thermal numerical modelling supported by hydrochemical analyses and tectonic study. Numerical modelling suggests the presence of a strong subsurface anomaly of temperature along-fault (locally > 90°C/km), governed by topography-driven meteoric fluid upflow through the fault damage zone (advection). On the basis of this modelling, we focused our thermochronological study on 30 samples collected close and between two hot spring clusters in both the hanging wall and the footwall of the Têt fault, where the most important thermal anomaly is recorded by models. We analysed apatite using (U-Th)/He (AHe) dating combined with REE analyses on the same dated grains.

Along the fault, AHe ages are in a range of 26 to 8 Ma in the footwall and 43 and 18 Ma in the hanging wall, and only few apatite grains have been impacted by hydrothermalism near the St-Thomas hot spring cluster. By contrast, particularly young AHe ages below 6 Ma, correlated to REE depletion, are found around the Thuès-les-bains hot spring cluster. These very young ages are therefore interpreted as thermal resetting due to an important hydrothermal activity. A thermal anomaly can be mapped and appears restricted to 1 km around this cluster of hot springs, i.e. more restricted than the size of the anomaly predicted by numerical models. These results reveal that AHe dating and REE analyses can be used to highlight neo- or paleo-hydrothermal anomaly recorded by rocks along faults.

This study brings new elements to discuss the onset of the hydrothermal circulations and consequences on AHe and REE mobilisation, and suggest a strong heterogeneity of the hydrothermal flow pattern into the fault damage zone. Moreover, this study suggests that crustal scale faults adjacent to reliefs can localise narrow high hydrothermal flow and important geothermal gradient.  Besides these results, this study provides new constraints for geothermal exploration around crustal faults, as well as a discussion on the use of thermochronometers into fault damage zones. 

How to cite: Milesi, G., Patrick, M., Münch, P., Soliva, R., Mayolle, S., Taillefer, A., Bruguier, O., Bellanger, M., Bonno, M., and Martin, C.: Thermochronology and REE analyses as new tools to track thermal anomaly and fluid flow along a crustal scale fault (Têt fault, French Pyrenees), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8850, https://doi.org/10.5194/egusphere-egu2020-8850, 2020.

EGU2020-15407 | Displays | TS3.5

Tectonic control on crustal degassing in continental region: the role of rock fracturation

Dario Buttitta, Antonio Caracausi, Rocco Favara, Lauro Chiaraluce, Maurizio Gasparo Morticelli, and Attilio Sulli

Degassing of volatiles across the Earth crust towards the atmosphere is mainly controlled by long last diffusion. However, it can also be episodic. In fact, tectonic control of solid phase release of radiogenic helium (4He) due to, e.g. fracturing, may contribute to explain variance of the continental 4He degassing flux over multiple time and space scales. Rock rheology have a controlling influence on a wide range of crustal-scale processes including fluid flow, tectonic deformations and seismicity. Though faults comprise a small volume of the crust, they influence the mechanical and fluid flow properties of the crust, and are mechanisms for accommodating most of the elastic strain in the crust through a variety of slip-behaviours. Helium isotopes (3He,4He) are useful tracers for investigating many important geological processes because helium is a stable and conservative nuclide that does not take part in any chemical or biological process. Indeed, 4He released from rocks in the porefluid can be used to trace the deformation of rocks in a field of stress [Bauer 2017; Torgersen and O’Donnell 1991]. In fact, a volume of rock starts to be affected by micro-fractures from since  it is subjected to stress conditions exceeding about half its yield strength [Bauer, 2017]. Hence, the network of fractures evolves in a volume of rock progressively increase as a function of the evolution of deformation, improving the release of 4He that is trapped since its production. Consequently, 4He in natural fluids that outgas in a region of active tectonic can record the evolution of the field of stress and this volatile component could be used to trace changes in stress and deformation field. For the purpose of quantifying the amount of 4He present in the geological traps that feed the mud volcanoes of Regnano-Nirano mud volcanoes systems (Bonini et al., 2007), in the north Italy, in our study we have reconstructed the 3D geological model of the reservoirs, and proceeded to estimate the gas contained in them. Fluids emitted from these systems are thermogenic-CH4 rich, which vertically migrates towards the surface. Helium is in traces and its isotopic signature (≈0.01-0.02Ra, Ra is the 3He/4He in air) shows that 4He is mainly produced in the crust by U-Th decay. We have found that the present 4He is greater than what should be available taking into account only the steady-state crustal production. Therefore, we compared the excess helium present in the reservoirs with the contribution coming from the seismic activity of the area, which is sufficient to explain this excess. Our study highlights that an intense fracturing of a volume of rock, due to the recent seismicity below the studied area, may explain the accumulation of helium in the reservoir higher than the steady-state condition. Therefore, the effective vertical rate of fluid transport in the Earth's continental crust can be characterized by episodic events controlled by fracturing.

Bonini (2007) - JGRes Solid Earth 

Torgersen & O’Donnell (1991) - GRL, vol.18

Bauer (2017) - SAND2017-9438

How to cite: Buttitta, D., Caracausi, A., Favara, R., Chiaraluce, L., Gasparo Morticelli, M., and Sulli, A.: Tectonic control on crustal degassing in continental region: the role of rock fracturation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15407, https://doi.org/10.5194/egusphere-egu2020-15407, 2020.

Karst geothermal systems fluid flow is dominated by structurally controlled porosity, which constrains the paths of aquifer recharge and the upwell of geothermal fluids. In fold-and-thrust belt settings associated with continental collision, geothermal fields occur within basins generally interested by low-enthalpy geothermal systems. Despite that, the deeper and warmer levels of multiply stratified aquifers within the detached sedimentary covers are vertically connected to shallower depths by high-angle faults, thus making of them interesting targets for exploration.

In the frame of the geothermal exploration steered by the Geneva Canton, this work aims at determining how fracture connectivity, orientation and permeability anisotropy has implications on fluid flow within high-angle faults. Recent software development (e.g., FracPaQ) allows to quantify such interconnection providing insights into spatial variation of multiscale fault-controlled porosity in order to have dynamic feedbacks between fluid flow, permeability rise/fall. We use the inner Jura fold-and-thrust belt and the other carbonate relieves surrounding Geneva as an outcrop analogue for the deeper carbonate reservoir, lying at depth beneath the siliciclastic Molasse deposits. Hereby, we present new structural and morphostructural lineament maps and scan box analyses from outcrops that provide a multiscale analysis on fracturing across the study area. The sampling sites are representative of fractured fold hinges constituted of Mesozoic carbonates crossed by high-angle faults.

The map analysis show that the late Oligocene-early Miocene growing carbonate anticlines are shaped by a series of fore- and back-thrusts resulting in salient-and-recess curvy thrusts accommodating different amount of shortening across high-angle tear-faults. With the support of high-resolution LIDAR images, we observe that at the large scale (e.g., five kilometers), as fault zone broadens across transfer zones, the background fracture network is more intense at the salient flanks. Major faults occur as segmented, thus not providing near-surface structure capable of giving any earthquake significantly larger than the already measured ones (e.g., ML 5.3, Epagny earthquake 1996). Our preliminary results identify the W- and the NNW- striking systems strike-slip faults as the preferred patterns of fluid flow. Cross-cutting relationships vary with their position into the bended belt, thus making them suitable to be multiply reactivated during the Jura arc indentation. At the outcrop scale, the most mature fault zones associated with larger displacement are characterized by high fracture intensity and connectivity. Field evidences show that NNW- and W/NW- striking systems are vein-rich whereas N- and NE-striking systems are accompanied by open fracture sets although they may work with opposite fluid-flow vertical directivity. Mechanical and regional chronological development of the fracture network is also discussed as related to the regional fault evolution.

How to cite: Cardello, G. L. and Meyer, M.: Faults controlling geothermal fluid flow in a karst geothermal system (Western Alpine Molasse Basin, France and Switzerland), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15861, https://doi.org/10.5194/egusphere-egu2020-15861, 2020.

EGU2020-4762 | Displays | TS3.5 | Highlight

U-Pb calcite dating  and isotopic fluid signatures of extensional fault gouges affecting the Penninic Frontal Thrust : implications for exhumation of the seismogenic zone.

Antonin Bilau, Yann Rolland, Stéphane Schwartz, Thierry Dumont, Benjamin Brigaud, Cécile Gautheron, Rosella Pinna-Jamme, Pierre Deschamps, Nicolas Godeau, Abel Guihou, and Jérémie Melleton

Coupled fluid characterization and absolute dating of fracture networks may provide insights into the understanding of critical stages of evolution of a growing orogen. As a result of the collision between the European and Apulian plates, the Alps have experienced several evolutionary stages comprising continental subduction, nappe stacking, thick- to thin-skin tectonics in relation with the frontal propagation of a fold and thrust belt, and extensional reactivation of the major Penninic Frontal Thrust (PFT). Current evolution of the orogen (Tricart et al., 2001, 2007 and Sue et al., 2007) shows an ongoing extensional seismic activity along PFT while borders of the orogenic system remain in compression. The transition from compression to extension along the PFT remains unconstrained.

This study aims to constrain the time of the PFT inversion and provide a characterization of the tectonic structures through time during the formation of upper Durance normal fault system. For this, we applied several novel dating techniques (in-situ U-Pb calcite and (U-Th)/He hematite dating techniques). In addition, we determined the geochemical signature of the fluids trapped (calcite crystallization) deformation by δ13C and δ18O stable isotope analysis of calcites to constrain the fluid reservoirs, and thus the size of the involved tectonic structures. Stable isotopes show that the fluids associated with the early extensive structures bear isotopic signatures close to those of their host rocks, indicating a fluid at equilibrium and thus a close system in agreement with the small (mm-cm) size of mostly ductile structures. In a second stage, connection of veins and fractures lead to major fault formation (metric to kilometric scale structures) show isotopic signatures in agreement with ascending metamorphic fluids, featuring an open system along the PFT.

U-Pb dating on calcite was successful on several samples despite high common lead concentrations. Two fault gouge samples associated with kilometric scale faults gave ages between 3.5 Ma and 2.5 Ma. These structures are a signature of the paleoseismic activity wich occured some 2.5-3.5 Ma ago when the wall domain of PFT was few km depth. Moreover, (U-Th)/He hematite dating was used on slickensides of the same fault system. Preliminary ages of 2.5, 1.5 and 15 Ma were obtained. The 15 Ma age is interpreted as a minimum age inversion of the PFT, while other ages overlap with the U-Pb calcite ages. This multidisciplinary inverstigation in the Western Alps helps to constrain the exhumation history of the paleo-seismogenic zone related to the inversion of the PFT.

How to cite: Bilau, A., Rolland, Y., Schwartz, S., Dumont, T., Brigaud, B., Gautheron, C., Pinna-Jamme, R., Deschamps, P., Godeau, N., Guihou, A., and Melleton, J.: U-Pb calcite dating  and isotopic fluid signatures of extensional fault gouges affecting the Penninic Frontal Thrust : implications for exhumation of the seismogenic zone., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4762, https://doi.org/10.5194/egusphere-egu2020-4762, 2020.

EGU2020-7405 | Displays | TS3.5

Large-scale intraplate deformation caused the cementation of Jurassic carbonates in the eastern Paris Basin

Thomas Blaise, Benjamin Brigaud, and Cédric Carpentier

In the eastern Paris Basin, the Oxfordian (Upper Jurassic) and Bathonian to Bajocian (Middle Jurassic) carbonate platforms have been intensively cemented, despite rather low burial (< 1000 m). These limestone units are separated from each other by a 150 m thick succession of Callovian - Oxfordian clay-rich rocks. These claystones are currently under investigation by the French national radioactive waste management agency (Andra).

Most of the initial porosity in the Middle and Upper Jurassic limestones is now sealed by successive stages of calcite precipitation, which have been thoroughly characterized both petrographically and geochemically over the last fifteen years (Buschaert et al., 2004; Vincent et al., 2007; Brigaud et al., 2009; André et al., 2010; Carpentier et al., 2014). However, despite these research efforts, the timing and temperature of the fluids involved in the cementation of these carbonate rocks were still uncertain.    

Here, we present and discuss newly acquired ∆47 temperatures and U-Pb ages of calcite cements filling the intergranular pore space, as well as vugs and microfractures.

The Middle Jurassic limestones were largely cemented during the Late Jurassic / Early Cretaceous period, as shown by our new LA-ICP-MS U-Pb ages that agree with the previous Isotope Dilution-TIMS U-Pb age of 147.8 ± 3.8 Ma from Pisapia et al. (2017). This event is believed to be associated to the Bay of Biscay rifting. Our data also reveal a second and more discrete crystallization event during the Late Eocene / Oligocene period, related to the European Cenozoic Rift System (ECRIS). In both cases, calcite was precipitated from fluids in thermal disequilibrium with the host rocks. 

By contrast, the Upper Jurassic limestones were largely affected by the successive deformation events that occurred during the Late Mesozoic / Cenozoic period. New LA-ICP-MS U-Pb ages acquired in ca. 200 µm-thick fractures reveal that calcite crystallized during three successive periods corresponding to the Pyrenean compression, the ECRIS extension and, finally, during the Alpine compression. These compression phases generated late stylolitization and subsequent dissolution/recrystallization in the Upper Jurassic limestones, while such tectonic features are rare in the Middle Jurassic.

Therefore, as opposed to the more conventional « burial-induced » model, our study highlights the role of stress propagation in the cementation of carbonate rocks hundreds of kilometers away from the rifting or collisional areas.

References:

Buschaert et al., 2004. Applied Geochemistry 19, 1201 – 1215. Vincent et al., 2007. Sedimentary Geology 197, 267 – 289. Brigaud et al., 2009. Sedimentary Geology 222, 161 – 180. André et al., 2010. Tectonophysics 490, 214 – 228. Carpentier et al., 2014. Marine and Petroleum Geology 53, 44 – 70. Pisapia et al., 2017. Journal of the Geological Society of London 175, 60 – 70.

How to cite: Blaise, T., Brigaud, B., and Carpentier, C.: Large-scale intraplate deformation caused the cementation of Jurassic carbonates in the eastern Paris Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7405, https://doi.org/10.5194/egusphere-egu2020-7405, 2020.

In order to elucidate the regional variation of stress field in the eastern part of Japan after the 2011 Tohoku earthquake of M=9.3, we tried to analyze focal mechanism data of earthquakes that occurred in 2011, presented by the Japan Meteorological Agency (JMA). Although earthquakes (aftershocks) occurred largely in the offshore area along the subduction zone of the Pacific plate under the North American and Eurasian plates, focal mechanism data presented by JMA are mainly those on land. For fault tectonic analysis, the suggested focal mechanism data are classified into appropriate populations on the basis of clusters and focal depths to reduce the bias and errors of stress tensors resulting from areal stress variation and varying vertical load. According to the results, the stress types of determined stress tensors consist of reverse, wrench and normal faulting ones. As for reverse faulting stresses in which the vertical load is the minimum principal stress axis, those of NW-SE compression prevail, which may be tightly related to northwestward movement of the Pacific plate. Those of E-W compression are determined in the continental crust deeper than about 9 km around Yamagata and in the lower part of subducting oceanic crust. In the Kanagawa and Chiba areas, determined stress tensors display NNW-SSE compression as well as NW-SE and E-W compressions. The NNW-SSE compression seems to be related to the movement of the Philippine Sea plate. Stress tensors of wrench faulting type are found in the continental crust far from the subduction zone of the Pacific plate, displaying NW-SE and E-W compressions in the shallower and deeper parts of crust, respectively. The E-W compression is presumably associated with the Himalayan tectonic domain. Determined stress tensors of normal faulting type show diverse extension directions: NW-SE extension in the coastal area, parallel to the Pacific compression, and E-W or NE-SW extension elsewhere. Especially, numerous focal mechanism data showing normal faulting stresses are present in the coastal area of Fukushima and Ibaraki, from which Poisson’s ratio of shallow crust was determined to be 0.25 to 0.27 using friction lines on Mohr’s circles and focal depths (or corresponding vertical loads). Additional horizontal stress related to the northwestward motion of the Pacific plate was estimated to be 46, 122 and 286 MPa in three groups of 0 to1.5, 1.5 to 4.5 and 3.5 to 11.5 kilometers in depth, respectively.

How to cite: Choi, P.: Fault tectonic analysis of aftershocks of the 2011 Tohoku, Japan, earthquake: interaction between three different tectonic domains and approximation of stress magnitude, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4391, https://doi.org/10.5194/egusphere-egu2020-4391, 2020.

EGU2020-5438 | Displays | TS3.5

Multiphase brittle tectonic evolution of the Mid-Norwegian margin, central Norway, reconstructed by remote sensing, paleostress inversion and K-Ar fault rock dating

Giulia Tartaglia, Giulio Viola, Alberto Ceccato, Stefano Bernasconi, Roelant van der Lelij, and Thomas Scheiber

Basement terranes commonly contain complex fault networks developed during repeated episodes of brittle deformation. The Mid-Norwegian margin (from 62 to 63.8 °N) exposes a complexly fractured terrane formed mainly by Caledonian basement rocks. The margin recorded a prolonged brittle deformation history spanning the Devonian to Paleogene time interval. It is characterised by a pervasive NE-SW structural grain due to the ductile-brittle multiphase activity of the Møre-Trøndelag Fault Complex (MTFC).

In order to develop a time-constrained tectonic model of the area, we applied a multidisciplinary approach combining remote sensing, field work, paleostress inversion, microstructural analysis, mineralogical characterization, clumped isotope thermometry on carbonates and K-Ar dating of fault rocks from key representative faults. We present herein the preliminary structural-geochronological data of a still ongoing study of two regions along the Mid-Norwegian margin, the Hitra-Frøya and Kråkenes-Runde areas. These key areas represent the intersection regions between the Mid-Norwegian- and the other sectors of the margin.

The brittle structural record of the entire Mid-Norwegian margin was analysed by remote sensing of lineaments using high resolution LiDAR data followed by ground-truthing of the obtained results during field work. Three main sets of lineaments were identified: i) (E)NE-(W)SW-trending lineaments, parallel to the coastline and to the MTFC; ii) N(NW)-S(SE)-trending lineaments; iii) WNW-ESE-trending lineaments. The main sets of faults and fractures were further characterised by their fault rock association and coating. All generations of faults contain thin coatings of chlorite, variably thick epidote and quartz mineralisations and calcite veins and coatings, locally associated with acicular zeolite. Samples of calcite and related gouges were collected from different sets of faults. Carbonate clumped isotope thermometry constrains the range of temperature of calcite growth between 140 and 30 °C, indicating that calcite precipitated at different thermal conditions during a multiphase structural evolution. K-Ar data collected so far from synkinematic illite separated from fault gouges yield Jurassic-Paleogene ages.

The structural network of the margin is interpreted as reflecting a sequence of different deformation episodes. In order to resolve the orientation of the stress field for each recorded event, we applied paleostress inversion with the Win-Tensor software [1]. The preliminary results suggest that at least three tectonic stages affected the margin. A NE-SW strike-slip dominated transpression possibly reflects the late stages of the Caledonian orogenic cycle. A pure and oblique extensional (E)NE-(W)SW stage is associated with the Jurassic North Sea rifting, followed by a NW-SE Paleogene extensional reactivation observable throughout the margin.

To conclude, a new multidisciplinary database for the reconstruction of the brittle deformation history of the Mid-Norwegian margin is presented. The proposed approach aims to define the temporal and structural characterisation of each single tectonic episode. Such an approach is also pivotal toward the correlation with the deformation history of the corresponding offshore domains, as well as the comparison in time with other segments of the Norwegian margin.

[1] Delvaux, D. and Sperner, B. (2003). Stress tensor inversion from fault kinematic indicators and focal mechanism data: the TENSOR program. Geological Society, London, Special Publications, 212: 75-100

How to cite: Tartaglia, G., Viola, G., Ceccato, A., Bernasconi, S., van der Lelij, R., and Scheiber, T.: Multiphase brittle tectonic evolution of the Mid-Norwegian margin, central Norway, reconstructed by remote sensing, paleostress inversion and K-Ar fault rock dating, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5438, https://doi.org/10.5194/egusphere-egu2020-5438, 2020.

Quartz veins are produced from the crystallization of the last silica enriched hydrothermal phase from granitic magma circulating along the pre-existing fracture of rock. In many instances, these hydrothermal fluid act as a carrier for the ore minerals. The intrusion of quartz veins along fractures depends upon the tectonic stress conditions in the area. Fluid pressure (Pf) of these ascending liquids should be higher than the normal compressive stress (σn) to dilate the fractures. We are studying the quartz vein intrusion in the Cu‒Pb‒Zn mineralization belt of Ambaji, South Delhi terrane, Aravalli- Delhi mobile belt, NW India. The host rocks include mica schist, amphibolite, calc schist, talc tremolite schist, and four phases of granite intrusion (G0‒G3). The age of G0, G1, G2 and G3 granite are 960, 860, 800, and 750 Ma respectively. The rocks underwent three phases of folding (F1‒F3) and show greenschist to amphibolite facies metamorphism. The quartz vein intrusion is related to syn to post F3 folding and G3 granite magmatism. This final phase hydrothermal fluid extremely altered host rock and formed biotite-tourmaline-quartz and tremolite-actinolite-talc-chlorite greisen along the contact. The greisen host chalcopyrite-pyrite-galena-sphalerite mineralization suggesting the ore minerals were transported by the quartz vein. Vein orientation, stress condition, fluid pressure fluctuation, and fluid temperature can decide the fracture dilation and mineralization processes. Therefore, this work concentrates on the geometrical distribution of the vein orientation data. From this we deduced (i) girdle distribution pattern of vein data  (ii) σ1 = 120º/75º, σ2 = 052º/07º, σ3 = 323º/07º indicate maximum extension was NW-SE and σ1σ2 plane strikes was N52ºE, (iii) θ2 =12º, θ3 = 40º  and (iv) R'(driving pressure ratio) = 0.95, ϕ (tectonic stress ratio) = 0.90 indicates high value for R' leading to dilation of wide range of fractures. Further, the high ϕ value suggests uniaxial extension. Microscopic petrography of fluid inclusions shows three generations of inclusion like primary inclusion, secondary inclusion, and pseudosecondary inclusion. Most of the inclusion has aqueous and vapour phase and some inclusions show solid halite phase. We observed different types of trail bound of inclusion like intragranular inclusion, intergranular inclusion and transgranular inclusion, which suggest deformation and recrystallization in the rock. We are studying microthermometry analysis of fluid inclusion present in the quartz vein and trying to estimate the fluid pressure. With the help of fluid pressure, the 3D Mohr circle will be constructed and paleostress will be quantified. That will help in understanding the stress condition and mineralization in the rock.

Keywords: Veins, Fractures, Paleostress, 3D Mohr Circle, Mineralisation, Fluid Inclusion, Microthermometry

How to cite: Sharma, N. K. and Biswal, T. K.: Estimation of paleostress from pore fluid pressure of the quartz veins and its significance in the Cu-Pb-Zn mineralization (Ambaji, Aravalli-Delhi mobile belt, NW India) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7788, https://doi.org/10.5194/egusphere-egu2020-7788, 2020.

  Friction coefficients along faults control the brittle strength of the earth's upper crust, although it is difficult to estimate them especially of ancient geological faults. This study proposes to estimate the friction coefficient of faults with stress condition which activated them by the following procedure. Stress tensor inversion using fault-slip data can calculate principal stress axes and a stress ratio, which allows us to draw a normalized Mohr’s circle. Assuming that faulting occurs when the ratio of shear stress to normal stress on the fault (the slip tendency) exceeds the friction coefficient, a linear boundary of distribution of points corresponding to the observed population of faults should be found on the Mohr diagram. The slope of the boundary (friction envelope) provides the friction coefficient. Since this method has a difficulty in the graphical recognition of the linear boundary, this study automated it by considering the fluctuations of fluid pressure and differential stress. The fluctuations yield a density distribution of points representing faults on the Mohr diagram according to the friction coefficient. Then we can find the optimal value of friction coefficient so as to explain the density distribution.

  The method was applied to some examples of natural outcrop-scale faults. The first example is from the Pleistocene Kazusa Group, central Japan, which filled a forearc basin of the Sagami Trough. Stress inversion analysis showed WNW-ENE trending tensional stress with a low stress ratio. The friction coefficient was calculated to be about 0.7, which is typical value for sandstone.

  Another example is from an underplated tectonic mélange in the Cretaceous to Paleogene Shimanto accretionary complex in southwest Japan along the Nankai Trough. The stress condition was determined to be an axial compression perpendicular to the foliation of shale matrix. The friction coefficient ranges from 0.1 to 0.3, which is extremely low indicating a weak plate boundary under the accretionary wedge.

How to cite: Sato, K.: Determination of stress condition and friction coefficient from orientation distribution of outcrop-scale faults, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13864, https://doi.org/10.5194/egusphere-egu2020-13864, 2020.

The Miocene plate configuration along southwest Japan arc has been controversial as follows. According to Hall (1996), the Pacific Plate subducted dextrally against the Eurasia Plate before 15 Ma, whereas Seno and Maruyama (1984) suggested the Philippines Sea Plate subducted sinistrally. The shear sense of oblique subduction is possibly recorded as the deformation of forearc basin fill. This study performed a series of paleostress analyses by using outcrop-scale structures in the Miocene Tanabe Group to examine whether strike-slip fault stress conditions were detected or not and which sense of shear is expected along trench-parallel faults.

The study area extends roughly 10 km along the coastal area of the Shirahama Formation, the upper part of the Tanabe Group, Kii Peninsula, southwest Japan. The measured structures consist of outcrop-scale faults and veins. Fault displacements range from about several mm to 1 m. The thicknesses of veins are about several mm. 
In total, 245 faults and 245 veins were observed. They were analyzed by the stress inversion methods (Sato, 2006; Yamaji and Sato, 2011), which can detect multiple stress conditions from a dataset.

As the result, normal fault stresses were dominant in the whole Tanabe Group. The horizontal extension directions was spatially variable. It trends roughly N-S in southern area and E-W in northern area. This spatial variation is consistent with the report from the present-day forearc basin offshore the Kii Peninsula (Lin et al., 2010). In several areas, strike-slip fault stresses were detected. In these area, some map-scale faults subparallel to the ENE-WSW trending present-day trench were reported (Tanabe Research Group, 1984). Detected strike-slip fault stresses can induce dextral shear deformations on these map-scale faults, which is consistent with the dextral oblique subduction model of the Pacific Plate.

Hall, R., 1996. Reconstructing cenozoic SE Asia. Geological Society of London Special Publication, 106, 153-184.
Lin, W., M. L. Doan, J. C. Moore, L. McNeill, T. B. Byrne, T. Ito, D. Saffer, M. Conin, M. Kinoshita, Y. Sanada and others, 2010. Present-day principal horizontal stress orientations in the Kumano forearc basin of the southwest Japan subduction zone determined from IODP NanTroSEIZE drilling Site C0009. Geophysical Research Letters, 37.
Sato, K., 2006. Incorporation of incomplete fault-slip data into stress tensor inversion. Tectonophysics, 421, 319-330.
Seno, T., S. Maruyama, 1984. Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, 102, 53-84.
Tanabe Research Group, 1984. Stratigraphy and geological structure of the Tanabe Group in the Kii Peninsula, Southwest Japan. Earth Science (Chikyu Kagaku), 38, 249-263.
Yamaji, A., Sato, K., 2011. Clustering of fracture orientations using a mixed Bingham distribution and its application to paleostress analysis from dike or vein orientations. Journal of Structural Geology, 33, 1148-1157.

How to cite: Abe, N. and Sato, K.: Strike-slip fault stress detected by paleostress analysis in paleoforearc basin: an example of the Miocene Tanabe Group, Southwest Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21186, https://doi.org/10.5194/egusphere-egu2020-21186, 2020.

The in-situ stress state in the upper crust is an important issue for diverse economic purposes and scientific questions as well. Several methods have been established in the last decades to estimate the present-day orientation of the maximum compressive horizontal stress (SHmax) in the crust. It has been assumed, that the SHmax orientation on a regional scale is governed by the same forces that drive plate motion too. The SHmax orientation data, compiled by the World Stress Map (WSM) project, confirmed that for many regions in the world. Due to the increasing amount of data, it is now possible to identify several areas in the world, where stress orientation deviates from the expected orientation due to plate boundary forces (first order stress sources), or the plate wide pattern. In some of this regions a gradual rotation of the SHmax orientation is observed.

Several second and third order stress sources have been identified which may explain stress rotation in the upper crust. For example, lateral heterogeneities in the crust, such as density, petrophysical or petrothermal properties and discontinuities, like faults are identified. Apparently, there are just a few studies, that deal with the potential extend of stress rotation as a function of second and third order stress sources. For that reason, generic geomechanical numerical models have been developed, consisting of up to five different units oriented at an angle of 60 degrees to the direction of contraction. These units have variable elastic material properties, such as Young’s modulus, Poisson ratio and density. In addition, an identical model geometry allows the units to be separated by contact surfaces that allow them so slide along the faults, depending on a selected coefficient of friction.

The model results indicate, that a density contrast or the variation of the Poisson’s ratio alone sparsely rotates the horizontal stress orientation. Conversely, a contrast of the Young’s modulus allows significant stress rotations. Not only areas in the vicinity of the material transition are affected by the stress rotation, but the entire blocks. Low friction discontinuities do not change the stress pattern when viewed over a wide area in homogeneous models. This also applies to models with alternating stiff and soft blocks - the stress orientation is determined solely by the boundary conditions, not the material transitions. This indicates that material contrasts are capable of producing significant stress rotation for larger areas in the crust. Active faults that separates such material contrasts have the opposite effect, they compensate for stress rotations.

How to cite: Reiter, K.: Impact of elastic material properties and discontinuities on the stress orientation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14540, https://doi.org/10.5194/egusphere-egu2020-14540, 2020.

EGU2020-18815 | Displays | TS3.5

Tectonic evolution of the seismically active western continental margin of the Indian plate: Implications for kinematic history and fluid flow

Mohamedharoon Shaikh, Deepak Maurya, Mukherjee Soumyajit, Naimisha Vanik, Abhishek Kumar, and Laxman Chamyal

The deformation history along the E-W trending Kachchh rift basin at the western continental margin of the Indian plate located in the state of Gujarat, India, has been controlled by activation of NW-SE, NE-SW and E-W trending, 0.25–50 km long oblique-slip and dip-slip faults.

The study is an attempt to establish the kinematic framework along sub-parallel, NW-SE striking group of intra-uplift, striated, high-angle reverse faults, consisting of, Vigodi Fault (VF) and its bifurcation – West Vigodi Fault (WVF), Gugriana Fault (GUF) and its bifurcation – Khirasra fault (KHIF) from the western part of the Kachchh basin in the northern part of Gujarat state in western India. They meet the E-W trending master faults – the Kachchh Mainland Fault (KMF) to the north and the Katrol Hill Fault (KHF) to the south at an acute angle.

Fault-slip data consisting of fault plane and slickenside attitudes along with other kinematic indicators were recorded along the faults at 69 structural stations. A total of 1258 fault-slip data were used to carry out paleostress analysis using Win-Tensor (v.5.8.8) and T-Tecto Studio X5 by executing the Right Dihedral Method.

The NW-SE trending fault system exposes highly porous and permeable deformed sandstones belonging to the Jhuran and Bhuj Formation. The pure compaction bands, cataclastic deformation band clusters, slipped deformation bands and deformation band faults are documented. These tabular structures are densely populated in the fault damage zones of VF, WVF, GUF and KHIF. The field observations related to fluid flow conduits are discussed. We also present the field characteristics and petrographic evidences of chemical bleaching caused by fluid-rock interaction found in the Bhuj and the Jhuran sandstones. The change in the coloration pattern of deformation bands in comparison with the host rock color, presence of iron concretions, iron rinds and liesegang rings are important records of the diagenetic control over the fluid flow. The study is an attempt to the link the tectonic activity and simultaneous chemical reactions that affect the fluid flow transport.

We attribute the deformation history in the western continental margin of the Indian plate has been dominantly controlled by intraplate compressional stresses induced by anticlockwise rotation and collision of the Indian plate with the Eurasian plate at ~55 Ma. This correlates well with the Kachchh basin where rifting aborted during the Late Cretaceous, accommodated syn-rifting extensional component in the intra-uplift VF, GUF and KHIF. It has then undergone inversion phase due to onset of compressive stresses during the Post-Deccan Trap time up to the present. The NW-SE trending intra-uplift faults reactivated multiple times and generated deformation bands having high porosity contrast with the host Bhuj sandstone.

How to cite: Shaikh, M., Maurya, D., Soumyajit, M., Vanik, N., Kumar, A., and Chamyal, L.: Tectonic evolution of the seismically active western continental margin of the Indian plate: Implications for kinematic history and fluid flow, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18815, https://doi.org/10.5194/egusphere-egu2020-18815, 2020.

EGU2020-19230 | Displays | TS3.5

Tectonic evolution of shallow water carbonates: the Lastoni di Formin platform (Dolomites - Italy)

Riccardo Inama, Niccolò Menegoni, and Cesare Perotti

Carbonate rocks are among the most important targets for hydrocarbon exploration, and are considered of particular interest also for gas storage and carbon dioxide sequestration. The development of complex fracture networks in carbonates have a significant influence in fluid circulation, enhancing porosity and permeability and, therefore, modifying their storage capacity. The middle-Triassic Lastoni di Formin platform (Italian Dolomites) was studied by combining field measurements and photogrammetric techniques. The reconstruction of the Digital Model of the buildup allowed the analysis at the outcrop scale with a resolution of 5-10 cm, and gave the opportunity to focus on the behavior of sub-seismic (<10 m) structural elements. Even though their influence on the reservoir quality has been documented, heterogeneities of this order of dimensions are considered as part of the matrix properties in reservoir modeling: outcrop analogues represents a very good source of data that can help to fill this resolution gap. Many generations of fractures and faults can be distinguished at seismic and sub-seismic scale in the present-day fracture pattern of Lastoni di Formin, that is the result of different successive deformational events. In particular, the outcrop records the presence of two different tectonic phases: an E-W extension (Jurassic), that generate N-S trending joints and normal faults, and the Alpine compression (Neogene), that forms conjugate strike slip faults and flower structures. Moreover, an early fracturing gravitational event can be observed: is represented by opening-mode fractures and extensional faults sub-orthogonal to the direction of progradation of the buildup. The presence of platform-derived materials (oncoids) in the fracture fills allows to time-constrain the genesis of these fractures shortly after the deposition. Bed-perpendicular diffuse fractures, which are often strata-bound or terminate on bed-parallel stilolythes, were also detected. Both the margin-parallel early fractures and the Jurassic structures underwent strike-slip reactivations during the Alpine orogeny, which indicates a N-S to NNW-SSE shortening. Evidence of these movements can be inferred from riedel structures, en-chelon arrays, splays and fault jogs that can be observed at different scale. Reactivation of early structures can indicate that they influenced the distribution of subsequent faults and fractures affecting the platform.

 

How to cite: Inama, R., Menegoni, N., and Perotti, C.: Tectonic evolution of shallow water carbonates: the Lastoni di Formin platform (Dolomites - Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19230, https://doi.org/10.5194/egusphere-egu2020-19230, 2020.

EGU2020-19461 | Displays | TS3.5

Outcrop Fracture Pattern and Paleostress Analysis of the Ghumanwan Dome, Hazara Basin, NW Himalayas, Pakistan

Naveed Ahsan, Muhammad Armaghan Faisal Miraj, Hamza Tariq, and Abdul Qayyum

 Hazara Basin is a NE-SW trending fold and thrust belt, emerged as a consequence of ongoing collision between the Indian and Eurasian plates. Hazara Basin is bounded by Panjal Thrust (PT) in the North and Main Boundary Thrust (MBT) is located in the South. The present work deals with the paleostresses and outcrop fracture pattern (orientations, opening, fracture density) in different rock units exposed in Ghumanwan area located in the vicinity of Abbottabad, in Hazara Basin. PT and MBT juxtapose various lithological units along the Hazara Kashmir Syntaxes (HKS). The imbricate fault system between these two faults indicates a sinistral relative movement. We adopted circle inventory method in the field and collected data (fracture length, width, orientations and dip azimuth) from diverse rock units at 11 visited outcrop stations of the Ghumanwan Dome. These rock units include Upper Cretaceous (Kawagarh Formation) and Paleogene carbonates (Lockhart Formation and Margalla Hill Limestone). We observed highly dense, non-systematic fracture pattern in which mostly fractures are oriented in N-W direction normal to the bedding. Moreover, MOVETM 2018 (Midland Valley) Stress Analysis module (Stereonet Plot) was used for paleostresses analysis. The results show that the Slip Tendency (ratio of shear stress to normal stress) magnitude of σ2 lies closer to the σ3 (on Stereonet) and suggests compressional stresses in which NW-SE oriented fractures developed. The N-S compressive stresses which have mainly affected the concerned area are presumably linked to be late Eocene-Oligocene tectonic event.

How to cite: Ahsan, N., Armaghan Faisal Miraj, M., Tariq, H., and Qayyum, A.: Outcrop Fracture Pattern and Paleostress Analysis of the Ghumanwan Dome, Hazara Basin, NW Himalayas, Pakistan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19461, https://doi.org/10.5194/egusphere-egu2020-19461, 2020.

The southern Glade Fault Zone is a crustal-scale, subvertical dextral strike-slip fault zone on the eastern margin of Fiordland, New Zealand. For a distance of c. 40 km between Lake Te Anau and the Hollyford Valley, the fault cuts plutonic host rocks and has an estimated total dextral separation of c. 6-8 km. We report previously unidentified mylonites, cataclasites, pseudotachylites and fault gouge subparallel to pervasive sets of planar cooling joints in the Hut Creek-Mistake Creek area plutonic suites. The outcropping assemblage of joints and fault rocks record thermal, seismic and rheological conditions in the southern Glade Fault. Here we integrate methods to characterise the fault rocks and fracture damage zone of the southern Glade Fault from Glade Pass to Mt Aragorn. We use (i) EDS (Energy Dispersive x-ray Spectroscopy), XRD (X-Ray Diffraction) and EBSD (Electron Backscatter Diffraction) analysis to describe the mineralogy, kinematics and microstructures of fault rocks and, (ii) drone orthophotography and traditional structural measurements to detail geometrical relationships between structural features. Field mapping of glacially polished outcrops identifies the zone of brittle fault-related damage (i.e. damage zone + fault rock sequence) is up to one order of magnitude narrower than documented along other strike-slip faults with similar displacements, suggesting that the Glade Fault Zone represents an “end-member” of extreme localization of brittle deformation and fault displacement. This is interpreted to result from linkage of pre-existing cooling joints (and mylonitic shear zones), which allowed the younger brittle fault zone to establish its length and planarity relatively efficiently compared to the case of fault nucleation and growth in more isotropic host rocks.

How to cite: Ofman, M. and Smith, S.: On the straight and narrow: extreme localization of brittle fault damage and displacement along the Glade Fault Zone, Eastern Fiordland, New Zealand, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4878, https://doi.org/10.5194/egusphere-egu2020-4878, 2020.

EGU2020-8497 | Displays | TS3.5

Microfaulting by early diagenesis of micritic continental carbonates - dilatant and compactive shear localization (Montpellier area, France)

Grégory Ballas, Flavia Girard, Yannick Caniven, Roger Soliva, Bernard Celerier, Sylvain Mayolle, Romain Hemelsdael, Didier Loggia, Aurélien Gay, Michel Lopez, and Michel Seranne

Microfaults formed in continental carbonates reveal poorly known mechanisms of shear localization induced by early diagenesis during compaction. These faults are characterized by sinuous shape, bed-controlled, pervasive distribution, no calcite precipitation, and mainly disaggregation processes. Two main sets were described: (1) The first set is composed by normal-sense, high-angle microfaults affecting the top of carbonate beds showing undulating pedogenic bed surface. They show porosity increase and are sometimes organized in polygonal patterns. Their occurrence seems related to overconsolidation of pedogenic surface and density inversion – phreatic loading – fluid expulsion processes in the surficial carbonate bed. (2) The second set is composed by low-angle compactive microfaults with large slickenlines and incipient shear-offset. Their organization within two conjugate systems (normal-sense set and strike-slip set) almost contemporaneous is consistent with a NS extension following the slope induced by the basin subsidence to the south. Their occurrence seems related to vertical loading below few meters depth and occurred by shear-enhanced compaction and incipient pressure-solution process. The presence of such structures gives news information concerning dilatant or compactive shear processes and rheological properties of micritic carbonates during early diagenesis.

 

How to cite: Ballas, G., Girard, F., Caniven, Y., Soliva, R., Celerier, B., Mayolle, S., Hemelsdael, R., Loggia, D., Gay, A., Lopez, M., and Seranne, M.: Microfaulting by early diagenesis of micritic continental carbonates - dilatant and compactive shear localization (Montpellier area, France), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8497, https://doi.org/10.5194/egusphere-egu2020-8497, 2020.

EGU2020-8516 | Displays | TS3.5

The effect of pre-existing faults on the development of extensional basins: insights from wet clay experiments

Lorenzo Bonini, Roberto Basili, Nicolò Bertone, Umberto Fracassi, Francesco Emanuele Maesano, and Gianluca Valensise

Most of the present-day extensional systems formed in areas that already experienced an older phase of tectonic activity. Therefore, understanding how a pre-existing structural setting may affect the development of an extensional basin is a crucial interplay to decipher. Depending on the kinematics of these phases, the resulting inherited faults can be extensional, contractional, or transcurrent. Consequently, a new extensional basin forms atop or across pre-existing faults that can dip at a low- (e.g., inherited thrust faults) or high-angle (e.g., inherited extensional faults). Furthermore, the inherited structures can have a non-optimal attitude with respect to the new extensional stress field, thereby determining different instances for reactivation. In this study, we analyzed the impact of dip and strike of inherited faults on the development of an extensional basin using wet clay (kaolin) analogue modeling. We reproduced sixteen different setups by varying the dip (30°, 45°, 60°) and the strike (15°, 30°, 45°, 60°, 75°) of the pre-existing faults that we introduced in the experiments before applying extension. The results show that the orientation of pre-existing faults has a direct effect onto the shape of the new extensional basins. When the pre-existing faults are reused to accommodate the new extensional phase, the formed basins are asymmetric and the rate of growth of the new faults is lower.

How to cite: Bonini, L., Basili, R., Bertone, N., Fracassi, U., Maesano, F. E., and Valensise, G.: The effect of pre-existing faults on the development of extensional basins: insights from wet clay experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8516, https://doi.org/10.5194/egusphere-egu2020-8516, 2020.

EGU2020-9747 | Displays | TS3.5

Stratigraphic control on damage zone width in faulted platform carbonates: an example from the Gozo Island, Malta

Mattia Martinelli, Andrea Bistaccchi, and Riccardo Castellanza

Fault damage zones (DZ) are fractured volumes of rock that surround the fault core(s), and their structure can have an important role on the control of fault mechanics and of the hydraulic properties of the fault zone, with impact on groundwater flow, ore-deposits, hydrocarbon reservoirs, nuclear waste disposal and contaminant transport in the subsurface. It is generally accepted that DZ width is controlled by fault displacement, and that it increases with increasing offset. However, published data on DZ width in faulted carbonates show a scattering over two orders of magnitude, suggesting that this parameter is controlled also by other factors. Here we present the results of a study performed on two units of the platform carbonates of the Malta and Gozo Islands. These two units, that are cross-cut by normal faults, are characterize by different petrographical, petrophysical and mechanical properties and have completely different Damage Zone width along faults characterized by the same tectonic history and with comparable displacement. More competent and rigid grain-dominated carbonates show DZ thickness of several hundreds of meters, while fracturing in the less competent and more elastic micrite-dominated rocks is developed only very close to the fault core, with a DZ width of few tens of meters. In order to explain this counterintuitive facies-controlled behavior, we performed petrophysical (porosity, density, permeability) and geo-mechanical (Uniaxial, Brazilian, Triaxial tests) analyses to characterize the mechanical stratigraphy and develop a numerical modelling study. Results highlight the heterogeneous stress distribution in a multilayer with variable elastic parameters subjected to horizontal extension. The more elastic unit can more easily expand laterally with respect to the less elastic one with the consequence that σ3 decrease faster in the last one and this can yield before the more compliant one even if it is stronger. Also the width of the yielding zone is increased in the stiffer layers, leading to a wider DZ.

How to cite: Martinelli, M., Bistaccchi, A., and Castellanza, R.: Stratigraphic control on damage zone width in faulted platform carbonates: an example from the Gozo Island, Malta, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9747, https://doi.org/10.5194/egusphere-egu2020-9747, 2020.

EGU2020-8709 | Displays | TS3.5

Fault Damage Scaling: Insights from field data in carbonate rocks and analogue modelling

Sylvain Mayolle, Roger Soliva, Stephane Dominguez, Yannick Caniven, Christopher Wibberley, and Gregory Ballas

Fault damage zones present a renewal of interest to better understand stress perturbations around faults, earthquake’s ground motions and fluid flow in the upper crust. Although numerous studies provide significant amounts of data from a broad variety of rocks, the processes controlling fault damage development are not clearly understood and scaling properties in carbonate rocks remain poorly studied. D-T (displacement - DZ thickness) data compilations show strong scattering and are acquired using different methods and at different places along the faults (including tip, wall, link, or inner and outer damages), therefore rendering difficult a proper definition of the scaling relationship.

 

First, we analyse fault/fracture systems at the outcrop and map scale and define displacement - thickness (D-T) scaling of fault damage zones using scanlines, in carbonate rocks in France and Spain. We determine fault displacement and damage zone thickness perpendicular to fault planes and far from fault tips for 12 selected faults in four study sites. The data show a logarithmic decrease of fracture frequency from the fault cores. This decrease is characterized by local frequency peaks corresponding to variably-linked secondary fault segments and abandoned tips within the fault damage zone. D-T data comprised between 0 and 100 m of net fault displacement show a nearly linear scaling with very little scattering. Including two additional data for D > 100 m, the best fit corresponds better to a power law. The linear scaling is explained by well-known processes of fault growth such as stress perturbations around faults and fault segment linkage. The non-linear trend shown by the largest faults suggests that at this scale the faults become restricted at their lower tips by the base of the brittle crust.

 

Secondly, we analyse fault damage growth using analogue modelling of normal faults in a sand box. The model is composed by a 5 cm thick layer of dry sand deposited above a 2 cm thick ductile “kinetic sand” (sand and silicone) layer. The experiment is analysed in cross-section using image correlation allowing to calculate the velocity field and strain tensor over the fault zones including their damage pattern. Fault damage thickness obtained using the strain field appears to grow linearly with respect to shear displacement when the fault is contained into the dry sand layer. When the fault lower tip reaches the kinetic sand, fault damage begins to growth non-linearly with shear displacement, revealing that the brittle layer thickness is the main parameter governing the non-linear scaling.

 

 

How to cite: Mayolle, S., Soliva, R., Dominguez, S., Caniven, Y., Wibberley, C., and Ballas, G.: Fault Damage Scaling: Insights from field data in carbonate rocks and analogue modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8709, https://doi.org/10.5194/egusphere-egu2020-8709, 2020.

EGU2020-14084 | Displays | TS3.5

Linking the mechanics of polygonal faults with hydrothermal activity and marine biosphere – the Guadeloupe geothermal system

Christoph von Hagke, Katharina Leu, Elco Luijendijk, Melody Philippon, Stefan Back, Jean-Frederic Lebrun, Sebastien Cordonnier, Olivier Gros, Silvina Gonzalez-Rizzo, and Aurelien Gay

Polygonal faults are ubiquitous features, commonly observed in seismic images of fine-grained sedimentary successions along many passive margins. They are characterized by covering large parts of the basin with a typical polygonal pattern. In the last decade, different mechanical models for the generation of polygonal faults have been proposed; however, as they are commonly formed at depth and not directly observable at the surface, their formation remains a matter of debate. As part of the GEOTREF Program (ADEME – Investissement d’avenir) we found polygonal fault structures exposed close to the surface in marine soft sediments at 5 m water depth at the western coast of Guadeloupe. The structures are associated with fault-bound thermal springs and clearly visible at the sea bottom due to preferential precipitation of sulfur minerals and concentration of diatoms. In a multidisciplinary study involving a team of hydrogeologists, marine micro-biologists, and structural geologists, we study the genesis of polygonal faults in this setting. We analyzed the sediments in which the polygonal faults formed structurally and geochemically. First results suggest that SiO2 precipitated from hydrothermal fluids increases the cohesion of the most permeable soft sediments. Dewatering of the underlying layers causes the formation of polygonal faults at a depth of <1 m. These polygonal faults then act as channels for hot fluids, resulting in accumulation of sulfur favoring the establishment of diatoms at the surface. This study offers the unique opportunity to study the formation of polygonal faults in situ. We compare the observed geometries of polygonal faults with GEOTREF cruise 2-D seismic data offshore Guadeloupe, and 3-D seismic data of polygonal faults in New Zealand and Australia with the goal to understand the variability of polygonal fault geometries, as well as their comparability across different scales of observation. On a more local scale, this study provides insights how fracture dynamics guides fluid flow, which in turn interacts with the marine biosphere.

How to cite: von Hagke, C., Leu, K., Luijendijk, E., Philippon, M., Back, S., Lebrun, J.-F., Cordonnier, S., Gros, O., Gonzalez-Rizzo, S., and Gay, A.: Linking the mechanics of polygonal faults with hydrothermal activity and marine biosphere – the Guadeloupe geothermal system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14084, https://doi.org/10.5194/egusphere-egu2020-14084, 2020.

EGU2020-7192 | Displays | TS3.5

Signature of coseismic slip in unconsolidated Quaternary gravels, Campo Imperatore, Italy

Matteo Demurtas, Fabrizio Balsamo, and Mattia Pizzati

Faulting in seismically active regions commonly involves the deformation of unconsolidated to poorly lithified sediments. The seldom occurrence of seismic slip within these deposits appears to be counterintuitive if compared to classic crustal strength profiles that predict a velocity-strengthening behaviour for the first few km of depth. Therefore, the investigation of geological evidence for coseismic faulting within unconsolidated deposits is a key step towards a broader understanding of mechanisms of strain accommodation at shallow to near-surface depth.

Here we document the occurrence of minor faults within an unconsolidated colluvial fan at the hanging wall of the Vado di Corno Fault Zone (VCFZ) in the Central Apennines, Italy. The VCFZ is part of the active Campo Imperatore Fault System and accommodated 1-2 km of displacement since Early-Pleistocene. The deposits lie in direct contact with the master fault surface, are Late-Pleistocene to Holocene in age, and consist of angular carbonatic clasts, up to tens of centimetres in size, derived from the dismantling of the VCFZ footwall.

Studied faults are organised in two main sets: (i) subvertical, N-S trending dip-slip faults, parallel to the fan long axis, and (ii) WNW-ESE striking faults, synthetic and antithetic to the VCFZ master fault surface (N195/55°). Both fault sets are striated and commonly have positive relief with respect to the host deposits. Some of these faults show a fault core up to 5-6 cm thick, bounded by discrete and well-developed polished surfaces. Locally, particularly in fine-grained gravel levels, the occurrence of extreme strain localisation (i.e. millimetric ultracataclastic layers with truncated clasts) along mirror-like fault surfaces is observed. Grain size analysis of undeformed and faulted gravels shows an increase of the power-law exponent (fractal dimension) from values of D = 1.65-2.2 in the undeformed host rocks up to D = 2.9 in the cataclastic slip zones. Microstructural analysis suggests cataclasis is the main deformation mechanism leading to grain size reduction along faults, whereas intergranular pressure solution becomes widespread moving away from the slip zone where fluid circulation was present.

Collectively, our observations provide new insights into the mechanics of faulting and strain accommodation in the shallowest part of the crust (< 1 km) and new evidence to understand the propagation of seismic ruptures within shallow unconsolidated deposits.

How to cite: Demurtas, M., Balsamo, F., and Pizzati, M.: Signature of coseismic slip in unconsolidated Quaternary gravels, Campo Imperatore, Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7192, https://doi.org/10.5194/egusphere-egu2020-7192, 2020.

Hydrological anomalies induced by the earthquakes are valuable research data to understand the hydrogeology structure. At the same time, a complete hydrogeological data is the key to the study of earthquake hydrology. In this research, we collected the anomalous hydrological data after the Mw 6.4 2016 Meinong Earthquake in Taiwan. The main purpose is to know the mechanism of hydrological changes triggered by earthquake and understand the local hydrogeological characteristics in the southern Taiwan.

From the distribution of the groundwater level change in the same location but different depths of aquifer, as well as the location of the rupture and liquefaction, it could be found that the co-seismic groundwater level change is large in Chianan Plain in the northwest of the epicenter and accompanied with a lot of ruptures and liquefactions located along the Hsinhua Fault. However, the observations in several wells around the Hsinhua Fault show a different water level change pattern compared with the other wells in Chianan Plain. Actually, these wells show that the co-seismic groundwater level decreases in the deep aquifer and increase in the shallow aquifer. It is shown that the Meinong Earthquake may enhance the connectivity between different aquifers near the fault zone and produce an increased vertical pressure gradient. The anomalous hydrological phenomenon also reflected in the river flow. Based on the river flow data we collected from five stations in the Zengwun River watershed, the river flow at two stations in the upstream dose not change after earthquake. There is a little increase at the midstream station. However, a large river flow increase is observed at the downstream station. After excluding the influence of rainfall, we think that the large amount of anomalous flow is caused by the rise of the co-seismic groundwater level between the middle and downstream sections, and a large amount of liquefaction in this area can prove this hypothesis.

The hypothesis of connectivity changes between different aquifers can be verified by analyzing the tidal response of different aquifers. Many studies have used the tide analysis to obtain the aquifer permeability and compressibility, and compared the changes in the analysis results before and after the earthquake. We think that if different aquifers are vertically connected after earthquake, the tidal analysis results should show a consistent permeability. Tidal analysis is executing now and the results will be provided at conference.

How to cite: Lin, Y.-Y., Wang, S.-J., and Lai, W.-C.: The research of Meinong earthquake induced hydrological anomalies and increased vertical permeability in southwestern Taiwan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7993, https://doi.org/10.5194/egusphere-egu2020-7993, 2020.

EGU2020-17943 | Displays | TS3.5

Post-emplacement fluid-driven intrusion fracturing and quartz-sand injections at the basal shear zone of the Esla Nappe (Cantabrian Zone, NW Iberia)

Manuel Ignacio de Paz Álvarez, Sergio Llana Fúnez, and Juan Luis Alonso

The Esla Nappe is located in the external foreland and thrust belt of the Variscan Orogen in the NW Iberian Massif (Cantabrian Zone, NW Iberia). It is formed by a near-complete Palaeozoic sedimentary succession. With a displacement of around 19 km, the nappe was emplaced along a thin (<2–3 m) basal shear zone (ENBSZ) located at an estimated minimum depth of 4 km. Emplacement took place during the Moscovian (ca. 312 Ma). Fault-rock assemblages record a variety of alternating deformation mechanisms and processes, including cataclastic flow,  pressure solution and hydrofracturing and vein precipitation. All these processes are considered evidence of an aseismic stable behaviour of the ENBSZ, where deformation was influenced by secular variations in the fluid pore pressure.

Following emplacement, the ENBSZ was breached by clastic dykes and sills which were intruded following re-opened previous anisotropies, including bedding planes, thrust surfaces, joints and stylolites. Together, they constitute an interconnected network of quartz sand-rich lithosomes reaching structural heights occasionally exceeding 20 m above the ENBSZ. The orientation of the dykes suggests that the injection process took place under low differential stress conditions in the hangingwall, and near-lithostatic fluid pore overpressure conditions in the footwall. The injected slurry consisted of overpressured pore fluid, quartz-sand grains derived from the footwall and entrained host-derived fragments. Depending on fracture aperture and slurry composition, a variety of fluid velocities can be inferred in the order of 15–30 cm/s. Thin pure injections of quartz grains (ca. <1 cm) were characterised by a laminar flow (Re<2100), whereas the thickest quartz and host-derived mixed injections (~1 m) displayed a fully turbulent flow (Re~2 x 104).

The causes for the fluids to reach near-lithostatic fluid overpressures within the uppermost footwall remain unknown. It is not possible to rule out a seismic trigger, but the absence of extreme shear localization structures typical of seismic slip suggests that the injection process was driven by fluid progressive accumulation, possibly related with clay dehydration reactions, tectonic loading, pore compaction or fluid migration from underlying formations. Actual breaching and injection may have been allowed by a decrease in bedding-parallel compressive stresses in the Esla Nappe associated with the subsequent evolution of the thrust-wedge.

How to cite: de Paz Álvarez, M. I., Llana Fúnez, S., and Alonso, J. L.: Post-emplacement fluid-driven intrusion fracturing and quartz-sand injections at the basal shear zone of the Esla Nappe (Cantabrian Zone, NW Iberia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17943, https://doi.org/10.5194/egusphere-egu2020-17943, 2020.

Based on the analysis of hydrocarbon source, reservoir forming period, composition and classification of transportation system, and the reasons of failure well in Chexi Depression of Bohai Bay Basin,Two types of hydrocarbon accumulation models in gentle slope belt of Chexi area are established and the main controlling factors of hydrocarbon accumulation are defined. There are three sets of source rocks(Es1、middle and lover submember of Es3、Es4)in Chexi area, the different strata of source rocks have great differences in the Pr/Ph and the content of gammacerane. It has been found that the crude oil of Es3 has a good geochemical correspondence with the middle and lower of Es3 source rocks, and has the characteristics of near source accumulation. The hydrocarbon accumulation in the study area exists in the sedimentary period of the Dongying formation and the sedimentary period of the Guantao formation to the present two stages, which is dominated by late filling. There are two stages of oil and gas filling in the inner and middle belts, and only late stage hydrocarbon filling in the outer slope belt. The hydrocarbon transportation system is mainly composed of faults and sand bodies. The effective source rocks in the middle and lover submember of Es3 are connected with the upper reservoir of Es3 in a small area, which can be directly migrated to the upper sandstone reservoir of Es3 to form lithologic oil and gas reservoir. However, most of the oil and gas in the upper Es3 reservoir need to be vertically migrated by means of oil source fault, and then through the contact of sand bodies such as main channel and fan body, the main oil and gas reservoir will gradually move up with the distance from the source rock. The area with direct contact source reservoir configuration relationship is a "sand body lateral migration" reservoir formation mode, and the main controlling factors of reservoir formation are sand body connectivity and reservoir porosity and permeability. The source reservoir configuration area with fault connection type is a "fault sand combination T-type migration" reservoir forming mode, and the main controlling factors of reservoir forming are migration convergence facies (structural ridge and cross-section ridge).The area of passive reservoir contact is "fault sand combination step migration" reservoir forming mode, and the main controlling factors of reservoir forming are migration convergence facies (structural ridge) and lateral sealing of faults in preservation conditions.

Key words: Chexi Depression; Source of hydrocarbon; Accumulation period; Fault sand transport combination; Reservoir forming mode

How to cite: Zhao, S. and Liu, H.: Study on the hydrocarbon accumulation models of the upper Es3 in the gentle slope belt of Chexi Depression, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1784, https://doi.org/10.5194/egusphere-egu2020-1784, 2020.

Bleached rocks are commonly formed from CO2-saturated water leakage to the surface. It could provide opportunities to understand the mechanisms and controlling factors associated with injected and sequestrated CO2 leakages as well as fluid flow in the subsurface. In this study, we investigated the various bleaching patterns and their related structures in order to understand the characteristics of fluid-flow migration around the major structures. Also, we examined the effects of lithology and structural characteristics on fluid flow in detail along and around the major structures. For this purpose, we analyzed bleaching characteristics of multiple layered sedimentary rocks around two major faults (Moab and Salt Wash Faults) and fold axes (Green river anticline system) based on field observations and quantitative measurements (scanline survey and permeability) in the exhumed reservoir-cap rock systems in SE Utah, USA. The results showed that strongly bleached layers of sedimentary rock have a higher density of deformation bands compared to unbleached layers. This is consistent with the general property of deformation bands that frequently develop in layers with higher porosity and permeability. Although almost all fault zones act as conduits for fluid flow, some fault zones filled with clay-rich gouges could impede fluid flow. In addition, the internal sealing characteristics of the layer boundaries such as bedding planes could be important factors as they can act either as a pathway or a barrier for lateral fluid flow depending on the existence of filling materials such as calcite or kerogen. Our research may be useful for assessing CO2 leakage in oil reservoirs or CO2 sequestration sites located in a reservoir-cap rock system of sedimentary basins.

How to cite: Ko, K.: Characteristics of fluid-flow migration(bleached rock) around major structures in a reservoir-cap rock system, SE Utah, USA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6519, https://doi.org/10.5194/egusphere-egu2020-6519, 2020.

TS4.2 – Three- and four-dimensional aspects of faulting

EGU2020-19731 | Displays | TS4.2

Do pre-existing basement structures influence the geometry and growth of normal faults and rifts?

Christopher Jackson, Luca Collanega, Thomas Phillips, Antje Lenhart, Edoseghe Osagiede, Catherine Siuda, Matthew Reeve, Oliver Duffy, Rebecca Bell, Atle Rotevatn, Craig Magee, Robert Gawthorpe, Alexander Coleman, Paul Whipp, Thomas Kristensen, Haakon Fossen, Anna Breda, and Nicola Marsh

Rifts often evolve on a template of crystalline basement that may contain strong lithological and mechanical heterogeneities related to complex pre-rift tectonic histories. Numerous studies argue that reactivation of such pre-existing structures can influence the geometry and evolution of normal faults and rift physiography. However, in many cases: (i) it is unclear where, if at all, structures at the rift margin continue along-strike below the rift axis; and (ii) the precise geometric and kinematic relationship between pre-existing structures and newly formed normal faults is not well understood. These uncertainties reflect the fact that: (i) potential field data are typically of low-resolution, and thus cannot resolve the detailed morphology of shallow fault networks; (ii) field data cannot provide an accurate 3D image of intra-basement structures and the overlying rift; and (iii) seismic reflection data typically do not image deeply buried intra-basement structures. Understanding the kinematic as well as geometric relationship between intra-basement structures and rift-related fault networks is important for understanding plate motions and for undertaking stress inversions, given that paleo-extension directions (and sigma 3) are, in many rifted provinces, typically thought to lie normal to the dominant fault strike. 

 

We here tackle these problems using subsurface data from the Taranaki Basin, offshore New Zealand, and the northern North Sea, offshore west Norway. Our data provide excellent imaging of shallowly buried intra-basement structures, as well as cover-hosted normal faults and their associated pre- and syn-growth strata. We identify a range of intra-basement structures, both extensional and contractional,, and a range of geometric and kinematic interactions between intra-basement structures and cover normal faults. For example, some of the normal faults are physically connected to intra-basement structures oriented oblique to the regional extension direction. It is notable that, even in cases, intra-basement structures were apparently not extensionally reactivated during the later rift phase. Displacement maxima on cover faults occur at 100-200 m above the crystalline basement-cover interface, suggesting the former did not form due to simple extensional reactivation and upward propagation of pre-existing structures; rather, ‘passive’ basement structures somehow perturbed the regional stress field, leading to the development of normal faults whose strikes mimic those of the underlying pre-existing basement structures. Cover normal faults can also display a range of complex geometries related to the linkage of numerous, originally separate slip surfaces, and upward-bifurcation of strongly segmented fault systems. We also show that the timing of physical linkage between basement and cover structures can be recorded in the geometry of related growth strata, which document the switch from non-rotational to rotational faulting.

 

Our analyses show that km-scale, intra-basement structures can control the nucleation and development of newly formed, rift-related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre-existing, intra-basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as the geometric relationships between structures developed at multiple structural levels.

How to cite: Jackson, C., Collanega, L., Phillips, T., Lenhart, A., Osagiede, E., Siuda, C., Reeve, M., Duffy, O., Bell, R., Rotevatn, A., Magee, C., Gawthorpe, R., Coleman, A., Whipp, P., Kristensen, T., Fossen, H., Breda, A., and Marsh, N.: Do pre-existing basement structures influence the geometry and growth of normal faults and rifts?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19731, https://doi.org/10.5194/egusphere-egu2020-19731, 2020.

The horsetail structure, also named brush structure, generally refers to a sets of secondary faults converged to the primary fault on the plane. Based on 2-D and 3-D seismic data, the structural characteristics, evolution and mechanism of the horsetail structure of Liaodong Bay area in Bohai Bay Basin and Weixinan area in Beibuwan Basin are analyzed. In the Liaodong Bay area, the primary fault of the horsetail structure is the NNE-striking branch fault of Tan-Lu strike-slip fault zone. The NE-striking secondary extensional faults converged to the primary strike-slip fault. Fault activity analysis shows that both the primary and secondary faults intensively activated during the third Member of the Shahejie Formation (42~38 Ma). In the Weixinan area, the NE-striking Weixinan fault is the primary fault of the horsetail structure, which is an extensional fault. A large amount of EW-striking secondary extensional faults converged to the primary NE-striking Weixinan fault. Fault activity analysis shows that NE-striking primary fault intensively activated during the second Member of the Liushagang Formation (48.6~40.4 Ma), whereas the EW-striking secondary faults intensively activated during the Weizhou Formation (33.9~23 Ma). The different structure and evolution of the horsetail structure in the Liaodong Bay area and Weixinan area are mainly resulted from the regional tectonic settings. About 42 Ma, the change of subduction direction of the Pacific plate and the India-Eurasian collision resulted in the right-lateral strike-slip movement of NNE-striking Tan-Lu fault and the formation of NE-striking extensional faults along the bend of the strike-slip fault, therefore, the horsetail structure of Liaodong Bay area formed. However, the formation of the horsetail structure of Weixinan area is related to the clockwise rotation of extension stress in the South China Sea (SCS): 1) During Paleocene to M. Eocene (65~37.8 Ma), the retreat of Pacific plate subduction zone resulted in the formation of NW-SE extensional stress field in the north margin of the SCS, NE-striking primary fault of horsetail structure formed; 2) During L. Eocene to E. Oligocene (37.8~28.4 Ma), the change of subduction direction of the Pacific plate and the India-Eurasian collision resulted in the clockwise rotation of extension direction from NW-SE to N-S in the north margin of the SCS, a large amount of EW-striking secondary faults of horsetail structure formed, and the horsetail structure was totally formed in the Weixinan area until this stage.

How to cite: Zhang, J., Wu, Z., and Cheng, Y.: Structural Characteristics and Mechanism of the Horsetail Structure in China Offshore Basins: Case Studies from Liaodong Bay Area, Bohai Bay Basin and Weixinan Area, Beibuwan Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4581, https://doi.org/10.5194/egusphere-egu2020-4581, 2020.

Understanding the detailed fault architecture of reverse faulting is not only critical for revealing the processes involved in fold-thrust belts as well as predicting the relationship between folds and faults, the distribution of strain, and sub-seismic faulting deformation, but also important for understanding fault related compartmentalisation and fluid flow behaviour both along and/or across thrust fault zones. The Lenghu5 fold-thrust belt, provides an exceptionally well-exposed outcrop example of a reverse fault-related fold. Detailed stratigraphic logging coupled with high-resolution cross-sections provides a unique insight into the 3D geometry of a thrust fault at both basin and outcrop scale.

In this study we observed 85 - 90% of the estimated throw is accommodated on the main fault zone (i.e., the Lenghu5 thrust fault), which has sufficient throw to be imaged on a seismic profile, while 15-20% of the throw is accommodated on smaller scale folds and faults that are beyond seismic resolution. The Lenghu5 thrust fault, a seismically resolvable fault with up to ~800m of throw, exhibits a large variation of fault architecture and strain distribution along the fault zone. As meso-scale (1-100 m) structural features are normally beyond the seismic resolution, high-resolution outcrop in-situ mapping (5-10 cm resolution) was employed to study the deformation features of the Lenghu5 thrust fault zone. The excellent exposure of outcrops enables detailed investigation of its fault zone architecture. Multiple structural domains with different levels of strain were observed and are associated with the fault throw distribution across the fault. Based on previously proposed models and high-resolution outcrop mapping, an updated fault zone model was constructed to characterize the structural features and evolution of the Lenghu5 thrust fault.

The possible parameters that impact fault architecture and strain distribution, including fault throw, bed thickness, lithology and mechanical heterogeneity were evaluated. Fault throw distributions and linkages control the strain distribution across a thrust fault zone, with local folding processes contributing important elements in the Lenghu5 thrust fault especially where more incompetent beds dominate the stratigraphy. Mechanical heterogeneity, induced by different layer stacking patterns, controls the details of the fault architecture in the thrust zone. The variations in bed thicknesses and mechanical property contrasts are likely to control the initial fault dips and fault/fracture density. Large fault throws are associated with wide strain accommodation and damage zones, although the relationship between the development and width of the fault zone with the throw accumulation remains to be assessed.

By presenting the high resolution mapping of fault architecture this study provides an insight into the sub-seismic fault zone geometry and strain distributions possible in thrust faults and reviews their application to assessing fault zone behaviour.

How to cite: Pei, Y.: Field-based fault architecture of fold-thrust belts: an example from the Qaidam basin, northeast Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12844, https://doi.org/10.5194/egusphere-egu2020-12844, 2020.

EGU2020-11814 | Displays | TS4.2

Structural Complexity and Mechanics of a shallow crustal Seismogenic Source (Vado di Corno Fault Zone, Italy)

Michele Fondriest, Fabrizio Balsamo, Andrea Bistacchi, Luca Clemenzi, Matteo Demurtas, Fabrizio Storti, and Giulio Di Toro

The mechanics and seismogenic behaviour of fault zones are strongly influenced by their internal structure, intended as three-dimensional geometry and topology of the fault/fracture network and distribution of the fault zone rocks with related physical properties.  In this perspective, the internal structure of the extensional seismically active Vado di Corno Fault Zone (Central Apennines, Italy) was quantified by combining high-resolution structural mapping with modern techniques of 3D fault network modelling over ∼2 km along fault strike. The fault zone is hosted in carbonate host rocks, was exhumed from ∼2 km depth, accommodated a normal slip of ∼1.5-2 km since Early-Pleistocene and cuts through the Pliocene Omo Morto Thrust Zone that was partially reactivated in extension.

The exceptional exposure of the Vado di Corno Fault Zone footwall block allowed us to reconstruct with extreme detail the geometry of the older Omo Morto Thrust Zone and quantify the spatial arrangement of master and subsidiary faults, and fault zone rocks within the Vado di Corno Fault Zone. The combined analysis of the structural map and of a realistic 3D fault network model with kinematic, topological and slip tendency analyses, pointed out the crucial role of the older Omo Morto Thrust Zone geometry (i.e. the occurrence and position of lateral ramps) in controlling the along-strike segmentation and slip distribution of the active Vado di Corno normal fault zone. These findings were tested with a boundary element mechanical model that highlights the effect of inherited compressional features on the Vado di Corno Fault Zone internal structure and returns distributions and particularly partitioning of slip comparable with those measured in the field.

Lastly, we discuss the exhumed Vado di Corno Fault Zone as an analogue for the shallow structure of many seismic sources in the Central Apennines. The mechanical interaction of the inherited Omo Morto Thrust Zone and the extensional Vado di Corno Fault Zone generated along-strike and down-dip geometrical asperities. Similar settings could play first-order control on the complex spatio-temporal evolution and rupture heterogeneity of earthquakes in the region (e.g. 2009 Mw 6.1 L’Aquila earthquake).

How to cite: Fondriest, M., Balsamo, F., Bistacchi, A., Clemenzi, L., Demurtas, M., Storti, F., and Di Toro, G.: Structural Complexity and Mechanics of a shallow crustal Seismogenic Source (Vado di Corno Fault Zone, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11814, https://doi.org/10.5194/egusphere-egu2020-11814, 2020.

EGU2020-13914 | Displays | TS4.2

Characteristics of episodic fault growth and off-fault deformation structures

Simon Preuss, Jean Paul Ampuero, Luca Dal Zilio, Taras Gerya, and Ylona van Dinther

Natural fault networks are geometrically complex systems that evolve through time. The growth and evolution of faults and their off-fault damage pattern are influenced by both dynamic earthquake ruptures and aseismic deformation during the interseismic period. To better understand each of their contributions to faulting we simulate both earthquake rupture dynamics and long-term deformation in a visco-elasto-plastic crust subjected to rate-and-state-dependent friction [1,2]. The continuum mechanics-based numerical model presented here includes three new features. First, a 2.5-D approximation to incorporate effects of a viscoelastic lower crustal substrate below a finite depth. Second, we introduce a dynamically adaptive (slip-velocity-dependent) measure of fault width to ensure grid size convergence of fault angles for evolving faults. Third, fault localisation is facilitated by plastic strain weakening of bulk rate-and-state friction parameters as motivated by laboratory experiments. This allows us to for the first time simulate sequences of episodic fault growth due to earthquakes and aseismic creep. Localized fault growth is simulated for four bulk rheologies ranging from persistent velocity-weakening to velocity-strengthening. Yet, episodic fault growth is only obtained for a bulk rheology that transitions from velocity-strengthening friction to velocity-weakening friction. Interestingly, in each of these bulk rheologies, faults predominantly localise [LDZ1] and grow in the inter-seismic period due to aseismic deformation. However, [LDZ2] off-fault deformation - both distributed and localised - is typically formed during dynamic earthquake ruptures. Simulated off-fault deformation structures range from fan-shaped distributed deformation to localized Riedel splay faults and antithetic conjugate [LDZ3] Riedel shear faults [LDZ4] and towards wing cracks. We observe that the fault-normal width of the outer damage zone saturates with increasing fault length due to the finite depth of the seismogenic zone. We also observe that dynamically and statically evolving stress fields from neighbouring fault strands affects first and secondary fault growth. Finally, we find that the amount of off-fault deformation distinctly depends on the degree of optimality of a fault with respect to the prevailing but dynamically changing stress field. Typically, we simulate off-fault deformation on faults parallel to the loading direction. This produces a 6.5-fold higher off-fault energy dissipation than on an optimally oriented fault, which in turn has a 1.5-fold larger stress drop. The misalignment of the fault with respect to the static stress field thus facilitates off-fault deformation. These results imply that fault geometries bend [2], individual fault strands interact and that optimal orientations and off-fault deformation vary through space and time. With our work we establish the basis for simulations and analyses of complex evolving fault networks subject to both long-term and short-term dynamics. Currently, we are using this basis to simulate and explain orthogonal faulting observed in the 2019 M6.4-M7.1 Ridgecrest earthquake sequence.

How to cite: Preuss, S., Ampuero, J. P., Dal Zilio, L., Gerya, T., and van Dinther, Y.: Characteristics of episodic fault growth and off-fault deformation structures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13914, https://doi.org/10.5194/egusphere-egu2020-13914, 2020.

EGU2020-989 | Displays | TS4.2

Factors controlling shear rupture roughness: An insight from field and laboratory experiments

Manaska Mukhopadhyay, Uddalak Biswas, Nibir Mandal, and Santanu Misra

Faults and fracture surfaces record the history of slip events through a range of structural features in tectonically active zones. Slickensides, among them, prove to be the most prominent evidences of such slip movements. These linear features give us crucial information about the mechanical processes associated with shear surface roughness formation. We conducted extensive field survey in the Singhbhum Shear Zone, Eastern India, and report shear fractures of varying surface roughness from deformed quartzites. Shear surfaces encountered in the field study varied from very smooth, devoid of any lineation to strongly rough with prominent slickenlines.

For better understanding of the varied surface roughness, we performed analogue laboratory experiments. The experimental results suggest that the fracture orientation and the mode of shear failure are potential factors that control the fracture roughness. We used cohesive sand-talc models for the analogue experiments with varying sand:talc volume ratio, ranging from pure sand to pure talc variant. Experimental models with pure sand composition underwent Coulomb failure in the brittle regime. With subsequent increase in talc content, the behavior of failure switched to plastic yielding in the ductile regime. This transition from coulomb failure to plastic yielding produced a remarkable variation in the shear surface roughness characteristics. Shear surfaces formed by Coulomb failure are smooth and devoid any slickenlines, whereas, those formed by plastic yielding show prominent presence strongly linear roughness, defined by cylindrical ridge-grooves along the slip direction.

Shear surface roughness defined by linear irregularities become more prominent with increasing fracture orientation (θ) to the compression direction (θ = 30° to 60°). Increase in θ promotes the formation of smooth slickenlines at the cost of rough zones. For critical analysis and understanding of these features we develop a new computational technique. The technique is based on controlled optical images to map the shear surface geometry from field casts and laboratory samples. Binarization of the irregular surface images (cantor set) provides 1D fractal dimension (D), which is used to quantify the roughness variability, and the degree of their anisotropy in terms of ΔD (difference in D across and along the slip direction). From numerical models, we finally show onset of wave instability in the mechanically distinct rupture zone as an alternative mechanism for slickenlines formation.  

How to cite: Mukhopadhyay, M., Biswas, U., Mandal, N., and Misra, S.: Factors controlling shear rupture roughness: An insight from field and laboratory experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-989, https://doi.org/10.5194/egusphere-egu2020-989, 2020.

EGU2020-4557 | Displays | TS4.2

Fault interactions, fault kinematics, and evolution of the structural framework in the Irish Lower Carboniferous

Koen Torremans, John Conneally, John Güven, Robert Doyle, jiulin Guo, Eoin Dunlevy, and John Walsh

Fault systems in the Irish Lower Carboniferous are important in relation to its subsurface groundwater, geothermal and mineral resources. For example, major base metal deposits in the world-class Irish Orefield occur in association with normal faults. Despite their economic importance, however, the fault networks and structural framework at depth are still poorly constrained. The Irish Carboniferous Basin is an excellent area to study the extensional fault systems and evolution of rift basins, given the relatively low amounts of later compressional deformation and metamorphism, and because high-quality subsurface datasets exist from several decades of mineral exploration. Our work aimed at developing a coherent structural framework for the Lower Carboniferous in Ireland, to unravel the geometries and kinematics of faulting in a carbonate-dominated rift basin that developed on top of a strong pre-existing structural template in the underlying basement rocks.

We have defined the geometry of key fault systems in the rift across a wide range of scales, using three-dimensional integrated analysis of large datasets. These datasets include public and proprietary onshore 2D reflection seismic, mapping, drillhole, micro-palaeontological, aeromagnetic, electromagnetic, and ground gravity data. Our work has revealed the nature of segmentation patterns and interactions of normal faults, including synthetic and conjugate relay zones. Quantification of fault parameters, kinematic analysis and kinematic restoration have allowed us to gain insights into the distribution of extension during rifting in time and space, using growth sequences and facies changes on faults. The analysis of this structural framework in relation to several mineral deposits, and in combination with lithofacies distribution and the development of bathymetry during basin formation, allows us to better understand current and past fluid flow pathways, especially in relation to base metal mineralising events.

How to cite: Torremans, K., Conneally, J., Güven, J., Doyle, R., Guo, J., Dunlevy, E., and Walsh, J.: Fault interactions, fault kinematics, and evolution of the structural framework in the Irish Lower Carboniferous, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4557, https://doi.org/10.5194/egusphere-egu2020-4557, 2020.

EGU2020-5092 | Displays | TS4.2 | Highlight

3D fault network development at the Galicia magma-poor margin, North-Atlantic

Derren Cresswell, Gaël Lymer, and Tim Reston

We investigate the structures of hyper-extended continental crust and the 3D nature of the development of syn-rift fault networks at the Galicia margin, West of Spain, based on observations from a 3D multi-channel seismic reflection dataset acquired in 2013. This seismic volume provides, for the first time, 3D high-resolution imaging of a fault network geometry above a detachment fault (The “S reflector”) in the distal setting of a continental margin. The Galicia margin is sediment-starved, magma-poor and salt-free, thus providing optimal observations of the structures through seismic data.

We use the 3D data to observe the geometries of the faults, to analyse the fault heaves at different levels of the litho-stratigraphic sequence (i.e. at the top of the crystalline basement, at the top of the pre-rift/early syn-rift sediments and at the top of the syn-kinematic sediments), and to make a stratigraphic analysis to constrain the dynamics and the kinematics of fault activity within the successive half-grabens.

Our 3D interpretations demonstrate that the continental crust thins to zero during the rifting by the simultaneous development of initially individual fault planes, which progressively link with adjacent faults to form a network of active faults. The linked roots of the faults altogether form the surface of the S at depth, and allow the oceanward propagation of the detachment fault during the rifting. The faults throughout the network remained active and progressively rotated with further extension, until their deactivation when they acquired an angle of ~30°. Whereupon, a new network of active, initially isolated, faults developed and linked one step (~10 km) oceanward. The system repeats until the break-up of the continental crust, resulting in the progressive focussing of the locus of the extension toward the ocean, where the continental crust is the thinnest. 

Given the similitude of the features observed at the Galicia margin with other magma poor continental margins, we expect that most margins worldwide might have formed following similar processes, thus representing a paradigm shift in the global understanding of late fault network development at rifted margins during continental break-up.

How to cite: Cresswell, D., Lymer, G., and Reston, T.: 3D fault network development at the Galicia magma-poor margin, North-Atlantic , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5092, https://doi.org/10.5194/egusphere-egu2020-5092, 2020.

EGU2020-21550 | Displays | TS4.2 | Highlight

Three-dimensional analysis of normal faults in the Horda Platform (North Sea): the possible influence of stress perturbations on fault geometries

Luca Collanega, Donatella Mellere, Matteo Massironi, and Anna Breda

Rift-related faults often display non-rectilinear geometries, which have been interpreted as (i) the result of linkage between different fault segments -developed during a single or more tectonic phases-, (ii) as curvilinear faults due to gravitational collapse, (iii) as inherited basement trends. Disentangling these processes is generally difficult, with multi-phase rifting and reactivation of pre-existing structures being the most intuitive and commonly adopted explanations.

Here, we use 3D seismic data to reconstruct the evolution of a couple of intersecting, curvilinear faults in the Horda Platform (Northern North Sea), which is characterised by a complex history of reactivation and multi-phase extension during the Jurassic-Cretaceous rifting. By reconstructing the three-dimensional geometry of the fault planes, we highlight that one fault follows the trend of the Permian-Triassic rift along its entire length, whereas the other, strongly curvilinear, fault appears to be partially deflected from it. By using time-thickness maps and kinematic analyses, we show that the partially deflected fault initiated in the Late Jurassic, soon after the other one (which activated in the Middle Jurassic). Notably, the younger fault flexes from the inherited Permian-Triassic trend as it approaches the other, more mature, fault, getting perpendicular to -and finally crosscutting- it. Hence, the curvilinear geometry developed during the upward propagation of the fault plane during the Jurassic-Cretaceous rifting, suggesting that such change of strike was driven by the influence of the more mature fault and is not due to structural inheritance. Similar deflections can be observed also in other areas of the dataset, with incipient faults flexing towards more mature structures.

More generally, newer faults have been shown to deflect perpendicularly to pre-existing faults both in analogue and numerical models, suggesting we are facing a general process. These strike deflections suggest a stress re-orientation in the vicinity of well-developed structures, and not just simply a stress-drop as widely indicated by fault spacing and throw distribution of parallel faults. This is consistent with observations on deflected normal faults developing in correspondence to oblique basement fabrics as well as with the numerical model of the stress field by Homberg et al. (1997). Hence, our three-dimensional analysis of fault geometries suggests that the well-established concept of “fault-related stress-drop” should be broadened into the concept of “fault-related stress-reorientation”.

 

References

Homberg, C., Hu, J.C., Angelier, J., Bergerat, F., Lacombe, O., 1997. Characterization of stress perturbations near major fault zones: insights from 2-D distinct-element numerical modelling and field studies (Jura mountains). Journal of Structural Geology 19, 703–718. https://doi.org/10.1016/S0191-8141(96)00104-6

How to cite: Collanega, L., Mellere, D., Massironi, M., and Breda, A.: Three-dimensional analysis of normal faults in the Horda Platform (North Sea): the possible influence of stress perturbations on fault geometries, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21550, https://doi.org/10.5194/egusphere-egu2020-21550, 2020.

EGU2020-15764 | Displays | TS4.2

Three-dimensional geometries of relay zones in normal faults

Giovanni Camanni, Vincent Roche, Conrad Childs, Tom Manzocchi, John Walsh, John Conneally, Muhammad Mudasar Saqab, and Efstratios Delogkos

Individual normal faults are rarely single planar surfaces and often comprise arrays of fault segments arising from the earliest stages of fault propagation. Current models for the geometry and formation of relay zones between adjacent fault segments have been informed mainly by 2D analysis from either maps or cross-sections observed in outcrop and, to a lesser extent, by the analysis of relay zones from 3D seismic reflection data. Using high quality 3D seismic reflection datasets from a selection of sedimentary basins, we investigate fundamental characteristics of segmentation from the analysis of 67 normal faults with modest displacements (< ca. 190 m) which preserve the 3D geometry of 532 relay zones. Our analysis shows that relay zones most often develop by bifurcation from a single fault surface but can also arise from the formation of segments which are disconnected in 3D. Relay zones generally occur between fault segments that step in either the dip or strike direction, and oblique relay zones with an intermediate orientation are less frequent. This is attributed to the influence of mechanical stratigraphy, and to a tendency for faults to locally propagate laterally and vertically rather than obliquely. Cross-sectional stepping of relay zones typically forms contractional rather than extensional relay zones, a configuration which is attributed to the development of early stage Riedel shears associated with fault localisation. Comparing datasets from different geological settings suggests that the mechanical heterogeneity of the faulted sequence and the influence of pre-existing structure are the underlying controls on the geometrical characteristics of relay zones in normal faults, and different combinations of these two controls can account for the variation in fault zone structure observed between datasets.

How to cite: Camanni, G., Roche, V., Childs, C., Manzocchi, T., Walsh, J., Conneally, J., Saqab, M. M., and Delogkos, E.: Three-dimensional geometries of relay zones in normal faults, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15764, https://doi.org/10.5194/egusphere-egu2020-15764, 2020.

EGU2020-19706 | Displays | TS4.2

The three-dimensional geometries of segmented normal faults

John Walsh, Vincent Roche, Giovanni Camanni, Conrad Childs, Tom Manzocchi, John Conneally, Muhammad Mudasar Saqab, and Efstratios Delogkos

Normal faults are often complex three dimensional structures comprising multiple sub-parallel segments separated by intervening relay zones. In this study we outline geometrical characterisations capturing this 3D complexity and providing a semi-quantitative basis for the comparison of faults and for defining the factors controlling their geometrical evolution.

Individual relay zones can be assigned to one of four types according to their form (i.e. whether the bounding segments are unconnected in 3D or merge into a single surface) and their orientation (i.e. whether they are slip-parallel or slip-perpendicular). From the detailed analysis of 84 fault arrays mapped from 3D seismic reflection surveys (including 63 from our mapping of 8 different study areas and 21 derived from the literature), we show that the 3D geometry of fault arrays can be quantitatively defined on the basis of the relative numbers of these types of relay zones.

Detailed mapping of fault zones indicates that whilst they can individually contain all four types of relay zone, their relative proportions varies between different study areas. Differences in the proportions of relay zone types are attributed to two primary controls, the mechanical heterogeneity of the faulted sequence and the presence of basement structure. For example, relay zones with an upward bifurcating geometry are prevalent in faults that reactivate deeper structures, whereas the formation of laterally bifurcating relays is promoted by heterogeneous mechanical stratigraphy. 

Fault arrays in the literature generally do not contain the full range of possible relay zone type but tend to comprise either all bifurcating relay zones or all unconnected relay zones. These end-member fault geometries have led to contrasting conceptual models for the growth of faults. The mapping conducted here suggests that the proportion of bifurcating relay zones increases as data resolution increases and that fault surface bifurcation is ubiquitous. Models for the geometrical evolution of fault arrays must account for the full range of relay zone geometries that appears to be a characteristic of all faults.

How to cite: Walsh, J., Roche, V., Camanni, G., Childs, C., Manzocchi, T., Conneally, J., Saqab, M. M., and Delogkos, E.: The three-dimensional geometries of segmented normal faults, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19706, https://doi.org/10.5194/egusphere-egu2020-19706, 2020.

EGU2020-22497 | Displays | TS4.2

3D geometry of outcrop-scale normal faults from Taranaki, New Zealand

Inbar Vaknin, Andy Nicol, and Conrad Childs

Fault surfaces and fault zones have been shown to have complex geometries comprising a range of morphologies including, segmentation, tip-line splays and slip-surface corrugations (e.g., Childs et al., 2009*). The three-dimensional (3D) geometries of faults (and fault zones) is difficult to determine from outcrop data which are typically 2D and limited in size. In this poster we examine the small-scale geometries of faults from normal faults cropping out in well bedded parts of the Mount Messenger and Mahakatino formations in Taranaki, New Zealand. We present two main datasets; i) measurements and maps of 2D vertical and horizontal sections for in excess of 200 faults and, ii) 3D fault model of a small-fault (vertical displacement ~1 cm) produced by serial fault-perpendicular sections of a block 10x10x13 cm. The sectioned block contains a single fault that offsets sand and silt layers, and comprises two main dilational bends; in the 3D model we map displacement, bedding and fault geometry for the sectioned fault zone. Faults in the 2D dataset comprise a range of geometries including, vertical segmentation, bends, splays and fault-surface corrugations. Although we have little information on the local magnitudes and orientations of stresses during faulting, geometric analysis of the fault zones provides information on the relationships between bed characteristics (e.g., thickness, induration and composition) and fault-surface orientations. The available data supports the view that the strike and dip of fault surfaces vary by up to 25° producing undulations or corrugations on fault surfaces over a range of scales from millimetres to metres and in both horizontal and vertical directions. Preliminary analysis of the available data suggests that these corrugations appear to reflect fault refractions due to changing bed lithologies (unexpectedly the steepest sections of faults are in mudstone beds), breaching of relays and development of conjugate fault sets. The relative importance of these factors and their importance for fault geometry will be explored further in the poster.

 

*Childs, C., Walsh, J.J., Manzocchi, T., Bonson, C., Nicol A., Schöpfer, M.P.J. 2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology 31, 117-127.

How to cite: Vaknin, I., Nicol, A., and Childs, C.: 3D geometry of outcrop-scale normal faults from Taranaki, New Zealand, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22497, https://doi.org/10.5194/egusphere-egu2020-22497, 2020.

EGU2020-20580 | Displays | TS4.2

Transfer of displacement between faults of opposed dip

Conrad Childs, Robert Worthington, John Walsh, and Vincent Roche

The transfer of displacement between faults that dip in the same direction is well understood and relay ramps between adjacent fault segments have been frequently described. Perhaps counterintuitively, displacement can also be transferred between faults that dip in opposite directions but the structure at the boundaries between opposed dipping faults is not well understood. We constrain the mechanism by which displacement is transferred between opposed-dipping faults by examining the geometries of faulted horizons and fault throw distributions at these ‘conjugate relay zones’.

Structure contour maps of horizons offset by overlapping opposed-dipping faults from different extensional settings display a consistent pattern. Above the line of intersection between the conjugate faults the deformed horizon is flat between converging faults and displacement transfer is reflected in changes in footwall elevation. Below the line of fault intersection the mutual footwall is flat and elevation changes occur in the hanging walls of the divergent faults. These elevation changes can be explained as a simple superposition of the deformation fields of two faults that have retarded lateral propagation due to the presence of the other synchronous fault, irrespective of whether the two faults actually intersect. The observed patterns of horizon elevation strongly resemble those seen at boundaries between adjacent basin-scale half-graben of opposed polarity.

How to cite: Childs, C., Worthington, R., Walsh, J., and Roche, V.: Transfer of displacement between faults of opposed dip, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20580, https://doi.org/10.5194/egusphere-egu2020-20580, 2020.

EGU2020-1187 | Displays | TS4.2 | Highlight

The temporal evolution of syn-sedimentary normal faults and the possible role of tip retreat

Bailey Lathrop, Christopher Jackson, Rebecca Bell, and Atle Rotevatn

We need to understand how normal faults grow in order to better determine the tectono-stratigraphic evolution of rifts, and the distribution and size of potentially hazardous earthquakes. The growth of normal faults is commonly described by two models: 1) the propagating fault model (isolated growth model), and 2) the constant-length model. The propagating fault model envisages a sympathetic increase between fault lengthening (L) and displacement (D), whereas the constant-length model states that faults reach their near-final length before accumulating significant displacement (Walsh et al., 2002). Several relatively recent studies agree that faults generally follow a constant-length model, or a “hybrid model” of the two, where most faults reach their near final length within the first 20-30% of their lives, and accrue displacement throughout. Furthermore, in the past 20 years, much research has focused on how faults grow; relatively few studies have questioned what happens to the fault geometry as it becomes inactive, i.e. do faults abruptly die, or do they more gradually become inactive by so-called tip retreat. We here use a 3D seismic reflection dataset from the Exmouth Plateau, offshore Australia to support a hybrid fault growth model for normal faults, and to also determine the relationship between length and displacement as a fault dies. We show that the studied faults grew in three distinct stages: a lengthening stage (<30% of the faults life), a displacement accrual stage (30-75%), and a possible tip retreat stage (75%-end). This work has important implications in our understanding of the temporal evolution of normal faults, both how they grow and how they die.

How to cite: Lathrop, B., Jackson, C., Bell, R., and Rotevatn, A.: The temporal evolution of syn-sedimentary normal faults and the possible role of tip retreat, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1187, https://doi.org/10.5194/egusphere-egu2020-1187, 2020.

In the course of hydrocarbon or geothermal exploration the characterisation of fault zone architectures is of interest for fluid flow modelling and geomechanical studies. Seismic data normally offer the best information for the identification of fault zone geometries in sedimentary basins. However, the internal structure or the damage zone of a fault can be hardly resolved with seismic data as displacements along single fault strands or fractures are by far too small. Thus, it is not possible to directly map small scale faults with seismic methods, though these structures might significantly influence fluid flow. We try to examine the architecture of extensional fault zones in carbonate rocks at subseismic scales by using discrete element method (DEM) techniques to numerically simulate the evolution of fault zones including their associated damage zones.

As a case study we have analysed the geometry, displacement and fault width of normal faults in fine grained jurassic limestones in a quarry in Franconia, Germany. The quarry shows a rather simple set of conjugated 60deg dipping normal faults. Displacement is rather small and varies between c. 5cm up to c. 2m, some faults show almost no offset. The fault thickness varies between 2cm and c. 1m. A closer investigation of the fault geometries reveals, next to planar parts, sometimes complex fault zone structures including restraining and releasing bends, multiple fault strands as well as lenses and associated riedel shears. Analysis of high resolution photogrammetric data revealed a high number of small scale fractures between neighbouring discrete fault surfaces which are interpreted as highly fractured damage zones. Some faults with rather small displacement suggest that the overall inclination of the fault is a result of small subvertical sections which are connected in a staircase like appearance. 

The DEM models simulate normal faulting in a layered marl-limestone sequence driven by the displacement of an underlying basement fault. Different layer geometries and effective vertical stresses in the range of 15-45 MPa, equivalent to an overburden thickness of c. 1000-3000m, have been used in the models. The stress range covers the maximum burial depth of the carbonates, which is assumed to be c. 1500m. Material properties used in the DEM were calibrated based on laboratory data, i.e. results of triaxial deformation tests on the studied limestones.

Results of the models show fault geometries which resemble those observed in the studied outcrop. In particularly under low stress, small offsets and with strongly decoupled layers we observe steeply dipping faults (>70deg) which also show staircase structures composed of sub-vertical fractures within each of the layers and horizontal offsets along the layer interfaces. We also observe the development of multiple fault strands and associated damage zones. 

Our study shows that the DEM models are capable to reproduce observed fault geometries and damage zones. The results help to understand fault zone architectures and depict highly fractured areas in a sub-seismic scale.

How to cite: Deckert, H., Abe, S., and Bauer, W.: Geometrical comparison of outcrop data and discrete element models of extensional fault zones in layered carbonates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9046, https://doi.org/10.5194/egusphere-egu2020-9046, 2020.

EGU2020-10293 | Displays | TS4.2

Investigating fault sinuosity using discrete element modelling in 3D

Janis Aleksans, Conrad Childs, and Martin Schöpfer

Scaled numerical models of faults are useful complements to geological data and by providing insights into fault dynamics they can improve our understanding of the different stages of development of normal fault systems, from nucleation through to localisation and maturity.

In this work, we use Particle Flow Code in three dimensions, which implements the Distinct Element Method (DEM), to study the development of systems of normal faults. The modelling is based on spherical particles that interact via a linear force-displacement law. Cohesion is modelled by adding linear elastic bonds to particle-particle contacts. These bonds break if the critical normal or shear strength is exceeded, thus creating a fracture surface within the rock volume. Model boundaries are represented by rigid and frictionless walls enclosing the modelled volume vertically and at the ends, with periodic lateral boundaries. Extension is replicated by slowly moving the end walls away from the centre while maintaining a constant confining pressure.

The DEM models replicate many aspects of the geometry and dynamics of natural fault systems with stages of fault nucleation, propagation, interaction and linkage. Here we focus on the sinuosity of model fault map traces which show a similar variability to that seen in nature. In the models, fault trace sinuosity is negatively correlated with the Young’s modulus of the rock, so that faults become less sinuous as the stiffness of the solid medium increases. This relationship supports a model in which the lengths of fault segments formed at the early stages of extension are smaller in rocks with lower Young’s modulus than in rocks with higher Young’s modulus. Longer initial fault segments become connected as displacement increases, to give lower sinuosity faults.

How to cite: Aleksans, J., Childs, C., and Schöpfer, M.: Investigating fault sinuosity using discrete element modelling in 3D, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10293, https://doi.org/10.5194/egusphere-egu2020-10293, 2020.

EGU2020-20632 | Displays | TS4.2

Estimation of Carbon Dioxide emissions along an active fault by using geoelectrical measurements

Ester Piegari, Rosa Di Maio, Rosanna Salone, and Claudio De Paola

In the last twenty years, a growing interest is noticed in quantifying non-volcanic degassing, which could represent a significant input of CO2 into the atmosphere. Large emissions of non-volcanic carbon dioxide usually take place in seismically active zones, where the existence of a positive spatial correlation between gas discharges and extensional tectonic regimes has been confirmed by seismic data. Extensional stress plays a key role in creating pathways for the rising of gases at micro- and macro-scales, increasing the rock permeability and connecting the deep crust to the earth surface. Geoelectrical investigations, which are very sensitive to permeability changes, provide accurate volumetric reconstructions of the physical properties of the rocks and, therefore, are fundamental not only for the definition of the seismic-active zone geometry, but also for understanding the processes that govern the flow of fluids along the damage zone. In this framework, we present the results of an integrated approach where geoelectrical and passive seismic data are used to construct a 3D geological model, whose simulated temporal evolution allowed the estimation of CO2 flux along an active fault in the area of Matese Ridge (Southern Apennines, Italy). By varying the geometry of the source system and the permeability values of the damage zone, characteristic times for the upward migration of CO2 through a thick layer of silts and clays have been estimated and CO2 fluxes comparable with the observed values in the investigated area have been predicted. These findings are promising for gas hazard, as they suggest that numerical simulations of different CO2 degassing scenarios could forecast possible critical variations in the amount of CO2 emitted near the fault.

How to cite: Piegari, E., Di Maio, R., Salone, R., and De Paola, C.: Estimation of Carbon Dioxide emissions along an active fault by using geoelectrical measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20632, https://doi.org/10.5194/egusphere-egu2020-20632, 2020.

EGU2020-1073 | Displays | TS4.2

Bayesian Finite-fault inversion for determination of rupture geometry and slip function

Hamed Davari, Anooshiravan Ansari, Sanaz Vajedian, and Navid Kheirdast

In the finite-fault modelling we aim to invert the observed data to image the earthquake rupture inside the solid crust medium. The common finite fault inversion methods usually take a planar geometry for the ruptured area, however, evidences show more complicated geometries (e.g. 2016 Mw7.8 Kaikura) can causes the seismic event. Having the advanced remote sensing technologies (e.g. InSAR), with a high data resolution in the near fault area, we can increase the accuracy for determination of rupture geometry. In this study, we consider a large three dimensional ensemble of point sources in the solid crust medium, each point source can trigger six moment tensor components that makes the model space of the problem. We then find the most probable geometry of the ruptured area by inverting the interferometric observation for moment tensor components. Using the Bayesian inversion with MCMC (Markov Chain Monte Carlo) simulation the fault geometry and static slip deformation is determined from moment tensor to have a ruptured zone that maximizes the posteriori likelihood. The proposed method would be applied to 2019 M5.9 Torkamanchay earthquake in Iran and the preliminary results is presented.

How to cite: Davari, H., Ansari, A., Vajedian, S., and Kheirdast, N.: Bayesian Finite-fault inversion for determination of rupture geometry and slip function , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1073, https://doi.org/10.5194/egusphere-egu2020-1073, 2020.

The seismic-interseismic cycle strongly relates to the interplay between dilation owing to fracturing and frictional granular flow on one hand side and hydrothermal cementation processes on the other side. This study investigates different fault rocks of a crustal-scale fault zone in the Central Alps (Switzerland). We combine microstructural with geochemical approaches to decipher the interaction of grain size reduction via frictional processes with precipitation and resulting particle size increases. The three major fault rocks, i.e. (1) cockade-bearing breccias, (2) cataclasites, and (3) fault gouges, differ in their microstructure. The chemical data clearly demonstrate a decreasing gain of volume along this group of tectonites. Their different precipitation volumes most likely relate to dynamic changed of the local permeability of these rocks. The fluid pathways control the precipitation at different localities and times, which affect the healing of these fault rocks inducing a gain in rock strength. During the next deformation event, the extent of healing therefore directly controls the mechanical behavior of the rock. The estimated volume gain (~+110%) in cockade-bearing breccias is consistent with the seismic dilatant behavior of these frictional rocks as already proposed from other arguments (Berger and Herwegh 2019). This is in contrast to the fault-gouges with only minor gains in volume and mass resulting in a predominantly non-cohesive deformation style. This example indicates that permeability evolution (and related hydrothermal processes) strongly influences the mechanical behavior of such faults. This shows the highly dynamic behavior with time in long-lived fault systems. These dynamic changes in precipitation and resulting different strengths occur at different timescales from minutes (seismic events) to thousands of years.

Ref.: Berger, A., Herwegh, M., 2019. Cockade structures as a paleo-earthquake proxy in upper crustal hydrothermal systems. Nature Scientific Reports, 9, 9209.

How to cite: Berger, A. and Herwegh, M.: Cockade-bearing breccias, cataclasites and gouges in a single fault zone: Microstructures and geochemisty, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2426, https://doi.org/10.5194/egusphere-egu2020-2426, 2020.

Characteristics and evolution process of strike-slip fault is a key issue restricting further exploration in Halahatang area, North Tarim Basin, NW China. This paper uses the new-acquired 3D seismic data and applies fault structural analysis method to study the characteristics of Halahatang area, and discusses evolution process of the faults.
The data used in this paper include 1960 km2 3D seismic data in prestack time migration in Halahatang area, and 4 wells logging data used to calibrate seismic horizon. The bin size of 3D seismic is 25 m×25 m with sampling rate of 4ms, and data length of 7000 ms. Firstly, the Eigen-structure coherency and SO semblance are used to identify the distribution of the strike-slip fault. Secondly, the segmentation of Ordovician strike-slip fault in the study area is studied and the control effect of segmentation on reservoir development and oil and gas enrichment is discussed.
The slip distance of strike-slip fault is very small, the maximum is no more than 2 km. They are typical cratonic strike-slip faults which are developed inside the craton. There are four kinds of structural styles on the profile, which are vertical and steep, positive flower structure, negative flower structure and semi-flower structure. Five structural styles of linear extension, X type, braided structure, horsetail structure, and en-echelon structure are developed on the plane. There are obvious segmentation along the fault trend.
According to the strata subjected to strike-slip deformation and the structural styles in different strata, it is determined that the strike-slip faults have three stages of activity in Halahatang area. 
In the Late Ordovician, NNE, NNW, NE, and NEE strike-slip faults are mainly developed in the study area. The faults on the seismic profile are steep and upright, with small displacements. Faults generally only break into the Ordovician, and later activities will cause faults to go up to the Silurian and even the upper Palaeozoic, which have different tectonic styles with that of the Ordovician faults. The NNE and NNW strike-slip faults form an “X”-type conjugate strike-slip fault, reflecting the conjugate strike-slip fault is generated by near north-south compression.
In the Late Permian, 4 NNW transtensional strike-slip faults are generated by the activation of some Ordovician strike-slip faults. In the Late Cretaceous-Palaeocene, the study area mainly develop several groups of NNE, near SN transtensional strike-slip faults. These transtensional strike-slip faults appear as graben and horst or stepped faults on the section. These transtensional strike-slip faults are R-shear faults in the Mesozoic and Cenozoic strata formed by the Ordovician NNE faults slip dextrally under the tectonic stress.

How to cite: Ma, D.: Characteristics and evolution process of strike-slip fault in Halahatang area, North Tarim Basin, NW China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20861, https://doi.org/10.5194/egusphere-egu2020-20861, 2020.

EGU2020-237 | Displays | TS4.2

Fault kinematic investigations along the Panchkula-Morni region, NW Himalaya, India

Ajay Kumar, Soumyajit Mukherjee, Mohamedharoon A. Shaikh, and Seema Singh

The Morni hills located in the north-western Himalaya in Panchkula district, Haryana has undergone poly-phase deformation owing to its complex tectonic history. In order to better understand the kinematic evolution of study area, detailed structural analyses of the fault system at regional-scale is carried out. We perform paleostress analyses on the collected fault-slip data to derive the paleostress tensors. The fault-slip data includes attitudes of fault planes and slickenside lineations, and the sense of slip along the fault plane determined by observing various kinematic indicators. The study area mainly exposes compacted, fine- to medium-grained calcareous sandstones belonging to the lower Siwalik formation in the Himalayan foreland basin. The exposed sandstones contain numerous striated slip planes of varying slip-sense. As the fault planes are intra-formational and exposed in uniform lithology, sense of slip cannot be determined through offset markers. In such cases, the sense of slip of the fault plane is determined solely by observing various slickenside kinematic indicators and fracture types developed on the faulted surface. The slickenside kinematic indicators e.g., calcite mineral steps were found useful in deciphering the sense of movement of each of the slip plane. The paleostress inversion of fault-slip data was carried out by applying the open source software T-Tecto studio X5 to obtain the reduced stress tensor. The Paleostress inversion algorithm called the Right Dihedral Method (RDM) is executed to estimate the principal stress axes orientations. Temporally, the slip planes may have reactivated multiple times preserving multiple slickenside orientations superimposing one another. Such fault-slip data are called heterogeneous and therefore, multiple stress states are deduced to explain the heterogeneous fault-slip data. The paleostress analysis results indicate stress regime index (R’) range 1.25–2.25 and 0.20–1.00 suggesting pure strike-slip to transpressive and pure extensive to transtensive stress regime respectively prevailing in the study area.

How to cite: Kumar, A., Mukherjee, S., Shaikh, M. A., and Singh, S.: Fault kinematic investigations along the Panchkula-Morni region, NW Himalaya, India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-237, https://doi.org/10.5194/egusphere-egu2020-237, 2020.

Buried-hills, paleotopographic highs covered by younger sediments, become the focused area of exploration in China in pace with the reduction of hydrocarbon resources in the shallow strata. A number of buried-hill fields have been discovered in Tanhai area located in the northeast of Jiyang Depression within Bohai Bay Basin, which provides an excellent case study for better understanding the structural evolution and formation mechanism of buried-hills. High-quality 3-D seismic data calibrated by well data makes it possible to research deeply buried erosional remnants. In this study, 3-D visualization of key interfaces, seismic cross-sections, fault polygons maps and thickness isopach maps are shown to manifest structural characteristics of buried-hills. Balanced cross-sections and fault growth rates are exhibited to demonstrate the forming process of buried-hills. The initiation and development of buried-hills are under the control of fault system. According to strike variance, main faults are grouped into NW-, NNE- and near E-trending faults. NW-trending main faults directly dominate the whole mountain range, while NNE- and near E-trending main faults have an effect on dissecting mountain range and controlling the single hill. In addition, secondary faults with different nature complicate internal structure of buried-hills. During Late Triassic, NW-trending thrust faults formed in response to regional compressional stress field, preliminarily building the fundamental NW-trending structural framework. Until Late Jurassic-Early Cretaceous, rolling-back subduction of Pacific Plate and sinistral movement of Tan-Lu Fault Zone (TLFZ) integrally converted NW-trending thrust faults into normal faults. The footwall of NW-trending faults quickly rose and became a large-scale NW-trending mountain range. The intense movement of TLFZ simultaneously induced a series of secondary NNE-trending strike-slip faults, among which large-scale ones divided the mountain range into northern, middle and southern section. After entry into Cenozoic, especially Middle Eocene, the change of subduction direction of Pacific Plate induced the transition of regional stress field. Near E-trending basin-controlling faults developed and dissected previous tectonic framework. The middle section of mountain range was further separated into three different single hill. Subsequently, the mountain range was gradually submerged and buried by overlying sediments, due to regional thermal subsidence. Through multiphase structural evolution, the present-day geometry of buried-hills is eventually taken shape.

How to cite: Zhang, M., Wu, Z., and Yan, S.: Fault System Evolution and Its Influences on Buried-hills Formation in Tanhai Area of Jiyang Depression, Bohai Bay Basin, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2829, https://doi.org/10.5194/egusphere-egu2020-2829, 2020.

EGU2020-7290 | Displays | TS4.2

Surface and subsurface fault mapping in the Yorkshire Wolds, UK

Rowan Vernon, Jon Ford, Katie Watkinson, Richard Haslam, Mark Woods, Andrew Farrant, Helen Burke, Alice Davis, Jennifer Lear, Harris Tarnanas, and Edward Wrathmell

The Flamborough Head Fault Zone (FHFZ) marks the southern extent of the Cleveland Basin and the northern margin of the Market Weighton Block, England. It is a regionally-significant structural zone which has undergone a complex history of Mesozoic-Cenozoic extension and compression. It is predominantly comprised of east-west trending faults which form a graben that is dissected by north-south trending faults, including the southern extension to the Peak Trough, the Hunmanby Fault. To the west, FHFZ links with the Howardian Fault System and offshore, in the east, it is truncated by the north-south trending Dowsing Fault. The FHFZ is well exposed and described from coastal cliff sections at Flamborough Head but the inland development of the faults have hitherto been poorly explored predominantly due to limited inland-exposure.

The region around the FHFZ is underlain by the Chalk Group, a 500 m thick limestone succession. The Chalk Group is a principal aquifer that is the main source of water supply in East Yorkshire. The geometry and physical characteristics of the Chalk succession, including the effects of faulting, influence groundwater flow across the region. A range of modern data and recent geological research highlight that considerable changes can be made to the region’s current geological maps and subsurface understanding. Ensuring these features are better-documented is key for up-dating groundwater models to enable more confident decisions about land-use, water management and environmental regulation.

A multi-faceted approach to geological mapping has been undertaken in the region by the British Geological Survey (BGS), in collaboration with the Environment Agency. Remote sensing and field mapping of the superficial deposits has better characterised the extent and nature of these deposits and identified potential recharge ‘windows’ into the bedrock. Remote sensing, targeted field mapping, palaeontological analysis, passive seismic and 2D onshore seismic interpretation have been integrated to produce a new map of the Chalk succession, which reveals the inland extension of the FHFZ in unprecedented detail. Combining these techniques has enabled us to bridge the gap between the surface geology and deeper subsurface structure, increase our understanding of the geology of the region and produce an improved conceptual model at a range of depths which will be used to better manage water resources.

How to cite: Vernon, R., Ford, J., Watkinson, K., Haslam, R., Woods, M., Farrant, A., Burke, H., Davis, A., Lear, J., Tarnanas, H., and Wrathmell, E.: Surface and subsurface fault mapping in the Yorkshire Wolds, UK, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7290, https://doi.org/10.5194/egusphere-egu2020-7290, 2020.

EGU2020-9569 | Displays | TS4.2

3D reconstructions of fault surfaces and key stratigraphic horizons to define recent tectonic activity in the northern Apennines outer fronts and foredeep (northern Adriatic Sea, Italy)

Yuri Panara, Francesco Emanuele Maesano, Roberto Basili, Giacomo Losi, Jakub Fedorik, and Giovanni Toscani

Fault plane attitude and dimension are important parameters for deriving seismotectonic information or input data for earthquake hazard assessment and in this sense a complete 3D view and characterization of geological and structural elements is essential. However, there is always a trade-off between structural complexity and data availability at the scale of the designed application.

In the last few years, merging public and confidential seismic reflection profiles and borehole data, were used in order to carry out a 3D reconstruction of fault planes and Plio-Pleistocene stratigraphic horizons in the northern Adriatic Sea, at the front of the northern Apennine fold-and-thrust belt and associated foredeep. The study area straddles the Italian coastline and subsurface data interpretation allowed us to reconstruct the structural setting of both onshore and offshore structures. Although it is known that this area has low rates of active tectonic deformation, it hosts important seismogenic faults associated with instrumental seismicity and historical earthquakes.

The dense distribution of seismic reflection profiles allowed us to perform an accurate 3D reconstruction of almost 50 fault planes, of different dimensions and order of importance. Their geometrical and structural features helped to define the most recent tectonic phases. To this end, we also mapped several Plio-Pleistocene regional unconformities and integrated them with previously published reconstructions of key horizons.

In some cases, where further published data were available, it was also possible to perform detailed cross sections whose restoration allowed us to reconstruct the post-Miocene (5.33 Ma) slip-rate history of some important tectonic structures with a detail of ~1 Ma. The 3D geological model revealed several structural features like fault continuity and terminations, level of connectivity, presence of lateral ramps, along strike variations of displacement that could not be fully addressed using cross sections alone.

How to cite: Panara, Y., Maesano, F. E., Basili, R., Losi, G., Fedorik, J., and Toscani, G.: 3D reconstructions of fault surfaces and key stratigraphic horizons to define recent tectonic activity in the northern Apennines outer fronts and foredeep (northern Adriatic Sea, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9569, https://doi.org/10.5194/egusphere-egu2020-9569, 2020.

EGU2020-14014 | Displays | TS4.2

Taking up the challenge of identifying active faults for seismic hazard assessment of the city of Ulaanbaatar (Mongolia)

Abeer Al Ashkar, Antoine Schlupp, Matthieu Ferry, and Munkhuu Ulziibat

Ulaanbaatar, capital city of Mongolia (1.5 M inhabitants, i.e. half of the country’s population), is located in Central Mongolia where seismic activity and deformation rates are low (< 1mm/yr.). In contrast, Western Mongolia has experienced four great earthquakes (M ≥ 8) between 1905 and 1957 as well as numerous moderate ones. Some (e.g. the 1957 Bogd earthquake) have been felt at the capital located more than 500 km away. During the last decades, several active faults, located 10 km to 45 km away from Ulaanbaatar, have been discovered and studied. Tectonic Geomorphology and Paleoseismology studies indicate that these faults are able to generate earthquakes of M ≥ 6 with average recurrence times ranging from 1 kyr to 10 kyr (e.g. 1195 ± 157 yr for the Sharkhai fault). Furthermore, since 2005 very dense microseismicity swarms located 10 km NW of the City have been monitored by the Seismic Observatory of Mongolia (IAG). Further studies showed the swarms are produced by the previously undetected Emeelt fault zone along three parallel branches. Due to their proximity to a key population and economic center, all these active structures contribute significantly to increasing Seismic Hazard. During the course of these studies, we documented Quaternary activity along several supplementary faults, which demonstrates that the knowledge of active faults in the region is still incomplete and suggests seismic hazard levels should be revised. Therefore, we undertook to map, as exhaustively as possible, all active tectonic structures in a radius of 300 km around Ulaanbaatar. Here we present preliminary results based on the combined analysis of multi-source and multi-sensor data from satellite images (e.g. Pleiades, Sentinel-2, Landsat8), UAV photographs, and digital elevation models (TanDEM-X and UAV photogrammetric DEMs) in order to extract the most relevant information at various scales. We performed a detailed Tectonic Geomorphology analysis of alluvial and slope landforms to identify recent deformation affecting stream channels and associated deposits (ponds, fans and terraces). On that basis, we document segmentation, deformation patterns and kinematics, as well as relationships between faults at regional scale. Finally, we identify potential sites for future paleoseismic investigations along the main structures. Though this project is in a preliminary stage, our long-term goal is to build a comprehensive database of sources of seismic hazard to the City of Ulaanbaatar and integrate these results into seismic hazard calculations.

How to cite: Al Ashkar, A., Schlupp, A., Ferry, M., and Ulziibat, M.: Taking up the challenge of identifying active faults for seismic hazard assessment of the city of Ulaanbaatar (Mongolia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14014, https://doi.org/10.5194/egusphere-egu2020-14014, 2020.

The Yangsan Fault Zone (YFZ) of NNE trend and Ulsan Fault Zone (UFZ) of NNW trend are developed in the Gyeongsang Basin, the southern part of the Korean Peninsula, and many active faults and Quaternary faults (ATV and QTY Fs) have been found in these fault zones. The tectonic movement of the YFZ can be explained at least by two different strike-slip movements, named as D1 sinistral strike-slip and D2 dextral strike-slip, and then two different dip-slip movements, named as D3 conjugate reverse-slip and D4 Quaternary reverse-slip. The surfaces of D3 fault in basement rocks are extended those of D4 fault in the covering Quaternary deposits, like the other Quaternary faults within the YFZ. The D3 and D4 faults were formed under the same compression of (N)NW-(S)SE direction. After that, the active faults occurred in the Korean Peninsula under the compression of E-W direction. The ATV and QTY Fs thrust the Bulguksa igneous rocks of Late Cretaceous-Early Tertiary upon the Quaternary deposits or are developed within the Quaternary deposits in the UFZ, showing the reverse-slip sense of top-to-the west movement. This presentation is suggested the formation model of neotectonic fault zone in the UFZ on the basis of the various trends [(W)NW, N-S, (E)NE trends] of fault surfaces of the ATV and QTY Fs found in the UFZ, and the zigzag-form connecting line of their outcrop sites, and the deformation history (the N-S trending 1st reverse-slip faulting by the 1st E-W compression and associated the E-W trending strike-slip tear faulting, the N-S trending 2nd reverse-slip faulting by the 2nd E-W compression) of neotectonic fault zone in the Singye-ri valley around the UFZ, and the compressive arc-shaped lineaments which convex to the west reported in the YFZ.

Acknowledgements: This research was financially supported by a grant (2017-MPSS31-006) from the Research and Development of Active fault of Korean Peninsula funded by the Korean Ministry of the Interior and Safety, and by Ministry of public Administration and Security as Disaster Prevention Safety Human resource development Project.

How to cite: Kang, J.-H.: The formation model of neotectonic fault zone in the Ulsan Fault Zone, Gyeongsang basin, Korea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21089, https://doi.org/10.5194/egusphere-egu2020-21089, 2020.

TS5.1 – Seismic analysis and geodetic modelling: multi-disciplinary approach to problem-solving

EGU2020-11146 | Displays | TS5.1

Using Seismic and Geodetic Observations in a Simultaneous Kinematic Model of the 2019 Ridgecrest, California Earthquakes

Dara Goldberg, Diego Melgar, Valerie Sahakian, Amanda Thomas, Xiaohua Xu, Brendan Crowell, and Jianghui Geng

The July 4, 2019 Mw6.4 and subsequent July 6, 2019 Mw7.1 Ridgecrest Sequence earthquakes in California, USA, ruptured orthogonal fault planes in the Little Lake Fault Zone, a low slip rate (1 mm/year) dextral fault zone in the region linking the Eastern California Shear Zone (ECSZ) and Walker Lane. This region is tectonically interesting because it accommodates approximately one fourth of plate boundary motion and has been proposed to be an incipient transform fault system that could eventually become the main tectonic boundary, replacing the San Andreas Fault. Additionally, large ruptures of such low slip rate faults are important to understand from the context of seismic hazard. We investigate the interaction within this fault system and demonstrate a novel kinematic slip method that inverts for both earthquakes simultaneously, allowing us to use Interferometric Synthetic Aperture Radar (InSAR) data that spans both earthquakes, along with seismic (strong-motion accelerometer) and geodetic (high-rate Global Navigation Satellite Systems (GNSS) and GNSS static offset) datasets that recorded each earthquake separately. We also present results of Coulomb stress change modeling to evaluate how the Mw6.4 earthquake may have affected the subsequent Mw7.1 event. Our findings suggest a complex rupture process and interactions between several fault structures, including dynamic and static triggering between splays involved in the July 4th Mw6.4 and July 6th Mw7.1 events. The integration of seismic and geodetic datasets provides constraints on rupture continuation through stepovers, as well as important context for regional models of seismic source characterization and hazard.

How to cite: Goldberg, D., Melgar, D., Sahakian, V., Thomas, A., Xu, X., Crowell, B., and Geng, J.: Using Seismic and Geodetic Observations in a Simultaneous Kinematic Model of the 2019 Ridgecrest, California Earthquakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11146, https://doi.org/10.5194/egusphere-egu2020-11146, 2020.

EGU2020-13379 | Displays | TS5.1

Joint seismic and geodetic transdimensional earthquake source optimization guided by multi-array teleseismic backprojection

Andreas Steinberg, Henriette Sudhaus, Frank Krüger, Hannes Vasyura-Bathke, Simon Daout, and Marius Paul Isken

Earthquakes have been observed to initiate and terminate near geometrical irregularities (bends, step-overs, branching of secondary faults). Rupture segmentationinfluences the seismic radiation and therefore, the related seismic hazard. Good imaging of rupture segmentation helps to characterize fault geometries at depth for follow-up tectonic, stress-field or other analyses. From reported earthquake source models it appears that large earthquakes with magnitudes above 7 are most often segmented, while earthquakes with magnitudes below 6.5 most often are not. If this observationreflects nature or if it is rather an artifact of our abilities to well observe and infer earthquake sources can not be answered without an objective strategy to constrain rupture complexity. However, data-driven analyses of rupture segmentation are not often conducted in source modeling as it is mostly pre-defined through a given and fixed number of sources. 

We, here, propose a segmentation-sensitive source analysis by combining a model-independent teleseismic back-projection and image segmentation methods with a kinematic fault inversion. Our approach is twofold. We first develop a time-domain multi-array back-projection of teleseismic data with robust estimations of uncertainties based on bootstrapping of the travel-time models and array weights (Palantiri software, https://braunfuss.github.io/Palantiri/). Backprojection has proven to be a powerful tool to infer rupture propagation from teleseismic data and identify irregularities of the rupture process over time.

We then model the earthquake sources with the results obtained from the backprojection and additional information obtained from the application of image segmentation methods to the InSAR displacement maps. For this second step, we use a combination of different observations (teleseismic waveforms and surface displacement maps based on InSAR) to increase the resolution on the spatio-temporal evolution of fault slip. We develop a novel Informational criterion based transdimensional optimization scheme to model an adequate representation of the source complexity. We present our method on two cases study: the 2016 Muji Mw 6.7 earthquake (Pamir) and the 2008-2009 Qaidam (Tibet) sequence of earthquakes. We find that the 2008 Qaidam earthquake ruptures one segment, the 2016 Muji earthquake on two segments and the Qaidam 2009 earthquake on two or three segments.

This work is based on the open-source, python-based Pyrocko toolbox and is conducted within the project “Bridging Geodesy and Seismology” (www.bridges.uni-kiel.de<http://www.bridges.uni-kiel.de>) funded by the DFG through an Emmy-Noether grant.

 

How to cite: Steinberg, A., Sudhaus, H., Krüger, F., Vasyura-Bathke, H., Daout, S., and Isken, M. P.: Joint seismic and geodetic transdimensional earthquake source optimization guided by multi-array teleseismic backprojection, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13379, https://doi.org/10.5194/egusphere-egu2020-13379, 2020.

EGU2020-3704 | Displays | TS5.1

Post-Seismic Deformation in the Northern Antarctic Peninsula Following the 2013 Magnitude 7.7 Scotia Sea Earthquake

Grace Nield, Matt King, Achraf Koulali, Nahidul Samrat, and Rebekka Steffen

Large earthquakes in the vicinity of Antarctica have the potential to cause post-seismic deformation on the continent, affecting measurements of displacement and gravity field change from GRACE or those attempting to constrain models of glacial isostatic adjustment.

In November 2013 a magnitude 7.7 strike-slip earthquake occurred in the Scotia Sea around 650 km from the northern tip of the Antarctic Peninsula. GPS coordinate time series from the Peninsula region show a change in rate after this event indicating a far-field post-seismic deformation signal is present. At these far-field locations, the effects of fault after-slip are likely negligible and hence we consider the deformation to be due to post-seismic viscoelastic deformation. Here we use a global spherical finite element model to investigate the extent of post-seismic viscoelastic deformation in the northern Antarctic Peninsula. We investigate possible 1D earth models that can fit the GPS data and consider the effect of including a simple 3D earth structure in the region. These results, combined with previous results showing East Antarctica is still deforming following 1998 Mw 8.2 intraplate earthquake, suggest that much of Antarctica is deforming due to recent post-seismic deformation.

How to cite: Nield, G., King, M., Koulali, A., Samrat, N., and Steffen, R.: Post-Seismic Deformation in the Northern Antarctic Peninsula Following the 2013 Magnitude 7.7 Scotia Sea Earthquake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3704, https://doi.org/10.5194/egusphere-egu2020-3704, 2020.

EGU2020-10569 | Displays | TS5.1

Seismic and geodetic response to crustal deformation in Krísuvík volcanic system, southwest Iceland

Revathy M. Parameswaran, Ingi Th. Bjarnason, and Freysteinn Sigmundsson

The Reykjanes Peninsula (RP) is a transtensional plate boundary in southwest Iceland that marks the transition of the Mid-Atlantic Ridge (MAR) from the offshore divergent Reykjanes Ridge (RR) in the west to the South Iceland Seismic Zone (SISZ) in the east. The seismicity here trends ~N80°E in central RP and bends to ~N45°E at its western tip as it joins RR. Seismic surveys, geodetic studies, and recent GPS-based kinematic models indicate that the seismic zone is a collection of strike-slip and normal faults (e.g., Keiding et al., 2008). Meanwhile, the tectonic processes in the region also manifest as NE-SW trending volcanic fissures and normal faults, and N-S oriented dextral faults (e.g., Clifton and Kattenhorn, 2006). The largest of these fissure and normal-fault systems in RP is the Krísuvík-Trölladyngja volcanic system, which is a high-energy geothermal zone. The seismicity here predominantly manifests RP’s transtentional tectonics; however, also hosts triggered events such as those following the 17 June 2000 Mw6.5 earthquake in the SISZ (Árnadottir et al., 2004) ~80 km east of Krísuvík. Stress inversions of microearthquakes from 1997-2006 in the RP indicate that the current stress state is mostly strike-slip with increased normal component to the west, indicating that the seismicity is driven by plate diverging motion (Keiding et al., 2009). However, the geothermal system in Krísuvík is a potential secondary source for triggered seismicity and deformation. This study uses seismic and geodetic data to evaluate the activity in the Krísuvík-Trölladyngja volcanic system. The seismic data is used to identify specific areas of focused activity and evaluate variations in the stress field associated with plate motion and/or geothermal activity over space and time. The data used, within the time period 2007-2016, was collected by the the South Icelandic Lowland (SIL) seismic network operated and managed by the Iceland Meterological Office (IMO). Furthermore, variations in seismicity are compared to crustal deformation observed with TerraSAR-X images from 2009-2019. Crustal changes in the Krísuvík area are quantified to develop a model for corresponding deformation sources. These changes are then correlated with the stress-field variations determined with seismic analysis.

How to cite: M. Parameswaran, R., Th. Bjarnason, I., and Sigmundsson, F.: Seismic and geodetic response to crustal deformation in Krísuvík volcanic system, southwest Iceland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10569, https://doi.org/10.5194/egusphere-egu2020-10569, 2020.

Variation in seismic amplitudes provides different information from the subsurface such as evidence of hydrocarbon accumulation or changes in the lithologies. Furthermore, amplitude anomalies may also be created by thin layers. However, amplitude anomalies are affected by various factors that may not be caused by changes in the lithology or the existence of hydrocarbons such as those caused by acquisition or processing of the seismic data. Hence, these effects need to be understood, eliminated or reduced to background noise levels. Reprocessing of 2D (1992, Caulerpa) and 3D (1995, Laminaria) pre-stack seismic data were applied to examine the veracity of amplitude anomalies at the seabed  in the Laminaria High NW  Shelf of Australia. This study showed that by applying simple but similar processing steps to that applied to the 3D seismic volume that were used in previous studies; it is possible to produce similar amplitude anomalies at the seabed. However, it was noted that amplitude anomalies at the seabed are sensitive to the velocity model; in particular, when applying radon demultiple to suppress the multiple energy in the seismic data. The result of reprocessing these data suggested that the different results of mapping the seabed reflector in this study and previous studies could result from the different processing parameters applied to each data set. Furthermore, reprocessing of the 2D (1992, Caulerpa) that covered the Laminaria High showed similar but not identical amplitude anomalies compared with the original 3D seismic volume (1995), and it is proposed that these difference could be related to the processing applied on each data set. It is concluded in this study, that amplitude anomalies at the seabed are frequency dependent so any manipulation in the frequency filters could affect these amplitude anomalies.

How to cite: Abdulkareem, L.: Quantitative analysis for amplitude anomalies at the seabed in the Laminaria High North West Shelf of Austuralia from 2D (1992 Caulerpa) and 3D (1995, Laminaria) pre-stack seismic data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2059, https://doi.org/10.5194/egusphere-egu2020-2059, 2020.

EGU2020-548 | Displays | TS5.1

The detection of seismo-ionospheric anomalies using the deep neural network

Hamidreza Bagheri, Hamid Farzaneh, and Hadi Amin

Total Electron Content (TEC) measured by the Global Positioning System (GPS) is useful to register the pre-earthquake ionospheric anomalies appearing before a large earthquake. In this paper, the TEC value was predicted using the deep neural network. Also, the anomaly is detected utilizing this predicted value and the definition of the threshold value, leading to the use of the anomaly as a precursor. In neural networks, Convolutional Neural Network (ConvNets or CNNs) is one of the main categories to do images recognition, image classifications, object detections, facial recognition, etc. In this study, the CNNs has been applied to the ionospheric TEC of the Global Ionosphere Maps (GIM) data on a powerful earthquake in Chile on the 1st of April in 2014. In this method, a two-hour TEC observation is converted into a time series for this region for several consecutive days before and after the occurrence of an earthquake. The prediction of the non-linear time series is formulated as a method for specific pattern recognition in the input data using ConvNets. Results indicate that under suitable conditions the TEC values can be estimated properly in the aforementioned days and hours by ConvNets. In order to show the efficiency of this method in predicting the time series, the results obtained from this research were compared with those from other researches.

How to cite: Bagheri, H., Farzaneh, H., and Amin, H.: The detection of seismo-ionospheric anomalies using the deep neural network, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-548, https://doi.org/10.5194/egusphere-egu2020-548, 2020.

Assessing the temporal evolution of stresses along seismogenic faults is typically done by combining geodetic observations collected near the locations of previous large earthquakes with modeling of the interseismic, coseismic, and postseismic deformation. Here we explore whether it is feasible to link the charge phase of large earthquakes to rigid microplate motions, which can be inferred from geodetic observations that are instead collected further away from crustal faults. We use numerical simulations of the dynamics and associated kinematics of an idealized, rigid microplate subject to stress buildups and drop-offs from a series of earthquakes. Simulations span the charging cycle of a single 6.5 < MW < 8 earthquake. Several MW < 6.5 earthquakes distributed according to the Gutenberg-Richter law occur meanwhile. We use large ensembles of simulations featuring randomly-generated earthquake hypocenters and make statistical assessments of the fraction of model time needed for the microplate motions to depart from the initial one to a degree that is larger than typical geodetic uncertainties, and for at least 90% of the remaining time before the large earthquake occurs. We find such a fraction (i) to be only one tenth in simulations that do feature a large earthquake, (ii) to be longer in simulations that do not, and (iii) to remain small for realistic microplate geometries and asthenosphere viscosity/thickness values. Our inferences hold also when we simulate geodetic time series shorter than the large-earthquake cycle, and even when we assume that only half of the stress buildup affects the microplate rigid motion.

How to cite: Iaffaldano, G. and Martin de Blas, J.: Using rigid microplate motions to detect the stress buildup preceding large earthquakes: a feasibility test based on synthetic models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12670, https://doi.org/10.5194/egusphere-egu2020-12670, 2020.

EGU2020-13090 | Displays | TS5.1

Strain patterns of Sichuan and Yunnan, China from GPS data and comparison between seismic and geodetic moment release

Jingyang Zhao, Yanqiang Wu, Hongbao Liang, and Kaifu Du

We processed data from ~600 GPS stations, covering the period 1999-2018, to provide new insights into the crustal motion and deformation of Sichuan and Yunnan, China. We used the derived velocity field to evaluate two-dimensional strain rate tensors, and mapped the main, maximum shear, dilatation, east-west and north-south strain rates.The spatial distribution of the main strain rate in the Sichuan-Yunnan region generally shows an orderly deflection. The minimum principal strain rate is northeastward in the west of the Sichuan-Yunnan block boundary, gradually deflects eastward and southeastward toward the east and south, and returns to the northeast direction until the southwestern edge of Sichuan-Yunnan. This reflects the complex tectonic dynamics background of the study area. The high value of the maximum shear strain rate is mainly distributed along the eastern boundary of the Sichuan-Yunnan block, especially near the Xianshuihe-Xiaojiang fault, where the maximum shear strain rate exceeds 4.0 × 10-8 / a. The area strain rate in the study region shows that the areas of compression and expansion are comparable, with weak tensions prevailing in the interior and compression in the marginal areas. The strain rate result also shows that the east-west strain rate component in the southern Sichuan-Yunnan is dominated by positive value, and the north is dominated by negative value. It indicates that the east-west deformation in the south of the Sichuan-Yunnan is dominated by expansion, and in the north is dominated by contraction. The north-south component strain rate shows that there is a significant positive high-value zone in and around the Xianshuihe fault zone, while southern Sichuan-Yunnan is a more significant negative-value zone, and the distribution of negative high-value zones is controlled by the south boundary of the Sichuan-Yunnan block. Based on the fault activity and focal mechanism data, the study area was divided into several seismic source zones. We translated the geodetic strain rates into rates of seismic moment release in each zone and compared them with earthquake catalog-based moment rates, to evaluate the potential of seismic activity of the region. The analysis shows the geodetic strain is completely released seismically for most of the study area. However, for the southern Yunnan,the geodesy-based moment rates are more than 2 times higher than the earthquake-based rates. This result indicates that at least a large earthquake may occur in southern Yunnan in the future.

How to cite: Zhao, J., Wu, Y., Liang, H., and Du, K.: Strain patterns of Sichuan and Yunnan, China from GPS data and comparison between seismic and geodetic moment release, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13090, https://doi.org/10.5194/egusphere-egu2020-13090, 2020.

EGU2020-18250 | Displays | TS5.1

On the cause of enhanced landward motion of the overriding plate after a major subduction earthquake

Mario D'Acquisto, Matthew Herman, and Rob Govers

During and after a large megathrust earthquake, the overriding plate above the rupture zone moves oceanward. Enigmatically, the post-seismic motion of the overriding plate after several recent large earthquakes, further along strike from the rupture zone, was faster in the landward direction than before the event. Previous studies interpreted these changes as the result of increased mechanical coupling along the megathrust interface, transient slab acceleration, or bulk postseismic deformation with elastic bending mentioned as a possible underlying mechanism. Before invoking additional mechanisms, it is important to understand the contribution of postseismic deformation processes that are inherent features of megathrust earthquakes. We thus aim to quantify and analyse the deformation that produces landward motion during afterslip and viscous relaxation. 

We use velocity-driven 3D mechanical finite element models, in which large megathrust earthquakes occur periodically on the finite plate interface. The model geometry is similar to most present-day subduction zones, but does not exactly match any specific subduction zone. 

The results show increased post-seismic landward motion at (trench-parallel) distances greater than 450 km from the middle of the ruptured asperity. Similar patterns of landward motion are generated by viscous relaxation in the mantle wedge and by deep afterslip on the shear zone downdip of the brittle megathrust interface. Landward displacement due to postseismic relaxation largely accumulates at exponentially decaying rates until ~6 Maxwell relaxation times after the earthquake. The spatial distribution and magnitude of the velocity changes is broadly consistent with observations related to both the 2010 Maule and the 2011 Tohoku-oki earthquakes.  

Further model experiments show that patterns of landward motion due to afterslip and to viscous relaxation are insensitive to the locking pattern of the megathrust. However, the locking distribution does affect the magnitudes of the displacements and velocities. Results show that the increased landward displacement due to postseismic deformation scales directly proportionally to seismic moment. 

We conclude that the landward motion results from in-plane horizontal bending of the overriding plate and mantle. This bending is an elastic response to oceanward tractions near the base of the plate around the ruptured asperity, causing extension locally and compression further away along-trench. This elastic in-plate bending consistently contributes to earthquake-associated changes in surface velocities for the biggest megathrust earthquakes, producing landward motion along strike from the rupture zone.

How to cite: D'Acquisto, M., Herman, M., and Govers, R.: On the cause of enhanced landward motion of the overriding plate after a major subduction earthquake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18250, https://doi.org/10.5194/egusphere-egu2020-18250, 2020.

EGU2020-18393 | Displays | TS5.1

Fault stressing in the overriding plate due to megathrust coupling along the Nankai trough, Japan

Akinori Hashima, Hiroshi Sato, Tatsuya Ishiyama, Andrew Freed, and Thorsten Becker

The Nankai trough has hosted ~M8 interplate earthquakes with the interval of 100-200 years. The crustal activity in southwest (SW) Japan in the overriding plate was relatively quiet after the last coupled megathrust ruptures occurred in 1944 and 1946. In the recent 20 years, however, SW Japan has experienced ~M7 earthquakes such as the 2016 Kumamoto earthquake. Similar activation of crustal earthquakes in the later stage of the megathrust earthquake cycles can be found in the historical earthquake occurrence based on paleographical studies. Such a change cannot be resolved by the probabilistic approaches, which usually rely on paleo-seismological data on longer timescales. Here, we show a deterministic way to quantify the current stressing state on the source faults due to megathrust coupling at the Nankai trough, making use of the data captured by the dense, modern geodetic network in Japan.

We constructed a 3-D finite element model (FEM) around the Japanese islands including the viscoelastic feature in the asthenosphere. The geometry of plate boundary on the Philippine Sea slab is based on earthquake distributions determined by the previous studies. In particular, the bended geometry at the junction of the Nankai trough and the Ryukyu trench is crucial for calculating stress. The plate boundary is divided into 8 x 27 patches to generate Green’s functions. The model region is divided into about 1000,000 tetrahedral elements with dimension of 5-100 km. We revised the source fault model by the Headquarters for Earthquake Research Promotion based on recent geophysical and geological data and added new faults in the Sea of Japan.

Our inter-seismic inversion suggests ~8 cm/year slip-rate deficit, which is consistent with the previous studies. Using the slip distribution, we calculate stressing rates on the source faults over SW Japan. In particular, positive Coulomb stressing rate on the source faults of the 2016 Kumamoto earthquake and the other M7 earthquakes is consistent with their occurrence. The crustal earthquakes before the 1944 and 1946 megathrust events also occurred in the region with source faults with positive Coulomb stressing rate.

How to cite: Hashima, A., Sato, H., Ishiyama, T., Freed, A., and Becker, T.: Fault stressing in the overriding plate due to megathrust coupling along the Nankai trough, Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18393, https://doi.org/10.5194/egusphere-egu2020-18393, 2020.

TS5.2 – Advances in understanding earthquake sequences and (a)seismic slip across scales

EGU2020-18554 | Displays | TS5.2

Going from stable creep to aseismic slow slip events in the ductile realm

Marcel Thielmann and Thibault Duretz

The accommodation of motion on faults spans a large spectrum of slip modes, ranging from stable creep to earthquakes. While seismic slip modes certainly have the largest impact on the surface due to the induced ground shaking, it has been recognized that slow aseismic slip modes relax most of the accumulated stresses on a fault. It has also been suggested that aseismic slip controls seismic events, thus making this kind of slip mode key for earthquake prediction.

Despite the importance of aseismic slow slip, its underlying physical mechanisms are still unclear. Commonly, slow slip events are modeled in terms of frictional failure, employing a rate-and-state model of fault friction, often also invoking fluids that alter frictional properties on the fault. However, at larger depths, frictional processes become increasingly difficult to activate due to the increase in ambient pressure and ductile processes are more likely to dominate deformation.

Here we therefore investigate deep aseismic slip processes governed by ductile deformation mechanisms using 2D numerical models, where we employ a composite viscoelastic rheology combined with grain size reduction and shear heating as weakening processes. We show that the collaborative action of these two weakening mechanisms is sufficient to create the entire spectrum of aseismic slip, ranging from stable creep to long-term slow slip events. The results show that ductile deformation does not necessarily result in stable slip and induces slip modes with considerably larger velocities than the far-field plate velocities. Moreover, the propagation of ductile ruptures induces large stresses in front of the rupture tip which may also trigger short-term seismic events.

How to cite: Thielmann, M. and Duretz, T.: Going from stable creep to aseismic slow slip events in the ductile realm, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18554, https://doi.org/10.5194/egusphere-egu2020-18554, 2020.

EGU2020-13690 | Displays | TS5.2

On the scaling between precursory moment release and earthquake magnitude: Insights from the laboratory.

Mateo Acosta, Francois Passelègue, Alexandre Schubnel, Raúl Madariaga, and Marie Violay

Recent seismological observations highlighted that both aseismic silent slip and/or foreshock sequences can precede large earthquake ruptures (Tohoku-Oki, 2011, Mw 9.0  (Kato et al., 2012); Iquique, 2014, Mw 8.1 (Ruiz et al, 2014; Socquet et al., 2017); Illapel, 2015, Mw 8.3 (Huang and Meng, 2018); Nicoya, 2012, Mw 7.6 (Voss et al., 2018)). However, the evolution of such precursory markers during earthquake nucleation remains poorly understood. Here, we report for the first time, experimental results regarding the nucleation of laboratory earthquakes (stick slip events) conducted on Westerly Granite saw-cut samples under both dry and fluid pressure conditions. Experiments were conducted under stress conditions representative of the upper continental crust, i.e confining pressures from 50 to 95 MPa; fluid pressures (water) ranging from 0 to 45 MPa.

At a given effective confining pressure, different precursory slip behaviors are observed. In dry conditions, we observe that slip evolves exponentially up to the main instability and is escorted by an exponential increase of acoustic emissions. With pressurized fluids, precursory slip evolves first exponentially then switches to a power law of time. There, precursory slip remains silent, independently of the fluid pressure level. The temporal evolution of precursory fault slip and seismicity are controlled by the fault’s environment, limiting its prognostic value. Nevertheless, we show that, independently of the fault conditions, the total precursory moment release scales with the co-seismic moment of the main instability. The relation follows a semi- empirical scaling relationship between precursory and co-seismic moment release by combining nucleation theory (Ida, 1972; Campillo and Ionescu, 1992) with the scaling between fracture energy and co-seismic slip which has been demonstrated experimentally (Nielsen et al., 2016; Passelègue et al., 2016), theoretically (Viesca and Garagash; 2015) and by natural observations (Abercrombie and Rice; 2005). We then compile data from natural earthquakes, and show that, over a range of Mw6.0 to Mw9.0 the proposed scaling law holds for natural observations. In summary, the amount of moment released prior to an earthquake is directly related to its magnitude, increasing therefore the detectability of large earthquakes. The scaling relationship between precursory and co-seismic moment should motivate detailed studies of precursory deformation of moderate to large earthquakes.

How to cite: Acosta, M., Passelègue, F., Schubnel, A., Madariaga, R., and Violay, M.: On the scaling between precursory moment release and earthquake magnitude: Insights from the laboratory., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13690, https://doi.org/10.5194/egusphere-egu2020-13690, 2020.

The frictional behavior of rocks under shear offers tremendous complexity depending among others on rock type, temperature, fluid content, and sliding velocity. A large body of laboratory experiments documents these effects, but a unifying theoretical framework linking these observations is still missing. Here, I present a constitutive law based on multiple temperature and fluid activated healing processes and a fluid lubrication phase to capture fault behavior in the brittle field in all conditions relevant to the seismic cycle. Distinct healing processes are activated at different temperatures, pore fluid pressures, and depths based on their respective activation enthalpy. A fluid phase is rapidly formed at the high temperatures facilitated by shear heating, allowing strong weakening at high slip velocity. The model explains the intricate change of frictional behavior of carbonate rocks at various temperatures, including simultaneous velocity-strengthening and temperature-weakening at temperatures lower than 70ºC, transitioning to simultaneous velocity-weakening and temperature-hardening at higher temperatures. With different parameters, the model explains the frictional properties of quartz and granitic rocks in hydrothermal conditions with velocity-strengthening behavior in nominally dry conditions, transitioning to velocity-weakening between 100ºC and 350ºC in wet conditions. Inclusion of a lubrication phase formed between the solidus and the liquidus of the host rocks explains the strong weakening at high slip velocity in a variety of rocks. The unified constitutive framework allows modeling of faults in varying temperature and pore pressure conditions, including for example injection of pore fluids in natural faults or shear heating of the host rocks. 

How to cite: Barbot, S.: Temperature and fluid activation of contact healing and fault lubrication in rate-and-state friction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4192, https://doi.org/10.5194/egusphere-egu2020-4192, 2020.

EGU2020-17441 | Displays | TS5.2

Systematic characterization of slow slip events along the Mexican subduction zone from 2000 to 2019

Mathilde Radiguet, Ekaterina Kazachkina, Louise Maubant, Nathalie Cotte, Vladimir Kostoglodov, Adriano Gualandi, and Kristel Chanard

Slow slip events (SSEs) represent a significant mechanism of strain release along several subduction zones, and understanding their occurrence and relations with major earthquake asperities is essential for a comprehensive understanding of the seismic cycle. Here, we focus on the Mexican subduction zone, characterized by the occurrence of recurrent large slow slip events (SSEs), both in the Guerrero region, where the SSEs are among the largest observed worldwide, and in the Oaxaca region, where smaller, more frequent SSEs occur. Up to now, most slow slip studies in the Mexican subduction zone focused either on the detailed analysis of a single event, were limited to a small area (Guerrero or Oaxaca), or were limited to data before 2012 [e.g.1-4]. In this study, our aim is to build an updated and consistent catalog of major slow slip events in the Guerrero-Oaxaca region.

We use an approach similar to Michel et al. 2018 [5]. We analyze the GPS time series from 2000 to 2019 using Independent Component Analysis (ICA), in order to separate temporally varying sources of different origins (seasonal signals, SSEs and afterslip of major earthquakes). We are able to isolate a component corresponding to seasonal loading, which matches the temporal evolution of displacement modeled from the GRACE data. The sources (independent components) identified as tectonic sources of deep origin are inverted for slip on the subduction interface. We thus obtain a model of the spatio-temporal evolution of aseismic slip on the subduction interface over 19 years, from which we can isolate around 30 individual slow slip events of Mw > 6.2.

 The obtained catalog is coherent with previous studies (in terms of number of events detected, magnitude and duration) which validates the methodology. The observed moment-duration scaling is close to M0~T3 as recently suggested by Michel [6] for Cascadia SSEs, and our study extends the range of magnitude considered in their analysis. Finally, we also investigate the spatio-temporal relations between the SSEs occurring in the adjacent regions of Guerrero and Oaxaca, and their interaction with local and distant earthquakes.

 

References:

  1. Kostoglodov, V. et al. A large silent earthquake in the Guerrero seismic gap, Mexico. Geophys. Res. Lett 30, 1807 (2003).
  2. Graham, S. et al. Slow Slip History for the Mexico Subduction Zone: 2005 Through 2011. Pure and Applied Geophysics 1–21 (2015). doi:10.1007/s00024-015-1211-x
  3. Larson, K. M., Kostoglodov, V. & Shin’ichi Miyazaki, J. A. S. The 2006 aseismic slow slip event in Guerrero, Mexico: New results from GPS. Geophys. Res. Lett. 34, L13309 (2007).
  4. Radiguet, M. et al. Slow slip events and strain accumulation in the Guerrero gap, Mexico. J. Geophys. Res. 117, B04305 (2012).
  5. Michel, S., Gualandi, A. & Avouac, J.-P. Interseismic Coupling and Slow Slip Events on the Cascadia Megathrust. Pure Appl. Geophys. (2018). doi:10.1007/s00024-018-1991-x
  6. Michel, S., Gualandi, A. & Avouac, J. Similar scaling laws for earthquakes and Cascadia slow-slip events. Nature 574, 522–526 (2019) doi:10.1038/s41586-019-1673-6

 

How to cite: Radiguet, M., Kazachkina, E., Maubant, L., Cotte, N., Kostoglodov, V., Gualandi, A., and Chanard, K.: Systematic characterization of slow slip events along the Mexican subduction zone from 2000 to 2019, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17441, https://doi.org/10.5194/egusphere-egu2020-17441, 2020.

EGU2020-4288 | Displays | TS5.2

Effect of Rheology on Afterslip and Viscoelastic Patterns Following the 2010 Mw 8.8 Maule, Chile, Earthquake

Carlos Peña, Oliver Heidbach, Marcos Moreno, Jonathan Bedford, Moritz Ziegler, Andrés Tassara, and Onno Oncken

After large earthquakes at subduction zones, the plate interface continues moving due to mostly frictional afterslip processes. Below depths of 60 km, little frictional afterslip is to be expected on the plate interface due to low shear strength, lack of apparent geodetic interseismic locking, and low seismic moment release from aftershocks. However, inversion models that consider an elastic crust above a mantle with viscoelastic rheology result in a significant portion of afterslip at depths > 60 km. In this study, we present a forward 3D geomechanical-numerical model with power-law rheology that simulates dislocation creep processes for the crust and upper mantle in combination with an afterslip inversion. The linear rheology case is also considered for comparison. We estimate the cumulative viscoelastic relaxation and the afterslip distribution for the first six years following the 2010 Mw 8.8 Maule earthquake in Chile. The cumulative afterslip distribution is obtained from the inversion of the residual surface displacements between continuous GPS (cGPS) observations and predicted displacements from viscoelastic forward modelling. We investigate three simulations: two with the same dislocation creep parameters in the slab and upper mantle but different ones in the continental crust, and another with elastic properties in the crust and slab and a linear viscoelastic upper mantle. Our preferred simulation is the one with power-law rheology in the crust and upper mantle with a weak continental crust since the corresponding afterslip distribution shows the best overall fit to the cGPS displacements (cumulative and time series) as well as having a good correlation with aftershock activity. In this simulation, most of the viscoelastic relaxation occurs in the continental lower crust beneath the volcanic arc due to dislocation creep processes. The resulting afterslip pattern from the inversion is reduced at depths > 60 km, which correlates well with the spatial distribution of cumulative seismic moment release from aftershocks. We conclude that by allowing for non-linear stress relaxation in the continental lower crust due to dislocation creep processes, the resulting afterslip distribution is in better agreement with the physical constraints from the shear strength of the plate interface at depth, the predicted locking degree, and the aftershock activity.

How to cite: Peña, C., Heidbach, O., Moreno, M., Bedford, J., Ziegler, M., Tassara, A., and Oncken, O.: Effect of Rheology on Afterslip and Viscoelastic Patterns Following the 2010 Mw 8.8 Maule, Chile, Earthquake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4288, https://doi.org/10.5194/egusphere-egu2020-4288, 2020.

EGU2020-17101 | Displays | TS5.2

Reconstructing 10 years of spatio-temporal aseismic slip history along the San Andreas Fault

Sylvain Michel, Romain Jolivet, Adriano Gualandi, Blandine Guardonio, Olivier Lengliné, Manon Dalaison, and Angélique Benoit

The San Andreas Fault creeping section is generally considered as slipping continuously and aseismically, at a rate of about 35 mm/yr. However, recent studies, using either Global Positioning System (GPS) network or Interferometric Synthetic Aperture Radar (InSAR) data, have highlighted spatial and temporal variations of slip rate. Here, we combine GPS, InSAR, creepmeter and seismicity data over the 2008-2018 period, taking advantage of their complementary spatial and temporal resolutions, to detail a comprehensive picture of episodic acceleration and deceleration slip patterns. For this purpose, we use a variational Bayesian Independent Component Analysis (vbICA) decomposition to separate geodetic deformation due to non-tectonic sources from signals of tectonic origin. The fault slip kinematics is reconstructed by linear inversion of each Independent Component related to transient tectonic activity. We document aseismic slip acceleration transients and discuss their origin.

How to cite: Michel, S., Jolivet, R., Gualandi, A., Guardonio, B., Lengliné, O., Dalaison, M., and Benoit, A.: Reconstructing 10 years of spatio-temporal aseismic slip history along the San Andreas Fault, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17101, https://doi.org/10.5194/egusphere-egu2020-17101, 2020.

EGU2020-18166 | Displays | TS5.2 | Highlight

Reversals in geodetically observed surface motions suggests enhanced slab pull in the months preceding Maule Mw 8.8 and Tohoku-oki Mw 9.0 earthquakes

Jonathan Bedford, Marcos Moreno, Zhiguo Deng, Onno Oncken, Bernd Schurr, Timm John, Juan Carlos Báez, and Michael Bevis

It is increasingly apparent that the progression to eventual failure of large subduction earthquakes can be captured by continuous networks that record anomalous seismic and geodetic signals in the late interseismic period. Such precursory signals are generally understood to be related to a gradual decoupling of the mainshock area of the fault and can last from days to years. These natural observations are consistent with various numerical and laboratory models in which similar late-interseismic signals are generated.

Here we analyse the continuous GNSS records of the final 5 years leading to the 2010 Mw 8.8 Maule, Chile and 2011 Mw 9.0 Tohoku-oki, Japan earthquakes. We implement the Greedy Automatic Signal Decomposition - a regression approach that builds upon existing tectonic trajectory models - to model the daily GNSS displacement time series as the sum of background seasonal oscillations, step functions, linear (1st order polynomial) motion, and a sparse number of multi-transient functions. The multi-transient functions are simply the sum of decay functions (e.g. exponential, logarithmic) that begin at the same time but have different characteristic decay constants. The inclusion of these versatile multi-transients allows the model to capture a variety of transient motion. We see that both subduction margins exhibit variability in their interseismic velocities. The most striking of these motions occur in the 5-7 months directly before both the Maule and Tohoku-oki earthquakes during which the sense of motion reverses in the trench-perpendicular component. These reversals manifest themselves as wobbles in the displacement time series with a peak-to-peak displacement between 4-8 mm and occur on a spatial scale in the order of thousands of kilometres. After investigating fluid loading and possible reference frame artifacts, we conclude that the wobbles are most likely of a tectonic origin.

In the pre-Tohoku-oki case, for which we have a much denser surface coverage, kinematic models indicate an initial extension in the Philippine Sea Plate followed by a viscoelastic rebound. The spatial scale and approximate onset of this apparent extension are in agreement with the anomalous GRACE gravity signals reported in earlier work of Panet et al. (2018, Nature Geoscience). Furthermore, the speed that the trench-wards transient migrates along-strike of the subduction zone before Tohoku-oki indicates that deep slow-slip is also occurring. In the pre-Maule case, we see a similar reversal but lack the number of measurements to track any migration of the velocity front. Nevertheless, from inclusion of vertical displacement in analyses of both networks, we suspect that these late interseismic reversal signals are caused by a sudden enhanced slab pulling. Such an enhanced slab pull might be caused by sudden densification of metastable slab. Therefore, a main message of this work is that large asperities, while they might fail gradually local to the mainshock region, might also brought to failure by changes in the slab pull boundary conditions that can be several hundreds of km deep.

 

How to cite: Bedford, J., Moreno, M., Deng, Z., Oncken, O., Schurr, B., John, T., Báez, J. C., and Bevis, M.: Reversals in geodetically observed surface motions suggests enhanced slab pull in the months preceding Maule Mw 8.8 and Tohoku-oki Mw 9.0 earthquakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18166, https://doi.org/10.5194/egusphere-egu2020-18166, 2020.

EGU2020-21477 | Displays | TS5.2

Revisiting the deformation transients before the 2011 Tohoku-Oki Megathrust Earthquake with GPS

Anne Socquet, Lou Marill, David Marsan, Baptiste Rousset, Mathilde Radiguet, Roland Burgmann, Nathalie Cotte, and Michel Bouchon

The precursory activity leading up to the Tohoku-Oki earthquake of 2011 has been suggested to feature both long- and short-term episodes of decoupling and suggests a particularly complex slow slip history. The analysis of the F3 solution of the Japanese GPS network suggested that an accelerated slip occurred in the deeper part of the seismogenic zone during the 10 years preceding the earthquake (Heki & Mitsui, EPSL 2013; Mavrommatis et al., GRL 2014; Yokota & Koketsu, Nat. Com. 2015). During the two months preceding the earthquake, no anomaly in the GPS position time series has been revealed so far, although several anomalous geophysical signals have been reported (an extended foreshock crisis near the future hypocenter (Kato et al., Science 2012), a synchronized increase of intermediate-depth background seismicity (Bouchon et al., Nat Geosc. 2016), a signal in ocean-bottom pressure gauges and on-land strainmeter time series (Ito et al., Tectonoph. 2013), and large scale gravity anomalies that suggest deep-seated slab deformation processes (Panet et al., Nat. Geosc. 2018 ; Wang & Burgmann, GRL 2019)).

We present novel results based on an independent analysis of the Japanese GPS data set. We perform a full reprocessing of the raw data with a double-difference approach, a systematic analysis of the obtained time-series, including noise characterization and network filtering, and make a robust assessment of long- and short-term tectonic aseismic transients preceding the Tohoku-Oki earthquake. An accelerated slip on the lower part of the seismogenic zone over the last decade is confirmed, not only below the epicenter of Tohoku-Oki earthquake but also further south, offshore Boso peninsula, which is a worrying sign of an on-going slow decoupling east of Tokyo. At shorter time-scale, first results seem compatible with a slow slip close to the epicenter initiating ~ 2 months before the mainshock.

How to cite: Socquet, A., Marill, L., Marsan, D., Rousset, B., Radiguet, M., Burgmann, R., Cotte, N., and Bouchon, M.: Revisiting the deformation transients before the 2011 Tohoku-Oki Megathrust Earthquake with GPS , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21477, https://doi.org/10.5194/egusphere-egu2020-21477, 2020.

EGU2020-1373 | Displays | TS5.2

Cross-comparing GPS and seismic data in advance and after great earthquakes

Tai Liu and Vladimir Kossobokov

With the accumulation of seismic and other geophysical data and update of methodologies, the accuracy and reliability of seismic risk assessment can be improved. In particular, the introduction of GPS observation data leads to better understanding of earthquake origins and sequences. For this, we cross-compare the pre- and post-seismic deformation of the 2011 Tohoku Mw9.1 earthquake in Japan, the 2010 off shore Maule Mw8.8 earthquake in Chile, the 2018 Kodiak Mw7.9 earthquake in the Gulf of Alaska, and the 2016 Kaikoura Mw7.8 earthquake in New Zealand derived from GPS observations with integral characteristics of the regional seismic regime, including the accumulated length of seismic sources derived from the catalogs of earthquake hypocenter parameters. We found that (a) the area on top the 2011 Tohoku mega-thrust keeps moving at speed of about 10 cm per year, (b) eventually, the 2016 Kaikoura unidirectional strike-slip resulted in the current position retreat nearby epicenter and steady increase on the opposite edge of its rupture zone, (c) the four cases show up different deformation vs seismicity correlation patterns in advance and after the catastrophic event, and (d) GPS data confirm the existence of intermittent long periods of regionally stable levels of seismic regime controlled by the Unified Scaling Law for Earthquakes that may switch as the result of mid- or even short-term bursts of activity associated with major catastrophic earthquakes.

The study supported from the RFBR Project No. 19-35-50059 “Study of pre- and post-seismic displacements in the areas of the strongest earthquakes in the world".

How to cite: Liu, T. and Kossobokov, V.: Cross-comparing GPS and seismic data in advance and after great earthquakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1373, https://doi.org/10.5194/egusphere-egu2020-1373, 2020.

EGU2020-2550 | Displays | TS5.2

Enhancement of Interplate Coupling after Recent Megathrust Earthquakes

Mohammad Yuzariyadi and Kosuke Heki

Enhanced interplate coupling has been found for segments adjacent along-strike to megathrust faults after the 2003 Tokachi-Oki and the 2011 Tohoku-Oki earthquakes, NE Japan, and was interpreted as acceleration of the subducting Pacific Plate slab. A similar enhanced coupling was also reported for the segments to the north of the rupture area of the 2010 Maule earthquake, central Chile. We utilize available GNSS data to find such enhanced coupling in worldwide subduction zones including NE Japan, central and northern Chile, Sumatra, and Mexico to investigate their common features. Our study revealed that the accelerations of landward movement of 2.1-9.0 mm per year appeared in adjacent segments following the 2014 Iquique (Chile), the 2007 Bengkulu (Sumatra), and the 2012 Oaxaca (Mexico) earthquakes. We also confirmed that the enhanced coupling is associated with the increase of seismicity for all these six cases. We found that the degree of enhancement depends on the length of the slab and the magnitude of the earthquake, which is consistent with the simple 2-dimensional model proposed earlier.

How to cite: Yuzariyadi, M. and Heki, K.: Enhancement of Interplate Coupling after Recent Megathrust Earthquakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2550, https://doi.org/10.5194/egusphere-egu2020-2550, 2020.

EGU2020-20862 | Displays | TS5.2

Build seismic cycle balance deformation with InSAR in Northen Chile

Lauriane Bayle, Romain Jolivet, Nadaya Cubas, and Laetitia Le Pourhiet

Lauriane Baylé (1), Romain Jolivet (2), Nadaya Cubas (1) and Laetitia Le

Pourhiet (1)

(1) Institut des Sciences de la Terre de Paris, UMR 7193, UPMC UniversitéParis 6, CNRS, Paris,

France

(2) Laboratoire de Géologie, Département de Géosciences, École Normale Supérieure, CNRS UMR 8538,

PSL ResearchUniversity, Paris, France

Recent studies have pointed out to a discrepancy between the short- and long-

term deformation of overriding plates in subduction zones. This led to debates

about when and how permanent deformation is acquired. This contradiction

has notably been observed along the Central Andes Subduction Zone, where

the coast subsides during and shortly after major earthquakes while a coastal

uplift with rates ranging between 0.1 and 0.3 mm/yr has been inferred the

last 4000 ky. For instance, during the 15th September 2015 Mw 8.3 Illapel

earthquake the geodetics (GPS and InSAR) data show a coastal subsidence

along the line-of-sight of 20 cm in InSAR.

To reconcile the seemingly contradictory observations, we here propose to

provide a seismic cycle uplift balance by constrainning inter-, co- and post-

seismic vertical velocities from InSAR time series. The study focuses on La

Serena peninsula (71.3°W, 30°S, Chile) along which the Illapel earthquake

occurred and for which long-term uplift rates have been provided by previous

geomorphological studies.

To build this seismic cycle balance, we use InSAR data (Sentinel-1) acqui-

red between the September 15, 2015 and January 19, 2019. The time series

for the ascendant orbite is calculated and the accumulated vertical displace-

ment extracted providing co- and post-seismic displacement. The co-seismic

displacement are similar to those previously obtain. To constrain the displa-

cement during the inter-seismic period, data on both sides of the peninsula

are used. In that respect, we aim determining when, during the seismic cycle,

and where, along the coast, the uplift occurs.

The deduced time series will then be confronted to numerical modelling

to provide the short- and long-term mechanics reproducing the short- and

long-term observations.

How to cite: Bayle, L., Jolivet, R., Cubas, N., and Le Pourhiet, L.: Build seismic cycle balance deformation with InSAR in Northen Chile, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20862, https://doi.org/10.5194/egusphere-egu2020-20862, 2020.

EGU2020-12165 | Displays | TS5.2

Deep structure of the Central-Chile continental wedge and its implications for large megathrust earthquakes

Andrei Maksymowicz, Daniela Montecinos, and Daniel Díaz

subduction zone ruptured by the high slip patch of the 1960 Mw9.5 Valdivia earthquake. The density structure of the upper plate was generated by using a 2-D forward modeling schema (GGrad) offshore, and 3D inversion onshore (GRAV3D) with a database composed by a recompilation of previous marine and onshore gravity measurements, complemented by 113 new gravimetric station acquired by our group. The modelling was constrained by independent seismological data, active seismic information and electromagnetic soundings registered during the project. The joint analyze of the obtained density model with magnetic data and seismic models, provide new insight about the structure of the upper plate forearc, where an East-West segmentation of physical parameters (perpendicular to the margin) is associated with first order changes in the surface geology, deep structural style and seismotectonics characteristics of the margin. The systematical comparison of the results observed in this segment with surrounding regions of the Chilean margin, suggests a causal link between complex sequence of large earthquakes ruptures and changes of rheology/lithology along the interplate boundary, determined in turn, by the long term tectonic and geodynamic evolution of the subduction zone.

   

 

 

 

How to cite: Maksymowicz, A., Montecinos, D., and Díaz, D.: Deep structure of the Central-Chile continental wedge and its implications for large megathrust earthquakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12165, https://doi.org/10.5194/egusphere-egu2020-12165, 2020.

EGU2020-12150 | Displays | TS5.2

Investigating seismic segmentation and recurrence patterns of great earthquakes along the Chilean megathrust.

Diego Molina, Andres Tassara, Jean-Paul Ampuero, and Daniel Melnick

Megathrust earthquakes at subduction zones are one of the most devastating natural phenomena. Understanding the relationships between their temporal recurrence, spatial segmentation and the frictional structure of the megathrust is of primary relevance. We analyzed the common spatial variability of gravity anomalies, geodetic locking and wedge taper basal friction (three independent proxies for megathrust frictional structure) along the Chilean margin. A marked along-strike segmentation has emerged that is organized into three hierarchical levels. At a subcontinental-scale (103 km), we observe a first-order difference between Central (18-32°S) and Southern (32°-46°S) Andes. This is marked by a dominance of positive/negative gravity, high/low locking, high/low friction along the Central/Southern segments. We explain this as mainly reflecting the combined effect on effective normal stress (σeff) of a high/low density forearc and low/high pore pressure along both megathrust segments, in agreement with the geological structure of the forearc, sediment input at the trench and the long-term architecture of the Andes. Inside this large-scale subdivision, we identify a number of segments (102 km) that are limited by marked small-scale (101 km) changes in the first-order tendency of the three proxies coinciding with geological features of both plates. When we compare this against the paleoseismic, historic and instrumental record of past earthquakes in Chile, we note that segments largely coincide with seismic asperities, i.e. those regions of the megathrust concentrating the largest fraction of coseismic slip. Bridging these two scales, the rupture length of giant (Mw 8.5-9.5) earthquakes, which encompassed several asperities, define an intermediate hierarchic level of organization (102-103 km). Considering this segmentation into the conceptual framework of the rate-and-state friction (RSF) law, we infer that asperities inside the rate-weakening seismogenic zone of the Central Andean megathrust are dominantly unstable (i.e. σeffc = the critical stress defined by RSF parameters) and therefore prone to initiate and concentrate the coseismic rupture. In contrast, most of the asperities along the Southern mega-segment are likely characterized by a conditionally-stable behavior (σeffc) that allows a rich and complex seismogenic behavior where interseismic creep and locking are both possible and large coseismic slip propagation is dominant. This can explain the apparent difference in the recurrence of giant earthquakes along both mega-segments, since the synchronization of unstable asperities in the Central Andean megathrust (2000-3000 yr recurrence time) is less probable than in the case of conditionally-stable asperities in the Southern segment (300-500 yrs). We will test these hypothesis developing numerical simulations of multiple seismic cycles with setups representing the inferred contrast on the physical properties of the megathrust along the Chilean margin, and we will present preliminary results of this exercise. 

How to cite: Molina, D., Tassara, A., Ampuero, J.-P., and Melnick, D.: Investigating seismic segmentation and recurrence patterns of great earthquakes along the Chilean megathrust. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12150, https://doi.org/10.5194/egusphere-egu2020-12150, 2020.

Two major fault systems host Mw>7 earthquakes in Central and Northern Sulawesi, Indonesia: the Minahassa subduction interface and the Palu-Koro strike-slip fault. The Celebes Sea oceanic lithosphere subducts beneath the north arm of Sulawesi at the Minahassa subduction zone. At the western termination of the Minahassa subduction zone, it connects to the left-lateral Palu-Koro strike-slip fault zone. This fault strikes onshore at Palu Bay and then crosses Sulawesi. Interseismic GNSS velocities indicate that the Palu-Koro fault zone accommodates about 4 cm/yr of relative motion in the Palu Bay area, with a ~10 km locking depth. This shallowly locked segment of the Palu-Koro fault around the Palu Bay area ruptured during the devastating, tsunami-generating, 2018 Mw7.5 Palu earthquake. This complex event highlights the high seismic hazard for the island of Sulawesi.

We have a >20-year record of GNSS velocities on Sulawesi, where the densest cluster of monument sites surrounds the Palu-Koro fault, specifically around Palu Bay, whereas the rest of the island is less densely covered. High quality estimates of interseismic velocities reveal second-order complex patterns of transient deformation in the wake of major earthquakes: the velocities in northern Sulawesi and around the Palu-Koro fault do not follow their interseismic trends after a major subduction earthquake has occurred, for several years after the event. This effect of transient deformation reaches more than 400km away from the epicentre of the major earthquakes. Surprisingly, a deviation from the background slip rate on the Palu-Koro fault is not accompanied by a deviation from the background (micro)seismic activity.

We construct a 3D numerical model based on the structural and seismological data in the Sulawesi region. We investigate the post-seismic relaxation pattern from a subduction earthquake and determine whether the slip rate on the Palu-Koro fault changes due to this earthquake through forward model calculations. With a modelling focus on the 1996 Mw7.9 and 2008 Mw7.4 earthquakes that ruptured the Minahassa subduction interface, this study outlines the triggering of transient deformation and continual interaction between the Minahassa subduction interface and the Palu-Koro strike-slip fault.

How to cite: Nijholt, N., Simons, W., and Riva, R.: Continual interaction between the Minahassa subduction interface and the Palu-Koro strike-slip fault in Sulawesi, Indonesia., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9831, https://doi.org/10.5194/egusphere-egu2020-9831, 2020.

EGU2020-11940 | Displays | TS5.2

Using P- to S- wave conversions from controlled sources to determine the shear-wave velocity structure along Hikurangi Margin Forearc, New Zealand

Pasan Herath, Tim Stern, Martha Savage, Dan Bassett, Stuart Henrys, Dan Barker, Harm Van Avendonk, Nathan Bangs, Adrian Arnulf, Ryuta Arai, Shuichi Kodaira, and Kimihiro Mochizuki

The Hikurangi subduction margin offshore of the east coast of New Zealand displays along-strike variations in subduction-thrust slip behavior. Geodetic observations show that the subduction-thrust of the southern segment of the margin is locked on the 30-100 year scale and the northern segment displays periodic slow-slip on the 1-2 year scale. It is hypothesised that spatial variations in pore-pressure may play a role in this contrasting phenomenon. Higher pore-pressures would result in lower effective stresses, which promote slow-slip of the subduction-thrust. In addition, the presence of a sedimentary wedge with very low shear wave-speeds in the northern Hikurangi margin has been proposed to fit the ultra-long duration of ground motions observed following the 2016 Kaikoura earthquake. Compressional (P-) wave velocities (Vp) of the subsurface provide useful information about the lithological composition. Combined with shear (S-) wave velocities (Vs), the Vp/Vs ratio which is directly related to Poisson’s ratio can be obtained. This is a diagnostic property of a rock’s consolidation and porosity. Typical Vp/Vs ratio of consolidated and crystalline rocks range from 1.6 to 1.9 and that of unconsolidated sediments can range from 2.0 to 4.0.

We use the controlled sources of R/V Marcus G Langseth recorded by a profile of 49 multi-component ocean bottom seismometers (OBS) along the Hikurangi margin forearc for the Seismogenesis at Hikurangi Integrated Research Experiment (SHIRE) to derive the Vs structure and estimate the Vp/Vs ratio. The orientations of the horizontal components of each OBS are found by a hodogram analysis and by an eigenvalue-decomposition of the covariance matrix. Using the orientations, the horizontal components of each OBS are rotated into radial and transverse components. P to S converted phases are identified on the radial and transverse components considering their linear moveout, polarisation angle, and ellipticity. We confirm incoming S-waves to OBSs by comparing them with their hydrophone components. We identify both PPS (up-going P-wave after reflection or refraction converts to an S-wave at an interface) and PSS (down-going P-wave from the controlled source converts to an S-wave at an interface) type conversions. The identified conversion interfaces are the sediment-basement interface and the top of the subducting crust. The travel-time delay of a PPS type conversion relative to its P-wave arrival is indicative of Vs above the converting interface. The linear-moveout of PSS type conversions are indicative of Vs along the raypath after the conversion. Preliminary results from the southern Hikurangi margin suggest Vp/Vs ratios of ~1.70 for the basement rocks above the subducting crust and ~1.90 for the sediments overlying the basement rocks. These values indicate that the basement rocks are consolidated and less porous than the overlying sediments.

We expect to estimate the Vp/Vs ratios in the northern Hikurangi margin to assess the role played by pore-pressure in the along-strike variation in subduction-thrust slip behavior. We also expect to ascertain the presence and estimate the thickness of the low-velocity sediment wedge in the northern Hikurangi margin.

How to cite: Herath, P., Stern, T., Savage, M., Bassett, D., Henrys, S., Barker, D., Van Avendonk, H., Bangs, N., Arnulf, A., Arai, R., Kodaira, S., and Mochizuki, K.: Using P- to S- wave conversions from controlled sources to determine the shear-wave velocity structure along Hikurangi Margin Forearc, New Zealand, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11940, https://doi.org/10.5194/egusphere-egu2020-11940, 2020.

EGU2020-12063 | Displays | TS5.2 | Highlight

Studies of seismic velocities in subduction zones from continuous OBS data

Weiwei Wang, Martha Savage, Alec Yates, Shu-Huei Hung, Yinhe Luo, Tim Stern, Pei-Ying Patty Lin, Hsin-Ying Yang, Ban-Yuan Kuo, Bill Fry, and Spahr Webb

In recent years, Ocean Bottom Seismometers (OBSs) have become widely used to expand the coverage of seismic networks onto the ocean. This study takes advantage of offshore observations at the northern end of the Hikurangi margin and southwestern Okinawa Trough to study the tectonics in both regions.

In the Hikurangi subduction zone, slow slip events (SSEs) have been observed, which are caused by the subduction of the Pacific Plate under New Zealand. The behaviour of SSEs and how they influence the physical properties of Earth materials are open to question. From 2014 to 2015, 15 OBSs were deployed offshore Gisborne, New Zealand on the Hikurangi margin. Ambient noise data from the OBSs are used to study velocity changes related to SSEs. Single station cross-component correlations and auto-correlations are computed, from which coda waves are used to monitor the velocity changes before, during and after the SSEs in 2014 and 2015 to analyse the slow earthquake behaviour and its relation to stress changes. Different rotation on horizontal components is tested by rotating horizontal components to N-E direction and parallel-perpendicular to the coastline. The dv/v computed by different components or rotation show different changes. The averaged dv/v displays a 0.1% velocity decrease during the SSE in October 2014.

The southwestern Okinawa Trough tapers towards Taiwan. How the back-arc crust accommodates the narrowing processing remains to be understood. At various times between 2010 and 2017, 22 OBSs on a small scale (~0.2°×0.3°) were deployed in Southwestern Okinawa Trough offshore northeast Taiwan. Ambient noise recorded on vertical velocity and pressure sensors is used to retrieve Scholte waves for studying shear wave velocity structure. Phase velocities are forward-modeled according to a model proposed by Kuo et al. 2015 and shear strength and density results from ODP1202. Phase velocity dispersion curves are measured from cross-correlations and unwrapped according to the modeled phase velocities. The fundamental mode phase velocities averaged from different station pairs are 0.62 km/s at 3 s period and 1.56 km/s at 6.5 s period. A 3D inversion will be conducted for a shear wave velocity structure from the basin center to the edge.

How to cite: Wang, W., Savage, M., Yates, A., Hung, S.-H., Luo, Y., Stern, T., Lin, P.-Y. P., Yang, H.-Y., Kuo, B.-Y., Fry, B., and Webb, S.: Studies of seismic velocities in subduction zones from continuous OBS data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12063, https://doi.org/10.5194/egusphere-egu2020-12063, 2020.

The strength of faults is subject of an important debate throughout various Earth Scientific disciplines. Different scientific communities have different perspectives with respect to appropriate values for friction coefficients μ. Geodynamicists with a long-term perspective require very low effective strengths (μ<0.05), while at the same time realizing mountains need to be sustained as well. Geologists and seismologists typically start from Byerlee friction coefficients of 0.6<μ<0.85, whereas rock mechanics experiments at high seismic slip rates show short-term low dynamic friction values of 0.03<μ<0.3. Here I show that both long- and short-term approaches can be made more compatible through considering that a regional or global frictional strength should be approached as a strain-averaged quantity. Doing this accounts for large variations of strain in both time and space. What matters for large-scale models is that most deformation occurs over a very small space and time during which friction is exceptionally low, thus making the representative long-term strength low. This is supported by seismo-thermo-mechanical models that self-consistently simulate the dynamics of both long-term subduction and short-term seismogenesis. The latter sustain mountain building, while representative earthquake-like events occur on faults with pore fluid pressure-effective static friction coefficients between 0.125 and 0.005 (or 0.75<Pf/Ps<0.99). These low friction values suggest faults are weak and suggest the dominant role of fluid pressures in weakening faults in subduction zones. This is confirmed in analytical considerations based on mechanical energy dissipation, which provide an equation to calculate the long-term fault strength as a strain-average quantity. Constraining the four parameters in this equation by observations confirms that fluid weakening is more important for long-term weakening than dynamic frictional weakening and low static friction coefficients. From the short-term perspective of modeling earthquake rupture dynamics it is now also becoming evident that fluid overpressured faults are preferable. They namely facilitate the incorporation of laboratory-observed dynamic weakening (70-90%) by limiting the stress drop to reasonable values. In summary, this cross-scale perspective supports long-term effective friction values in the range of about 0.03 to 0.2.

How to cite: van Dinther, Y.: Bridging Long- and Short-term Behavior Shows Fault Strength as a Strain-average, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20374, https://doi.org/10.5194/egusphere-egu2020-20374, 2020.

EGU2020-10210 | Displays | TS5.2

Dynamic and quasi-dynamic modelling of earthquake sequences from zero to three dimensions: choose model complexity as needed

Meng Li, Casper Pranger, Luca Dal Zilio, and Ylona van Dinther

Earthquake sequences reflect the repetitive dynamic processes of stress accumulation and release on a fault. Understanding earthquake sequences is fundamental for the research of induced and natural earthquakes and may ultimately help to better assess long-term seismic hazard. Numerical models are well-suited to overcome limited spatiotemporal observations and improve our understanding on this topic. However, large models in 3D are still computational time and memory consuming. Moreover, this may not be optimal if the aspects of lateral or depth variations within the results are not needed to answer a particular objective. This motivated us to investigate the advantages and limitations of various dimensional models by simulating earthquake sequences in 0D, 1D, 2D and ultimately 3D. We applied a C++ numerical library GARNET [1] to deal with the various dimensional models in one simulator. This library uses a fully staggered finite difference scheme with a rectilinear adaptive grid. It also incorporates an automatic discretization algorithm and combines different physical ingredients such as visco-elasto-plastic rheology and quasi- and fully dynamic approaches into one algorithm.

Here we present numerical experiments of a strike-slip fault under rate-and-state friction, surrounded by an elastic medium with constant tectonic loading and, test them under different parameters and initial conditions. By adding one dimension at a time, we simulate a more detailed structure of the seismic cycle. The higher dimensional models present both the validity and the limitations of the lower dimensional ones. For example, inertial waves are not possible to present in 0D while a quasi-dynamic radiation damping term can be added here instead. Another example is that due to lack of grid extension along the fault, both 0D and 1D model fail to reveal an earthquake nucleation phase. However, some important observables, such as the seismic cycle period, maximum/minimum stress and slip rates, are calculated accurately in lower dimensional models, which are much faster than higher dimensional models. We also implemented and compared quasi- and fully dynamic models in the same way. Our results indicate that both the size of simulated seismic events and their interval are reduced in quasi-dynamic models. This could provide us with guidance to identify the appropriate model complexity for various problems. We will also present 3D modeling results, which will be compared to their 2D equivalent. Finally, we present our results for the SCEC SEAS benchmarks [2] and compare them to other participating codes.

[1] Pranger, C. C., L. Le Pourhiet, D. May, Y. van Dinther, and T. Gerya (2016). “Self- consistent seismic cycle simulation in a three-dimensional continuum model: method- ology and examples.” AGU Fall Meeting Abstracts.

[2] Erickson, B. A., et al. (2019). The Community Code Verification Exercise for Simulating Sequences of Earthquakes and Aseismic Slip (SEAS). Poster Presentation at 2019 SCEC Annual Meeting.

How to cite: Li, M., Pranger, C., Dal Zilio, L., and van Dinther, Y.: Dynamic and quasi-dynamic modelling of earthquake sequences from zero to three dimensions: choose model complexity as needed , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10210, https://doi.org/10.5194/egusphere-egu2020-10210, 2020.

EGU2020-8854 | Displays | TS5.2

The role of the fault-block structure of the continental margin in the generation of the strongest subduction earthquakes

Irina Vladimirova, Yury Gabsatarov, Dmitry Alekseev, and Leopold Lobkovsky

Modern seismotectonic studies are aimed at obtaining a self-consistent explanation of fault zone heterogeneity, the rupture process, recurrence times and rupture mode of large earthquake sequences. In subduction regions large earthquakes are often characterized by very long source zones and complex long-term postseismic processes following the coseismic release of accumulated elastic stresses. A set of mechanical models was proposed to describe the generation of strongest earthquakes based on the idea of the synchronous failure of several adjacent asperities.

In this study we propose a model which is based on verified numerical schemes, which allows us to quantitatively characterize the process of generation of strong earthquakes. The model takes into account the fault-block structure of the continental margin and combined the ideas of a possible synchronous destruction of several adjacent asperities, mutual sliding along a fault plane with a variable coefficient of friction and subsequent healing of medium defects under high pressure conditions.

The applicability of the proposed model is shown by the example of the recent seismic history of the Kuril subduction zone. Kuril island arc is one of the most tectonically active regions of the world due to very high plate convergence rate. Heterogeneities in the mechanical coupling of the interplate interface in this region lead to the formation of the block structure of the continental margin, which is confirmed by various geological and seismological studies.

GPS observations recorded at different stages of seismic cycle related to the 2006–2007 Simushir earthquakes allow us to model geodynamic processes of slow strain accumulation and its rapid release during the earthquake and the subsequent posteseismic process. We use parameters describing the regional tectonic structure and rheology obtained from the inversion of geodetic data to construct a 2D model of generation of large earthquakes in central Kurils. Analysis of paleoseismic data on dates and rupture characteristics of previous major earthquakes shows a good agreement between the modeled and observed seismic cycle features. The predicted horizontal displacements of the seismogenic block at the coseismic stage are consistent with satellite geodetic data recorded during the 2006 Simushir earthquake.

The proposed model provides new insights into the geodynamic processes controlling the occurrence of strong subduction earthquakes.

How to cite: Vladimirova, I., Gabsatarov, Y., Alekseev, D., and Lobkovsky, L.: The role of the fault-block structure of the continental margin in the generation of the strongest subduction earthquakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8854, https://doi.org/10.5194/egusphere-egu2020-8854, 2020.

TS5.3 – The Mechanics of Earthquake Faulting: a multiscale approach

EGU2020-2890 | Displays | TS5.3

Highly stressed lower crust: Evidence from dry pseudotachylytes in granulites, Lofoten, Norway

Kristina G. Dunkel, Xin Zhong, Luiz F. G. Morales, and Bjørn Jamtveit

Due to the high confining pressures in the lower crust, the generating mechanisms of lower crustal earthquakes, occurring below the standard seismogenic zone, are puzzling. Their investigation is difficult because the records of such earthquakes, pseudotachylytes, are typically reacted and/or deformed. Here we describe exceptionally pristine pseudotachylytes in lower crustal granulites from the Lofoten Vesterålen Archipelago, Norway. The pseudotachylytes have essentially the same mineralogical composition as their host (plagioclase, alkali feldspar, orthopyroxene) and contain microstructures indicative of rapid cooling (microlites, spherulites, ‘cauliflower’ garnet). Neither the wall rock nor the pseudotachylytes themselves contain hydrous minerals, and no mylonites are associated with the pseudotachylytes. This excludes the most commonly suggested weakening mechanisms that may cause earthquakes below the brittle-ductile transition: dehydration- or reaction-induced embrittlement, plastic instability, thermal runaway, and downward propagation of seismic rupture from shallow faults into their deeper ductile extensions. Hence, we suggest that transient stress pulses caused by shallower earthquakes are the most likely explanation for the occurrence of fossil earthquakes in the analysed rocks from Lofoten.

Earthquakes are short events, but their effects on the tectonic and metamorphic development of their host can be long-lasting. The initial deformation features related to seismic events, which potentially determine these effects, are often overprinted by metamorphism driven by fluids infiltrating the rock along the seismic fault. Because of the anhydrous conditions in the present case, those structures are preserved. The wall rocks to the investigated pseudotachylytes appear undamaged in optical and backscatter electron observation; however, cathodoluminescence imaging of feldspar and quartz reveals healed fractures and alteration zones. Those areas are further investigated with electron backscatter diffraction and transmission electron microscopy to better understand the microstructural and chemical changes during and after the seismic event.

How to cite: Dunkel, K. G., Zhong, X., Morales, L. F. G., and Jamtveit, B.: Highly stressed lower crust: Evidence from dry pseudotachylytes in granulites, Lofoten, Norway, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2890, https://doi.org/10.5194/egusphere-egu2020-2890, 2020.

EGU2020-7295 | Displays | TS5.3

Deciphering deformation mechanisms during seismic slip along wet carbonate faults

Markus Ohl, Helen E. King, Andre Niemeijer, Jianye Chen, Martyn Drury, and Oliver Plümper

Strong dynamic weakening at seismic slip velocities in experiments on calcite has been attributed to a combination of grain-size reduction and nanoscale diffusion. However, these experiments were performed mostly dry and it is unknown how fluid-rock interactions affect the deformation mechanisms. The resulting physico-chemical interactions are key in deciphering deformation mechanisms and rheological changes during and after (seismic) faulting in the presence of a fluid phase. It is the interaction of the nanoscale of granular fault materials with fluids that may drive changes in rheological behaviour and fault stability. Considering that faults in the upper crust are major fluid pathways, there is a particular need for deformation experiments under wet conditions that focus on the nanoscale interaction between gouge material and pore fluid.

In order to track and quantify potential fluid – mineral interaction processes in carbonate faults, we have conducted deformation experiments on calcite gouge with water enriched in 18O (97 at%) as pore fluid. The fault gouge was deformed in a rotary shear apparatus at v = 1 m/s and a normal load of σn = 2 and 4 MPa. Raman spectroscopy and nanoscale secondary ion mass spectrometry (nanoSIMS) were used to analyse isotope distribution in the post-experiment samples. The nanostructure was characterised in electron transparent thin foils, prepared in a focused ion beam – scanning electron microscope (FIB-SEM), using transmission electron microscopy (TEM).

Raman analyses confirm the incorporation of 18O into the calcite crystal structure, as well as the presence of amorphous carbon. We identify three new band positions relating to the possible isotopologues of CO32- (reflecting 16O substitution by 18O). In addition, we detected portlandite (Ca(OH)2), pointing to the hydration reaction of lime (CaO) with water. Raman and NanoSIMS maps reveal that 18O is incorporated throughout the deformed volume, implying that calcite breakdown and isotope exchange affected the entire fault gouge.

Considering the oxygen self-diffusion rates in calcite (Farver, 1994) we conclude that solid-state 18O – isotope exchange cannot explain the observed incorporation of 18O into the calcite crystals during wet, seismic deformation. The hydration of portlandite and, calcite containing 18O implies the breakdown and decarbonation of the starting calcite and the nucleation of new calcite grains. Our results question the state and nature of calcite gouges during seismic deformation and challenge our knowledge of the rheological properties of wet calcite fault gouges at high strain rates. The observations suggest that the physico-chemical changes are a crucial part of the deformation mechanism and have implications for the development of microphysical models that allow us to quantitatively predict fault rheology.

 

 

References

John R. Farver, Oxygen self-diffusion in calcite: Dependence on temperature and water fugacity, Earth and Planetary Science Letters, Volume 121, Issues 3–4, 1994, Pages 575-587, doi:10.1016/0012-821X(94)90092-2.

How to cite: Ohl, M., King, H. E., Niemeijer, A., Chen, J., Drury, M., and Plümper, O.: Deciphering deformation mechanisms during seismic slip along wet carbonate faults, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7295, https://doi.org/10.5194/egusphere-egu2020-7295, 2020.

EGU2020-7926 | Displays | TS5.3

Bridging the Gap Between Seismic and Sub-seismic Mirror-Slip Surfaces in Carbonate Fault Gouge

Milo Trainor Moss, Berend A. Verberne, Miki Takahashi, and Andre R. Niemeijer

Specularly light reflective fault plane interfaces known as Mirror-Slip Surfaces (MSS’s) are common in seismically active fault zones around the world and thus their role in controlling fault strength and stability is of great interest. MSS’s have been experimentally produced in simulated carbonate faults at relatively high (10-1-100 m/s) and low (10-7-10-5 m/s) sliding velocities (resp. HV and LV). However, their role in controlling fault mechanical properties at sub-seismic vs seismic fault-slip velocities remains enigmatic. With the aim to unravel the structural development of MSS’s with increasing shear displacement (rate) and effective normal stress, we conducted HV and LV shear deformation experiments on simulated faults composed of granular calcite. We employed a ring shear set-up in a HV rotary shear apparatus as well as a saw-cut assembly mounted in a triaxial cell, which enabled fault-slip tests under a wide range of slip velocities (v = 10-7 - 10-1 m/s) and effective normal stresses (σn ≈ 10 – 170 MPa). All experiments were carried out under room-dry conditions, at room temperature. Post-mortem microstructure analysis of recovered fragments was carried out through visual inspection, incident light and scanning electron microscopy, as well as using Raman spectroscopy.

MSSs develop at sub-seismic slip velocities (v = 10-7 m/s) initially as visibly striated patches after 0.0062 m (σn ≈ 10 MPa), 0.004 m (σn ≈ 50 MPa) and 0.0026 m (σn ≈ 170 MPa) of shear displacement. The area covered by MSSs systematically increases with displacement to form continuous coatings after 0.042 (σn ≈ 10 MPa), 0.0062 m (σn ≈ 50 MPa) and 0.0036 m (σn ≈ 10 MPa).  As displacement rate is increased (10-5 – 10-4 m/s) MSSs are no longer observed however continuous MSSs are visible again at seismic slip velocities (>10-1 m/s). Our microstructural analysis revealed that MSSs are layers of (nano)crystalline calcite some of which contain elongated nanofibrous structures. In addition, discrete, 3 - 20 micron-sized patches of amorphous carbon are produced at seismic slip velocities, and at sub-seismic velocities under high normal stresses (σn > 160 MPa). We could not however identify any microstructural characteristics that are diagnostics of MSSs produced at certain slip rates or normal stress.

Our interpretation is that MSSs form by sintering of nm-sized particles within ultrafine-grained shear bands. With increasing shear displacement, MSS patches connect into continuous veneers. The formation of (continuous) MSSs at low as well as high sliding velocities in our experiments implies that natural MSSs are unreliable indicators for palaeoseismicity.

How to cite: Trainor Moss, M., Verberne, B. A., Takahashi, M., and Niemeijer, A. R.: Bridging the Gap Between Seismic and Sub-seismic Mirror-Slip Surfaces in Carbonate Fault Gouge, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7926, https://doi.org/10.5194/egusphere-egu2020-7926, 2020.

EGU2020-18129 | Displays | TS5.3

On the loading conditions for pore fluid stabilization of failure in crustal rock

Franciscus Aben and Nicolas Brantut

During shear failure in rock, fracture damage created within the failure zone causes localized dilation, which, under partially drained conditions, results in a localized pore fluid pressure drop. The effective normal stress within the failure zone therefore increases, and with it the fracture and frictional strengths. This effect is known as dilatancy hardening. Dilatancy hardening may suppress rupture propagation and slip rates sufficiently to stabilize the rupture and postpone or prevent dynamic failure. Here, we study the loading conditions at which the rate of dilatancy hardening is sufficiently high to stabilize failure. We do so by measuring the local pore fluid pressure during failure and the rate of dilatancy with slip at a range of confining and pore fluid pressures.

We performed shear failure experiments on thermally treated intact Westerly granite under triaxial loading conditions. The samples were saturated with water and contained notches to force the location of the shear failure zone. For each experiment, we imposed a different combination of confining pressure and pore fluid pressure, so that the overall effective pressure was either 40 MPa or 80 MPa prior to axial deformation at 10-6 s-1 strain rate. Dynamic shear failure was recognized by a sudden audible stress drop, whereas the stress drop during stabilized shear failure took longer and was inaudible. Local pore fluid pressure was measured with in-house developed pressure transducers placed on the trajectory of the prospective failure.

At effective pressures of 40 MPa and 80 MPa, we observe stabilized failure for a ratio λ (imposed pore fluid pressure over confining pressure) > 0.5. For λ < 0.5, we observe dynamic failure. Of two experiments performed at λ = 0.5 and 80 MPa effective pressure, one showed stabilized failure and one failed dynamically. For λ > 0.5, we observe pore fluid pressure drops in the failure zone of 30-45 MPa for 40 MPa effective pressure, and 60 MPa for 80 MPa confining pressure. The local pore fluid pressure during dynamic failure (λ < 0.5) is 0 MPa, strongly suggesting local fluid vaporization. Of the two experiments at λ = 0.5, the dilation rate with slip is higher for the dynamic failure relative to the stabilized failure.

We show that with increasing effective pressure, dilatancy hardening increases as the local pore fluid pressure drop during failure becomes larger. For λ < 0.5, dilatancy hardening is insufficient to stabilize failure because the local pore fluid pressure drop is larger than the absolute imposed pore fluid pressure. Near λ = 0.5, small variations in dilatancy control rupture stability. For λ > 0.5, dilatancy hardening is sufficient to suppress dynamic failure.

How to cite: Aben, F. and Brantut, N.: On the loading conditions for pore fluid stabilization of failure in crustal rock, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18129, https://doi.org/10.5194/egusphere-egu2020-18129, 2020.

EGU2020-6217 | Displays | TS5.3

Dilatancy hardening, rupture stabilization and instability in hydraulically isolated faults

David Lockner, Brooks Proctor, Brian Kilgore, Tom Mitchell, and Nick Beeler

Delayed failure or slip stabilization are expected outcomes of transient dilatancy and associated loss of pore pressure in isolated faults during rupture nucleation. Segall and Rice (1995), for example, developed relationships for pore pressure transients in the rate and state (r-s) friction formalism. They considered pore volume changes that were log(velocity) dependent and, depending on the hydraulic diffusivity and fault/fluid compressibility, could significantly change fault stability and rupture nucleation properties. Despite the theoretical importance of transient pore pressure effects, few laboratory experiments exist that show the effect of variable pore pressure in hydraulically isolated faults. This is due in large part to the difficulties involved in measuring pore pressure directly in isolated faults. We report on triaxial deformation of model sawcut faults in Westerly granite at normal stresses to 197 MPa. Samples were 76.2 mm-diameter cylinders with a fault inclined 30° to the sample axis. Tests were performed on bare surface granite and on faults containing 1 mm quartz gouge. Fault pore pressure was measured directly with a miniature pressure transducer with fast frequency response. Velocity-stepping experiments showed log(velocity) pressure drops as large as 4 MPa that are consistent with Segall and Rice (1995) and often larger than intrinsic r-s dependent strength changes. However, for large velocity steps the initial pressure response was a rapid increase that led to either slow slip or dynamic failure. We attribute this sudden pore pressure increase to rapid compaction as the open pore structure in the gouge became unstable and collapsed. Since this effect is only observed during rapid velocity increase, it is most likely to occur as a rupture front propagates along the fault. In this case, the pore collapse and associated weakening could contribute to an overall stress drop and is likely to slow rupture propagation. For example, a 4 MPa pore pressure rise on a fault with 40 MPa effective normal stress could result in a 2 to 3 MPa loss of shear strength, a strength loss much larger than would be predicted from typical r-s parameters.

How to cite: Lockner, D., Proctor, B., Kilgore, B., Mitchell, T., and Beeler, N.: Dilatancy hardening, rupture stabilization and instability in hydraulically isolated faults, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6217, https://doi.org/10.5194/egusphere-egu2020-6217, 2020.

EGU2020-22160 | Displays | TS5.3

Imaging laboratory rupture nucleation at the source: A friction experiment using ultrafast ultrasound

Johannes Aichele, Soumaya Latour, Stefan Catheline, and Philippe Roux

At the field scale and in most laboratory studies the rupture nucleation mechanism of an earthquake, landslide or glacier stick-slip cannot be directly imaged. Near-field and source effects are thus difficult to observe. We use correlation of highspeed ultrasound images to track shear wave propagation at the rupture nucleation source and in its near-field. The particle velocity and accumulated displacement of the shear wave field emitted by the rupture are observed in-situ on a very dense grid. The grid consists of the ultrasonic imaging plane inside the frictional body and resolution is defined by the ultrasonic wavelenth (0.3 mm). The rupture process is generated by controlling a driving slab through a motor and a granular layer of sand or gravel constitutes the stick-slip behavior. The frictional body is a homemade Poly-Vinyl-Alcohol hydrogel. Although its properties are differing from those of classically investigated rocks, it constitutes a linear elastic material and reproduces rupture processes that are known from the field and rock physics. Through the elastic wave field we observe microslips which precede supershear rupture propagation along the frictional interface. We experimentally show that the source mechanism of a breaking asperity depends on the material contrast of the adjacent halfspaces. Neither a double-couple nor a single-force mechanism perfectly reproduce the experimental data of a rupturing asperity, while micro-slips are well reproduced by a singular shear point force.

How to cite: Aichele, J., Latour, S., Catheline, S., and Roux, P.: Imaging laboratory rupture nucleation at the source: A friction experiment using ultrafast ultrasound , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22160, https://doi.org/10.5194/egusphere-egu2020-22160, 2020.

EGU2020-7109 | Displays | TS5.3

Signature of supershear transition seen in damage and aftershock pattern

Harsha Bhat, Jorge Jara, Lucile Bruhat, Solene Antoine, Kurama Okubo, Marion Thomas, Esteban Rougier, Ares Rosakis, Charles Sammis, Yann Klinger, and Romain Jolivet

Supershear earthquakes are rare but powerful ruptures with devastating consequences. How quickly an earthquake rupture attains this speed, or for that matter decelerates from it, strongly affects high-frequency ground motion and the spatial extent of coseismic off-fault damage. Traditionally, studies of supershear earthquakes have focused on determining which fault segments sustained fully-grown supershear ruptures. Knowing that the rupture first propagated at subshear rupture speeds, these studies usually guessed an approximate location for the transition from subshear to supershear regimes. The rarity of confirmed supershear ruptures, combined with the fact that conditions for supershear transition are still debated, complicates the investigation of supershear transition in real earthquakes. Here, we find a unique signature of the location of a supershear transition: we show that, when a rupture accelerates towards supershear speed, the stress concentration abruptly shrinks, limiting the off-fault damage and aftershock productivity. First, we use theoretical fracture mechanics to demonstrate that, before transitioning to supershear, the stress concentration around the rupture tip shrinks, confining the region where damage & aftershocks are expected. Then, employing two different dynamic rupture modeling approaches, we confirm such reduction in stress concentration, further validating the expected signature in the transition region. We contrast these numerical and theoretical results with high-resolution aftershock catalogs for three natural supershear earthquakes, where we identify a small region with lower aftershock density near the supershear transition. Finally, using satellite optical image correlation techniques, we show that, for a fourth event, the transition zone is characterized by a diminution in the width of the damage zone. Our results demonstrate that the transition from subshear to supershear rupture can be clearly identified by a localized absence of aftershocks, and a decrease in off-fault damage, due to a transient reduction of the stress intensity at the rupture tip.

How to cite: Bhat, H., Jara, J., Bruhat, L., Antoine, S., Okubo, K., Thomas, M., Rougier, E., Rosakis, A., Sammis, C., Klinger, Y., and Jolivet, R.: Signature of supershear transition seen in damage and aftershock pattern, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7109, https://doi.org/10.5194/egusphere-egu2020-7109, 2020.

EGU2020-2213 | Displays | TS5.3

Rupture speed of supershear slip instabilities

David Kammer, Ilya Svetlizky, and Jay Fineberg

Shear ruptures propagating along natural faults or simulated faults in analog laboratory experiments present a wide range of rupture velocities. Most ruptures propagate at velocities below the Rayleigh wave speed and Linear Elastic Fracture Mechanics (LEFM) theory has been shown to predict quantitatively well the observed propagation speed. However, early theoretical and numerical work suggested that ruptures may surpass the shear wave speed and propagate at velocities that can reach the longitudinal wave speed. This was later confirmed in laboratory experiments and observed as supershear earthquakes in nature. While the transition from sub-Rayleigh to supershear propagation has been studied extensively, current knowledge of propagation speed in the supershear regime is limited to a couple of idealistic set-ups. Here, we analyse the propagation speed of supershear ruptures along various nonuniform interfaces using simulations and experiments. We show that an approximate fracture mechanics theory describes well supershear rupture speeds as observed in our experiments and simulations. Furthermore, the theory uncovers a critical rupture length below which supershear propagation is impossible. Beyond this critical length, a rupture can sustain supershear propagation for arbitrarily low prestress levels if local non-uniformities cause transition. The presented theory provides a tool to better understand the potential for supershear ruptures in more realistic heterogeneous systems.

How to cite: Kammer, D., Svetlizky, I., and Fineberg, J.: Rupture speed of supershear slip instabilities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2213, https://doi.org/10.5194/egusphere-egu2020-2213, 2020.

EGU2020-2565 | Displays | TS5.3

Yield and shear of rough interlocked faults: analytical solution and experimental observations

Amir Sagy, Vladimir Lyakhovsky, and Yossef H. Hatzor

Natural fault surfaces are interlocked, partly cohesive, and display multiscale geometric irregularities. Here we examine the nucleation of deformation and the evolution of shear in such interlocked surfaces using a closed-form analytical solution and a series of laboratory experiments.  The analytical model considers an interlocked interface with multiscale roughness between two linear elastic half-space blocks. The interface geometry is based on three-dimensional fault surfaces imaging. It is represented by a Fourier series and the plane strain solution for the elastic stress distribution is represented as a sum of the constant background stress generated by a uniform far-field loading and perturbations associated with the interface roughness. The model predicts the critical stress necessary for failure and the location of failure nucleation sites across the surface, as function of the initial surface geometry.

A similar configuration is adopted in laboratory experiments as carbonate blocks with rough interlocked surfaces generated by tensional fracturing are sheared in a servo-controlled direct shear apparatus. Resistance to shear and surface roughness evolution are measured under variable normal stresses, slip distances and slip rates.  We find that the evolution of surface morphology with shear is closely related to the loading configuration. Initially rough, interlocked, surfaces become rougher when normal stress and displacement rate are increased. Under a fixed, relatively low normal stress and fixed displacement rate however, the surfaces become smoother with increasing displacement distance.  

The shear of the interlocked slip surfaces is associated with volumetric deformation, wear and frictional slip, all of which are typically observed across natural fault zones. We suggest that their intensities and partitioning are strongly affected by the initial surface roughness characteristics, the background stress, and the rate and magnitude of shear displacement. 

How to cite: Sagy, A., Lyakhovsky, V., and Hatzor, Y. H.: Yield and shear of rough interlocked faults: analytical solution and experimental observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2565, https://doi.org/10.5194/egusphere-egu2020-2565, 2020.

EGU2020-21610 | Displays | TS5.3

Stress triggering and the mechanics of fault slip behavior

Marco Maria Scuderi and Cristiano Collettini

Dynamic changes in the stress field during the seismic cycle of tectonic faults can control frictional stability and the mode of fault slip. Small perturbation in the stress field, like those produced by tidal stresses can influence the evolution of frictional strength and fault stability with the potential of triggering a variety of slip behaviors. However, an open question that remains still poorly understood is how amplitude and frequency of stress changes influence the triggering of an instability and the associated slip behavior, i.e. slow or fast slip.

Here we reproduce in the laboratory the spectrum of fault slip behaviors, from slow-slip to dynamic stick-slip, by matching the critical fault rheologic stiffness (kc) with the surrounding stiffness (k). We investigate the influence of normal stress variations on the slip style of a quartz rich fault gouge at the stability boundary, i.e. k/kc slightly less than one, by adopting two techniques: 1) instantaneous step-like changes and 2) sinusoidal variations in normal stress. For the latter case, modulations of normal stress were chosen to have amplitudes greater, less or equal to the typical stress drop observed during unperturbed experiments. Also, the period was varied to be greater, less or equal to the typical recurrence time of laboratory slow-slip events. During the experiments, we continuously record ultrasonic wave velocity to monitor the microphysical state of the fault. We find that frictional stability is profoundly affected by variation in normal stress giving rise to a variety of slip behaviors. Furthermore, during strain accumulation and fabric development, changes in normal stress permanently influence the microphysical state of the fault gouge increasing kc and producing a switch from slow to fast stick-slip. Our results indicate that perturbations in the stress state can trigger a variety of slip behaviors along the same fault patch. These results have important implications for the formulation of constitutive laws in the framework of rate- and state- friction, highlighting the necessity to account for the microphysical state of the fault in order to improve our understanding of frictional stability.

How to cite: Scuderi, M. M. and Collettini, C.: Stress triggering and the mechanics of fault slip behavior, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21610, https://doi.org/10.5194/egusphere-egu2020-21610, 2020.

On major plate-boundary fault zones, it is generally observed that large-magnitude earthquakes tend to nucleate within a discrete depth range in the crust known as the seismogenic zone.  This is generally explained by the contrast between frictionally stable, velocity strengthening sediments at shallow depths and lithified, velocity-weakening rocks at seismogenic (10’s of km) depth. Thus, it is hypothesized that diagenetic and low-grade metamorphic processes are responsible for the development of velocity-weakening frictional behavior in sediments that make up fault gouges.  Previous laboratory studies comparing the frictional properties of intact rocks and powdered versions of the same rocks generally support this hypothesis, however controlling lithification in the laboratory and systematically quantifying frictional behavior as a function of lithification and remains a challenge.

Here, we simulate the lithification process in the laboratory by using mixtures of halite and shale powders with halite-saturated brine, which we consolidate under 10 MPa normal stress and subsequently desiccate.  The desiccation allows precipitation of halite as cement, creating synthetic rocks.  We vary the proportion of salt to shale in our samples, which we use as a proxy for degree of lithification.  We measure the frictional properties of our lithified samples, and equivalent powdered versions of these samples, with velocity-step tests in the range 10-7 – 3x10-5 m/s.  We quantify lithification by two methods: (1) direct measurement of cohesion, and (2) measuring the porosity reduction of lithified samples compared to powders.  Using these measurements, we systematically investigate the relationship between lithification and frictional slip behavior.

We observe that powdered samples of every halite-shale proportion exhibits predominantly velocity-strengthening friction, whereas lithified samples exhibit a combination of velocity strengthening and significant velocity weakening when halite constitutes at least 30 wt% of the sample.  Larger velocity weakening generally coincides with friction coefficients of > 0.62, cohesion of > ~1 MPa, and porosity reduction of > ~50 vol%.  Although none of our lithified samples exhibit strictly velocity-weakening friction, this is consistent with the frictional behavior of pure halite under our experimental conditions.  Scanning electron microscopy images do not show any clear characteristics attributable to velocity-weakening, but did reveal that the shear surfaces for powders tends to exhibit small cracks not seen in the lithified sample shear surfaces.  These results suggest that lithification via cementation and porosity loss may facilitate slip instability, but that microstructural indicators are subtle.

How to cite: Ikari, M. and Hüpers, A.: Quantifying effects of laboratory-simulated diagenetic sediment lithification on frictional slip behavior, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3396, https://doi.org/10.5194/egusphere-egu2020-3396, 2020.

EGU2020-4205 | Displays | TS5.3

Laboratory observations of frictional stability and fault zone evolution under heterogeneous friction, rheology, and stress conditions

Chun-Yu Ke, Sara Beth Leach Cebry, Srisharan Shreedharan, Chris Marone, David S. Kammer, and Gregory C. McLaskey

Natural faults experience a variety of frictional, rheological, and stress heterogeneities. To investigate the effects of these heterogeneities on seismic stability and the mode of fault slip behavior, laboratory experiments were conducted using a biaxial shearing apparatus with a 0.76 m by 0.076 m simulated fault where 2.5 to 5 mm thick gouge layers were sheared at applied normal stresses of 7 to 12 MPa for 25 mm of cumulative slip. Laboratory faults consisted of uniform layers of gouge, homogeneous mixtures, and/or heterogeneous patches of talc, quartz, and gypsum minerals. Experiments with a uniform layer of velocity weakening fault gouge revealed the development of two asperities at the highly stressed ends of the fault that could fail independently, and creep fronts that facilitated interaction between asperities. This behavior was also reproduced with simple numerical simulations that employ rate- and state-dependent friction. In other experiments, the fault consisted of patches of alternating velocity strengthening and velocity weakening fault gouges. Patch size and location were varied to understand how earthquake ruptures accelerate or decelerate in this heterogeneous environment. These experiments revealed that a velocity weakening fault patch was more likely to remain stable if located next to a velocity strengthening fault patch. However, stability was dependent on the patch sizes and location relative to where the load is applied. In certain cases, some sections of the fault slipped unstably while others slid stably. These experiments, and matching numerical models, highlight the complexity that can arise on natural faults due to frictional, rheological, and stress heterogeneities.

How to cite: Ke, C.-Y., Leach Cebry, S. B., Shreedharan, S., Marone, C., Kammer, D. S., and McLaskey, G. C.: Laboratory observations of frictional stability and fault zone evolution under heterogeneous friction, rheology, and stress conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4205, https://doi.org/10.5194/egusphere-egu2020-4205, 2020.

EGU2020-16538 | Displays | TS5.3

Exploring frictional velocity dependence as a mechanism for slow earthquake rupture

Julia Krogh and Chris Marone

Earthquakes fail through a spectrum of slip modes ranging from slow slip to fast elastodynamic rupture. Slow earthquakes, or slow-slip events, represent fault slip behaviors that involve quasi-dynamic, self-sustained rupture propagation. To better understand the mechanisms that limit the slip speed and propagation rates of slow slip, we focus on a particular parameter: the critical frictional weakening rate of the fault surface, kc. When kc is approximately equal to k, the elastic loading stiffness of the fault, complex fault slip behaviors including slow-slip events are observed. If kc has a negative dependence on slip velocity, acceleration during the coseismic phase could decrease kc until it approximates k, terminating in a slow earthquake. Here, we describe the results of laboratory experiments designed to quantify the dependence of kc on frictional slip velocity. We conducted double-direct shear experiments in a biaxial shearing apparatus with 3 mm-thick fault zones composed of quartz powder to simulate fault gouge. We focus on step decreases in slip velocity from 300 to 3 m/s that were performed for a range of normal stresses, from 10 to 20 MPa, which we know to be near the stability transition from stable to unstable sliding defined by k/kc ~ 1.0. Under stable conditions, rate-state friction modeling was used to determine kc for each velocity step. Our data provide direct insight on the stability transition associated with kc(V), including experiments for which slow-slip instabilities grew larger and faster throughout velocity-step sequences. Ultimately, both numerical modeling and observational data indicate that the velocity dependence of kc is an important parameter when considering the mechanisms of slow earthquake nucleation. 

How to cite: Krogh, J. and Marone, C.: Exploring frictional velocity dependence as a mechanism for slow earthquake rupture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16538, https://doi.org/10.5194/egusphere-egu2020-16538, 2020.

EGU2020-21286 | Displays | TS5.3

How fault creep makes its way!

Sohom Ray and Dmitry Garagash

We model mechanics of an aseismic fault creep propagation and conditions when it may lead to the initiation of seismic slip. We do so by considering fault bounding medium to be elastically deformable and fault's interfacial strength to be slip rate- and state-dependent characterized by the steady-state rate-weakening. The fault is considered to be initially locked: a state of slip when interfacial slip velocity is considerably low and arbitrarily less than the steady-state sliding rate for given uniformly distributed prestress.

We find solutions for creep penetration into the fault under geologically relevant loading scenarios (e.g., that of a plate-bounding strike-slip faulting driven by the slip at depth, or that of a rate-weakening patch of a fault loaded by a creep on an adjacent rate-strengthening part due to, e.g., anthropogenic fluid injection). In all the cases, the creep makes its way as a self-similar traveling front characterized by high stress owed to the direct effect; however, the remaining creep profile exhibits a near steady-state sliding. This may imply that a choice from a set of rules for the evolution of state variable—with identical linearizations about steady-state sliding—has no bearing on the creep penetration. Further, we find that the prestress, close to or far from steady-state sliding stress, controls the rate and manner of the creep penetration.

We study slip propagation from an imposed dislocation accrued at a constant rate at one end of a homogeneous fault with the other end either at (1) the free surface of an elastic half-space or (2) strictly locked (buried) in the elastic full space. In both scenarios, no slip instability takes place over aseismic creep propagation distances relatable to the usual elasto-frictional nucleation lengthscale (e.g. Rubin & Ampuero 2005). Instead, in the first case creep propagation leads to the nucleation of the first and all subsequent dynamic events of the emerging cycle at/near the free surface after the creep traversed the entire length of the fault. In the second case, the creep front traverses nearly the entire length of the fault, but, instead of nucleating a dynamic event, the front arrests at some distance from the buried fault end, followed by the continual accumulation of aseismic slip without ever nucleating a dynamic event. These results may be owed to the physical and geometrical invariance of the considered homogeneous fault and may signal the essential role of fault strength heterogeneity, either that of the normal stress and/or frictional properties (Ray & Viesca, 2017, 2019), in defining its seismogenic character, i.e. under which conditions and where on the fault the earthquake slip instability can take place. 

How to cite: Ray, S. and Garagash, D.: How fault creep makes its way!, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21286, https://doi.org/10.5194/egusphere-egu2020-21286, 2020.

EGU2020-5204 | Displays | TS5.3

Lower crustal earthquake facilitated by overpressurized frictional melts

Xin Zhong, Arianne Petley-Ragan, Sarah Incel, Marcin Dabrowski, Niels Andersen, Håkon Austrheim, and Bjørn Jamtveit

Earthquakes are among the most catastrophic geological events that last only several to tens of seconds. During earthquakes, many processes may occur including rupturing, frictional sliding, pore fluid pressurization and occasionally frictional melting. However, little direct records of these fast processes remain preserved through geological time. During rapid shearing, frictional melt may form that lubricates the rocks and facilitates further sliding. The frictional melt layer may quench quickly within seconds to minutes depending on its thickness. After quenching, the product pseudotachylyte preserves valuable information about the conditions when the frictional melt was generated. Here, we study pseudotachylyte from Holsnøy Island in the Bergen Arcs of Western Norway, an exhumed portion of the lower continental crust. The investigated pseudotachylyte vein is ca. 1-2 cm thick and free of injection veins along the 2 m visible length of the fault. The pseudotachylyte matrix is made up of fine-grained omphacite (Jd38), sodic plagioclase (Ab83) and kyanite with minor rutile and sulphides. Many dendritic garnets are found within the pseudotachylyte showing gradual grain size reduction towards the wall rock. This suggests that the garnets crystallized during rapid quenching. The stability of epidote, kyanite and quartz in the wall rock plagioclase, and omphacite and albitic plagioclase together with quartz in the pseudotachylyte matrix constrains the ambient P ca. 1.5-1.7 GPa and T ca. 650-750°C. Using Raman elastic barometry, the constrained pressure condition from quartz inclusions in the dendritic garnets in the pseudotachylyte is > 2 GPa. Based on an elastic model (Eshelby’s solution), it is not possible to maintain 0.5 GPa overpressure within a thin melt layer by thermal pressurization or melting expansion. A potential explanation is that GPa level differential stress was present in the wall rocks and the melt pressure approached the normal stress when shear rigidity vanished during frictional melting. Our study illustrates how overpressure can be created within frictional melt veins under conditions of high differential stress, and offers a mechanism that facilitates co-seismic weakening during lower crustal earthquakes.  

How to cite: Zhong, X., Petley-Ragan, A., Incel, S., Dabrowski, M., Andersen, N., Austrheim, H., and Jamtveit, B.: Lower crustal earthquake facilitated by overpressurized frictional melts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5204, https://doi.org/10.5194/egusphere-egu2020-5204, 2020.

EGU2020-7425 | Displays | TS5.3

Field and experimental evidence of frictional melting in fluid-rich faults

Giulio Di Toro, Michele Fondriest, Tom Mitchell, Rodrigo Gomila, Erik Jensen, Simone Masoch, Andrea Bistacchi, Giulia Magnarini, Dan Faulkner, José Cembrano, Silvia Mittempergher, and Elena Spagnuolo

Pseudotachylytes (solidified friction melts produced during seismic slip) are considered to be rare in the geological record because they should be typical of particular seismogenic environments characterized by water-deficient cohesive rocks. Here we present field and experimental evidence that frictional melting can occur in “fluid-rich” faults hosted in the continental crust.

Pseudotachylytes were found in the >40 km long Bolfin Fault Zone of the Atacama Fault System (Northern Chile). The pseudotachylytes (1) are associated with a ~1 m thick ultracataclastic fault core which accommodated > 5 km of strike-slip displacement at 6-8 km depth and 280-350°C ambient temperature, (2) cut a ca. 50 m thick damage zone made of sub-greenschists facies hydrothermally altered diorites and gabbros, (3) cut and are cut by epidote+chlorite+calcite bearing veins. The microstructure of the pseudotachylytes include (1) tabular microlites of feldspar hosted in a glassy-like matrix and (2) vesicles filled by post-seismic sub-greenschist facies minerals hosted in a strongly altered matrix of albite, chlorite, and epidote crystals.

Experiments reproducing seismic slip in the presence of pressurized water and conducted with the rotary shear apparatus SHIVA on experimental faults made of the sub-greenschists (hydrothermally altered) facies damage zone rocks from the Bolfin Fault Zone, resulted in the production of vesiculated pseudotachylytes. In these experiments, fault weakening mainly occurred by melt lubrication rather than by pore fluid thermal pressurization.

The identification of pseudotachylytes and its association with intense pre- and post-seismic hydrothermal alteration challenges the common belief that pseudotachylytes are rare. Consistent with the experimental evidence, pseudotachylytes (1) could be a common coseismic fault product in the continental crust, (2) may easily be produced in fluid-rich hydrothermal environments but, (3) are easily lost from the geological record because they are prone to alteration.

How to cite: Di Toro, G., Fondriest, M., Mitchell, T., Gomila, R., Jensen, E., Masoch, S., Bistacchi, A., Magnarini, G., Faulkner, D., Cembrano, J., Mittempergher, S., and Spagnuolo, E.: Field and experimental evidence of frictional melting in fluid-rich faults, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7425, https://doi.org/10.5194/egusphere-egu2020-7425, 2020.

EGU2020-5568 | Displays | TS5.3

Raman Spectroscopy of Carbonaceous Material record in pseudotachylytes: heating or deformation?

Benjamin Moris-Muttoni, Romain Augier, Hugues Raimbourg, and Abdeltif Lahfid

The Raman Spectroscopy of Carbonaceous Materials (RSCM) permits to quantify the degree of crystallinity of carbonaceous materials (CM), which increases upon geological heating. First believed to be a reliable indicator of metamorphic grade (Pasteris and Wopenka, 1991 ; Wada et al., 1996), the quantitative evolution of crystallinity of CM has been proposed as new geothermometers for a wide range of temperature between 200 and 650°C (Beyssac et al., 2002 ; Rahl et al., 2005 ; Lahfid et al., 2010 ; Kouketsu et al., 2014).

According to recent studies, RSCM approach has been used to detect evidence of frictional heating during seismic events from pseudotachylites (Ito et al., 2017) or on fault gouges and breccia (Furuichi et al., 2015 ; Kuo et al., 2018). This new application assumes that CM spectra reflect only the thermal record irrespectively of the potential impact of geological strain on CM crystallinity (Tagiri and Tsuboi, 1979 ; Bonijoly et al., 1982 ; Ross et al., 1991 ; Bustin et al., 1995).

The aim of this study is to reconsider this postulate by using RSCM method in order to understand the effects of seismic deformation on the structure of the carbonaceous material. For this purpose, we analyzed three pseuydotachylyte veins from the Shimanto Belt (Southwest Japan), one from a drilling in the Nobeoka Tectonic Line, another from Okitsu area and a last one from the Mugi area, with RSCM method through high-resolution cross-sections perpendicular to the structure. Samples are composed of weakly foliated tectonic melanges troncated by a millimetric shear plane filled by fine black vitreous material accompanied by injection veins. Filling material presents an important grain-size reduction and embayment structures of sandstones clasts, scattered iron sulfides while element maps show flow textures. These microstructure features are described as characteristics of melt-origin pseudotachylytes (Hasegawa et al., 2019) but could also be produced by an intense comminution along with fluids circulation. Area ratio show a large evolution of CM spectra inside the pseudotachylyte compare to the host rock. In addition, intensity ratio (i.e. R1 in Beyssac et al., 2002) drastically increases inside the pseudotachylyte as expected. However, intensity ratio values are higher than expected values at this temperature, from your own calibration on undeformed samples, and highest values are observed on each rim of the pseudotachylyte. This result suggest that structural evolution of CM is not only controlled by temperature, but also by deformation, in a broad sense. More importantly, these parameters shows a very sharp evolution in few microns along cross-sections, which is at variance with thermal diffusivity models applicable for others intrusive bodies (Aoya et al., 2010 ; Hilchie and Jamieson, 2014).

These observations of step-wise evolution of CM raman parameters suggest that deformation is the principal influencing factor of the evolution of CM crystallinity in fault cores. It therefore questions the maximum temperature reached fault zones, possibly much lower than previously estimated.

How to cite: Moris-Muttoni, B., Augier, R., Raimbourg, H., and Lahfid, A.: Raman Spectroscopy of Carbonaceous Material record in pseudotachylytes: heating or deformation? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5568, https://doi.org/10.5194/egusphere-egu2020-5568, 2020.

EGU2020-7928 | Displays | TS5.3

Simulating melting of fault gouge at the local scale

Guilhem Mollon, Jerôme Aubry, and Alexandre Schubnel

Melting of fault gouge during fast co-seismic slip has been widely documented in laboratory studies. Because the real-time observation and local probing of this phenomenon is experimentally out of reach at the present time, the implication of melting on fault weakening are not yet fully understood,. Physics-based numerical modelling of a synthetic sliding interface could thus be a way to bring a better understanding of this physico-mechanical process.

In this study, we present a numerical work paving the way towards such an understanding. It is implemented in MELODY, a numerical tool combining Discrete Element Method (DEM) and a Multibody Meshfree Approach (i.e. highly deformable DEM). In this model, a small patch of seismic fault filled with granular gouge (composed of perfectly rigid and incrompressible grains with realistic angular shapes) is simulated. By shearing this simulated fault, we produce highly deformable gouge particles within a melted layer.

Numerical results show that melting processes have strong consequences on the fault rheology, by reducing shear stress and favouring the localization of the deformation on the sliding interface. Results are compared with experimental observations on saw-cut faults deformed in triaxial conditions in the laboratory. Future developments including thermal diffusion within the gouge and in the surrounding medium are described.

How to cite: Mollon, G., Aubry, J., and Schubnel, A.: Simulating melting of fault gouge at the local scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7928, https://doi.org/10.5194/egusphere-egu2020-7928, 2020.

EGU2020-3771 | Displays | TS5.3

Frictional strength, stability, and healing properties of basalt faults for CO2 storage purposes

Piercarlo Giacomel, Roberta Ruggieri, Marco Scuderi, Elena Spagnuolo, Giulio Di Toro, and Cristiano Collettini

Despite the numerous advantages of storing CO2 into basalts by dissolving carbon dioxide into water prior to its injection, the large amount of H2O required for this operation poses an increased risk of fluid overpressure into the fault/fracture networks, and renders the seismicity analysis pivotal to upscale this storage method to voluminous basaltic occurrences diffused worldwide.

To deepen our knowledge on the frictional strength, stability, and the healing properties of basalt-built faults, we carried out friction tests on basalts from Mt. Etna using the biaxial deformation machine, BRAVA, and the rotary-shear apparatus, SHIVA (HP-HT laboratory of INGV-Rome, Italy). Specimens were selected for their relative abundance of olivine and pyroxene crystals, i.e. the main sources of divalent cations in silicate rocks necessary to trap CO2 into basalts.

Experiments were performed both on synthetic powdered samples and bare surfaces, at room-dry and water drained-saturated conditions, at room temperature and pressure. Bare surfaces consisted in basalt slabs and hollowed cylinders, which were mounted on BRAVA and SHIVA apparatus, respectively. Samples were subjected to 5 to 30 MPa normal stress (σn) for powdered samples and in the range 5 to 10 MPa for bare surfaces.

At the investigated normal stresses, frictional sliding data obey Byerlee’s law for friction, with the friction coefficient µ = 0.59 – 0.78. Differences in μ mainly reflect sample variability, different experimental configurations, sample geometry, and, to a lesser extent, the boundary conditions (dry/wet). However, in detail, basalt slabs are generally characterized by the highest friction coefficient and hollow cylinders exhibit a slight increase in friction coefficient with increasing shear displacement, due to the progressive slip hardening resulting from gouge production during frictional sliding.

Velocity step increases were conducted on BRAVA after steady values of friction were attained (~ 6.5-7.5 mm for gouge and ~ 3 mm slip for bare surfaces) and consisted in velocity sequences from 0.1 to 300 µm s-1, with ~ 500 μm displacement for each step. Rate-and-state friction experiments show opposite mechanical behavior between bare surfaces and synthetic fault gouge: while bare surfaces experience a transition from rate-weakening at low sliding velocity (V) to rate-strengthening behavior at higher V without any clear dependence on the applied σn, gouge revealed a negative trend of (a-b) with shear velocity at σn > 5 MPa and a velocity-weakening behavior at V  ≥ 30 µm s-1, regardless of experimental conditions. We ascribe this different behavior to shear delocalization owing to frictional wear production in bare surfaces, and to shear localization accompanied by grain size reduction along the Riedel R1 and boundary B shear zones in fault gouges, as also confirmed by microstructural analysis.

The velocity weakening behavior of fault gouge, coupled with the fast healing rates retrieved from slide-hold-slide experiments (500 µm displacement cumulated at V = 10 µm/s followed by hold times from 30 to 3000 s), define high strength zones that are potentially seismogenic. Conversely, velocity strengthening behavior of bare surfaces promotes aseismic creep at V ≥ 100 µm s-1, regardless of the faster restrengthening compared to fault gouge.

How to cite: Giacomel, P., Ruggieri, R., Scuderi, M., Spagnuolo, E., Di Toro, G., and Collettini, C.: Frictional strength, stability, and healing properties of basalt faults for CO2 storage purposes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3771, https://doi.org/10.5194/egusphere-egu2020-3771, 2020.

EGU2020-6691 | Displays | TS5.3

In-situ petrophysical and geomechanical characterization and 3D modelling of a mature normal fault zone (Goddo fault, Bømlo – Norway)

Alberto Ceccato, Giulio Viola, Marco Antonellini, Giulia Tartaglia, and Eric James Ryan

The detailed characterization of internal fault zone architecture and  petrophysical and geomechanical properties of fault rocks is fundamental to understanding the flow and mechanical behaviour of mature fault zones. The Goddo normal fault (Bømlo – Norway) accommodated c. E-W extension related to North Sea Rifting from Permian to Early Cretaceous times [1]. It represents a good example of a mature, iteratively reactivated and thus long-lived (seismogenic?) fault zone, developed in a pervasively fractured granitoid basement at upper crustal conditions in a regional extensional setting.

Field characterization of the fault zone’s structural facies and analysis of background fracture patterns in the protolith have been integrated with in-situ petrophysical and geomechanical surveys of the recognized fault zone architectural components. In-situ air-permeability and mechanical directional tests (performed with NER TinyPerm III air-minipermeameter and DRC GeoHammer, L-type Schmidt hammer, respectively) have allowed for the quantification of the permeability tensor and mechanical properties (UCS and elastic modulus) within each brittle structural facies. Mechanical properties measured parallel to fault rock fabric of cataclasite- and gouge-bearing structural facies differ by up to one order of magnitude from those measured perpendicularly to it (~10 MPa vs. 100-200 MPa in UCS, respectively). Accordingly, permeability of cataclasite- and gouge-bearing facies is several orders of magnitude larger when measured parallel to fault-rock fabric than that perpendicular to it (10-0-10-1 D vs. 10-2-10-3 D, respectively). Virtual outcrop models (VOMs) of the fault zone were obtained from high-resolution UAV-photogrammetry. Field measurements of fracture orientations were used for calibration of the VOMs to construct a statistically robust fracture dataset. The results of VOMs structural analysis allowed for the quantification of fracture intensity and geometrical characteristics of mesoscopic fracture patterns within the different domains of the fault zone architecture.

Results from field, VOMs structural analysis, and in-situ petrophysical investigations have been integrated into a realistic 3D fault zone model with the software 3DMove (Petex). This model can be used to investigate the influence of mesoscopic fracture patterns, related to either the fault zone or the background fracturing, on the hydro-mechanical behaviour of a mature fault zone. In addition, the evolution of the hydro-mechanical properties through time can be assessed by integrating the progressive development of brittle structural facies and fracture sets developed during the incremental strain and stress history into the model. This contribution proposes a geologically-constrained method to quantify the geometry of 3D fault zones, as a possible tool for models to be adopted in stress-strain analysis, hydraulic characterization and in the mechanical analysis of fault zones.

[1] Viola, G., Scheiber, T., Fredin, O., Zwingmann, H., Margreth, A., & Knies, J. (2016). Deconvoluting complex structural histories archived in brittle fault zones. Nature communications, 7, 13448.

How to cite: Ceccato, A., Viola, G., Antonellini, M., Tartaglia, G., and Ryan, E. J.: In-situ petrophysical and geomechanical characterization and 3D modelling of a mature normal fault zone (Goddo fault, Bømlo – Norway), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6691, https://doi.org/10.5194/egusphere-egu2020-6691, 2020.

EGU2020-7243 | Displays | TS5.3

The rupture process of the Peru intermediate and deep earthquakes

Carolina López Sánchez, Elisa Buforn, Maurizio Mattesini, and Hernando Tavera

The seismicity of Peru is associated with the subduction process of the Nazca plate under South America and characterized by the occurrence of shallow, intermediate and deep earthquakes. In this study, we focus our attention on the rupture process of earthquakes (Mw>6.0 ) that occurred during the period 2018-2019 at intermediate depth (50<h<200 km) and deep depth (500<h<700 km). Focal mechanisms have been estimated from slip inversion of body waves at teleseismic distances (Kikuchi and Kanamori, 1991). We investigate possible differences in the moment rate functions at different focal depths using our results and those provided by SCARDEC database. Furthermore, an estimation of the radiated seismic energy (ER) was provided from the direct integration of the velocity P wave recorded at teleseismic and regional distances, getting values between 1015 to 1016 J. The data were corrected by geometrical spreading, anelastic attenuation, and free surface effect. These results are interpreted in terms of the seismotectonics of the region

How to cite: López Sánchez, C., Buforn, E., Mattesini, M., and Tavera, H.: The rupture process of the Peru intermediate and deep earthquakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7243, https://doi.org/10.5194/egusphere-egu2020-7243, 2020.

EGU2020-9369 | Displays | TS5.3

Slip modes and interaction in a simplified strike-slip fault system with increasing geometrical complexity

Michael Rudolf, Joscha Podlesny, Matthias Rosenau, Ralf Kornhuber, and Onno Oncken

The release of elastic energy along an active fault is accommodated by a wide range of slip modes. It ranges from long-term slow slip events (SSEs) and creep to short-term tremors and earthquakes. They vary not only in their characteristic duration but also in their magnitude, spatial extend and slip velocities. As all slip modes are related to earthquakes, the understanding of the relationships between the different slip modes and the underlying mechanisms is crucial to assess earthquake hazards in various regions. The exact relation is unclear, as in some regions many slip modes occur simultaneously (e.g. Tohoku-Oki) and in others certain slip modes are completely absent (e.g. Cascadia).

One of the driving factors in the generation of this large variety of slip modes is the interplay of fault heterogeneity and geometrical complexity of the fault system. Using a scaled physical model we test various settings in terms of fault heterogeneity and geometrical complexity. The experimental results are then validated and benchmarked using multi-scale numerical simulations. We describe the system using the rate-and-state frictional framework and introduce the on-fault heterogeneity with variable frictional properties. All properties are the same for analogue and simulation as far as they can be determined or realized experimentally (a-b, vload, Shmax, Shmin, etc...). As analogue material we use segmented, decimetre sized neoprene foam blocks in multiple configurations (e.g. biaxial shear at forces <1 kN) to simulate the elastic upper crust. The contact surfaces are spray-painted with acrylic paint to generate velocity weakening characteristics in between the blocks. The major advantage of using neoprene over other materials, such as gelatine or polyurethane foams, is that it has closed pores and thus exhibits a more favourable Poisson’s ratio in comparison with rocks and shows better elastic strain propagation in the block. Furthermore, all used materials are inert and do not change their properties over time.

We are able to reliably generate frequent stick-slip events of variable size and recurrence intervals. The slip characteristics, such as slip distribution, are in good agreement with analytical solutions of fault slip in elastic media. In this contribution we will highlight the material properties, experimental results and used methodologies to monitor and process the experimental data. Additionally, we are going to give an outlook on the interaction behaviour of multiple faults in dependence of their geometric configuration and the generation of power-law type magnitude scaling relations.

How to cite: Rudolf, M., Podlesny, J., Rosenau, M., Kornhuber, R., and Oncken, O.: Slip modes and interaction in a simplified strike-slip fault system with increasing geometrical complexity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9369, https://doi.org/10.5194/egusphere-egu2020-9369, 2020.

EGU2020-12831 | Displays | TS5.3

Time variations of the temperature depth profile in a scientific-drilling borehole penetrated through the Futagawa Fault, Japan

Weiren Lin, Susumu Shibutani, Nana Kamiya, Koichiro Sado, Tatsuhiro Sugimoto, Yuzuru Yamamoto, Xiaoqiu Yang, and Masataka Kinoshita

A scientific vertical borehole (borehole FDB) was rapidly drilled down to 691.7 m during September 2017 – March 2018 after the Mw 7.0 Kumamoto earthquake (mainshock), Japan occurred on 16th April 2016. This borehole penetrated the seismogenic fault called Futagawa Fault which ruptured during the mainshock. Temperature measurements across a newly ruptured fault enable us to detect the frictional heat induced by the high-speed fault slipping, and then to estimate the fault frictional resistance which controls earthquake dynamics. To investigate the frictional heat of its coseismic rupturing, we started temperature measurements in the borehole FDB from May 2018, i.e. two years after the mainshock. We are still repeating the temperature measurements once per two or three months; and have conducted seven times of the measurements until the end of November 2019.   

At the drilling site located at Mashiki town, Kumamoto Pref, a ~2.5 m dextral strike-slip coseismic displacement which is the largest displacement of the mainshock was observed on the surface rupture in this area. The borehole FDB consists of a cased interval from the surface down to a depth of ~300 m, and an open hole interval below that, down to the bottom of the borehole. In this borehole, the groundwater level is ~42 m, we measure the water temperature below the groundwater level and assume that the water temperature is the same as that of the formation after they became an equilibrium state after several months after the drilling operation. We measured the temperature and pressure while putting down and pulling up high resolution temperature and pressure sensors at an approximately constant rate of 3 m/min. A positive temperature peak around a fault where resistivity and P-wave velocity obtained from borehole logging abruptly dropped. The temperature depth profile showed time variation possibly including dissipation of the coseismic frictional heat caused by the fault rupturing and the other natural reasons e.g. groundwater flow.

How to cite: Lin, W., Shibutani, S., Kamiya, N., Sado, K., Sugimoto, T., Yamamoto, Y., Yang, X., and Kinoshita, M.: Time variations of the temperature depth profile in a scientific-drilling borehole penetrated through the Futagawa Fault, Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12831, https://doi.org/10.5194/egusphere-egu2020-12831, 2020.

TS5.4 – Seismic and Aseismic Slip on Seismogenic Faults

EGU2020-15091 | Displays | TS5.4

The influence of loading path on fault reactivation: a laboratory perspective

Carolina Giorgetti and Marie Violay

Despite natural faults are variably oriented to the Earth's surface and to the local stress field, the mechanics of fault reactivation and slip under variable loading paths (sensu Sibson, 1993) is still poorly understood. Nonetheless, different loading paths commonly occur in natural faults, from load-strengthening when the increase in shear stress is coupled with an increase in normal stress (e.g., reverse faults in absence of the fluid pressure increase) to load-weakening when the increase in shear stress is coupled with a decrease in normal stress (e.g., normal faults). According to the Mohr-Coulomb theory, the reactivation of pre-existing faults is only influenced by the fault orientation to the stress field, the fault friction, and the principal stresses magnitude. Therefore, the stress path the fault experienced is often neglected when evaluating the potential for reactivation. Yet, in natural faults characterized by thick, incohesive fault zone and highly fractured damage zone, the loading path could not be ruled out. Here we propose a laboratory approach aimed at reproducing the typical tectonic loading paths for reverse and normal faults. We performed triaxial saw-cut experiments, simulating the reactivation of well-oriented (i.e., 30° to the maximum principal stress) and misoriented (i.e., 50° to the maximum principal stress), normal and reverse gouge-bearing faults under dry and water-saturated conditions. We find that load-strengthening versus load-weakening path results in clearly different hydro-mechanical behavior. Particularly, prior to reactivation, reverse faults undergo compaction even at differential stresses well below the value required for reactivation. Contrarily, normal faults experience dilation, most of which occurs only near the differential stress values required for reactivation. Moreover, when reactivating at comparable normal stress, normal faults (load-weakening path) are more prone to slip seismically than reverse fault (load-strengthening path). Indeed, the higher mean stress that normal fault experienced before reactivation compacts more efficiently the gouge layer, thus increasing the fault stiffness and favoring seismic slip. This contrasting fault zone compaction and dilation prior to reactivation may occur in different natural tectonic settings, affecting the fault hydro-mechanical behavior. Thus, to take into account the loading path the fault experienced is fundamental in evaluating both natural and induced fault reactivation and the related seismic risk assessment.

How to cite: Giorgetti, C. and Violay, M.: The influence of loading path on fault reactivation: a laboratory perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15091, https://doi.org/10.5194/egusphere-egu2020-15091, 2020.

EGU2020-9568 | Displays | TS5.4

The role of heterogeneity in fault zone weakening and stability

John Bedford, Daniel Faulkner, and Nadia Lapusta

Heterogeneity is abundant in crustal fault zones from the micron-scale to the plate interface scale. Despite this, it is still uncertain how different scales of heterogeneity interact and influence the mechanical properties of natural faults. Here we present experimental results where heterogeneous faults are simulated in the laboratory by placing patches of different fault gouge materials next to each other in a direct shear arrangement. These laterally heterogeneous experimental faults (50 mm in total length) are then sheared and the frictional strength evolution is measured with increasing displacement. Two types of fault gouge are used: (1) a fine-grained quartz gouge which obeys Byerlee friction (coefficient of friction = 0.6-0.7) and is rate weakening, and (2) a clay gouge comprised predominantly of kaolinite which has a low friction coefficient (approx. 0.25) and is rate strengthening. We find that with the addition of only a small amount of clay gouge the bulk fault strength weakens considerably after only a few millimetres of slip. Although clay is preferentially smeared along localized Y-shear bands, the observed weakening cannot be explained by clay smear as the total displacement on the fault is far too small for the clay to be smeared through the entire length of the quartz patches. Instead we propose stress concentrations at the boundary between clay and quartz patches, driven by slip on the weaker clay patch, produce enhanced weakening and shear at an overall low stress within the quartz patches.

The scale of heterogeneity also controls the frictional stability of the experimental fault. When clay patches are small and comprise <20% of the total fault area, instabilities occur within the unstable quartz gouge leading to stick-slip behaviour. However when patches of clay comprise >20% of the total sliding area, instabilities within the quartz are supressed leading to stable sliding. In this case, the bulk fault also becomes increasingly rate-strengthening with slip, tending towards the behaviour of a fault comprised of 100% clay. These results demonstrate how natural geological heterogeneity and the interplay between different geologic materials can help explain fault weakness and also control the seismogenic potential of tectonic faults.

How to cite: Bedford, J., Faulkner, D., and Lapusta, N.: The role of heterogeneity in fault zone weakening and stability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9568, https://doi.org/10.5194/egusphere-egu2020-9568, 2020.

Tectonic faults fail in a broad spectrum of modes ranging from aseismic creep to fast, ordinary, earthquakes modulated by elastodynamic rupture processes. Laboratory friction experiments with repetitive stick-slip failure have reproduced this complete range of modes with failure durations spanning several orders of magnitude. These works show that the frictional weakening rate with slip (i.e., the rheological critical stiffness kcn(b-a)/Dc, where σn is effective fault normal stress, Dc is the friction critical slip distance and (b-a) represents the friction rate parameter) is the primary control on the mode of slip, but higher-order effects are also important including variation of kc  with slip velocity.  Far from the stability boundary, stick-slip occurs when the rate of elastic unloading with slip k is small compared to the frictional weakening rate (i.e., k<<kc). Potential energy, in the form of stored elastic strain, drives rapid fault acceleration. Near the stability boundary, when k ~ kc, lab experiments document slow and quasi-dynamic failure events, consistent with the observation that earthquake stress drop is negligible for slow earthquakes. Lab data show that stick-slip stress drop decreases systematically as k/kc approaches 1 from below. There are two possible scenarios for slow slip near the stability boundary, although they are degenerate in most cases. 1) Fault slip relieves elastic stresses prior to failure and thus the potential energy needed to drive fast rupture is absent. 2) Elastic strain accumulates but the fault rheology is velocity strengthening or otherwise inconsistent with rapid slip, for example because the frictional weakening rate kc  is low.  In Scenario 1, slip can occur early in the seismic cycle, as creep, or later in the cycle when shear stress reaches a critical value for precursory slip.  In either case, slip occurs because the rate of fault healing is low compared to the stressing rate. A low rate of fault healing can also explain Scenario 2 because the friction state evolution parameter b scales directly with the rate of fault healing and kc. Given that the friction parameter a is positive definite, the frictional healing rate (b) sets the scale of kc for a given value of Dc. Thus, while these two scenarios for slow slip appear distinct they both derive from the rate of fault healing.  Exceptions would involve faults that are strongly velocity weakening (b-a) >>0 yet have negligible healing rates (b ~ 0), which is indeed rare.  The rate of fault healing is expected to vary with mineralogy, effective stress, temperature and other factors. Thus, while we expect a systematic variation of seismic style with depth, associated with changes in kc, we should not be surprised to find a spectrum of faulting styles throughout the lithosphere, including a range of styles at a given location.  Discoveries of seismic tremor, low frequency earthquakes, and other modes of fault slip are challenging our views of tectonic faulting and they highlight the need for close connections between field observations, detailed laboratory work and theoretical studies of friction and faulting.

How to cite: Marone, C.: Fault healing plays a key role in creating the spectrum of tectonic faulting styles from seismic to aseismic slip, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2761, https://doi.org/10.5194/egusphere-egu2020-2761, 2020.

EGU2020-15224 | Displays | TS5.4

Complexity of low-frequency earthquakes activity in western Shikoku

Natalia Poiata, Jean-Pierre Vilotte, Nikolai Shapiro, Mariano Supino, and Kazushige Obara

Short-duration transient seismic events known as low-frequency earthquakes (LFEs) are a component of the slow earthquakes family observed in the transition zone, at the root of seismogenic regions of the subduction zones or active faults. LFEs are the signature of impulse seismic energy radiation associated to and often mixed within complex tectonic tremor signal. Detailed analysis and characterization of LFE space-time activity in relation to other slow earthquake phenomena can provide important information about the state and the processes of fault interface.

We derive a catalog of LFEs in western Shikoku (Japan) by applying a full waveform coherency-based detection and location method to the 4-year continuous data covering the period of 2013-2016 and recorded at Hi-net seismic stations of NIED. The obtained catalog of over 150,000 detected events allows looking into the details of LFE space-time activity during the tectonic tremor sequences and inter-sequence periods.

We use this catalogue of LFEs to perform a systematic statistical analysis of the event occurrence patterns by applying correlation and clustering analysis to infer the large-scale (long temporal ~ 1-2 day duration) space-time characteristics and interaction patterns of activity and its potential relation to the structural complexity of the subducting plate. We also analyze the correlation between the migration of clustered LFE activity during energetic tremor sequences and short-term slow slip events occurring in the area during the analyzed period.

How to cite: Poiata, N., Vilotte, J.-P., Shapiro, N., Supino, M., and Obara, K.: Complexity of low-frequency earthquakes activity in western Shikoku, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15224, https://doi.org/10.5194/egusphere-egu2020-15224, 2020.

EGU2020-19639 | Displays | TS5.4 | Highlight

Towards Slow Earthquakes Forecasting

Adriano Gualandi, Jean-Philippe Avouac, Sylvain Michel, and Davide Faranda

Slow Slip Events (SSEs) are episodic slip events that play a significant role in the moment budget along subduction megathrust. They share many similarities with regular earthquakes, and have been observed in major subduction regions like, for example, Cascadia, Japan, Mexico, New Zealand. They show striking regularity, suggesting that it might be possible to forecast their size and timing, but the prediction of their extension and exact timing is still yet to come. They certainly are a great natural system to study how friction works at scale of the order of hundreds or thousands of km, and their recurrence time being much shorter than that of regular earthquakes, they give us the possibility to study multiple cycles and test their predictability.
Here we focus on the Cascadia region, where SSEs recur every about 1 or 2 years, depending on the latitude. The study of GPS position time series during the time span ranging from 2007 to 2017 has revealed a low-dimensional (< 5) non-linear chaotic dynamics with a predictable horizon (calculated as the inverse of the metric entropy) in the order of days to months for causally filtered data. It is notable that the increase of instantaneous dimensionality of the attractor seems to constitute a reliable precursor of the large SSEs. The causal filter adopted to reach this conclusion introduces a group delay larger than the predictability horizon time, meaning that this approach cannot be used for real-time forecasting. We thus test alternative filters and data driven approaches (e.g., dynamic mode decomposition) for real-time characterization of the attractor’s properties and evolution. In any case, we conclude that SSEs in Cascadia can be described as a deterministic, albeit chaotic, system rather than as a random process. As SSEs might be regarded as earthquakes in slow motion, regular earthquakes might be similarly chaotic and predictable for short amount of times. If the relation between predictability horizon and the duration of the instability (i.e., slipping event duration) holds also for regular earthquakes, this would imply that earthquakes long-term predictions are intrinsically impossible, and the predictable horizon would be only a fraction of the regular earthquakes typical duration (10-100 s for M>6 earthquakes).

How to cite: Gualandi, A., Avouac, J.-P., Michel, S., and Faranda, D.: Towards Slow Earthquakes Forecasting, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19639, https://doi.org/10.5194/egusphere-egu2020-19639, 2020.

EGU2020-3556 | Displays | TS5.4

Analysis of the foreshock sequences preceding two moderate (Mw4.7 and Mw5.8) earthquakes in the Sea of Marmara offshore Istanbul, Turkey.

Virginie Durand, Stephan Bentz, Grzegorz Kwiatek, Georg Dresen, Christopher Wollin, Oliver Heidbach, Patricia Martinez-Garzon, Fabrice Cotton, Murat Nurlu, and Marco Bohnhoff

In September 2019 a sequence of two moderate earthquakes (Mw4.7 and Mw5.8) occurred in the central Sea of Marmara (Turkey), SW of Istanbul. These events took place ate the transition between a creeping and a locked segment of the North Anatolian Fault. To investigate in detail the spatiotemporal evolution of the seismicity, we apply a matched-filter technique to continuous waveforms, thus reducing the magnitude threshold for detection. Sequences of foreshocks preceding the two mainshocks are clearly seen, exhibiting different behaviors: a migration of the seismicity along the entire fault segment on the long-term (several days before the mainshocks) and a concentration around the epicenters of the large events on the short-term (during the few hours preceding the mainshocks). We infer that both seismic and aseismic slip during the foreshock sequences change the stress state on the fault, bringing it closer to failure. Our observations also suggest that the Mw 4.7 event contributed to weaken the fault as part of the preparation process of the Mw 5.8 earthquake.

How to cite: Durand, V., Bentz, S., Kwiatek, G., Dresen, G., Wollin, C., Heidbach, O., Martinez-Garzon, P., Cotton, F., Nurlu, M., and Bohnhoff, M.: Analysis of the foreshock sequences preceding two moderate (Mw4.7 and Mw5.8) earthquakes in the Sea of Marmara offshore Istanbul, Turkey., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3556, https://doi.org/10.5194/egusphere-egu2020-3556, 2020.

EGU2020-18295 | Displays | TS5.4 | Highlight

The November 11 2019 Le Teil, France M5 earthquake: a triggered event in nuclear country

Jean-Paul Ampuero, Jérémy Billant, Florent Brenguier, Olivier Cavalié, Francoise Courboulex, Anne Deschamps, Bertrand Delouis, Raphaël Grandin, Romain Jolivet, Chao Liang, Aurélien Mordret, and Elif Oral

An earthquake of magnitude 5 (Mw 4.9) occurred near the town of Le Teil, France on November 11 2019, causing damage locally and concern due to its proximity to nuclear facilities. Despite its moderate magnitude, this earthquake offers unique opportunities to advance basic and applied research on earthquakes in general, including our understanding of the largest and most destructive earthquakes and induced seismicity. We present here an overview of the source characteristics of this event and, based on analysis of InSAR and seismological observations and optical images, we discuss its potential relation to human activity. We also discuss the emerging unique research opportunities.

The Le Teil earthquake occurred in a low seismicity region, a moderate hazard zone that has nevertheless experienced damaging earthquakes in the past. Its hypocentral depth is particularly shallow, less than 1.5 km. Radar images delineate the surface rupture and constrain well the coseismic slip distribution. The surface rupture corresponds to the previously mapped La Rouvière fault, an ancient normal fault reactivated as reverse-faulting by the Le Teil earthquake. Slip is predominantly confined in the top ~1 km and extends along ~4.5 km along-strike with two main slip asperities and stress drop of a few MPa. A large cement quarry sits on top of the deep edge of the rupture area, ~1 km above the fault. Based on optical images we estimate the distribution of mass extracted from the nearby quarry since 1947. We then compute the induced Coulomb stresses on the fault: they are favorable for reverse faulting and reach about 150 kPa, within the range of stresses that have been previously reported to trigger earthquakes, but substantially smaller than the coseismic stress drop. Analysis of the mainshock and quarry blast signals on the nearest stations (8.5 to 45 km distance) places the mainshock epicenter within the area of influence of the quarry-induced stresses. 

These analyses so far indicate that the Le Teil event is likely a triggered earthquake: its initiation was favored by the quarry-induced stresses, but the bulk of its rupture propagation was enabled by naturally pre-existing stresses. We also report on directivity analyses based on various data subsets, which remain to be reconciled, possibly pointing to a non-trivial rupture path.

The characteristics of the Le Teil earthquake bear on important questions: how can earthquakes nucleate at such shallow depth? what confines slip at such shallow depth? do structural features control the patchy distribution of slip? how do elongated ruptures stop? It also offers a unique opportunity to study directly, by drilling at seismogenic depth, the three key spots of an earthquake: its hypocenter, its large slip area and its arrest area. The high aspect ratio of the rupture, comparable to that of the largest earthquakes, opens a window into the physics of very large earthquakes. Continued research would also address implications for seismic hazard in low-seismicity areas, including the safety of nearby nuclear power plants, especially by monitoring the unbroken sections of the fault system.

How to cite: Ampuero, J.-P., Billant, J., Brenguier, F., Cavalié, O., Courboulex, F., Deschamps, A., Delouis, B., Grandin, R., Jolivet, R., Liang, C., Mordret, A., and Oral, E.: The November 11 2019 Le Teil, France M5 earthquake: a triggered event in nuclear country, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18295, https://doi.org/10.5194/egusphere-egu2020-18295, 2020.

The North-Eastern zone of the Gulf of Corinth in Greece is characterized by the rotation of a micro-plate in formation. The Island Akarnanian Block (IAB) have been progressively individualized since the Pleistocene (less than ~ 1.5 My ago). This micro-plate is the result of a larger-scale tectonic context with, on one side the N-S extension of the Gulf of Corinth to the East, and on the other side the Hellenic subduction to the South and the Apulian collision to the West. To the Northeast, the IAB micro-plate is bounded by a large North-South sinistral strike-slip fault system, the Katouna-Stamna Fault (KSF) and by several normal faults. To the North, normal faults reach the limit between Apulian and Eurasian plates and to the East, they form the East-West graben of Trichonis lake.

Although the structures and dynamics behind the Gulf of Corinth extension are today relatively known, nevertheless, the set of faults linking the Gulf of Corinth to the Western subduction structures remain poorly studied. The seismicity recorded by the Greek national network shows discrepancies regarding to the faults mapped on the surface.

At the end of 2015, a new micro-seismicity campaign started with the deployment of a temporary seismological network in an area ranging from the Gulf of Patras to the Amvrakikos Gulf toward the North. This network includes 17 seismic stations, recording continuously, added to the permanent stations of the Corinth Rift Laboratory (CRL) and of the Hellenic Unified Seismic Network (HUSN).

The analysis of the seismological records is still in process for the 2016 and 2017 years. Our study consists first in picking the P- and S- waves, and then to precisely localize the seismic events recorded by our temporary seismological network combined with the permanent ones. We will present here the event location map obtained for the 2016-2017 period, a new seismic velocity model, and focal mechanisms. The seismic activity including thousands of events, is characterized by the presence of numerous clusters of few days to few weeks duration. The clusters are analysed in detail by relative relocations in order to appraise their physical processes and their implications in the fault activity. We will discuss the deformation mode of the region and build a seismotectonic model consistent with the regional geodynamics and observations.

How to cite: Lefils, V., Rigo, A., and Sokos, E.: From Corinth gulf extension to Ionian subduction/collision (W. Greece): micro-seismicity survey to constrain local tectonics and regional geodynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-215, https://doi.org/10.5194/egusphere-egu2020-215, 2020.

Whether low-angle normal faults (LANFs; dip < 30°) slip in large earthquakes or creep aseismically is a longstanding problem in fault mechanics. Although abundant in the geologic record, active examples of these enigmatic ‘misoriented’ structures are rare and extension rates across them are typically less than a few mm/yr. As such, geodetic and seismological observations of LANFs are sparse and can be difficult to interpret in terms of earthquake cycles. With a long-term slip rate of ~1 cm/yr, the Mai’iu fault in Papua New Guinea may be the world’s most active LANF and thus offers an outstanding natural laboratory to evaluate seismic vs. aseismic behavior of LANFs. Here, we use new results from a campaign GPS network to determine the degree of locking vs. aseismic creep on the Mai’iu fault and evaluate these results in the context of geological evidence for mixed seismic and aseismic slip in exhumed Mai’iu fault rocks.

We derive velocities from GPS measurements with 3-4 km station spacing above the shallowest portions of the fault, which dips 21-25° at the surface. Dislocation modeling of these velocities is consistent with 6-8 mm/yr of horizontal extension, corresponding to ~1 cm/yr dip-slip rates on a 27-35°-dipping fault. Strain rates and vertical derivatives of horizontal stress rates derived from these velocities confirm localized extension across the fault. We compare and evaluate two interseismic locking models that fit the data best: one in which the fault deforms by shallow near-surface creep updip of a deeper zone of increased interseismic coupling which soles into a steadily creeping shear zone at depth, and one in which the fault creeps steadily downdip of a shallowly locked patch. These results combined with field and microstructural evidence from the exhumed fault rocks suggest that the fault slips by a mixture of brittle frictional (seismic slip, fracturing, and cataclastic creep) and viscous (stress-driven dissolution-precipitation creep, or pressure solution) processes. Using depth-constrained mechanical properties and stress conditions inferred from exhumed fault rocks, we model the time-dependent competition between frictional slip and viscous creep to assess where and how elastic strain accumulates along the Mai’iu fault, and whether the fault is capable of hosting or nucleating earthquakes.

How to cite: Biemiller, J., Wallace, L., and Lavier, L.: Mixed-Mode Seismic Slip and Aseismic Creep on a Highly Active Low-Angle Normal Fault System in Papua New Guinea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-230, https://doi.org/10.5194/egusphere-egu2020-230, 2020.

EGU2020-232 | Displays | TS5.4

2017-2019 SSE sequence and its interaction with large earthquakes in Mexico

Ekaterina Kazachkina, Mathilde Radiguet, Nathalie Cotte, Jorge Jara, Andrea Walpersdorf, and Vladimir Kostoglodov

An intriguing sequence of a 2-stage SSE in Guerrero and a simultaneous SSE in Oaxaca took place in Mexico in 2017-2019. Three large earthquakes occur during these SSEs adding complexity to the observed surface deformations. The objective of this work is to explain the interaction between the overlapping seismic and aseismic events through the analysis of continuous GPS observations.

We perform kinematic inversion of the GPS time series solving for the cumulative slip distribution on the subduction interface due to two SSEs, using Independent Component Analysis Inversion Method (ICAIM, Gualandi, 2015). The daily position time series for 2017-2019 are obtained by processing continuous data using GAMIT/GLOBK 10.7 (Herring et al, 2018). Strong postseismic signals generated by the following earthquakes 08/09/2017 Mw8.2 in Tehuantepec, 19/09/2017 Mw7.1 in Puebla-Morelos and 16/02/2018 Mw7.2 in Pinotepa are removed using the ICA decomposition.

Our results show complex slip evolution on the subduction interface. We observe a clear change of cumulative seismic moment release rate after large seismic events of 2017 and after the earthquake in Pinotepa in 2018. The occurrence of Mw8.2 and Mw7.1 events notably slowed down the slip propagation of the Guerrero SSE. Continuous SSE in Oaxaca propagates from the northeast near the city of Oaxaca (-97.00°E, 16.70°N) towards the southwest approaching Pinotepa (-98.00°E, 17.00°N). Guerrero SSE migrates from the origin of its 1st phase near Tecpan (-100.50°E, 17.50°N) southeastwards to Acapulco (-99.50°E, 17.20°N) where the 2nd stage develops. Therefore the stress changes induced by the two aseismic events likely triggered the Mw7.2 Pinotepa earthquake (-98.01°E, 16.22°N).

How to cite: Kazachkina, E., Radiguet, M., Cotte, N., Jara, J., Walpersdorf, A., and Kostoglodov, V.: 2017-2019 SSE sequence and its interaction with large earthquakes in Mexico, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-232, https://doi.org/10.5194/egusphere-egu2020-232, 2020.

Synchronization behavior of large earthquakes, rupture of nearby faults close in time for many cycles, has been reported in many fault systems. The general idea is that the faults in the system have similar repeating interval and are positively coupled through stress interaction. However, many details of such synchronization remain unknown. Here, we built numerical models in the framework of rate-and-state friction to simulate earthquake cycles on the west Gofar fault, an oceanic transform fault in the East Pacific Rise. Our model is consisted of two seismic segments, separated by a creeping segment, for which the size and location is constrained by seismic data. The parameters in the seismic segments were set to reproduce M6 earthquakes every 5 years, to be consistent with observation. We varied the parameters in the creeping segment to understand its role on earthquake synchronization. We found that the width and the strength of the creeping segment will determine the synchronization of earthquake cycles on the two seismic segments. When the creeping segment is relatively narrow or weak, the system will become synchronized quickly and the synchronization remains for many cycles. When it is relatively wide or strong, the earthquake cycles on the two segments are not related but could be synchronized by chance. In both cases, earthquakes tend to rupture the entire seismic segment. Between these two end-member situations, the system fluctuated between synchronization and non-synchronization on the time scale of 5-10 cycles. The switch always happens when the partial rupture of the seismic segment occurs, resulting in moderate size earthquakes (M4-5) and earthquake cycle shift, which is likely caused by stress interaction through the creeping segment. Here, we conclude that the co-seismic slip and aseismic after slip in the creeping segment could promote the synchronization of earthquake cycles on oceanic transform faults, and likely in other tectonic systems. In addition, the average seismic ratio of the entire fault can be quite low, ranging between 0.2-0.4 because of the barrier segment. We suggest that the existence of creep segments contributed significantly to the well-observed low seismic ratio on oceanic transform faults.

How to cite: Wei, M. and Shi, P.: Role of the creeping segment in the synchronization of earthquake cycles on oceanic transform faults revealed by numerical simulations in the framework of rate-and-state friction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2770, https://doi.org/10.5194/egusphere-egu2020-2770, 2020.

EGU2020-3296 | Displays | TS5.4

Imaging fine seismic structures of faults with fault-zone trapped waves

Hui Su and Yuanze Zhou

A fault is a low-velocity zone with widely distributed scatterers compared to the surrounding uniform materials because of the highly damaged rocks in its core. When seismic waves travel through faults, they will reflect on boundaries multiply and be trapped in the fault zones which cause the energy redistribution and generate coda waves with complicated characteristics after the direct P- and S- waves. The coda is named fault-zone trapped waves (FZTWs) (Li et al., 1990). The amplitude and duration characteristics of FZTWs (Li et al., 2016) can be used to constrain the geometric features of the fault and the physical parameters of the scatterers, so the fine structure of the fault can be finally obtained. We observed some FZTWs at several Hi-net stations in Japan, which were generated by low magnitude aftershocks following large earthquakes. Relatively strong FZTWs can be recorded by the seismic stations near or on the fault where the events happened. In this study, we simulate the theoretic envelops of FZTWs with radiative transport theory (Sanborn et al., 2017) for possible velocity models with scatterers described with von Karman distribution (Sato et al., 2012). While the theoretical envelops of FZTWs fit the observed ones well,  the fine fault model is determined. The FZTWs from different events before and after the main shock can be used to determine the physical properties of faults and their adjoint area varied in the seismogenic process, then we can deeply understand the fault evolutions before and after earthquakes. The varying properties of faults can provide a new perspective for earthquake preparation and a new reference for earthquake prediction and promotes the development of earthquake prediction.
Li, Y. G., R. D. Catchings, and M. R. Goldman. 2016, Subsurface Fault Damage Zone of the 2014Mw 6.0 South Napa, California, Earthquake Viewed from Fault‐Zone Trapped Waves. Bulletin of the Seismological Society of America, 106, no. 6,2747-2763. doi: 10.1785/0120160039.
Li, Y. G., P. Leary, K. Aki, and P. Malin. 1990, Seismic Trapped Modes in the Oroville and San-Andreas Fault Zones. Science, 249, no. 4970,763-766. doi: 10.1126/science.249.4970.763.
Sanborn, C. J., V. F. Cormier, and M. Fitzpatrick. 2017, Combined Effects of Deterministic and Statistical Structure on High-frequency Regional Seismograms. Geophysical Journal International, 210, no. 2,1143-1159. doi: 10.1093/gji/ggx219.
Sato H., Fehler M.C. 2012, Seismic Wave Propagation and Scattering in the Heterogeneous Earth, 2nd edn, Springer-Verlag.

How to cite: Su, H. and Zhou, Y.: Imaging fine seismic structures of faults with fault-zone trapped waves, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3296, https://doi.org/10.5194/egusphere-egu2020-3296, 2020.

Fracture networks in the subsurface influence nearly every aspect of earthquakes and natural hazards.  These aspects, including stress, permeability and material failure, and are important for hazard assessment. However, our ability to monitor fracture behavior in the Earth is insufficient for any type of decision-making regarding hazard avoidance.  I propose a new method for probing the evolution of fracture networks in situ to inform public safety decisions and understand natural systems. 

In heterogeneous, fractured materials, like those found in the Earth, the relationship between stress and strain is highly nonlinear.  This nonlinearity in the upper crust is almost entirely due to fractures.  By measuring to what extent Earth materials exhibit nonlinear elastic behavior, we can learn more information about them.  Directly, measuring physical properties may be more useful than just detecting that fractures are present or how they are shaped and oriented.  We measure nonlinearity by measuring the apparent modulus at different strains. 

In this study we use a pump-probe analysis, which involves continuously probing velocity (as a proxy for modulus) while systematically straining the material.  We will use solid Earth tides as a strain pump and empirical Green’s functions (EGF) as a velocity probe.  We apply this analysis to the San Andreas Fault near Parkfield, California.  We chose Parkfield because there is a long-term deployment of borehole seismic instruments that recorded before and after a M6 earthquake.  We find evidence that nonlinear behavior is correlated with the seismic cycle and therefore it may contain information on the both the evolution and current state of stress on faults. 

How to cite: Delorey, A.: A Pump-Probe Analysis of Nonlinear Elastic Behavior on the San Andreas Fault, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4534, https://doi.org/10.5194/egusphere-egu2020-4534, 2020.

Due to the rapid convergence of Philippine Sea Plate toward the continental margin of Eurasian Plate, the southern Taiwan has a high number of 8 active faults published by the Taiwan Central Geological Survey. We inverted the Global Positioning System (GPS) velocity measurements to investigate the slip rates on these faults and how these values could change with time, especially before and after large seismic events. In this study we employed TDEFNODE to first evaluate two fault-slip models before and after the 2016 Mw 6.4 Meinong earthquake within the periods of 2002 to 2016 (model 1) and 2016 to 2018 (model 2). Our results from these two models show that some long-term average fault slip rates were changed with time, such as the Zuozhen, Chishan and Hengchun faults that have values 30.2, 27.0 and 29.7 mm/yr in 2002-2016 and 15.2, 6.6 and 14.2 mm/yr in 2016-2018, respectively. In addition, we focused on the Mw 7.0 and Mw 6.9 2006 Hengchun doublet earthquakes by integrating the Permanent Scattered Interferometric Synthetic Aperture Radar (PS-InSAR) data collected by ALOS from 2007 to 2011 with the GPS velocities for a joint inversion for fault slip model (model 3). The results show that the average long-term slip rates of the Chishan and Hengchun faults are 12.5 and 16.8 mm/yr, respectively, which are significantly lower than the rates of 2002-2016 (model 1). More fault models with different time spans are on the way to affirm these temporal rate changes and explore their implications on earthquake hazard analysis.

How to cite: Hsiao, L.-Y. and Chang, W.-L.: Temporal variation of fault slip rate in southern Taiwan by integrating GPS and InSAR observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6559, https://doi.org/10.5194/egusphere-egu2020-6559, 2020.

EGU2020-6777 | Displays | TS5.4

Afterslip and slow slip events in the postseismic deformation of the 2016 Pedernales earthquake, Ecuador

Frederique Rolandone, Jean-Mathieu nocquet, Patricia Mothes, Paul Jarrin, and Mathilde Vergnolle

In subduction zones, slip along the plate interface occurs in various modes including earthquakes, steady slip, and transient accelerated aseismic slip during either Slow Slip Events (SSE) or afterslip. We analyze continuous GPS measurements along the central Ecuador subduction segment to illuminate how the different slip modes are organized in space and time in the zone of the 2016 Mw 7.8 Pedernales earthquake. The early post-seismic period (1 month after the earthquake) shows large and rapid afterslip developing at discrete areas of the megathrust and a slow slip event remotely triggered (∼100 km) south of the rupture of the Pedernales earthquake. We find that areas of large and rapid early afterslip correlate with areas of the subduction interface that had hosted SSEs in years prior to the 2016 earthquake. Areas along the Ecuadorian margin hosting regular SSEs and large afterslip had a dominant aseismic slip mode that persisted throughout the earthquake cycle during several years and decades: they regularly experienced SSEs during the interseismic phase, they did not rupture during the 2016 Pedernales earthquake, they had large aseismic slip after it. Four years after the Pedernales earthquake, postseismic deformation is still on-going. Afterslip and SSEs are both involved in the postseimsic deformation. Two large aftershocks (Mw 6.7 & 6.8) occurred after the first month of postseismic deformation in May 18, and later in July 7 2016 two other large aftershocks (Mw 5.9 & 6.3) occurred, all were located north east of the rupture. They may have triggered their own postseismic deformation. Several seismic swarms were identified south and north of the rupture area by a dense network of seismic stations installed during one year after the Pedernales earthquakes, suggesting the occurrence of SSEs. Geodetically, several SSEs were detected during the postseismic deformation either in areas where no SSEs were detected previously, or in areas where regular seismic swarms and repeating earthquakes were identified. The SSEs may have been triggered by the stress increment due to aftershocks or due to afterslip.

How to cite: Rolandone, F., nocquet, J.-M., Mothes, P., Jarrin, P., and Vergnolle, M.: Afterslip and slow slip events in the postseismic deformation of the 2016 Pedernales earthquake, Ecuador, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6777, https://doi.org/10.5194/egusphere-egu2020-6777, 2020.

EGU2020-7992 | Displays | TS5.4

Polished slickensides preserved in the Obir Caves (Austria) close to the Periadriatic Fault System

Stefanie Koppensteiner, Harald Bauer, Lukas Plan, and Bernhard Grasemann

We studied polished slickensides, which are perfectly preserved in the Obir Caves (Northern Karavanke Mountains, Austria) situated in the Middle Triassic Wetterstein limestone of the Hochobir massif. The investigated area is located close to the seismogenic ESE-trending Periadriatic Fault System, which is the border between the Eastern and Southern Alps. The polished slickensides observed on a block between two major left-lateral NE-SW trending slickensides record a range of polishing from none to highly-reflective fault surfaces. A classification of the different polishing grades of the fault surfaces inside the cave compared with their spatial orientation shows that there is no relationship between the degree of polishing and fault orientation. Associated cataclastically deformed brittle fault zones and partly polished slickensides at the cave entrance and on the Eastern slope of the Hochobir massif where the fault zone localizes in shattered dolomitic rocks, show similar kinematics and spatial orientation to the faults inside the Obir Caves.

Thin section analysis identified the smooth fault mirror surfaces as principal slip surfaces. Cataclastic grains are truncated along the principal slip surfaces and along secondary Riedel faults. Five different stages of cataclastic deformation can be distinguished: I) Undeformed carbonate host rock. II) Isolated fractures in the host rock with injected ultracataclastic material. III) Dilation cataclasites containing jigsaw breccia. IV) Ultracataclasite with angular-to-rounded host rock fragments and jigsaw breccia. V) Ultracataclasite with isolated clasts and truncated grains close to the mirror surfaces.

The microstructures including polished slickensides, injected cataclasites and truncated grains along principal slip surfaces as well as the geological position close to the seismogenic Periadriatic Fault System suggest that the investigated fault surfaces in the Obir Caves formed during seismic slip.

How to cite: Koppensteiner, S., Bauer, H., Plan, L., and Grasemann, B.: Polished slickensides preserved in the Obir Caves (Austria) close to the Periadriatic Fault System, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7992, https://doi.org/10.5194/egusphere-egu2020-7992, 2020.

EGU2020-18617 | Displays | TS5.4

Post-seismic deformation of the 2010 M w 7.4 Ogasawara Islands outer-rise earthquake evidenced by Repeating Earthquakes.

Blandine Gardonio, Aitaro Kato, Sylvain Michel, and Alexandre Schubnel

 

Although far from the Japanese main island of Honshu, the Izu-Bonin area is a very active seismic zone. It experienced two major earthquakes in the past decade: (i) the 2010 Mw 7.4 Ogasawara Islands intraplate earthquake that occurred on the 2010/12/22 in a normal-fault, in the outer-rise of the trench of the Pacific plate that subduct underneath the Philippine Sea plate, (ii) the Mw 7.9 Bonin island very-deep focus earthquake that occurred on the 2015/05/30 that was preceded by an acceleration of the seismicity at large depth. The aftershocks of the outer-rise earthquake were distributed in a NW-SE belt and formed subparallel lines along a fracture zone in the Pacific plate. The aftershocks were first located in the surroundings of the main shock rupture and migrated over the following days beyond or into the Ogasawara Plateau and the Uyeda Ridge. Due to its location in the sea and with only a few GPS and seismic stations around, it is difficult to assess the extent of the post-seismic deformation of this earthquake.

In that context, the analysis of repeating earthquakes as a proxy for slip on the fault is very useful. Using ten seismic stations, we detected 130 repeating earthquakes. Their number inscreased in the next few days following the main shock and are located in the northern branch of the fault. Ten days later, another increase of repeating earthquakes occurs on the subduction interface concomitent with a displacement to the east seen by GPS stations, indicating that the outer-rise earthquake might have triggered a slow slip event on the subduction interface. The main shock was also followed by an extremely rapid migration of the seismicity at depths up to 80km showing that it perturbed the entire outer-rise structure of the slab at depth.

How to cite: Gardonio, B., Kato, A., Michel, S., and Schubnel, A.: Post-seismic deformation of the 2010 M w 7.4 Ogasawara Islands outer-rise earthquake evidenced by Repeating Earthquakes., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18617, https://doi.org/10.5194/egusphere-egu2020-18617, 2020.

EGU2020-9996 | Displays | TS5.4

Study of the early postseismic phase of Tohoku-Oki earthquake (2011) with kinematics solutions

Axel Periollat, Mathilde Radiguet, Jérôme Weiss, Cédric Twardzik, Nathalie Cotte, and Anne Socquet

Stress accumulation and relaxation occur on fault zones throughout the seismic cycle. In particular, the postseismic phase, which directly follows the earthquake rupture is a combination of different processes among which aseismic slip on the fault zone (called afterslip), viscoelastic deformation of the surrounding material, poroelastic relaxation and aftershocks. However, little work has been done on the early stage of the transition from the co- to the postseismic phase, and the physical processes explaining this transition.

In this study, we focus on the few minutes to the few days following the mainshock, where the deformation is assumed to be dominated by afterslip, for the Mw 9.0 Tohoku-Oki earthquake, one of the largest and most instrumented recent earthquake (2011). Here, GEONET GPS data are used to study its early stage.

Based on the method developed by Twardzik et al. (2019), we obtain kinematics position time series (30-s), which we use to characterize the fast displacements rates which typically occur during the early stages of this postseismic phase. For that, we use the GipsyX 1.2 software developed by JPL. Then, we apply a sidereal filter to remove the multi-path effect and obtained clean displacement time series.

This poster shows the preliminary results of our kinematics solutions analysis. In particular, we highlight study the differences between the standard and high rate estimation of the co-seismic offsets. We also characterize the temporal evolution of the early postseismic phase and study its spatial pattern with respect to that of the coseismic slip.

References:

Twardzik Cedric, Mathilde Vergnolle, Anthony Sladen and Antonio Avallone (2019), Unravelling the contribution of early postseismic deformation using sub-daily GNSS positioning. Scientific Report 9, n°1 doi.org/10.1038/s41598-019-39038-z

How to cite: Periollat, A., Radiguet, M., Weiss, J., Twardzik, C., Cotte, N., and Socquet, A.: Study of the early postseismic phase of Tohoku-Oki earthquake (2011) with kinematics solutions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9996, https://doi.org/10.5194/egusphere-egu2020-9996, 2020.

EGU2020-10070 | Displays | TS5.4

The strength inversion origin of non-volcanic tremor: models and observations

Jason P. Morgan, Albert de Montserrat Navarro, Paola Vannucchi, Alexander Peter Clarke, Audrey Ougier-Simonin, and Luca Aldega

Non-volcanic tremor remains a poorly understood form of seismic activity. In its most common subduction zone setting, tremor typically occurs within the plate interface at or near the shallow and deep edges of the interseismically locked zone. Detailed seismic observations have shown that tremor is composed of repeating small low-frequency earthquakes (LFE), often accompanied by very-low-frequency earthquakes (VLF), all involving shear failure and slip. However, LFEs and VLFs within each cluster show nearly constant source durations for all observed magnitudes. This implies asperities of near-constant size,  with recent seismic observations hinting that the failure size is of order ~200m.  

We propose that geological observations and geomechanical lab measurements on heterogeneous rock assemblages representative of the shallow tremor region are most consistent with LFEs and VLFs involving the seismic failure of relatively weaker blocks within a stronger matrix.  Furthermore, in the shallow subducting rocks within a subduction shear channel, hydrothermal fluids and diagenesis have led to a strength inversion from the initial weak matrix with relatively stronger blocks to a stronger matrix with embedded relatively weaker blocks.  In this case, tremor will naturally occur as the now-weaker blocks fail seismically while their more competent surrounding matrix has not yet reached a state of general seismic failure, and instead only fails at local stress-concentrations around the tremorgenic blocks.

Here we use the recently developed code LaCoDe (de Monserrat et al., 2019) to create and explore a wide range of numerical experiments. These experiments are designed to characterize the  likely stress and strain accumulations that can develop in a heterogeneous subduction shear channel, and their implications for the genesis of tremor and its spatially associated seismic events.  In our previous modeling efforts we did not strongly vary either the block volume-fraction or the initial block and matrix geometry. Here we do both, and also explore a range of rock compressibilities ranging from seismically-inferred values to nearly incompressible behavior. We also explore models with irregular 'quasi-geological' initial block/matrix geometries. Drucker-Prager plasticity is used to characterize a fault-like mode of shear failure. This suite of experiments demonstrate that, for a wide range of block and matrix conditions,  the proposed strength-inversion mechanism can generate a mode of shallow tectonic tremor that clusters in spatially discontinuous swarms along the plate interface. At the deeper edge of the interseismically locked zone, channelised dehydration associated with subduction along a plate interface could induce a similar relative strength inversion, and thereby generate deep seated tremor.

How to cite: Morgan, J. P., de Montserrat Navarro, A., Vannucchi, P., Clarke, A. P., Ougier-Simonin, A., and Aldega, L.: The strength inversion origin of non-volcanic tremor: models and observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10070, https://doi.org/10.5194/egusphere-egu2020-10070, 2020.

EGU2020-10727 | Displays | TS5.4

Co-location of the downdip end of seismic locking and the continental shelf break

Luca C. Malatesta, Lucile Bruhat, Noah J. Finnegan, and Jean-Arthur L. Olive

Along subduction margins, the morphology of the near shore domain records the combined action of erosion from ocean waves and permanent tectonic deformation from the convergence of plates. We observe that at subduction margins around the globe, the edge of continental shelves tends to be located above the downdip end of seismic coupling on the megathrust (locking depth). Coastlines lie farther landward at variable distances. This observation stems from a compilation of well-resolved coseismic and interseismic  coupling datasets. The permanent interseismic uplift component of the total tectonic deformation can explain the localization of the shelf break. It contributes a short wave-length gradient in vertical deformation on top of the structural and isostatic deformation of the margin. This places a hinge line between seaward subsidence and landward uplift above the locking depth. Landward of the hinge line, rocks are uplifted in the domain of wave-base erosion and a shelf is maintained by the competition of rock uplift and wave erosion. Wave erosion then sets the coastline back from the tectonically meaningful shelf break. We combine a wave erosion model with an elastic deformation model to show how the locking depth pins the location of the shelf break. In areas where the shelf is wide, onshore geodetic constraints on seismic coupling is limited and could be advantageously complemented by considering the location of the shelf break. Subduction margin morphology integrates hundreds of seismic cycles and could inform seismic coupling stability through time.

How to cite: Malatesta, L. C., Bruhat, L., Finnegan, N. J., and Olive, J.-A. L.: Co-location of the downdip end of seismic locking and the continental shelf break, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10727, https://doi.org/10.5194/egusphere-egu2020-10727, 2020.

On 12 December 2017, a shallow reverse earthquake ruptured an unrecognized fault located in a transpressional relay zone between Lakar Kuh and Gowk faults. Four tracks of Sentinel-1A/B interferometric wide swath SAR images are used to generate coseismic interferograms. The retrieved maximum line-of-sight (LOS) displacement is up to ~1 m toward the satellite for descending data. An offset tracking method within GAMMA software is used to generate range and azimuth offsets based on Sentinel-1 SAR images. Two Sentinel-2 images are processed with the COSI-Corr package to generate horizontal displacements. The calculated three-dimension deformation field shows that the east-west displacements have motions in different directions, the north-south shortening near the fault trace approaches ~2 m and the maximum uplift is over 1 m. Based on the rupture trace in Sentinel-2 image, a strike-variable fault is constructed to explain the LOS displacements. The estimated slip distribution shows that the peak slip is ~2.5 m located at a depth of ~1.5 km and the depth extent of rupture is 0-3 km with the length of rupture on the surface approaching ~7 km. There are both right-lateral and left-lateral slips occurring on the fault, which are consistent with field observations. The one year of postseismic displacements are estimated by a short baseline subset technique based on two tracks (ascending and descending) of Sentinel-1 SAR images. The maximum LOS displacements is up to ~7 cm toward the satellite for the descending data. The forward displacements show that the poro-elastic rebound in the upper crust does not explain the LOS data. The data can be fitted well in terms of afterslip. The estimated postseismic slip on this strike-variable fault is found to occur in portions of the fault where small slips on these patches are obtained in the coseismic slip inversion. Most of patches related to the postseismic slip are located below the main coseismic patches with the depth extent of rupture being 0.5-4 km. The cumulative slip distribution during one year has the peak slip of ~20 cm, releasing ~12% of the moment of coseismic rupture. Taking into account aftershock depths, the shallow postseismic slip is considered to occur aseismically and cause the most of postseismic deformation. The afterslip may result from some response to a stress concentration located at the periphery of main coseismic rupture. After the analysis on Coulomb stress change, it is possible that the former two Mw ~6 earthquakes occurred on 1 and 12 December cause stress perturbations in the seismogenic zone of this earthquake, which further may bring the local prestressed lithosphere to rupture. For this shallow event, a small shear modulus (less than 30 GPa) is needed to make the moment more comparable to seismic results. This earthquake can be interpreted as the accommodation of the northward motion in the form of oblique-slip reverse fault between right-lateral strike-slip fault systems. The unusually deformation patterns caused by the coseismic and postseismic slips of this earthquake may be indicative of differently local lithosphere structure in this transpressional relay zone.

How to cite: Zhao, Y., Xu, C., and Wen, Y.: Strike-variable coseismic and postseismic slips of the 12 December 2017 Mw 6.0 Hojedk (Iran) earthquake revealed by Sentinel-1/2 images: Implications for the local lithospheric structure, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12085, https://doi.org/10.5194/egusphere-egu2020-12085, 2020.

EGU2020-13980 | Displays | TS5.4

Earthquakes without aftershocks: Is there a link to fluid-absent geodynamics?

Thanushika Gunatilake and Stephen A. Miller

One question that remains unanswered is why some earthquakes are preceded by foreshocks and generate aftershocks by the thousands, while other similarly-sized (or larger) earthquakes produce few, if any, foreshocks or aftershocks. Current understanding equates large magnitude earthquakes with hundreds or even thousands of aftershocks, however a magnitude 7.1 earthquake in Mexico in 2017 and a magnitude 8.0 earthquake in 2019 in Peru generated no foreshocks and no aftershocks (M>4), while the 2020 M6.4 earthquake in Puerto Rico was preceded by ten foreshocks (M>4) and more than sixty aftershocks (M>4) in the first week. The 2019 Ridgecrest earthquake (M7.1) in California was preceded by a M6.4 foreshock and thousands of aftershocks, and this is relevant because this sequence occurred in the fluid-rich Coso hydrothermal/volcanic region. Other examples include the 2001 Kunlun (Tibet) earthquake (M=7.8) that generated a mere 12 aftershocks (M>4) in the first three weeks, while the tectonically similar 2002 Denali earthquake (M=7.9) spawned nearly 160 aftershocks (M>4) in the first three weeks. We attribute this contrasting behaviour to the geodynamic setting; subduction (and thus devolitization) underlies Denali, while a fluid-absent thickened crust (from the Himalayan orogeny) underlies Tibet.

In this work, we performed a global inventory of large earthquakes and their aftershocks, and find strong evidence that aftershock productivity correlates with the geodynamic and petrological settings hosting the earthquakes. In cases where deep fluid sources are likely (using geodynamic arguments), we find that earthquakes are sometimes preceded by foreshocks, and always produce rich aftershock sequences. On the contrary, using the same geodynamic arguments, we show that regions without an obvious deep fluid source produce few, if any, aftershocks. From this study, we hypothesize that, in general, fluid-absent geodynamic environments generate a dearth of aftershocks, while fluid-rich environments generate aftershock sequences that follow the typical Gutenberg-Richter, Bath and Omori Laws.

How to cite: Gunatilake, T. and Miller, S. A.: Earthquakes without aftershocks: Is there a link to fluid-absent geodynamics?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13980, https://doi.org/10.5194/egusphere-egu2020-13980, 2020.

EGU2020-17399 | Displays | TS5.4

Mixed-mode Slip Behavior and Strength Evolution of an Actively Exhuming Low-Angle Normal Fault, Woodlark Rift, SE Papua New Guinea

Marcel Mizera, Timothy Little, Carolyn Boulton, James Biemiller, and David Prior

Rapid dip-slip (11.7±3.5 mm/yr) on the active Mai'iu low-angle normal fault in SE Papua New Guinea enabled the preservation of early formed microstructures in mid to shallow crustal rocks. The corrugated, convex-upward shaped fault scarp dips as low as 16°–20° near its trace close to sea level and forms a continuous landscape surface traceable for at least 28 km in the NNE slip-direction. Structurally, offset on the Mai'iu fault has formed a metamorphic core complex and has exhumed a metabasaltic footwall during 30–45 km of dip slip on a rolling-hinge style detachment fault. The exhumed crustal section records the spatiotemporal evolution of fault rock deformation mechanisms and the differential stresses that drive slip on this active low-angle normal fault.

The Mai'iu fault exposes a <3 m-thick fault core consisting of gouges and cataclasites. These deformed units overprint a structurally underlying carapace of metabasaltic mylonites that are locally >60 m-thick. Detailed microstructural, textural and geochemical data combined with chlorite-based geothermometry of these fault rocks reveal a variety of deformation processes operating within the Mai'iu fault zone. A strong crystallographic preferred orientation of non-plastically deformed actinolite in a pre-existing, fine-grained (6–33 µm) mafic assemblage indicates that mylonitic deformation was controlled by diffusion-accommodated grain-boundary sliding together with syn-tectonic chlorite precipitation at >270–370°C. At shallower crustal levels on the fault (T≈150–270°C), fluid-assisted mass transfer and metasomatic reactions created a foliated cataclasite fabric during inferred periods of aseismic creep. Pseudotachylites and ultracataclasites mutually cross-cut both the foliations and one another, recording repeated episodes of seismic slip. In these fault rocks, paleopiezometry based on calcite twinning yields peak differential stresses of ~140–185 MPa at inferred depths of 8–12 km. These differential stresses were high enough to drive continued slip on a ~35° dipping segment of the Mai'iu fault, and to cause new brittle yielding of strong mafic rocks in the exhuming footwall of that fault. In the uppermost crust (<8 km; T<150°C), where the Mai'iu fault dips shallowly and is most severely misoriented for slip, actively deforming fault rocks are clay-rich gouges containing abundant saponite, a frictionally weak mineral (µ<0.28).

In summary, these results combined with fault dislocation models of GPS velocities from campaign stations in this region suggest a combination of brittle frictional and viscous flow processes within the Mai'iu fault zone. Gouges of the Mai'iu fault have been strongly altered by fluids and are frictionally weak near the surface, where the fault is most strongly misoriented. At greater depths (8–12 km) the fault is stronger and slips both by aseismic creep and episodic earthquakes (a mixture of fast and slow slip) in response to locally high differential stresses.

How to cite: Mizera, M., Little, T., Boulton, C., Biemiller, J., and Prior, D.: Mixed-mode Slip Behavior and Strength Evolution of an Actively Exhuming Low-Angle Normal Fault, Woodlark Rift, SE Papua New Guinea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17399, https://doi.org/10.5194/egusphere-egu2020-17399, 2020.

EGU2020-18382 | Displays | TS5.4

Effect of grain fracture on stick-slip dynamics of granular fault gouge

Di Wang, Omid Dorostkar, Wei Zhou, Chris Marone, and Jan Carmeliet

Fault gouge is produced by comminution, wear and other shearing processes that take place during geological tectonic movements. The frictional properties and stick-slip dynamics of granular fault show similar patterns as geophysical phenomena like earthquakes and landslides. In this work, we introduce a particle breakage model in a granular fault system to study the effect of grain fracture on the stick-slip dynamics. Our results show that particle breakage changes the macroscopic friction and the characteristics of slip events. By statistical analyses on a large number of slip events, we find that grain fracture changes the distribution of slip event size. During the evolution of crushable fault gouge, particle breakage does not lead to large slip events but triggers many small slips that partly dissipate the accumulated energy. On the other hand, the grain fracture is also influenced by the slip dynamics: it is shown that larger slip events will lead to a series of particle breakage due to localized high stresses during the rearrangement of granular gouge. Our findings in this study show that in faults with granular gouge particle breakage significantly changes the characteristics of frictional instabilities and affects the dynamics of fault system.

How to cite: Wang, D., Dorostkar, O., Zhou, W., Marone, C., and Carmeliet, J.: Effect of grain fracture on stick-slip dynamics of granular fault gouge, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18382, https://doi.org/10.5194/egusphere-egu2020-18382, 2020.

EGU2020-4174 | Displays | TS5.4

A unified numerical model for the simulation of the seismic cycle for normal and reverse fault earthquakes in Italy

Matteo Albano, Salvatore Barba, Christian Bignami, Carlo Doglioni, Eugenio Carminati, Michele Saroli, Marco Moro, Salvatore Stramondo, and Sergey Samsonov

Earthquakes are the result of the strain accumulation in the earth's crust over a variable decade to millennial period, i.e., the interseismic stage, followed by a sudden stress release at a crustal discontinuity, i.e., the coseismic stage, finally evolving in a postseismic stage.

Commonly, the seismic cycle is modelled with analytical and numerical approaches. Analytical methods simulate the interseismic, coseismic and postseismic phases independently. These models impose the slip of single or multiple planar sources to infer fault geometry, slip distribution and regional deformations to fit the available geodetic or seismological measurements, often regardless of the magnitude and orientation of the interseismic gravitational and tectonic forces. Numerical approaches allow simulating complex geometries in heterogeneous media and at different modelling scales, assuming various constitutive laws. Such models often impose the slip on the fault plane to simulate the observed coseismic dislocation or the propagation of the seismic waves, or they adopt ad-hoc boundary conditions to investigate the interseismic stress accumulation or the postseismic relaxation for specific cases.

We contribute to the understanding of the seismic cycle associated to a single fault by developing a numerical model to simulate the long-term crustal interseismic deformation, the coseismic brittle episodic dislocation, and the postseismic relaxation of the upper crust within a unified environment for both normal and reverse fault earthquakes in Italy, including the forces acting during the interseismic period, i.e., the lithostatic load and the horizontal stress field, the latter simulated with the application of a shear traction a the model’s base. We adjusted the setup of our model to simulate the interseismic, coseismic and postseismic phases for two seismic events: the Mw 6.1 L’Aquila 2009 normal fault earthquake and the Mw 5.9 Emilia-Romagna 2012 reverse fault earthquake.

The simulation results show that the applied basal shear traction is fundamental to model the large-scale interseismic pattern since it allows for a first-order simulation of the ongoing crustal interseismic extension of the Central Apennines and compression of the Adriatic foreland and the north-eastern part of the Italian territory. The action of shear tractions and lithostatic forces generates a local concentration of stresses and strains in the presence of local heterogeneities or discontinuities, i.e., at the transition between the brittle locked fault and the ductile unlocked slipping fault during the interseismic stage. Such an interseismic strain partitioning provides maximum horizontal stress sufficient to exceed the friction on the locked brittle part of the fault, with the subsequent collapse of the hangingwall in case of extensional earthquakes or the expulsion of the hangingwall in case of compressional earthquakes. The instantaneous slip of the hangingwall perturbs the crustal pore fluid pressures, triggering groundwater flow in the postseismic phase from regions of higher pore pressures, which further compress, to regions of lower pore pressures, which further dilate. As a result, displacements gradually accumulate in the postseismic phase, according to the dissipation of pore pressure excess. Once the postseismic phase terminates, a new cycle of interseismic loading can start again.

How to cite: Albano, M., Barba, S., Bignami, C., Doglioni, C., Carminati, E., Saroli, M., Moro, M., Stramondo, S., and Samsonov, S.: A unified numerical model for the simulation of the seismic cycle for normal and reverse fault earthquakes in Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4174, https://doi.org/10.5194/egusphere-egu2020-4174, 2020.

EGU2020-10197 | Displays | TS5.4

On the Nature of Fault Slip: From the Field to the Lab

Francois Passelegue, Michelle Almakari, Pierre Dublanchet, Fabian Barras, and Marie Violay

Modern geophysics highlights that the slip behaviour response of faults is variable in space and time and can result in slow or fast ruptures. Despite geodetical, seismological, experimental and field observations, the origin of this variation of the rupture velocity in nature, as well as the physics behind it, is still debated. Here, we first discuss the scaling relationships existing for the different types of fault slip observed in nature and we highlight how they appear to stem from the same physical mechanism. Second, we reproduce at the scale of the laboratory the complete spectrum of rupture velocities observed in nature. Our results show that when the nucleation length is within the fault length, the rupture velocity can range from a few millimetres to kilometres per second, depending on the available energy at the onset of slip. Our results are analysed in the framework of linear elastic fracture mechanics and highlight that the nature of seismicity is governed mostly by the initial stress level along the faults. Our results reveal that faults presenting similar frictional properties can rupture at both slow and fast rupture velocities. This combined set of field and experimental observations bring a new explanation of the dominance of slow rupture fronts in the shallow part of the crust and in areas presenting large fluid pressure, where initial stresses are expected to remain relatively low during the seismic cycle.

How to cite: Passelegue, F., Almakari, M., Dublanchet, P., Barras, F., and Violay, M.: On the Nature of Fault Slip: From the Field to the Lab, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10197, https://doi.org/10.5194/egusphere-egu2020-10197, 2020.

EGU2020-12694 | Displays | TS5.4

The 2016 Mw 7.8 Kaikoura earthquake and its relationship to tremors.

Pierre Romanet, Florent Aden-Antoniow, and Satoshi Ide

The relationship between slow earthquake and regular earthquake is fundamental question in seismology. It was already shown that some slow slip event may have led to some megathrust event. In return, passing surface wave from earthquake may also trigger tremors and slow slip event. Documenting these possible triggering effects between slow and fast events is of primary importance to understand them.

In this study we will focus more particularly on Marlborough region, in a region that was subject to the Mw 7.8 2016 Kaikoura earthquake. Two years before Kaikoura earthquake, we observed a Northeast to Southwest migration of tremors, getting closer to the hypocenter of Kaikoura earthquake. Despite being speculative, this may indicate that a slow slip event is happening shortly before Kaikoura earthquake, which is also supported by a small signal in two GPS stations nearby. After the earthquake, the rate of tremors increased in the region. Studying the relationship between tremors and the Kaikoura earthquake may provide some information on the role of the subduction in the region, as well as provide a new documented interaction of slow earthquakes with a crustal earthquake.

To detect and locate tremors, we use broadband and shortband velocity traces from the GeoNet network. The traces are bandpass filtered between 2-8Hz, and transform into envelope. Then we apply a classic cross-correlation technic to detect and locate the events. To remove unexpected events (i.e.: earthquakes), we used a criteria base on seismic energy and duration. Finally, we manually check each velocity traces and spectrograms.

How to cite: Romanet, P., Aden-Antoniow, F., and Ide, S.: The 2016 Mw 7.8 Kaikoura earthquake and its relationship to tremors., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12694, https://doi.org/10.5194/egusphere-egu2020-12694, 2020.

TS5.5 – Active Tectonics and Geodynamics of Eastern Mediterranean

EGU2020-11156 | Displays | TS5.5

Measuring Anatolian plate velocity and strain with Sentinel-1 InSAR and GNSS data: implications for fault locking, seismic hazard, and crustal dynamics

Jonathan Weiss, Richard Walters, Tim Wright, Yu Morishita, Milan Lazecky, Hua Wang, Ekbal Hussain, and Andrew Hooper

Geodetic measurements of small rates of interseismic crustal motion made at high spatial resolutions and over large areas are crucial for understanding the earthquake cycle, characterizing spatial variations in lithosphere rheology and fault frictional properties, illuminating the mechanics of large-scale continental deformation, and improving earthquake hazard models. The densification of Global Navigation Satellite System (GNSS) networks has provided an unprecedented view of the kinematics of deforming regions. However, large gaps in spatial coverage still hamper our ability to fully characterize patterns of surface deformation. Interferometric synthetic aperture radar (InSAR), and the Sentinel-1 (S-1) satellites in particular, have the potential to overcome this obstacle by providing spatially continuous measurements of surface motions, without instruments on the ground, with precision approaching that obtained from GNSS, and at a resolution of a few tens of meters. In order to manage and process the large data volumes produced by S-1, we have developed open-source, automated workflows to efficiently generate interferograms and line-of-sight (LOS) velocity fields. These outputs are valuable for a range of applications, from earthquake rapid-response to investigating human-induced ground-level changes. In this talk, we demonstrate our ability to measure plate-scale interseismic deformation using data from the first ~5 years of the S-1 mission. We estimate LOS velocities for the Anatolian microplate, an area encompassing ~800,000 km2 and including the highly seismogenic North Anatolian Fault Zone (NAFZ). By combining S-1 InSAR and GNSS data, we create high-resolution surface velocity and strain rate fields for the region, which illuminate horizontal deformation patterns dominated by the westward motion of Anatolia relative to Eurasia, localized strain accumulation along the NAFZ, and rapid vertical signals associated with groundwater extraction. Relatively low levels of strain characterize other active regions including the East and Central Anatolian Fault Zones and the Western Anatolian Extensional Province. We find that GNSS data alone are insufficient for characterizing key details of the strain rate field that are critical for understanding the relationship between strain accumulation and release in earthquakes. We highlight two important results stemming from our work including probabilistic estimates of the recurrence times of earthquakes of varying magnitudes for the region and a new NAFZ locking distribution that shows close correspondence to the surface rupture extents of large 20th century earthquakes.

How to cite: Weiss, J., Walters, R., Wright, T., Morishita, Y., Lazecky, M., Wang, H., Hussain, E., and Hooper, A.: Measuring Anatolian plate velocity and strain with Sentinel-1 InSAR and GNSS data: implications for fault locking, seismic hazard, and crustal dynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11156, https://doi.org/10.5194/egusphere-egu2020-11156, 2020.

EGU2020-7656 | Displays | TS5.5

Contemporary Kinematics of the South Aegean Area (Greece) Detected with Continuous GNSS Measurements

Vassilis Sakkas, Chrysa Doxa, Andreas Tzanis, and Haralambos Kranis

We examine the kinematic characteristics of the crustal deformation in the broader southern Aegean region using 47 permanent GNNS stations distributed across the eastern Peloponnesus, Attica, Cyclades, Dodecanese, Crete and the coast of western Anatolia. Our analysis is based on the study of velocity vectors relative to local reference points at the western and eastern halves of the study area, as well as on the strain field calculated from absolute velocity vectors across the study area. We demonstrate that the South Aegean region undergoes complex distributed block deformation.

At the eastern end of the study area this varies from N210°-N220° extension and with crustal thinning across NE Peloponnesus – Attica, to N210°-N220° compression between the central-eastern Peloponnesus and western Crete, both consistent with the geodynamic setting of the Hellenic Subduction System.

A principal feature of the S. Aegean crust appears to be a broad shear zone extending between the islands of Samos/Ikaria and Kalymnos, Paros/Naxos and Amorgos and Milos – Santorini; It exhibits left-lateral kinematics and its southern boundary appears to coincide with the Amorgos – Santorini ridge and comprise the Anhydros basin and associated volcanic field (including Columbo and Santorini). Significant WNW-ESE crustal thinning is observed within the zone.

The area of the Dodecanese, to the south of Kalymnos and east of Astypalaea and north of Rhodes appears to undergo severe crustal thinning in the NW-SE direction while the SE  rim of the Aegean Plate appears to undergo thinning in the NE-SW direction. Finally, the abrupt increase in velocity between eastern Crete and Karpathos island indicates the presence of a very significant N-S tectonic boundary of unknown as yet nature, extending between 35°N and 36°N at least.

In order to assign some values to the above qualitative description, we note that with respect to a reference point at Anavyssos, Attica, the distribution of velocities allows identification of four and possibly five major tectonic blocks with different kinematics, whose location, direction of motion and average velocities respectively are:

  • Samos – Ikaria and Naxos-Paros-Amorgos group of islands, N220° and 1.5mm/yr respectively.
  • The south-western Cyclades (Anafi, Ios, Antiparos, Milos, Folegandros, Sikinos and Santorini group of islands, N210° and 3.3 mm/yr.
  • The northern Dodecanese (Kalymnos, Kos, Astypalaea group), N150° and 3.0 mm/yr.
  • The southern Dodecanese (Nisyros, Telos, Rhodes, Karpathos group), N120° and 7.4 mm/yr respectively.
  • The Cretan Sea and Crete, N160° and 2.0 mm/yr respectively.

An interpretation of the nature and kinematics of the boundaries between these blocks will be presented and discussed. Overall, the south Aegean appears to undergo distributed block deformation associated with a rather complex kinematic pattern, the nature of which remains to be confirmed, validated and explained with future research.

Acknowledgements. This presentation was financially supported by the Special Account for Research Grants of the National & Kapodistrian University of Athens.

How to cite: Sakkas, V., Doxa, C., Tzanis, A., and Kranis, H.: Contemporary Kinematics of the South Aegean Area (Greece) Detected with Continuous GNSS Measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7656, https://doi.org/10.5194/egusphere-egu2020-7656, 2020.

EGU2020-3167 | Displays | TS5.5

Bivergent extension in the overriding plate above a slab tear (Dodecanese, Greece)

Bernhard Grasemann, David A. Schneider, Konstantinos Soukis, and Vincent Roche

Tearing in the Hellenic slab below the transition between the Aegean and Anatolian plate is considered to have significantly affected Miocene tectonic and magmatic evolution of the eastern Mediterranean by causing a toroidal flow of asthenosphere and a lateral gradient of extension in the upper plate. Some studies suggest that this lateral gradient is accommodated by a distributed sinistral lithospheric-scale shear zone whereas other studies favor a localized NE-SW striking transfer zone. Recent studies in the northern Dodecanese demonstrate that the transition zone between the Aegean and Anatolian plate is characterized by Miocene extension with a constant NNE-SSW sense of shear accommodating the difference in finite extension rates in the middle-lower crust. Neither localized or distributed strike-slip faults nor rotation of blocks about a vertical axis have been observed.

In this work we focus on the geology Kalymnos located in the central Dodecanese. Based on our new geological map, three major tectonic units can be distinguished: (i) Low-grade, fossil-rich late Paleozoic marbles, which have been deformed into S-vergent folds and out-of-sequence thrusts. This fold-and-thrust belt is sealed by an up to 200 m thick wildflysch-type deposit consisting of low-grade metamorphic radiolarites and conglomerates with tens of meters-scale marbles and ultramafics blocks. (ii) Above this unit, amphibolite facies schists, quartzites and amphibolites are tectonically juxtaposed along a several meter-thick thrust fault with low-grade ultramylonites and cohesive ultracataclasites/pseudotachylites with top-to-N kinematics. (iii) At highest structural levels, a major cataclastic low-angle normal fault zone localized in Verrucano-type violet slates separates Mesozoic unmetamorphosed limestones in the hanging wall. The sense of shear of the normal fault is top-to-SSW. All units are cut by brittle high-angle normal faults shaping the geomorphology of Kalymnos, which is characterized by three major NNW-SSE trending graben systems.

New white mica Ar-Ar ages suggests that the middle units represent relics of a Variscan basement, which was thrusted on top of a fold-and-thrust belt during an Eo-Cimmerian event. Zircon (U-Th)/He ages from the Variscan basement are c. 28 Ma, indicating that the lower units were exhumed below the Mesozoic carbonates during the Oligocene-Miocene. Since Miocene extension in the northern Dodecanese records top-to-NNE kinematics, we suggest that back-arc extension in the whole Aegean realm and transition to the Anatolian plate is bivergent, and tearing in the Hellenic slab did not significantly affected the extension pattern in the upper crust.

How to cite: Grasemann, B., Schneider, D. A., Soukis, K., and Roche, V.: Bivergent extension in the overriding plate above a slab tear (Dodecanese, Greece), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3167, https://doi.org/10.5194/egusphere-egu2020-3167, 2020.

EGU2020-4857 | Displays | TS5.5

Persistent earthquake-rupture segmentation due to variable interseismic slip accumulation within the southern Hellenic subduction plate-interface zone in Greece

Vasso Saltogianni, Vasiliki Mouslopoulou, Onno Oncken, Andrew Nicol, Michael Gianniou, and Stelios Mertikas

Increasing evidence suggests that large thrust-faults that splay from the plate-interface to extend within the upper-plate have a significant impact on subduction seismogenesis. The manner in which these two elements, the plate-interface itself and its splay-thrust faults, interact with one another during the earthquake cycle remains, however, poorly explored. Here, we use GPS velocities, constrained by millennial fault slip-rates, to quantify the accumulation (and partitioning) of strain on individual faults of the plate-interface zone and capture their possible interactions. We zoom into the southern Hellenic Subduction System (HSS), where the greatest (M8.3) earthquake and tsunami ever recorded in the Mediterranean was produced by slip on a splay-thrust fault. Our analysis shows that the HSS is kinematically segmented and strain is accumulated at spatially variable rates along individual structures of the plate-interface zone. We find that insterseismic locking reaches up to ~85% and ~45% on the western and eastern segments, respectively, and on structures different to those that ruptured historically. Although the western HSS has been more active recently (e.g. 365 BC), the eastern HSS carries currently higher potential for large-magnitude (M>6) earthquakes andits interface-zone appears to be closer to failure. Elastic fault-interactions are responsible for both significant inter-segment variability in strain-accumulation and millennial uniformity in earthquake rupture-segmentation between eastern and western HSS.

How to cite: Saltogianni, V., Mouslopoulou, V., Oncken, O., Nicol, A., Gianniou, M., and Mertikas, S.: Persistent earthquake-rupture segmentation due to variable interseismic slip accumulation within the southern Hellenic subduction plate-interface zone in Greece , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4857, https://doi.org/10.5194/egusphere-egu2020-4857, 2020.

EGU2020-10755 | Displays | TS5.5

Neogene and active brittle deformation on Amorgos Island (Greece)

Jan Behrmann, Jakob Schneider, and Benjamin Zitzow

Amorgos is the south-eastern outpost of the Cyclades Islands in the Aegean Sea, which forms part of the Neogene-Quaternary zone of crustal and lithospheric N-S upper plate extension northward of the Hellenic subduction zone and deep sea trench. Apart from subduction-related earthquakes further south, the southern Aegean is affected by frequent earthquakes sourced in the upper plate. The twin earthquakes of 9 July 1956, followed by a strong tsunami, were the strongest events of this kind in the past Century. Hypocenters are related to a NE-SW oriented normal fault bounding the Amorgos-Santorini Graben System. There are questions in the literature regarding the seismic source and fault plane solutions, especially the contribution of a transcurrent faulting component.

We have analyzed the kinematics of brittle faults exposed on Amorgos Island itself that could be related to Neogene and active extensional and/or transcurrent deformation. Seismic slip often occurs on previously existing faults. Thus, their orientations and kinematics may help shed light on the structure of seismic sources at depth. We present evidence for a complex history of faulting. Early normal detachment faults and shear zones overprint older (rare) reverse faults, and are themselves overprinted by several sets of dominantly dextral NE and SE trending strike slip faults. Youngest is a conjugate set of NE trending high-angle normal faults. These are especially frequent along the SE coast of the island, suggesting a clear spatial relationship with the 1956 rupture. They can be fitted to a moment tensor solution similar to the published solutions for the 1956 Amorgos earthquake. The kinematic solution for the population of early normal faults suggests that the whole of Amorgos Island may have experienced a 15° NNW tilt during later extension, which lets us suspect that the island could be a tilted block of a much larger fault system. Regarding long-term late Neogene to Quaternary kinematics, dextrally transtensive fault slip is required to fit the regional pattern of extensional deformation in the Aegean, and this is reflected by small-scale brittle faulting on Amorgos.

How to cite: Behrmann, J., Schneider, J., and Zitzow, B.: Neogene and active brittle deformation on Amorgos Island (Greece), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10755, https://doi.org/10.5194/egusphere-egu2020-10755, 2020.

EGU2020-8478 | Displays | TS5.5

Co-seismic deformation and preliminary fault model of the M6.4 Durres (Albania) Nov. 26, 2019 earthquake, based on space geodesy observations

Athanassios Ganas, Varvara Tsironi, Flavio Cannavo, Pierre Briole, Panagiotis Elias, Sotiris Valkaniotis, Ioannis Koukouvelas, and Efthimios Sokos

We report the mapping the co-seismic deformation in the coastal region of Durres (Albania) following the Mw=6.4 shallow earthquake on Nov. 26, 2019, 02:54 UTC. The tectonics of western and northern Albania is characterised by on-going compression due to collision between Eurasian and Adriatic plates. Crustal deformation is characterised by shortening directed at NNE-SSW to E-W orientation. We analysed co-seismic interferograms of the Sentinel-1 (ESA) satellites (ascending orbit; relative orbit 175, slice numbers 14 & 15) and GPS observations (30-s interval) recorded at two stations (DUR2 and TIR2). The raw GPS data were processed with the GIPSY-OASIS II software, using the Precise Point Positioning (PPP) methodology with Final JPL products, to obtain daily static solutions defined in ITRF14. The coseismic offsets were computed as differences between the mean positions, respectively 5 days before and after the earthquake day. Uncertainties associated with the displacements were calculated by propagating the errors in GPS solutions. For DUR2 the displacement is significant in all three components (East=-1.3 cm, North=-2.1 cm, Up= +1.4 cm), while for TIR2 seems reasonable (0.4 cm on the horizontal components) but within the error bar. The SAR images were processed by the open-source SNAP software and they were obtained on Nov. 14, 2019 20:59 UTC (master scene) and on Nov. 26, 2019 16:31 UTC (slave scene). Each frame (slice) was processed independently and the wrapped phase was mosaicked in order to reveal the full deformation extent. The InSAR fringe pattern shows a 45-km long, NW-SE arrangement of three (3) fringes with a maximum LOS displacement of about +8.4 cm near the village Hamallaj (15 km NE of Durres). Assuming a half-space elastic model with uniform slip along a rectangular fault surface, the source of the ground deformation was inverted using the available geodetic data (GNSS and InSAR). The mean scatter value between data and the model is 2.4 mm.  The inversion modelling indicates that the 2019 Durres (Albania) earthquakes ruptured a low-angle fault (24 km long by 9 km wide) dipping 23° towards east with the fault plane top at 16 km. The geodetic fault-model is in agreement with published moment tensor solutions showing a NNW-SSE fault plane (for example the USGS solution has attributes 337°/27°/91°; strike/dip-angle/rake angle). This geometry is compatible with a blind thrust fault that may root on the main basal thrust i.e. along the main Ionian thrust front that separates Adria-Apulia from Eurasia.

 

Acknowledgement: This research is supported by HELPOS (“Hellenic Plate Observing System” - MIS 5002697) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). We also thank The Institute of GeoSciences, Energy, Water and Environment of Albania for providing GNSS data.

How to cite: Ganas, A., Tsironi, V., Cannavo, F., Briole, P., Elias, P., Valkaniotis, S., Koukouvelas, I., and Sokos, E.: Co-seismic deformation and preliminary fault model of the M6.4 Durres (Albania) Nov. 26, 2019 earthquake, based on space geodesy observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8478, https://doi.org/10.5194/egusphere-egu2020-8478, 2020.

EGU2020-18053 | Displays | TS5.5

Present Seismotectonic Behavior of the EAF from Improved Seismicity Catalog and Earthquake Source Mechanism Solutions

Sezim Ezgi Guvercin, Hayrullah Karabulut, Ugur Dogan, Ziyadin Cakir, Semih Ergintav, Cengiz Zabci, Alpay Ozdemir, Seda Ozarpaci, Ali Ozgun Konca, and Mehmet Kokum

The seismotectonic behavior of the Eastern Anatolia is predominantly controlled by the East Anatolian Fault (EAF). Together with the North Anatolian Fault (NAF), this ~400 km long sinistral transform fault, accommodates the westward motion of Anatolia between Anatolian and Arabian plates with a slip rate of ~10 mm/yr which is significantly slower than the motion of the NAF (25 mm/yr). Although this two major faults are similar in terms of the migration of the large earthquakes from east to west, the present seismicity of the EAF is high compared to the NAF. Except for the several earthquakes with Mw > 5, there were no devastating earthquakes during the instrumental period along the EAF. The absence of large earthquakes during the last ~50 years along the EAF indicates presence of significant seismic gaps and potential seismic hazard in the region. Recent studies indicate segmentation of the EAF with varying lengths of creeping and locked segments. Some details of the geometries and the slip rates of these segments have been estimated by the InSAR observations. Both InSAR and GPS observations indicate that the maximum creep along this the EAF is ~10 mm/yr, approximately the slip rate of the EAF.

While both geodetic data verify the existence of creep from surface deformation, its relation to the seismic behavior of the EAF is less clear. There is a ~30 km long creeping segment to the north-east of Lake Hazar which generates no significant seismicity. On the other hand, another creeping segment to the south-west of Lake Hazar, there are repeating events, below the depth of 10 km, with a horizontal extent of 15 km. The highly fractured and complex structure of this fault zone is also confirmed by the available focal mechanisms which shows significant variety.

In this study, we update seismicity catalog with improved locations to date and present a uniform and high quality focal mechanism catalog down to M4 completeness, using regional waveforms. The seismicity catalog is used to estimate the geometry of the segmentation while the novel earthquake source mechanisms are used to understand the kinematics of the segments and interactions. Moreover, we present the latest M4.9, 2019, Sivrice earthquake, pointing out a location where the stress is perturbed due to a transition from creeping segment to locked segment. (Supported by TUBITAK no: 118Y435 project)

How to cite: Guvercin, S. E., Karabulut, H., Dogan, U., Cakir, Z., Ergintav, S., Zabci, C., Ozdemir, A., Ozarpaci, S., Konca, A. O., and Kokum, M.: Present Seismotectonic Behavior of the EAF from Improved Seismicity Catalog and Earthquake Source Mechanism Solutions , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18053, https://doi.org/10.5194/egusphere-egu2020-18053, 2020.

EGU2020-10185 | Displays | TS5.5

Contrasting seismogenic behaviors on the North Anatolian Fault in the Sea of Marmara

Pierre Henry, Céline Grall, M Sinan Özeren, Volkan Özbey, Gülsen Uçarkus, Louis Géli, Valérie Ballu, Ziyadin Çakir, Semih Ergintav, Dietrich Lange, and Jean-Yves Royer

Since the 1999 Izmit-Kocaeli earthquake, the Main Marmara Fault (MMF) of the North Anatolian Fault system in the Sea of Marmara has been considered at an imminent risk for a large earthquake. Land geodesy has difficulties characterizing the distribution of interseismic loading, and hence of slip deficit, on the offshore faults, and notably on the Istanbul-Silivri segment of the NAF. The need to clarify the status of offshore fault segments has motivated seafloor monitoring experiments and marine geophysical and sedimentological studies, notably in the framework of EMSO consortium and MARSITE and MAREGAMI projects. Results from cross-disciplinary projects have shown that aseismic creep, spatially correlated to active gas venting at the seafloor, occurs on the Western segment of the MMF. This segment is also capable to large earthquake ruptures such as the 1912 event. On the eastern part of the Sea of Marmara, the Istanbul-Silivri and Prince Island segments appear essentially locked. Moreover, the base of the seismogenic zone and locking depth appears to shallow (from 15-20 to 10-15 km) from west to east.

On one hand, we propose to further evaluate fault slip rates and distribution of locking ratio on individual fault segments using an elastic block model constrained by land geodesy data and marine observations (long-term fault slip rate estimates, local acoustic ranging results). On the other hand, we evaluate the temperature at the seismogenic depths by basin modelling. Results suggest that spatial variations of fault behavior in the Sea of Marmara may result from a combination of factors. First, thermogenic gas generation within the > 6 km thick sedimentary cover in the Western Sea of Marmara may contribute to unlock the shallow part of the fault by generating overpressures. Second, heterogeneity of the crust composition could be a factor as the North Anatolian Fault system follows the intra-pontide ophiolitic suture. For instance, long term post-seismic creep onland at Ismet Paşa has been related to the presence of serpentinite in the fault zone. Moreover, high-density magnetic bodies have been identified along the MMF. Third, varying thermal regimes between the Western and Eastern parts of the Sea of Marmara may account for variations in the seismogenic depths. Seafloor heat flow in the Sea of Marmara is strongly affected by sediment blanketing and basin modeling considering this process suggests that the crustal heat flow is about 20 mW/m2 higher in the eastern part than in western part of the Sea of Marmara. This difference may be explained by a more spread out crustal extension in the western Sea of Marmara.

How to cite: Henry, P., Grall, C., Özeren, M. S., Özbey, V., Uçarkus, G., Géli, L., Ballu, V., Çakir, Z., Ergintav, S., Lange, D., and Royer, J.-Y.: Contrasting seismogenic behaviors on the North Anatolian Fault in the Sea of Marmara, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10185, https://doi.org/10.5194/egusphere-egu2020-10185, 2020.

The North Anatolian Fault experienced large earthquakes with 250 to 400 years recurrence time. In the Marmara Sea region the 1999 (Mw = 7.4) and the 1912 (Mw = 7.4) earthquake ruptures bound the Central Marmara Sea fault segment. Using historical-instrumental catalogue and paleoseismic results (≃ 2000-year database), the mapped fault segments, fault kinematic and GPS data, we compute the paleoseismic-seismic moment rate and geodetic moment rate. The geodetic moment rate is obtained by projecting the measured surface displacements to estimate the strain rate, and evaluating the associated elastic stress rate over a regular spatial grid. The paleoseismic-seismic moment rate is obtained by summing the moment tensors over regions of the spatial grid and periods of time. A clear discrepancy appears between the moment rates and implies a significant delay in the seismic slip along the fault. The rich database allows us to identify the size of the seismic gap and related fault segment and estimate the moment rate deficit. Our modeling suggest that the locked Central Marmara Sea fault segment even including a creeping section bears a moment rate deficit  = 6.4*1017 N.m./yr. that corresponds to Mw ≃ 7.4 for a future earthquake with an average ≃ 3.25 m coseismic slip. Taking into account the uncertainty in the strain accumulation along the 130-km-long Central fault segment, our estimate of the seismic slip deficit being ≃ 10 mm/yr implies the size of the future earthquake ranges between Mw = 7.4 and 7.5.

How to cite: Aksoy, E., Meghraoui, M., and Toussaint, R.: The slip deficit along the North Anatolian Fault (Turkey) in the Marmara Sea: Insights from paleoseismicity, seismicity and geodetic data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8809, https://doi.org/10.5194/egusphere-egu2020-8809, 2020.

EGU2020-4264 | Displays | TS5.5

3-D lithospheric-scale rheological model of the Sea of Marmara

Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Bott, Oliver Heidbach, Marco Bohnhoff, and Manfred R. Strecker

The North Anatolian Fault (NAF) below the Sea of Marmara, also known as the Main Marmara Fault (MMF), has repeatedly produced major (M>7) earthquakes in the past. Currently, the MMF corresponds to a seismic gap between the locus of the most recent M>7 ruptures of the 1912 Ganos (M 7.3) and 1999 Izmit (M 7.4) earthquakes. This seismic gap has a recurrence time of approximately 250 years and has not ruptured since 1766. Consequently, it poses a major seismic hazard to the Marmara region, including the megacity Istanbul. The Marmara seismic gap is considered to be locked in the eastern and central segments of the MMF, while the western segment is partly creeping. In the context of seismic hazard and risk assessment, one of the main questions is, if either the Marmara seismic gap will rupture in a single large earthquake or in several ones due to segmentation along the MMF. In part this depends on the physical properties of the lithosphere below the Sea of Marmara as they are a key control of the contemporary stress state. To contribute to this discussion, we present 3‑D lithospheric-scale thermal and rheological models of the Sea of Marmara. These models are based on published 3‑D density models that indicate lateral and vertical crustal heterogeneities below the Sea of Marmara (Gholamrezaie et al., 2019). The density models consist of two layers of sediments, upper and lower crystalline crustal layers, and two crustal dome-shaped, high-density bodies that spatially correlate with major bends along the MMF. We show that these crustal heterogeneities may cause the lithospheric strength to vary significantly along the MMF, supporting the hypothesis that the fault is mechanically segmented. In addition, our results indicate a spatial correlation between observed aseismic fault patches (Wollin et al., 2018) and the location of the high-density bodies. These bodies are colder and stronger than the surrounding crystalline crust, and may thus represent the lateral bounds of the locked MMF segment.

How to cite: Gholamrezaie, E., Scheck-Wenderoth, M., Bott, J., Heidbach, O., Bohnhoff, M., and Strecker, M. R.: 3-D lithospheric-scale rheological model of the Sea of Marmara, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4264, https://doi.org/10.5194/egusphere-egu2020-4264, 2020.

EGU2020-13052 | Displays | TS5.5

How Has GPS Velocity Field Changed Along the 1999 Izmit Rupture 20 Years After the 1999 Izmit, Turkey Earthquake?

Seda Özarpacı, Uğur Doğan, Semih Ergintav, Ziyadin Çakır, Alpay Özdemir, Michael Floyd, and Robert Reilinger

A seismic gap along the western segment of the North Anatolian Fault, in the Marmara-Izmit region, was identified before the 1999 M7.6, Izmit and M7.4 Duzce earthquakes, so the region along the coseismic fault has been monitored with geodetic techniques for decades, providing well defined pre-, co- and post-seismic deformations. Here, we report new continuous and survey GPS measurements with near-fault (~2 – 10 km to the fault) and far-fault (~50 – 70 km from the fault) stations, including 7 years (2013 – 2019) of continuous observations, and 5 near-fault campaigns (every six months between 2014 – 2016) to further investigate postseismic deformation. GPS observations were processed with the GAMIT/GLOBK (v10.7) GNSS software. We used these observations to estimate the spatial distribution of current aseismic after-slip, along the 1999 Izmit rupture. We also searched for spatiotemporal changes of shallow creep events along the surface trace. With elastic models and GPS observations, we determined a shallow creep rate that reaches a maximum around the epicenter of the 1999 Izmit earthquake of about 12.7 ± 1.2 mm/yr, consistent with published InSAR results. Creep rates decrease both east and west of the epicentral region. Moreover, we show that broad-scale postseismic effects that diminish logarithmically, continue at present. (This study is supported by TUBITAK 1001 project no: 113Y102 and 117Y278)

How to cite: Özarpacı, S., Doğan, U., Ergintav, S., Çakır, Z., Özdemir, A., Floyd, M., and Reilinger, R.: How Has GPS Velocity Field Changed Along the 1999 Izmit Rupture 20 Years After the 1999 Izmit, Turkey Earthquake?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13052, https://doi.org/10.5194/egusphere-egu2020-13052, 2020.

EGU2020-18112 | Displays | TS5.5

A geodetic exploration of the behavior of aseismic slip along the central section of the North Anatolian fault

Jorge Jara, Alpay Ozdemir, Angelique Benoit, Romain Jolivet, Ziyadin Çakir, Semih Ergintav, and Ugur Dogan

Many geodetic evidence suggest aseismic slip along active faults is more common than previously thought. Furthermore, aseismic slip during the interseismic period seems to be made of intermittent slow slip events, corresponding to episodes of loading and releasing of tectonic stress over time. However, although our capabilities of detection and location of aseismic deformation have significantly increased together with the growth in available geodetic data, the physical mechanisms governing slow slip remain unknown.

We explore the spatial and temporal behavior of aseismic deformation in the vicinity of the small town of Ismetpasa, located along the central section of the North Anatolian Fault (Turkey). We combine InSAR and GNSS data acquired over the last 10 years to locate and quantify aseismic slip in the subsurface. We process SAR images (ALOS and Sentinel-1) acquired from 2007 to 2018 to build time series of ground deformation and maps of ground velocity. We confirm the presence of a 100 km-long creeping section, at rates of 10-20 mm/yr. Along this section, slip is not constant and decreases over time as formerly observed over the last 60 years. Furthermore, via a detailed analysis of our geodetic time series, we detect 3 major episodes of aseismic slip between 2015 and 2018, with durations ranging from 6 months to 1 year and magnitudes between 4.6 - 5.2. These results are compared with time series obtained from a network of GNSS permanent stations we have installed in the region (17 stations, period 2016 - 2019). As a conclusion, aseismic slip along this section of the North Anatolian Fault is characterized by slow slip events rather than by a constant, steady-state aseismic slip rate. We discuss the potential implications in terms of mechanics of slow slip along the NAF.

How to cite: Jara, J., Ozdemir, A., Benoit, A., Jolivet, R., Çakir, Z., Ergintav, S., and Dogan, U.: A geodetic exploration of the behavior of aseismic slip along the central section of the North Anatolian fault, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18112, https://doi.org/10.5194/egusphere-egu2020-18112, 2020.

EGU2020-8100 | Displays | TS5.5

Present-day crustal deformation of Georgia (Caucasus)

Giorgi Sokhadze, Galaktion Hahubia, Manana Kachakhidze, and Giorgi Khazaradze

The republic of Georgia is located in the Caucasus, between the Black and Caspian seas from the west and the east, and Greater and Lesser Caucasus mountains from the north and the south. Tectonically, the region belongs to the Alpine-Himalayan collisional zone, formed during the late Cenozoic period as a result of a collision between the Arabian and Eurasian plates. The deformation zone due to this collision is broad and extends from Zagros mountains in southern Iran to the Greater Caucasus in the north. The GPS studies conducted during the last decade suggest a convergence rate of 18 mm/yr between the Arabia and Eurasia plates. Although majority of this convergence occurs in the southern part of the deformation zone, important part of this convergence takes place in Georgia, implying an elevated seismic risk in the region. This is corroborated by a presence of significant historical and instrumental earthquakes in the country.

As part of the project dealing with the detection of possible low frequency electromagnetic emissions proceeding earthquakes, in summer of 2016 we have installed a continuous GNSS station MTSK between Mtskheta and Tbilisi. The station consists of Leica GRX1200 GNSS receiver with an AS10 antenna. It is mounted on top of the building, anchored to the existing brick wall. In contrast, principal convergence between the Lesser and Greater Caucasus across the Tbilisi segment, occurs along the northern boundary of the Lesser Caucasus. To constrain the velocity gradient to the northern boundary of the lesser Caucasus, in 2019 an additional continuous GNSS station MKRN was installed in this deformation zone by the GTDI near the settlement of Mukhrani. It consists of Trimble 5700 receiver with a Zephyr Geodetic antenna.

The analysis of the data is performed using the Gamit/Globk software package from MIT and it is processed in conjunction with 26 continuous GNSS stations of the GEO-CORS network operated by National Agency of Public Registry of Georgia (geocors.napr.gov.ge). In addition, we analyze data form the stations located on Eurasia, Arabia and Africa plates. The principle objective of the given work is to monitor millimeter level deformation of the crust due to the collision of Arabia and Eurasia tectonic plates and identify the regions of higher deformation and relate them to individual faults.

This work has been partially supported by Shota Rustaveli National Science Foundation of Georgia (grant DI/21/9-140/13) and PROMONTEC (CGL2017-84720-R AEI/FEDER, UE) project, financed by the Spanish MINEICO. We are grateful to the Andronikashvili Institute of Physics (www.aiphysics.tsu.ge) for letting us use their facility for the installation of the GNSS station.

How to cite: Sokhadze, G., Hahubia, G., Kachakhidze, M., and Khazaradze, G.: Present-day crustal deformation of Georgia (Caucasus), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8100, https://doi.org/10.5194/egusphere-egu2020-8100, 2020.

The Eastern Turkish High Plateau (ETHP) presents one of the most critical areas of Turkish-Iranian Plateau, where active slip rates and kinematics of the faults have been used in models that aim to describe the overall deformation characteristics (such as; the beginning of the collision and convergence velocity) of the Arabian-Eurasian collision. However, lack of the spatial distribution of horizontal slip and rock uplift rates of the Bitlis-Zağros Mountain Range (BZMR) prevent our understandings about active deformation of Turkish-Iranian Plateau. Mt. Muşgüneyi that constitute the NW part of BZMR and southern margin of the ETHP is critically important because conflicting viewpoints related to the active tectonics of both the ETHP, Turkish-Iranian Plateau and Arabian-Eurasian collision zone currently being adopted in research into it. In this study, I extracted spatial distribution of the fault geometry in the Mt. Muşgüneyi and river networks from DEM, satellite images and aerial photo in order to understand faulting mechanism and measure their cumulative offsets, respectively. Geomorphic indexes (mountain-front sinuosity, valley floor width to valley height ratio, transverse topographic symmetry factor, asymmetry factor, hypsometric curve and integral) and drainage pattern analysis (channel concavity, integral analyses and knick point analyses) have been used to isolate the tectonic activity of the region. The results of this study reveal that although dozens of dextral faults accommodate the strain in the region, the 260 km length dextral Kavakbaşı Fault is the most important structure in the NW part of BZMR and it takes 60% of overall deformation. Previous studies suggest that 3–4.5 Ma is needed to account for the measured 9 km cumulative offset in this region, however, I measured c.a. 24 km cumulative horizontal offset on Kavakbaşı Fault that indicates c.a. 12 Ma needed to account for the offset. Morphometric studies point out sustaining significant uplift within the Mt. Muşgüneyi and signify the uplift rate is larger than horizontal slip rate moreover my results contradict the idea that change in the nature of the collision zone 5 ± 2 Ma ago.  Furthermore, I propose that NW part of BZMR is extremely important to understand when the modern configuration of the boundary faults of the Anatolian Scholle did form? Considering similarities between the Kavakbaşı and the Nazımiye fault, which located at c.a. 70 km south of the North Anatolian Fault Zone in the Anatolian Scholle, in terms of their ages, orientations, slip senses and cumulative offset, I suggest that they belonged to the earlier dextral deformation zone along the southern margin of the collision that sinistrally offset by the East Anatolian Fault Zone (EAFZ) about 33±3 km. This offset estimate dived by calculated long-term slip rate of the EAFZ and Na-alkali basaltic activity in the Plio-Pleistocene that emplaced at the eastern part of the Anatolian Scholle yields that age of the EAFZ is 6 Ma. This study supported by TÜBİTAK Project No:115Y684.

How to cite: Sançar, T.: Active Tectonics of the Mt. Muşgüneyi: Implications for Western Part of the Turkish Iranian Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2825, https://doi.org/10.5194/egusphere-egu2020-2825, 2020.

EGU2020-8438 | Displays | TS5.5 | Highlight

2019 Mw5.8 Silivri Earthquake Reveals the Complexity of the Main Marmara Shear Zone

A. Ozgun Konca, Sezim Ezgi Guvercin, Hayrullah Karabulut, Figen Eskikoy, and Semih Ergintav

The North Anatolian Fault (NAF) is a 1600 km dextral transform fault accommodating the motion between Anatolia and Eurasia Plates. The segments beneath the Marmara Sea, are the only part of the NAF that did not break since the 20thcentury. Recent studies show that this 150 km seismic gap is characterized by heterogeneous interseismic behavior and significantly high background seismicity with respect to the other parts of the NAF.

On September 24 2019, an activity started north of the Main Marmara Fault (MMF) including a Mw4.7 earthquake, which led to the Mw5.8 mainshock several days later. The 2019 Mw5.8 Silivri earthquake is the largest since 1963 Mw6.3 Cinarcik earthquake in the Marmara Sea. This sequence occurred at a location that is immediate north west of the Central Basin; between a zone that is possibly partially creeping (Central Basin) to the west and a possibly locked segment to the east (Kumburgaz Basin).

 

 In this study we used template search for detection of earthquakes, relocated the earthquakes, obtained focal mechanism solutions of earthquakes that are M>4 and obtained a finite-fault slip model of the Mw5.8 mainshock. Using template cross-correlation, a total of 400 earthquakes were detected in this sequence. The activity started in a relatively narrow zone and spread to larger distances following the Mw4.7 mainshock. The depth distribution shows that the earthquakes are confined to a narrow zone between the depths of 9-13 km. The focal mechanisms show that there are two clusters; the cluster to the northwest show a ~70°north dipping fault with rake angles about ~160°, while the activity toward east converges to the Main Marmara Fault and dip angle is close to ~70°with rake angles of ~140°. The finite-fault model shows a bilateral rupture that propagated down-dip from the hypocenter.

We conclude that the seismic activity occurred on a fault that is within the Main Marmara Shear Zone beneath the sedimentary basin. This secondary fault possibly connects to the Main Marmara Fault to the east. There is no evidence that the causative fault continues up-dip into the basin.  Another characteristic of this sequence is that all of the focal mechanisms show significant thrust component in addition to the expected right-lateral motion. The January 2020 Mw4.7 earthquake that occurred in the same zone  between the two clusters have predominantly thrust mechanism, confirming that this zone is under local compression. The observed thrust component is possibly related to change of the width of the shear zone with narrowing from Central Basin to the west to Central High to the east and/or the change of the interseismic behavior of the fault from partially creeping Central Basin and locked Kumburgaz Basin segments.

How to cite: Konca, A. O., Guvercin, S. E., Karabulut, H., Eskikoy, F., and Ergintav, S.: 2019 Mw5.8 Silivri Earthquake Reveals the Complexity of the Main Marmara Shear Zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8438, https://doi.org/10.5194/egusphere-egu2020-8438, 2020.

EGU2020-6144 | Displays | TS5.5

Converting InSAR- and GNSS-derived strain rate maps into earthquake hazard models for Anatolia

Chris Rollins, Tim Wright, Jonathan Weiss, Andrew Hooper, and Richard Walters

Geodetic measurements of crustal deformation rates can provide important constraints on a region’s earthquake hazard that purely seismicity-based hazard models may miss. For example, geodesy might show that strain (or a deficit of seismic moment) is accumulating faster than the total rate at which known earthquakes have released it, implying that the long-term hazard may include larger earthquakes with long recurrence intervals (and/or temporal increases in seismicity rates). Conversely, the moment release rate in recent earthquakes might surpass the geodetic moment buildup rate, suggesting that the long-term-average earthquake activity and hazard may in fact may be more quiescent than might be estimated using the earthquake history alone. Such geodetic constraints, however, have traditionally been limited by poor spatial and/or temporal sampling, resulting in ambiguities about how the lithosphere accommodates strain in space and time that can bias estimates of the resulting hazard. High-resolution deformation maps address this limitation by imaging (rather than presuming and/or modelling) where and how deformation takes place. These maps are now within reach for the Alpine-Himalayan Belt – one of the most populous and seismically hazardous regions on Earth – thanks to the COMET-LiCSAR InSAR processing system, which performs large-scale automated processing and timeseries analysis of Sentinel-1 data provided by the EU’s Copernicus programme. We are pairing LiCSAR products with GNSS data to generate high-resolution maps of interseismic surface motion (velocity) and strain rate for the Anatolia region. Here we quantitively investigate what these strain rate distributions imply for seismic hazard in this region, using two approaches in parallel.

First, building on previous work, we develop a fully probability-based method to pair geodesy and seismic catalogs to estimate the recurrence times of large, moderate and small earthquakes in a given region. We assume that earthquakes 1) obey a power-law magnitude-frequency distribution up to a maximum magnitude and 2) collectively release seismic moment at the same rate that we estimate it is accumulating from the strain rate maps. Iterating over various magnitude-frequency distributions and their governing parameters, and formally incorporating uncertainties in moment buildup rate and the magnitudes of recorded earthquakes, we build a probabilistic long-term-average earthquake model for Anatolia as a whole, including the most likely maximum earthquake magnitude. Second, we estimate how seismic hazard may vary from place to place within Anatolia. Using insights from dislocation models, we identify two key signatures of a locked fault in a strain rate field, allowing us to convert the newly developed strain maps to “effective fault maps.” Additionally, we explore how characteristics of earthquake magnitude-frequency distributions may scale with the rate of strain (or moment) buildup, and what these scaling relations imply for the distribution of hazard in Anatolia, using the seismic catalog to evaluate these hypotheses. We also explore the implications of our findings for seismic hazard and address how to expand these approaches to the Alpine-Himalaya Belt as a whole.

How to cite: Rollins, C., Wright, T., Weiss, J., Hooper, A., and Walters, R.: Converting InSAR- and GNSS-derived strain rate maps into earthquake hazard models for Anatolia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6144, https://doi.org/10.5194/egusphere-egu2020-6144, 2020.

EGU2020-17589 | Displays | TS5.5

Analysis of the complexity of the Mw 5.8, 26 September 2019 Silivri Eq. in the Sea of Marmara, Turkey, constrained from geodetic datasets

Semih Ergintav, Alpay Ödemir, Seda Özarpacı, Hilmi Erkoç, Efe T. Ayruk, Uğur Doğan, Hayrullah Karabulut, Ali Özgün Konca, Thomas Walter, and Hannes Vasyura-Bathke

Based on >20 years of GPS observations and seismological works, direct constraints on the strain accumulation along the Main Marmara Fault (MMF) show different characteristics from Princess Islands to Ganos Fault. Ganos and Princess Island segments identified as locked based on GPS and seismological observations while the part of the Central Marmara segment show partially creeping behaviour. Moreover, around the Kumburgaz Basin, GPS data could be explained by creep models in contrast to fully locked seismic models. Clearly, there are many puzzling questions on the nature of strain accumulation on the MMF, under the constrain of various data sets. In order to contribute to a better understanding of this fault the observation capacity of geodesic network has been increased along the northern coast of the Marmara Sea and supported by seismological stations as well as Marine Geodesy.

In September, 2019, an intense earthquake activity started between Central Marmara and Kumburgaz Basin. The mainshock occurred on 26 September 2019 (Mw5.8) as a largest earthquake, since 1963 Mw6.3 Cinarcik earthquake, in the Marmara Sea. A foreshock activity started 4 days before the mainshock and the largest one (Mw4.7) observed on September 24, close to the mainshock. The mechanisms of the mainshock and the large aftershocks as well as foreshocks are dominantly strike-slip with a significant reverse component. The aftershocks are located on the north of the MMF trace.

Here we investigate the geodetic data related to this event, with the aim to shed some light on the complexly segmented MMF. We observed co-seismic offsets at the nearest 6 GPS stations (~12-20 km far to the epicenter) along the northern coastline of the Sea of Marmara.  The estimated offsets are not big and change between 1-3 mm on horizontal and 1-10 mm on vertical components.  All of the stations are located on the northern part of the hypocenter and exhibit predominant NS-direction movement, which is inconsistent with a primarily E-W right lateral transform system. Instead, the co-seismic pattern can be explained with a complex earthquake mechanism which has a dominant reverse component while the strike-slip component is relatively insignificant, based on Okada-type elastic models and geodetic moment magnitude obtained as ~6.2. The total cumulative moment using geodesy is much higher than the total seismic cumulative moment of earthquake activity (~M5.9), and the thrust component is also more dominant in comparison the focal mechanisms from regional data. Obviously, geodetic co-seismic offsets estimated from daily-based data and they include pre-and post-earthquake deformations. In addition, the tide-gauge data (station distance is 25 km far to epicenter) was analyzed and it shows the strong variations after Mw 4.7 and they faded out after Mw5.8. This sea level change, which temporally correlates with the seismic activity,  gives important evidence about the possibilities of pre-earthquake activity. Using GPS time series, we intend to explore the pre-earthquake anomalies and, to reduce the discrepancy between seismological and geodetic models. (This study is supported by TUBITAK 1001 Project no: 117Y278).

How to cite: Ergintav, S., Ödemir, A., Özarpacı, S., Erkoç, H., Ayruk, E. T., Doğan, U., Karabulut, H., Konca, A. Ö., Walter, T., and Vasyura-Bathke, H.: Analysis of the complexity of the Mw 5.8, 26 September 2019 Silivri Eq. in the Sea of Marmara, Turkey, constrained from geodetic datasets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17589, https://doi.org/10.5194/egusphere-egu2020-17589, 2020.

EGU2020-18364 | Displays | TS5.5

Probabilistic constraints on lithospheric forces, fault tractions, and rheology in the eastern Mediterranean region

Matthew Herman, Rob Govers, Lukas van de Wiel, and Nicolai Nijholt

The Aegean Sea region sits in a complex deformation zone between the African, Eurasian, and Anatolian plates. It contains the Hellenic subduction zone, where African oceanic lithosphere descends under the Aegean Sea. The subducting slab may be torn or fragmented at both its eastern (Pliny-Strabo zone) and western (Kefalonia fault) edges. The overriding Aegean Sea is cut by numerous active normal faults accommodating north-south extension. On top of this, the collision of Arabia with Anatolia farther east drives Anatolia and the connected Aegean Sea westward, resulting in the left lateral North Anatolian fault (and its extension into the Aegean), as well as greater relative velocities between the subducting slab and the overriding plate. These geodynamic processes and geological features all affect the present-day kinematics of the Aegean region.

Surface velocities measured at Global Navigation Satellite System stations throughout the Aegean provide important constraints on these underlying geodynamic forces. Previous studies have attributed the surface motions to some combination of plate boundary interactions, lateral variations in gravitational potential energy (GPE), subduction and slab tearing, internal faulting, and mantle tractions. The expected imprint of these processes also varies with the rheology of the lithosphere. Up to this point, there has been little effort to systematically evaluate the relative contributions of these different forces. In this study, we implement a Markov Chain Monte Carlo approach to efficiently and precisely determine the likely values and uncertainties of these geodynamic forces and the lithospheric rheology. We also identify trade-offs between processes that produce similar surface signals.

Preliminary results indicate that the dominant imprint on surface velocities comes from the southwestward rollback of the Hellenic slab and the westward escape of Anatolia. Although lateral variations in GPE also have an effect on the velocities, these are generally less important than slab rollback and Anatolian escape. At a lithospheric scale, the North Anatolian fault has little shear resistance to allow a relatively sharp velocity transition across it. Including resistive tractions on intraplate faults within the Aegean Sea has a smaller effect on the modeled velocity field. By using the velocity field to guide a statistical analysis of the geodynamic drivers, we have been able to better constrain the primary drivers of deformation in the eastern Mediterranean.

How to cite: Herman, M., Govers, R., van de Wiel, L., and Nijholt, N.: Probabilistic constraints on lithospheric forces, fault tractions, and rheology in the eastern Mediterranean region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18364, https://doi.org/10.5194/egusphere-egu2020-18364, 2020.

EGU2020-10682 | Displays | TS5.5

Locking Behavior of Main Marmara Fault in Western Turkey During Interseismic Period

Zeynep Yılmaz, Ali Özgün Konca, and Semih Ergintav

The North Anatolian Fault (NAF) produced multiple earthquakes of M>7 throughout the 20th century, while the part of NAF beneath Sea of Marmara did not rupture during this period. Analysis of the Main Marmara Fault's interseismic behavior, the most active branch of the North Anatolian Fault in this region, in terms of locking depth and fault slip rate is critical for evaluating the region's seismic risk with a population of more than 20 million, as it provides information about the seismic moment deficit that may release in a potential future earthquake.

In this study, we modeled the Main Marmara Fault's interseismic locking with realistic geometry and 3D structure including sedimentary basins, by implementing a 3D finite element approach and using interseismic GPS velocities. We have optimized the fits with GPS data by evaluating cases where each fault segment is constrained by a fault slip rate below a predefined locking depth ranging from 0 to 20 km. Preliminary models reveal that a difference in locking depth is required between the Western Marmara and the eastern end of the Ganos Segment entering the Sea of Marmara. This result, which is consistent with seismicity studies and other previous studies using 1D profiles shows that the strain accumulation under Western Marmara is less and that the locking depths or couplings are not similar in these two segments. For the Princes' Islands Segment, further analysis is required due to complexity in the GPS data. Recent earthquakes along Silivri also indicate that the strain accumulation is complex with most mechanisms showing significant thrust component. We have also calculated various possible strain accumulation patterns and compared the strain rate field around the Main Marmara Fault. Our results show that in most cases the change in the seismicity of each segment is consistent with the interseismic behavior associated with its fault locking.

(This research has been supported by Boğaziçi University Scientific Research Projects Coordination Unit. Project Number: 15022, 2019)

How to cite: Yılmaz, Z., Konca, A. Ö., and Ergintav, S.: Locking Behavior of Main Marmara Fault in Western Turkey During Interseismic Period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10682, https://doi.org/10.5194/egusphere-egu2020-10682, 2020.

 

Harash Fayez1, Chao Chen1,2, Qing Liang1,2, Chenming Tu1

1Institute of Geophysics & Geomatics, China University of Geosciences, Wuhan 430074, P.R. China (Corresponding  author:  Harash Fayez).

2Subsurface Multi-Scale Imaging Lab, Institute of Geophysics & Geomatics, China University of Geosciences,

 Wuhan 430074, P.R. China.

 

Summary

A 3-D density structure of the lithosphere and upper-mantle beneath the Mediterranean Sea and adjacent region was constructed based on inversion of gravity anomaly constrained by seismic tomography model. In this study, we have removed the terrain and crustal effects from the observed gravity field (EIGEN-6C4), in order to obtain the mantle gravity anomaly which was used to investigate the lithospheric and the upper-mantle density distribution. The 3-D inversion process is constrained by a reference density model estimated from shear-wave velocity model (SL2013sv). Our result shows some characteristics of density distribution in the lithosphere and upper-mantle that might be related to the tectonic signification beneath the Mediterranean Sea and adjacent region. A low-density zone dominates the lithosphere beneath the Mediterranean Sea except the area around Arabia shield and North Anatolian fault belt. A thinner high-density layer appears beneath the southwest of Mediterranean Sea, and it may be related to the older oceanic lithosphere fragments. The high-density anomalies appear below depth of 280 km beneath the Mediterranean Sea and the Turkish Aegean Sea Plate. However, the low-density anomalies appears at the top of the upper-mantle beneath trenches of the southwestern of Mediterranean Sea, the eastern of Aegean Sea, the Red Sea, the Black Sea and the middle of Arabia shield. It may indicate the intensity and origination of tectonic movement referring the deep structure below the Eratosthenes seamount in the Mediterranean Sea. Furthermore, the convergence region of two low-density anomaly zones may be interpreted as a significant tectonic unit.

 

How to cite: Harash, F.: 3-D density structure of the upper-mantle from gravity inversion constrained by seismic velocity model: A case study of the Mediterranean Sea and surrounding region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4639, https://doi.org/10.5194/egusphere-egu2020-4639, 2020.

EGU2020-22071 | Displays | TS5.5

Constraining Source Properties of the 1894 Istanbul Earthquake

Nesrin Yenihayat, Eser Çakti, and Karin Şeşetyan

The Marmara region is one of the most active tectonic regions with its high population and rapid but irregularly growing cities in Turkey. Located in this active zone, Istanbul has always been under the danger of being hit by destructive earthquakes, which in the past have caused serious damage in the city more than once. Major earthquakes to affect Istanbul during the Ottoman period took place in 1509, 1766 and 1894. As the latest one, we have relatively rich knowledge about the 10 July 1894 earthquake. The 1894 earthquake resulted in 474 losses of life and 482 injuries.  Around 21,000 dwellings were damaged, which is a number that corresponds to 1/7 of the total dwellings of the city at that time. Without any doubt the exact loss of life was higher. Because of the censorship the exact loss numbers remained unknown. Researchers have been split in opinion about the intensity, epicenter, magnitude, and rupture length of this event. The main target of this study is to have a better insight on the possible location of the 1894 earthquake with the help of damage analysis and ground motion modeling. Ottoman Empire archive records, scientific reports and papers, newspapers, government correspondence, letters, notes of voyagers and diaries are the major sources to make an evaluation on the type and extent of damage. An intensity map associated with the 1894 earthquake is prepared based on macro-seismic information, and damage analysis and classification. Various information types contained in the old city maps, municipal boundaries, and the population information have contributed to this assessment. Obtained damage information is presented, evaluated and interpreted.  For earthquake modelling the ELER (Earthquake Loss Assessment Routine) software is used. Using the ground motion module of ELER, several scenarios are modeled having different source, path, and site parameters. The resulting ground motion distributions are compared with the damage and intensity maps to provide a first-order assessment of the earthquake source parameters of the 1894 earthquake.

How to cite: Yenihayat, N., Çakti, E., and Şeşetyan, K.: Constraining Source Properties of the 1894 Istanbul Earthquake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22071, https://doi.org/10.5194/egusphere-egu2020-22071, 2020.

EGU2020-2220 | Displays | TS5.5

Design and implementation of the seismotectonic Atlas of Greece v1.0

Ioannis Kassaras, Vasilis Kapetanidis, Athanassios Ganas, Andreas Tzanis, Panayotis Papadimitriou, Vicki Kouskouna, Andreas Karakonstantis, Sotirios Valkaniotis, Stylianos Chailas, Vasileios Sakkas, Chrysanthi Kosma, George Bozionelos, Varvara Tsironi, and Georgia Giannaraki

Knowledge of the present-day relationships between earthquakes, active tectonics, and crustal deformation is a key for understanding the geodynamics, ongoing surface processes (i.e. erosion, sedimentation, etc.) and is also essential for the risk assessment and management of geo-reservoirs for energy and waste.

Greece is characterized by the most tectonically active regime in the eastern Mediterranean, involving (a) intense crustal deformation and thickening, with an uplift rate of a few mm/yr along the Hellenic Arc due to accretion of sediments of the African plate beneath the overriding Aegean plate, (b) wide-spread extension in the back-arc region (for example in the Gulf of Corinth) due to retreat of the African slab and (c) significant strike-slip motions due to offset between oceanic-continental subduction in the west and the westward propagation of Anatolia in the east. Study of the complexity of the contemporary Greek tectonics has been the subject of intense efforts of our working group during the last decade, employing multidisciplinary state-of-the-art methodologies regarding geological mapping, seismological and geodetic surveying and numerical analyses at various scales. The products of these studies are the pieces of a puzzle that we aim to merge with existing data (topography, bathymetry, land-use, etc) in order to compose the digital version of the modern Seismotectonic Atlas of Greece.

It has been over 30 years since the first edition of the seismotectonic map was published by Greece's Geological Institute in 1989, which emerges the need for an update, as soon as dozens of strong earthquakes have occurred both on mainland and offshore, whose locations and fault kinematics have been studied and this information has to be taken into account in city and infrastructure planning. Moreover, the patterns of active tectonics and stress, the tectonic strain distribution, the annual ratio between seismic and geodetic moment release, the precise location of onshore active faults and the slip-rates of major faults are much better known today than they were 30 years ago.

Open-source mapping software and GIS tools are being used to showcase important up-to-date seismotectonic features together with critical geospatial information (motorways, railways, gas pipelines, electricity plants, etc) at a nationwide scale of 1:500,000. This updated product aims to reveal a comprehensive image of the regional crustal deformation in a useful manner for scientists, students, and stakeholders to obtain a first-order perception of seismic risk in the Greek territory, but, also, to be used as a basis for other applications in Geosciences.

How to cite: Kassaras, I., Kapetanidis, V., Ganas, A., Tzanis, A., Papadimitriou, P., Kouskouna, V., Karakonstantis, A., Valkaniotis, S., Chailas, S., Sakkas, V., Kosma, C., Bozionelos, G., Tsironi, V., and Giannaraki, G.: Design and implementation of the seismotectonic Atlas of Greece v1.0, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2220, https://doi.org/10.5194/egusphere-egu2020-2220, 2020.

EGU2020-15127 | Displays | TS5.5

High resolution seismicity catalog of the Marmara Sea region during the 2009-2014 period using template matching

Hayrullah Karabulut, Olivier Lengliné, Jean Schmittbuhl, Emanuela Matrullo, and Michel Bouchon

A massive template-matching approach is successfully applied in Marmara Sea region along  the North Anatolian Fault, during the 2009-2014 period to enrich the description of the time and space evolution of the seismicity. Detection of events are performed on the continuous data recorded from 2009 to 2014 combining two types of catalogs as templates: a finely constructed catalog for the three first year (2009-2011) (Schmittbuhl et al, 2016) and a raw catalog from KOERI for the last three years (2012-2014).  Magnitudes (Ml) are estimated for all detected events using relative amplitudes of the highly coherent waveforms between new events and template events. The template database provides a nearly threefold increase of the number of small events (more than 15000 earthquakes compare to the 4673 events of the initial catalog). Combined with a double-difference relocation based on cross-correlation differential travel-time data, the database is shown to be a relevant framework for the long term monitoring of specific remanent structures like seismic swarms or repeating earthquakes. The obtained catalog confirms the strong contrast of behaviors along the Main Marmara Fault (MMF): deep creeping to the west (Central Basin), fully locked in the center (Kumburgaz Basin) and dominated by fluid and off-fault activity to the east (Cinarcik Basin).

How to cite: Karabulut, H., Lengliné, O., Schmittbuhl, J., Matrullo, E., and Bouchon, M.: High resolution seismicity catalog of the Marmara Sea region during the 2009-2014 period using template matching, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15127, https://doi.org/10.5194/egusphere-egu2020-15127, 2020.

EGU2020-4668 | Displays | TS5.5

Crustal scattering and intrinsic attenuation of S-waves in southern Aegean derived using envelope inversion

Pratul Ranjan and Konstantinos I. Konstantinou

Southern Aegean is the major part of the Eurasian plate overriding the subduction of African plate in eastern Mediterranean region. In this study, shallow depth (< 40 km) events recorded by temporary and permanent seismic networks in southern Aegean are used to study the crustal scattering attenuation (Qs-1) and intrinsic attenuation (Qi-1) of S-waves. The 3 component S-waveforms are filtered in 1-2, 2-4, 4-8, and 8-16 Hz bands and envelopes are calculated by smoothing the root mean square of individual components. The envelopes are modeled using the approximate analytical solution of 3D isotropic radiative transfer equation. The fitting is performed using grid search approach to obtain Qs-1 and then linear inversion is used to calculate Qi-1 for each source station pair. The results obtained from each source-station pair are assigned to an ellipsoid region and robust mean technique is used to map the results in each 0.20o x 0.20o bin. The final results indicate consistently high Qs-1 in western Crete in all 4 frequency bands. Also, high Qs-1 is observed in western Peloponnese in 1-2 and 2-4 Hz frequency bands. High Qi-1 is observed along the volcanic arc in all 4 frequency bands. Our results compare well with the recent S-wave scattering study in the region. They are also consistent with the geodynamics of southern Aegean subduction zone. Our study provides useful insight about the attenuation in the southern Aegean crust which has implications for ground motion and seismic hazard.

How to cite: Ranjan, P. and Konstantinou, K. I.: Crustal scattering and intrinsic attenuation of S-waves in southern Aegean derived using envelope inversion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4668, https://doi.org/10.5194/egusphere-egu2020-4668, 2020.

EGU2020-20421 | Displays | TS5.5

Three Approaches to Interseismic Slip Rates on the Marmara Faults and Their Tensorial Correlations with the Kostrov-Based Strain Rates

Volkan Özbey, Mehmet Sinan Özeren, Pierre Henry, Elliot Klein, Gerald Galgana, Dietrich Lange, Jean-Yves Royer, Valerie Ballu, and Ziyadin Çakır

The interseismic slip distribution in the Marmara fault system represents both observational and modelling challenges. The observational challenge is obvious: the faults are under water and to understand their interseismic behavior (creeping versus locked) requires expensive and logistically difficult underwater geodetic measurements, alongside those on land. Up to now, two such underwater studies have been conducted and they suggest that the segment to the south of Istanbul zone (so-called Central segment) is locked while some creep is probably going on along the neighboring segment to the west. Given these two important findings, the slip distribution problem is still non-trivial due to the fact that our experiments so far demonstrate that the block-based slip inversions and those that only consider a single fault (with the same geometry as one of the boundaries of the blocks) give significantly different results. In this study we approach the problem using three methodologies: block models with spatially non-varying strains within individual blocks, a boundary element approach and a continuum kinematic approach. Although the block model does not give spatially varying strains, the inversion results from the block model can be used as an input to model strain field in the vicinity of the fault. We constract a formulation to correlate the results from these with the strain rates obtained using focal mechanism summations.

GPS velocities are taken from previous studies around the Marmara Sea such as Reilinger et al., (2006), Aktuğ et al., (2009), Ergintav et al., (2014), Özdemir et al., (2016) and Özdemir and Karslıoğlu, (2019). Since all studies have different processing strategies or by choosing different reference frames, the GPS velocity fields could not be combined directly. Hence, we combined all velocity fields by minimizing the residuals between the velocities of the common sites in the studies. For this purpose VELROT program (Herring et al 2015) was used. Reilinger et al., (2006) was selected the reference field and other velocity fields were aligned one by one on it. If the combined sigma of the pairs of velocity estimates in the residuals are greater than 2 mm yr-1, that sites are excluded from the final velocity field. As a result, 127 GPS velocities were used in the developed models.

How to cite: Özbey, V., Özeren, M. S., Henry, P., Klein, E., Galgana, G., Lange, D., Royer, J.-Y., Ballu, V., and Çakır, Z.: Three Approaches to Interseismic Slip Rates on the Marmara Faults and Their Tensorial Correlations with the Kostrov-Based Strain Rates , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20421, https://doi.org/10.5194/egusphere-egu2020-20421, 2020.

EGU2020-6589 | Displays | TS5.5

Seismotectonic setting of Santorini-Amorgos zone and the surrounding area revealed from crustal earthquakes relocation and Vp/Vs distribution

Ratri Andinisari, Konstantinos I. Konstantinou, Pratul Ranjan, and Qori F. Hermawan

The Santorini-Amorgos zone represents right-lateral transtensional regime from NE of Santorini to the south of Amorgos which also hosts Kolumbo submarine volcano. A total number of 1869 crustal events from 2002 to 2019 were recorded by permanent and temporal seismic networks deployed in southern Aegean. Absolute locations of these events were obtained by utilizing the probabilistic nonlinear algorithm NonLinLoc. Precise relative relocation by using double-difference algorithm with catalog and cross-correlation differential times was later performed, resulting in 1455 locations with horizontal and vertical uncertainties of less than 0.3 km. Clusters of earthquakes relocated between Naxos and Paros as well as north of Astypalaia do not coincide with any fault in the area. Similarly, the relocated crustal events across Santorini-Amorgos zone show that most of the earthquake clusters do not coincide with any of the existing faults. The distribution of Vp/Vs ratios in the area were investigated based on the P and S-wave travel times of all the events. Vp/Vs ratios in the area vary between 1.67 and 2.03 with errors less than 0.04. The highest Vp/Vs values were found to be distributed in the area between Naxos and Paros. Other areas with notably high Vp/Vs ratio are north of Santorini, Anydros, west of Amorgos, offshore area south of the easternmost tip of Amorgos, and the island of Astypalaia. These mentioned areas were also rich in seismic activities during the period of study. The high Vp/Vs ratios in the region of high seismicity signifies that these events were likely related to the migration of magmatic fluids to the surface and may not be caused by the existing faults.

How to cite: Andinisari, R., Konstantinou, K. I., Ranjan, P., and Hermawan, Q. F.: Seismotectonic setting of Santorini-Amorgos zone and the surrounding area revealed from crustal earthquakes relocation and Vp/Vs distribution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6589, https://doi.org/10.5194/egusphere-egu2020-6589, 2020.

EGU2020-4689 | Displays | TS5.5

The Crustal Structure of the Eastern Marmara Region Using Receiver Function Analysis

Pınar Büyükakpınar and Mustafa Aktar

This study focuses on the crust of the Eastern Marmara in order to understand of how much the structure is influenced by the tectonic history and also by the activity of the NAF. Recent studies have claimed that the crustal thickness varies significantly on the north and south of the NAF, which is assumed to indicate the separation line between Eurasian and Anatolian Plates. The present study aims to reevaluate the claim above, using newly available data and recently developed tools. The methods used during the study are the receiver function analysis and surface wave analysis. The first one is more intensively applied, since the second one only serves to introduce stability constraint in the inversions. Data are obtained from the permanent network of KOERI and from PIRES arrays.  The main result of the study indicates that the receiver functions for the stations close to the fault zone are essentially very different from the rest and should be treated separately. They show signs of complex 3D structures of which two were successfully analyzed by forward modeling (HRTX and ADVT). A dipping shallow layer is seen to satisfy the major part of the azimuthal variation at these two stations. For the stations off the fault on the other hand, the receiver functions show a more stable behavior and are analyzed successfully by classical methods. CCP stacking, H-k estimation, single and joint inversion with surface waves, are used for that purpose. The results obtained from these totally independent approaches are remarkably consistent with each other. It is observed that the crustal thickness does not vary significantly neither in the NS, nor in the SW direction. A deeper Moho can only be expected on two most NE stations where a gradual transition is more likely than a sharp boundary (SILT and KLYT). The structural trends, although not significant, are generally aligned in the EW direction.  In particular, a slower lower crust is observed in the southern stations, which is possibly linked to the mantle upwelling and thermal transient of the Aegean extension. Otherwise neither the velocity, nor the thickness of the crust does not imply any significant variation across the fault zone, as was previously claimed.

How to cite: Büyükakpınar, P. and Aktar, M.: The Crustal Structure of the Eastern Marmara Region Using Receiver Function Analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4689, https://doi.org/10.5194/egusphere-egu2020-4689, 2020.

Located on the Hellenic Volcanic Arc, the Christiana-Santorini-Kolumbo (CSK) marine volcanic zone is notorious for its catastrophic volcanic eruptions, earthquakes and tsunamis. Here, not only the largest volcanic eruption in human history, the so-called “Minoan” eruption took place in the Late Bronze age 3600 years ago, but also the largest 20th-century shallow earthquake in Europe of magnitude 7.4 in 1956. Although the region is heavily populated and a fully developed touristic region, the acting tectonic forces are not fully understood to this day aggravating the necessary assessment of geohazards.

Recent bathymetric and seismic studies revealed that the CSK zone comprises a system of neotectonic horst and graben structures with extended internal faulting that is thought to be the result of the ongoing extension in the southern Aegean. The NE-SW alignment of volcanic edifices within the CSK underlines the tectonic control of volcanism in this area. In this study, we show how advanced reprocessing of selected seismic lines leads to significantly improved seismic images revealing new details of the complex rift system. Moreover, using a unique diffraction-based approach for velocity model building, we perform pre-stack depth migration (PSDM) and present for the first time depth-converted seismic sections from the CSK zone. This allows for the proper estimation of fault angles, sedimentary thicknesses and performing structural restoration in order to reconstruct and measure the amount of extension in the individual rift basins. We revise the previous seismostratigraphic scheme and propose a new correlation between the horst and graben units.

Structural restoration indicates an extension of approx. 3 km along the Santorini-Anafi basin while PSDM indicates the sedimentary strata to be of maximum 1500 m thickness. According to the new stratigraphic model, we infer a four-stage evolution of this basin in which early marine deposition, syn-rift deposition, complex infill deposition and neotectonic syn-rift deposition are distinguished. Moreover, we identify negative flower structures within the basin centre indicating the presence of a strike-slip component, which superimposes the dominant NW-SE directed extension. Based on these findings, we are confident that by applying the proposed workflow to the complete regional dataset, the understanding of the relationship between tectonics and volcanism in the CSK zone will be significantly improved, and, consequently, will lead to an improved risk assessment of the central Aegean Sea.

How to cite: Huebscher, C. and Preine, J.: Reprocessing, depth conversion and structural restoration of vintage seismic data: New insights into the volcano-tectonic evolution of the Christiana-Santorini-Kolumbo marine volcanic zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5418, https://doi.org/10.5194/egusphere-egu2020-5418, 2020.

EGU2020-11174 | Displays | TS5.5

Detecting Transient Creep Events on the Ismetpasa Segment of the North Anatolian Fault with Continous GNSS Time Series

Alpay Özdemir, Uğur Doğan, Jorge Jara, Ziyadin Çakır, Romain Jolivet, Semih Ergintav, Seda Özarpacı, and Angélique Benoit

Twenty six years after the Mw 7.3 Gerede Earthquake in1944, Ambraseys (1970) first recognized, in the offset of a manmade wall, the signature of slow aseismic slip along the central segment of the North Anatolian Fault (NAF). Following this discovery, many studies characterized the behavior of aseismic slip with land-and space-based geodetic techniques, including creepmeters. It is now well recognized that the aseismic slip rate decreases logarithmically from more than 3 cm/yr in the years following the Gerede Earthquake to approximately 6±2 mm/yr today. In the last two decades, InSAR allowed deriving maps of ground velocities suggesting that aseismic slip extends along a 100-km-long section of the fault. Furthermore, aseismic slip rate varies in space along strike, reaching its peak value approximately 15-24 km east of the city of Ismetpasa. Furthermore, creepmeter measurements and InSAR time series indicate that aseismic slip in the region of Ismetpasa behaves episodically rather than continuously, alternating quiescent periods and transient episodes of relatively rapid aseismic slip. These observations raise questions about how slip accommodates tectonic stress along the fault with significant implications in terms of hazard along the seismogenic zone.

 

In order to monitore spatial and temporal variations in the aseismic slip rate and to detect slow slip events along the fault, we have established ISMENET -Ismetpasa Continuous GNSS Network- in July 2016. ISMENET stations are distributed over approximately 120 km along strike. In order to explore the shallow, fine spatio-temporal behavior of aseismic slip, stations are located within 200 m to 10 km of the fault. We process GNSS data with the Bernese (V5.2) and GAMIT/GLOBK (V10.7) GNSS software. We analyze the GNSS time series to extract the signature of aseismic slip using a principal component analysis to reduce the influence of non-tectonic noises.

 

Keywords: Ismetpasa, Aseismic slip, GNSS, PCA, Time Series Analysis, NAFZ

How to cite: Özdemir, A., Doğan, U., Jara, J., Çakır, Z., Jolivet, R., Ergintav, S., Özarpacı, S., and Benoit, A.: Detecting Transient Creep Events on the Ismetpasa Segment of the North Anatolian Fault with Continous GNSS Time Series, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11174, https://doi.org/10.5194/egusphere-egu2020-11174, 2020.

EGU2020-4070 | Displays | TS5.5

Geodynamic Evolution of Datça Basin Since the Pliocene

Ökmen Sümer, Fatih Seçkin Şiş, Meryem Dilan İnce, Çağlar Özkaymak, Levent Tosun, Bora Uzel, Marius Stoica, Cor Langereis, and Nuretdin Kaymakci

The slab edge processes related to the subduction of the African slab along the Aegean-Cyprian trench, beneath Anatolia, played a significant role in Cenozoic extension in western Anatolia. The Datça Basin, which includes various Late Miocene depositional environments characterised by continental to marine transitions, is a WSW-ESE trending asymmetric depression developed on the Datça Peninsula, which separates the Aegean and Eastern Mediterranean Seas at the SW corner of Anatolia. Presently, the region is seismically active and is dominated by the E-W-trending Gökova Graben in the north and the NE-SW-trending Pliny-Strabo Trench in the south. Here, we conduct high resolution integrated stratigraphic study, that includes biostratigraphy, magnetostratigraphy as well as kinematic studies involving paleostress analysis to unravel geodynamic evolution of the region within the context of Africa-Eurasia convergence.  

 

Three prominent sequences separated by unconformities are recognised in the  Datça Basin; i) facies associations related to alluvial fan to fluvio-lacustrine deposits of Pliocene age, ii) facies extending from alluvial fan to fluvio-deltaic to marine incursions interlayered with two air-fall ash deposits of Pleistocene age, and iii) alluvial fan to fluvial to marine coastal facies of the modern basin infill. Integration of available information and our findings indicate that the basin experienced three distinct deformation phases associated with reactivation of pre-existing structures since Pliocene. First, the Datça Basin was initially developed as a transtensional basin in Pliocene possibly due to strike-slip deformation related to the Pliny-Strabo Trench, then orthogonal extensional deformation dominated and the basin evolved into a superimposed half-graben as a result of NNE to NNW directed extensional strain and subsequently became a full graben under N-S directed extension by the late Pliocene onwards.  

This research is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with Grant Number of 117R012.

Keywords: Integrated stratigraphy, kinematics, basin evolution, Datça Basin, Southwestern Anatolia

How to cite: Sümer, Ö., Şiş, F. S., İnce, M. D., Özkaymak, Ç., Tosun, L., Uzel, B., Stoica, M., Langereis, C., and Kaymakci, N.: Geodynamic Evolution of Datça Basin Since the Pliocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4070, https://doi.org/10.5194/egusphere-egu2020-4070, 2020.

EGU2020-6168 | Displays | TS5.5

Spatio-temporal variations on the vertical deformation rate of the NW Anatolian Block: Luminescence chronology of the Sakarya River terraces

M. Korhan Erturac, Eren Şahiner, Azad Sağlam Selçuk, Alper Gürbüz, Hilal Okur, Cengiz Zabcı, Niyazi Meriç, Sinan Özeren, and Gürsel Sunal

The study area (40-40.45°N and 30-32.15° E) exhibits a high topography (1200-1800 m elevation) and bounded by the Galatean Massif at east, Pontide Mountain Range to the north, the Central Anatolian Plateau to the south and the Marmara Sea to the west. The region is actively been deformed and dissected by the active branches of the dextral strike slip North Anatolian Fault Zone (NAFZ) and the Sakarya River (SR) system. We have investigated the depositional terraces formed along the main course and the major tributaries of the SR to reveal the dynamics of the terrace formation by climate, sea level changes and also to quantify the variations in rate of vertical deformation within the current geodynamics of the NW Anatolian Block. The geometry of the main river (1) and its tributaries (4) allow us to determine the spatio-temporal variations in four vertical (100 km) and three along fault sections (200 km) since the last ~150 ka.

Up to date, we have mapped 23 distinct evenly scattered multi-step terrace staircases along the main river course and its 6 major tributaries. Mapping is aided with high precision rtk-GPS profiling and SfM photogrammetry using UAV. The dating is carried by luminescence geochronology (OSL and p-IRIR) to constrain the timing of the formation and also abandonment of each depositional terrace step.

The results show that the focus region is under control of vertical deformation at a rate of 0.6-0.7 mm/year regardless from the distance to the main strand of the NAFZ. There is also evidence that this rate has been decelerated from ~1.0-1.1 mm/year since the last 100 ka. The distinct variations in the calculated uplift rates along the profiles reveal apperant southwards tilting in between the active branches of the NAFZ and also within the block.

This study is funded by TUBITAK 117Y426 project grant. 

How to cite: Erturac, M. K., Şahiner, E., Sağlam Selçuk, A., Gürbüz, A., Okur, H., Zabcı, C., Meriç, N., Özeren, S., and Sunal, G.: Spatio-temporal variations on the vertical deformation rate of the NW Anatolian Block: Luminescence chronology of the Sakarya River terraces, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6168, https://doi.org/10.5194/egusphere-egu2020-6168, 2020.

EGU2020-1068 | Displays | TS5.5

Small scale fault interactions in Southwestern Anatolia as revealed from Seismology & InSAR

Figen Eskikoy, Semih Ergintav, Ali Özgün Konca, Ziyadin Çakır, Hannes Vasyura-Bathke, Marius Isken, and Hayrullah Karabulut

Southwestern Anatolia is part of a N-S extensional regime mainly driven by rollback along the Hellenic subduction zone beneath the Aegean Sea. This seismically active area is controlled primarily by normal fault systems. The fault structures in the region are segmented and in many cases seismic interaction between these segments can be observed.

2017 seismic activity along the Eastern and Western edges of Gökova Bay. Within the same year, three separate moderate sized (Mw~5) events took place near the town of Ula (Muğla) on the eastern edge of Gökova Bay. One of these earthquakes occurred in April before the Bodrum-Kos earthquake while the other pair occurred in November within two days.

We relocated all the events that occurred in Ula region in 2017 and remodeled the source mechanisms from regional seismic waveforms by using Bayesian Earthquake Analysis Tool (BEAT). The surface deformations can also be clearly observed from InSAR tracks of both ascending and descending orbits. Because of the large noise margins of the interferograms, atmospheric noise corrections and high resolution DEM data were used.

Due to temporal and spatial proximity of the two Mw~5 events during the November sequence, InSAR yields only cumulative deformation of the earthquakes. Therefore, we determined the contribution of each event to the cumulative static displacements observed by InSAR data, using the source models from seismic waveforms. The locations and the source mechanisms of the two Mw~5 earthquake are consistent and explain the observed surface deformation.

Our results imply that these earthquakes occurred on a previously unknown normal fault rather than the southeastern branches of the nearby Muğla Fault as proposed earlier. The results are consistent with the recently mapped fault structure by Akyüz et al. (2018). The November activity implies EW trending, south dipping normal faulting system and the change in the strike direction of the fault on the eastern edge can be clearly seen both InSAR and waveform modelling results of April activity.

Co-seismic and post-seismic InSAR analysis shows that the seismic activity following the 2017 Mw6.6 Bodrum-Kos propagated from western Gökova Bay where rupture occurred toward east including the Ula region. A long term comparison of seismicity beneath Gökova Bay and Ula region shows that the seismicity in these two regions are temporally correlated. Hence, while the aforementioned moderate sized earthquakes are not directly triggered by the Bodrum-Kos earthquake, increased seismic activity following Bodrum-Kos earthquake shows that the stress changes in these two regions affect each other. The location errors of the events especially the depth errors in the catalogs and the active fault structure in the area cannot be realized without any geodetic or seismic data analysis. This study claims that the interpretations of the moderate size earthquakes should be studied by using multidisciplinary data sets.

ACKNOWLEDGEMENTS

This work is supported by the Turkish Directorate of Strategy and Budget under the TAM Project number DPT2007K120610.

How to cite: Eskikoy, F., Ergintav, S., Konca, A. Ö., Çakır, Z., Vasyura-Bathke, H., Isken, M., and Karabulut, H.: Small scale fault interactions in Southwestern Anatolia as revealed from Seismology & InSAR, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1068, https://doi.org/10.5194/egusphere-egu2020-1068, 2020.

EGU2020-18856 | Displays | TS5.5

Deformation of continental blocks within convergent plates: Anatolia as a case study

Cengiz Zabcı, Taylan Sançar, Müge Yazıcı, Anke M. Friedrich, and Naki Akçar

Anatolia is part of the west-central Alpide plate-boundary zone, particularly where the deformation is characterized by the westward extrusion of this continental block between the Arabian-Eurasian collision in the east and the Hellenic Subduction in the west. Although, this motion mostly happens along the boundary structures, i.e., the North Anatolian and East Anatolian shear zones, there are multiple studies documenting the active deformation along NE-striking sinistral and NW-striking dextral strike-slip faults within the central and eastern parts of Anatolia. These secondary faults slice Anatolia into several pieces giving formation of the Malatya-Erzincan, Cappadocian and Central Anatolian slices from east to west, where their boundary geometries are strongly controlled by the weak zones, the Tethyan Suture Zones.

We compiled all geological slip-rate and palaeoseismological studies, which point out inhomogeneous magnitude of deformation along different sections of these secondary structures. The Central Anatolian Fault Zone, the westernmost NE-striking sinistral strike-slip structure and the western boundary between the Central Anatolia and Cappadocian slices, has an average horizontal slip-rate of about 1 to 1.5 mm/a for the last few tens of thousands of years. The earthquake recurrence of about 4500 years between two events revealed on the northern sections of the CAFZ also support this rate of deformation. However, the Malatya-Ovacık Fault Zone has a bimodal behaviour in terms of deformation rate, which is 2.5 times higher along its northern member, the Ovacık Fault (OF) than the southern one, the Malatya Fault (MF) (2.5 to 1 mm/a), respectively. This velocity difference between two distinct members of the same fault zone can be explained by the relative westward motion of slices where the OF makes the direct contact between the Central Anatolian and Malatya-Erzincan, and the MF delimits Cappadocian and Malatya-Erzincan slices. Although these structures, which are shallow and probably deform only the upper crust, are of having secondary importance, yet they are still capable of producing infrequent but strong earthquakes within this highly deforming convergent setting. This study is supported by TÜBİTAK projects no. 114Y227 and 114Y580.

How to cite: Zabcı, C., Sançar, T., Yazıcı, M., Friedrich, A. M., and Akçar, N.: Deformation of continental blocks within convergent plates: Anatolia as a case study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18856, https://doi.org/10.5194/egusphere-egu2020-18856, 2020.

EGU2020-4116 | Displays | TS5.5

Strain Partitioning Between the Izmir-Balikesir Transfer Zone and the North Anatolian Fault Zone, NW Turkey

Levent Tosun, Elif Çakır, Bora Uzel, Ökmen Sümer, Atilla Arda Özacar, Nuretdin Kaymakcı, and Cor Langereis

The present tectonic framework of the Western Anatolia has been dominated by two major deformations. The first one is the product of the slab-edge processes related to the convergence between Eurasian and African plates along with the Aegean-Cyprean subduction system since the Oligocene, and the second one is the westwards escape of Anatolian Block along the North Anatolian Fault Zone (NAFZ) since the late Miocene. The first one resulted in a widespread extensional deformation in the Western Anatolia and the Aegean region and is associated with slab-detachment and slab-tear processes that gave rise to the development of dynamic topography and various core-complexes (e.g., Cyclades and Menderes). Recent studies have shown that the deferential extensional strain between the core complexes in the region has been accommodated by strike-slip dominated transfer zones, the İzmir-Balıkesir Transfer Zone (İBTZ), which developed (sub)parallel to the extension direction and accommodate differential extension and rotational deformation in the region. The second one gave way to the development of a complex strike-slip deformation pattern and an array of pull-apart basin complexes throughout the northern margin of the Anatolian Block. The NAFZ and İBTZ interact around the Balıkesir-Bursa region resulting in a very peculiar deformation style due to partitioning of strain between these major structures.
This study aims at unraveling how the strain partitioning operates between İBTZ and NAFZ and to reveal the kinematic constraints that produced the present tectonic scheme in the region. The geometry and kinematics of the faults are determined by analyzing 2773 fault slip data obtained from 49 sites evenly distributed throughout the study area. The preliminary results show that the İzmir-Balıkesir Transfer Zone localized after Miocene with the decoupling of strike-slip faults, and to the episodic exhumation of the metamorphic core complexes. The focal mechanism solutions of the recent earthquakes support this decoupling and manifest the seismic activity of the İBTZ. This study is supported by a Tübitak Project, Grant Number of 117R011.

How to cite: Tosun, L., Çakır, E., Uzel, B., Sümer, Ö., Özacar, A. A., Kaymakcı, N., and Langereis, C.: Strain Partitioning Between the Izmir-Balikesir Transfer Zone and the North Anatolian Fault Zone, NW Turkey, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4116, https://doi.org/10.5194/egusphere-egu2020-4116, 2020.

EGU2020-843 | Displays | TS5.5

Contributions of fault gouge mineralogy on aseismic creep of active faults: the East Anatolian Fault (Eastern Turkey) as a case study

Müge Yazıcı, Mehran Basmenji, Mehmet Köküm, Ugur Dogan, Cengiz Zabcı, and Semih Ergintav

In the complex tectonic setting of the Eastern Mediterranean, the westward motion of the Anatolian Block is accommodated mainly along its boundary faults, the North Anatolian Shear Zone (NASZ) and the East Anatolian Shear Zone (EASZ). Although there are relatively limited studies on the active tectonics of the EASZ, horizontal slip rate is suggested to be of about 10 mm/yr, using geodetic data. In terms of instrumental and historical seismicity, this sinistral strike-slip fault generated surface rupturing earthquakes along almost its entire length except two segments, Palu in the northeast and Turkoglu in the southwest, creating two seismic gaps on the East Anatolian Fault (EAF), the most prominent member of the EASZ. In spite of the fact that there are some off-fault seismic activities such as the 2010 Kovancılar Earthquake (M 6.1) in the vicinity of Palu Seismic Gap, recent geodetic measurements show significant aseismic creep, almost retaining the full far plate velocity (~10 mm/yr) for about 100 km-long section of the fault. Hence, the region is continuously monitored by various types of techniques, such as GNSS, InSAR, creepmeter, seismology, and high-resolution photogrammetry.

In addition to monitoring, we investigated the mechanical signature of the creep in the fault zone using fault rocks along the Palu Segment. We collected several samples directly from the deformation zone of the EAF, which makes the boundary between limestones of the Kirkgecit Formation and the chaotic alternation of volcanics, mudstones, and limestones of the Maden Complex, at two locations. The Underground Railway Tunnel Section (39.9504°N, 38.6976°E) is cut by the fault zone where the creep signals are recorded by a creepmeter. The X-Ray Diffraction (XRD) analyses of collected samples of this locality suggest the presence of montmorillonite (smectite group) as the main clay mineral in addition to chlorite-kaolinite with a negligible amount of illite-mica minerals within the fault rocks. This preliminary result suggests a linkage between the creeping and petrophysical properties of fault rocks, which are made of the weak smectite mineral and show no-frictional healing as the expected characteristics of the creep. However, the preliminary analyses of fault gouge samples from the Murat River Section (39.9696°N, 38.7043°E) yield a small amount of smectite group clays. We are going to extend our study at different locations in order to increase the spatial resolution on the relation between the fault rocks and creep motion. This study is supported by the TUBITAK Project no. 118Y435.

How to cite: Yazıcı, M., Basmenji, M., Köküm, M., Dogan, U., Zabcı, C., and Ergintav, S.: Contributions of fault gouge mineralogy on aseismic creep of active faults: the East Anatolian Fault (Eastern Turkey) as a case study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-843, https://doi.org/10.5194/egusphere-egu2020-843, 2020.

The strike-slip dominated North Anatolian Fault Zone (NAFZ) prolongs to the west and furcates into several branches where shear is distributed to multiple parallel/subparallel segments. The earlier structures that resulted from the ongoing Western Anatolian extension had a key role in the fact that the western part of the NAFZ has a wider deformation zone. Although the southern boundary of this zone is controversial, it is proposed that there is a strong interaction between the deformation zones of the NAFZ and Western Anatolian Extensional Province (WAEP) along the northern margin of the Uludag Range. Since this pivotal region marks the transition between the extensional regime and continental strike-slip zone, it is necessary to increase knowledge thereof. Within this ongoing study, we focused on the morphotectonic and paleoseismologic properties of the Ulubat and Bursa faults that delimits the northern boundary of the Uludag Range. The results of the morphometric analyses (topographic symmetry factor, asymmetry factor, hypsometric curve and integral, channel concavity, and integral analyses) that performed on 79 drainage basin to the south of these faults suggested that the vertical motion in the northeastern part of the Uludag Range changes abruptly to strike-slip dominated deformation, along with Ulubat Fault, towards the west of the Bursa basin.

The 50 km length, dextral Ulubat Fault was mapped in the field by using offset physiographic features and geological evidence. We divided the ENE–WSW striking Ulubat Fault into three segments that present the releasing double-bend geometry. There are two major changes in trends up to 20 degrees between each segment. The western segment has a length of 17 km in the E-W direction. The middle segment extends toward NE with a length of 20 km. The eastern segment stretches eastward for 13 km with a southward arc-shape geometry. We conducted the first paleoseismological trench studies on middle and eastern segments of the Ulubat Fault and identified at least 6 paleoearthquakes for the last 16 ka on both segments. The paleoseismic behavioral results which are consistent with the geometric segmentation show individual ruptures on each segment. Dated surface ruptures history show that the fault has used the same single trace in Holocene and the last events occurred in 1143 AD and 170 AD along the middle and eastern segments respectively.

Although further studies are needed to evaluate the paleoseismic recurrence interval, our results show that the Ulubat Fault takes over a considerable activity in the north of Uludag Range. The field evidence and morphometric analyses around the Uludag Range sign out that the Ulubat Fault forms the southernmost member of the NAFZ strike-slip domain. The eastern segment of the dextral Ulubat Fault has vertical component while the Bursa Fault exhibits the characteristics of the WAEP towards further east. This research was supported by the Disaster & Emergency Management Authority of Turkey (UDAP project; G-18-01).

How to cite: Karabacak, V., Sançar, T., and Büyükdeniz, Y.: Paleoseismic and morphometric manifestation of the transition between the Western Anatolian extensional regime and the North Anatolian Fault strike-slip zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3161, https://doi.org/10.5194/egusphere-egu2020-3161, 2020.

EGU2020-11072 | Displays | TS5.5

Spatio-temporal variations of surface creep along the Hazar-Palu Segment of the East Anatolian Fault, Turkey

Ugur Dogan, Semih Ergintav, Seda Ozarpaci, Alpay Ozdemir, M. Hilmi Erkoç, Alper Yigitoglu, Efe T. Ayruk, Ziyadin Çakir, Hayrullah Karabulut, Bulent Bayram, Cengiz Zabci, and Roger Bilham

Aseismic creep is detected and started to be monitored along the 100 km-long Palu-Hazar Segment of the Eastern Anatolian Fault (EAF) in Turkey, a major plate boundary between Anatolia and Arabia. We used creepmeters, InSAR, GPS, and seismic observations to document the extent and magnitude of this motion in order to increase our knowledge on the spatiotemporal variation of creep along the EAF, its relationship with the lithology and tectonic structures, and the stress change on the neighboring fault segments. Until now, we observed the region with continuous GPS and survey GPS measurements with near (~ 0.1- 4 km to the fault) and far-field (~25 – 225 km from the fault) stations to determine the depth of the creep zone and its velocity along the EAF. We processed 6 years (2014 – 2019) of continuous and 7 campaign (2015 – 2019) GPS data with GAMIT/GLOBK software. With elastic models, we determined a creep rate that reaches about 5 ± 0.3 mm/yr from GPS observations (50% of secular velocity). In addition to surface control of the creeping zone, we analyzed the deformations, by using three Terrestrial Laser Scanner (TLS) survey, in the Palu railway tunnel that crosses the fault where the walls of the tunnel have been offset by 15 ± 2 mm since the construction in the middle of the last century. Also, two creepmeters were installed inside the tunnel and transient creep anomalies are detected. These results are correlated with seismic and InSAR data (This study is supported by TUBITAK 1001 projects 114Y250 and 118Y450).

Keywords: Hazar-Palu, Creep, East Anatolian Fault, Earthquake, GPS, InSAR, TLS

How to cite: Dogan, U., Ergintav, S., Ozarpaci, S., Ozdemir, A., Erkoç, M. H., Yigitoglu, A., Ayruk, E. T., Çakir, Z., Karabulut, H., Bayram, B., Zabci, C., and Bilham, R.: Spatio-temporal variations of surface creep along the Hazar-Palu Segment of the East Anatolian Fault, Turkey, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11072, https://doi.org/10.5194/egusphere-egu2020-11072, 2020.

EGU2020-13045 | Displays | TS5.5

Interseismic Deformation in the Gulf of Aqaba Inferred from GPS Measurements

Nicolas Castro-Perdomo, Renier Viltres, Frédéric Masson, Patrice Ulrich, Jean-Daniel Bernard, Maher Dhahry, Shaozhuo Liu, Abdulaziz Alothman, Hani Zahran, P. Martin Mai, and Sigurjón Jónsson

The Dead Sea Transform fault forms the boundary between the Arabian plate and the Sinai-Levant subplate. Several aspects of this fault system have been extensively studied during the last century. However, the present-day kinematics and deformation along its southern end in the Gulf of Aqaba remain poorly understood. Here we present a crustal motion velocity field based on three GPS surveys conducted between 2015 and 2019 at 30 campaign sites, complemented by 12 permanent stations operating near the gulf. We constrained a pole of rotation for the Sinai-Levant subplate based on five selected stations on the Sinai Peninsula. This Euler pole predicts a left-lateral slip rate of ~4.5 mm/yr on the fault system in the gulf, consistent with earlier findings. We find that standard models of interseismic deformation, such as back-slip and screw dislocation models do not provide a reasonable constraint on fault locking depths due to limited near-fault measurements. Despite this, our results reveal a small (~1 mm/yr) but systematic left-lateral residual motion across the gulf that cannot be resolved by elastic models of strain accumulation. We further find that the orientation of these residuals agrees with modelled postseismic transient motions caused by the 1995 MW 7.2 Nuweiba earthquake in the NE and SW quadrants relative to the gulf trend. Combined, these observations suggest that postseismic deformation caused by the Nuweiba earthquake may still be ongoing. We anticipate our findings to be a starting point for future geodetic studies in the northern Red Sea region where large-scale infrastructure mega-projects, such as the NEOM city and the King Salman bridge across the gulf are being developed. Future studies would benefit from incorporating additional GPS stations on the Sinai side of the gulf, refined finite-fault models, seafloor geodetic measurements and better information about past earthquakes.

How to cite: Castro-Perdomo, N., Viltres, R., Masson, F., Ulrich, P., Bernard, J.-D., Dhahry, M., Liu, S., Alothman, A., Zahran, H., Mai, P. M., and Jónsson, S.: Interseismic Deformation in the Gulf of Aqaba Inferred from GPS Measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13045, https://doi.org/10.5194/egusphere-egu2020-13045, 2020.

EGU2020-20404 | Displays | TS5.5

Seismogenic source model of the 2019 Mw 5.9 East-Azerbaijan earthquake (NW Iran) through Sentinel-1 DInSAR measurements

Emanuela Valerio, Francesco Casu, Vincenzo Convertito, Claudio De Luca, Vincenzo De Novellis, Michele Manunta, Mariarosaria Manzo, Fernando Monterroso, and Riccardo Lanari

On 7 November 2019 (22:47 UTC) a Mw 5.9 earthquake struck the East-Azerbaijan region, in the north-western Iran, about 100 km east of Tabriz, the fourth largest city of Iran with a population of over two million. This seismic event caused both widespread damage to the surrounding villages and casualties, killing about 5 people and injuring hundreds. The occurrence of this earthquake is related to the main geodynamic regime controlled by the oblique Arabia-Eurasia convergence and, in particular, this event is inserted in the tectonic context of the East-Azerbaijan Plateau, a complex mountain belt that contains internal major fold-and-thrust belts.

In this work, we first generate the coseismic deformation maps by applying the Differential Synthetic Aperture Radar Interferometry (DInSAR) technique to SAR data collected along ascending and descending orbits by the Sentinel-1 constellation of the European Copernicus Programme. Then, we invert them through analytical modeling in order to better constrain the geometry and characteristics of the main source. The retrieved fault model revealed a shallow seismic source approximately NE–SW-striking and characterized by a left-lateral strike-slip, southeast-dipping faulting mechanism. Our retrieved solution reveals a new minor fault never mapped in geological maps before, whose kinematics is compatible with that of the surrounding structures and with the local and regional stress states. Moreover, we also use the preferred fault model to calculate the Coulomb Failure Function at the nearby receiver faults; taking into account the surrounding geological structures reported in literature, we show that all the considered receiver faults have been positively stressed by the main event. This is also confirmed by the distribution of the aftershocks that occurred near the considered faults. The analysis of the earthquake nucleated along these left-lateral strike-slip minor fault is essential to improve our knowledge of the East-Azerbaijan Plateau; therefore, further studies are required to evaluate their role in seismic hazard definition of northwest of Iran, in order to help in the mitigation of the seismic hazard in seismogenic regions unprepared for the occurrence of seismic events.

This work is supported by: the 2019-2021 IREA-CNR and Italian Civil Protection Department agreement, H2020 EPOS-SP (GA 871121), ENVRI-FAIR (GA 824068) projects, and the I-AMICA (PONa3_00363) project.

How to cite: Valerio, E., Casu, F., Convertito, V., De Luca, C., De Novellis, V., Manunta, M., Manzo, M., Monterroso, F., and Lanari, R.: Seismogenic source model of the 2019 Mw 5.9 East-Azerbaijan earthquake (NW Iran) through Sentinel-1 DInSAR measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20404, https://doi.org/10.5194/egusphere-egu2020-20404, 2020.

TS6.1 – The Afro-Arabian Rift System

EGU2020-21127 | Displays | TS6.1

Constraining strain and magmatism patterns between the Ethiopian and East African plateaux from new seismic and geodetic data

Cynthia Ebinger, Weston Harding, Christian Kakonkwe, Ellen Knappe, Ian Bastow, Rebecca Bendick, Mary Muthoni, Gladys Kianji, Nicholas Mariita, and Atalay Ayele

Lateral heterogeneities in crust and mantle structure influence the distribution of strain and magmatism in continental rift zones.  Sutures between Archaean cratons and younger orogenic belts represent some of Earth’s largest lateral heterogeneities:  > 170 km-thick, buoyant and relatively dry lithosphere juxtaposed to ~120 km-thick, more volatile-rich mantle lithosphere.  The seismically and volcanically active Turkana Depression between the Ethiopian and East African plateau magma-rich Eastern rift formed near the eastern edge of the Archaean Tanzania craton. This area was affected by rifting in Mesozoic and Paleogene time, and may have been a thin zone when magmatism started at ~40 Ma.  Several hypotheses had been proposed to explain the unusual ~300 km-breadth of the Turkana Depression.  We use new data from the Turkana Rift Arrays to Investigate Lithospheric Structure (TRAILS) is to evaluate spatial variations in the location of strain, and in the direction and magnitude of seismic anisotropy, which is strongly influenced by mantle flow patterns along lithosphere-asthenosphere topography, fluid-filled cracks (e.g., dikes), and pre-existing mantle lithosphere strain fabrics.  Complementary data sets provide a strong contextual framework.  Our results and those of regional studies show that strain is currently localized to ~100 km-wide section of the Depression, and the western sectors are inactive.  We suggest that the original location of strain and magmatism was near the eastern edge of the Tanzania craton above a steep lithosphere-asthenosphere gradient, and that rifting has migrated eastward to form a more contiguous zone between the Main Ethiopian and Eastern rift zones.    

How to cite: Ebinger, C., Harding, W., Kakonkwe, C., Knappe, E., Bastow, I., Bendick, R., Muthoni, M., Kianji, G., Mariita, N., and Ayele, A.: Constraining strain and magmatism patterns between the Ethiopian and East African plateaux from new seismic and geodetic data , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21127, https://doi.org/10.5194/egusphere-egu2020-21127, 2020.

EGU2020-2620 | Displays | TS6.1

Multiphase rotational extension and marginal flexure along a developing passive margin: the Western Afar Margin, East Africa

Frank Zwaan, Giacomo Corti, Derek Keir, Federico Sani, Ameha Muluneh, Finnigan Illsley-Kemp, and Mauro Papini

This multidisciplinary study focuses on the tectonics of the Western Afar Margin (WAM), which is situated between the Ethiopian Plateau and Afar Depression in East Africa. The WAM represents a developing passive margin in a highly volcanic setting, thus offering unique opportunities for the study of rifting and (magma-rich) continental break-up, and our results have both regional and global implications.

Earthquake analysis shows that the margin is still deforming under a ca. E-W extension regime (a result also obtained by analysis on fault measurements from recent field campaigns), whereas Afar itself undergoes a more SW-NE extension. Together with GPS data, we see Afar currently opening in a rotational fashion. This opening is however a relatively recent and local phenomenon, due to the rotation of the Danakil microcontinent modifying the regional stress field (since 11 Ma). Regional tectonics is otherwise dominated by the rotation of Arabia since 25 Ma and should cause SW-NE (oblique) extension along the WAM. This oblique motion is indeed recorded in the large-scale en echelon fault patterns along the margin, which were reactivated in the current E-W extension regime. We thus have good evidence of a multiphase rotational history of the WAM and Afar.

Furthermore, analysis of the margin’s structural architecture reveals large-scale flexure towards Afar, likely representing the developing seaward-dipping reflectors that are typical for magma-rich margins. Detailed fault mapping and earthquake analysis show that recent faulting is dominantly antithetic (dipping away from the rift), bounding remarkable marginal grabens, although a large but older synthetic escarpment fault system is present as well. By means of analogue modelling efforts we find that marginal flexure indeed initially develops a large escarpment, whereas the currently active structures only form after significant flexure. Moreover, these models show that marginal grabens do not develop under oblique extension conditions. Instead, the latter model boundary conditions create the large-scale en echelon fault arrangement typical of the WAM. We derive that the recent structures of the margin could have developed only after a shift to local orthogonal extension. These modeling results support the multiphase extension scenario as described above.

Altogether, our findings are highly relevant for our understanding of the structural evolution of (magma-rich) passive margins. Indeed, seismic sections of such margins show very similar structures to those of the WAM. However, the general lack of marginal grabens, which are so obvious along the WAM, can be explained by the fact that most rift systems undergo or have undergone oblique extension, often in multiple phases during which structures from older phases control subsequent deformation.

How to cite: Zwaan, F., Corti, G., Keir, D., Sani, F., Muluneh, A., Illsley-Kemp, F., and Papini, M.: Multiphase rotational extension and marginal flexure along a developing passive margin: the Western Afar Margin, East Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2620, https://doi.org/10.5194/egusphere-egu2020-2620, 2020.

EGU2020-539 | Displays | TS6.1

Seismicity induced by fluid migration in the Main Ethiopian Rift

Martina Raggiunti, Derek Keir, Carolina Pagli, and Aude Lavayssiere

Faults can act as preferential degassing pathways for fluids of deep origin. Their migration and consequently variation of fluid pore pressure can cause a reduction of normal stress on the fault planes and trigger earthquakes. This can generate not only microseismicity but also events with significant magnitude. To understand this phenomenon, we studied the spatial, temporal and waveform characteristics of local seismicity from the northern sector of Main Ethiopian Rift (MER) of East Africa near Fentale and Dofen volcanoes. The seismic database contains events occurred in the MER from October 2001 to January 2003, and acquired by the Ethiopia Afar Geoscientific Experiment (EAGLE Project). The recorded events have been relocated with NLLoc using a new 3D velocity model derived from a wide-angle controlled source experiment. The relocated catalog contains a total of 1543 events with magnitudes between 0 and 4. The seismicity is mainly concentrated in two areas: near the border faults of the Ethiopian plateau and within the rift. On the border faults, events mostly occur down to 20 km depth, with an average depth of ~ 12 km. Within the rift, the events mostly happen down to 15 km depth, with an average depth of ~ 9 km. The seismicity is divided into several clusters aligned parallel to the rift direction, and in profile sections the clusters are mostly dipping steeply sub-vertical and dipping consistent with Andersonian normal faults. The analysis of the temporal-spatial distribution of earthquakes shows that some of the clusters are strongly concentrated in time and in space, and therefore swarm-like. To understand if the different clusters have been conditioned by fluid migration we have also analyzed the frequency content, release of seismic moment, and b-val is cut out. The link between earthquakes and fluid migration has also been explored by interpreting the distribution of seismicity using remote sensing mapping of faults, fumaroles and hydrothermal springs. Understanding where and how the fluid migration occurs will aid geothermal exploration efforts in the region, also improved knowledge of where geothermal activity is linked to seismicity has implications for seismic hazard estimation, which is very important for this densely and economically active areas.

How to cite: Raggiunti, M., Keir, D., Pagli, C., and Lavayssiere, A.: Seismicity induced by fluid migration in the Main Ethiopian Rift, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-539, https://doi.org/10.5194/egusphere-egu2020-539, 2020.

Within the melt-rich northern East African Rift system, extension progresses from continental rifting in the Ethiopian rift to near continental breakup in Afar. Multiple models have been proposed to understand the evolution of lithospheric stretching and magmatism, but previous studies do not provide a single absolute seismic velocity model of the crust and upper mantle for all stages of the rift. Here we jointly invert surface waves from ambient noise and teleseismic Rayleigh waves to obtain shear velocity maps from 10 to 210 km depth, enabling us to analyse variations in crustal and upper mantle shear wave velocity structure spatially and in depth. Using one model allows us to interpret and understand the pattern of crustal and lithospheric thinning from the rift flanks into the rift, the depth and locus of melt generation, and how these processes vary as a rift evolves towards incipient seafloor spreading.

We observe in areas unaffected by rifting, a fast lid (>0.1 km/s faster than surroundings) at lithosphere-asthenosphere-boundary depths (~60 - 80 km). The fast-lid is not visible directly beneath the rift and we instead observe slow velocities (slow enough to contain partial melt (3.95 – 4.10 ± 0.03 km/s)), which we interpret as evidence for melt infiltration into the uppermost mantle beneath the rift. In addition, the fast lid thins into the rift, until it is no longer observed, suggesting the rift is more stretched than the surrounding plate (~18% thinner). The slow velocities in the asthenosphere beneath the rift are segmented, ~110 km wide, ~60 – 120 km deep with ~70 km spacing between segments.  The shallowest and slowest anomalies occur beneath Afar, which is at later stage rifting. At crustal depths we observe a broadening in the slow velocity zones along the length of the Main Ethiopian Rift. Furthermore, the slow crustal velocities laterally spread to beneath areas of the Ethiopian Plateau that were affected by flood basalt volcanism (velocities of 3.30 – 3.80 ± 0.04 km/s). We interpret the broadening of the slow velocity as the Moho acting as a barrier causing lateral migration of melt into areas of pre-existing weakness. Our model provides the first comprehensive seismic model of the northern East African Rift allowing us to interpret rift structure. The segmented slow velocities in the asthenosphere suggest discrete melt-rich upwelling may drive the early the breakup process, with shallowing of the top of the melt-rich zone as the rift evolves and the lithosphere is modified by melt infiltration, with the Moho and lithosphere thinning later in the rifting process.

How to cite: Chambers, E. L., Harmon, N., Keir, D., Rychert, C., and Gallacher, R.: Imaging segmentation in early stage rifting (prior to breakup) using a joint inversion of Rayleigh waves from teleseisms and ambient noise tomography in the northern East African Rift, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9219, https://doi.org/10.5194/egusphere-egu2020-9219, 2020.

EGU2020-14917 | Displays | TS6.1

Evaporites reveal Pleistocene basin dynamics in the Danakil depression (northern Afar, Ethiopia)

Valentin Rime, Anneleen Foubert, Robin Fentimen, Haileyesus Negga, Afifé El Korh, Thierry Adatte, Irka Hajdas, Balemwal Atnafu, and Tesfaye Kidane

The Danakil depression (Afar, Ethiopia) is a rift valley forming the southernmost part of the Red Sea rift. It is situated between the Ethiopian plateau and the Danakil block and is thought to represent an advanced stage of rifting, characterized by important tectonic and volcanic activity. Its floor is situated 120 meters below sea level and is covered by salt pans.

This study focuses on a 625 m deep borehole drilled in the central part of the basin. It mainly consists of evaporites dominated by halite along with clastic and carbonate sediments. Lithostratigraphy and facies description were completed by micropaleontological, geochemical, mineralogical and organic matter analysis. They reveal the complex history of this rift basin. Two marine Red Sea incursions are identified. Strong water stratification during the older marine incursion led to the formation of sapropel layers and magnesite. The restriction of the basin and the strong aridity led to the formation of evaporites, culminating in the deposition of potash salts. Between the two marine events, continental evaporites contributed to several hundreds of meters of basin fill.  The younger marine incursion was probably characterized by wetter environments, resulting in the deposition of smaller volumes of evaporites. Since then, hypersaline lakes and salt pans filled the basin. Ongoing radiocarbon and U/Th datings will constrain further the Pleistocene stratigraphy and timing of the marine incursions.

These findings shed a new light on the basin history. The successive flooding and desiccation events are a consequence of sea-level variations but also important tectonic activity. Rift margin uplift prevented flooding during the Holocene sea-level highstand and contributed to the restriction of the depression. Significant basin subsidence at very short time scales created accommodation space for the voluminous sediment infill. This implies very active rifting during the last 250 ka.

How to cite: Rime, V., Foubert, A., Fentimen, R., Negga, H., El Korh, A., Adatte, T., Hajdas, I., Atnafu, B., and Kidane, T.: Evaporites reveal Pleistocene basin dynamics in the Danakil depression (northern Afar, Ethiopia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14917, https://doi.org/10.5194/egusphere-egu2020-14917, 2020.

EGU2020-11138 | Displays | TS6.1

Mantle Plume – Spreading Ridge Interaction: A Comparative Study of the Red Sea and Reykjanes Ridges

Zachary Molitor, Oliver Jagoutz, Leigh Royden, Stephanie Brown, Guido Port, Ali Dogru, and Joao Keller

As a young, mid ocean ridge, the Red Sea is a unique natural laboratory for studying the processes that drive continental rifting and breakup. The role of hot spots, frequently attributed to mantle plumes, in triggering or driving breakup and their impact on crustal structure and topography is not well understood. We have found that the Red Sea ridge bears a resemblance to the Reykjanes ridge in terms of bathymetry, morphology, geophysical properties, basalt chemistry, and modelled melting temperature and pressure of primary basalts. The results of modelling basalt melting temperature call into question the role of mantle temperature on generating excess melt beneath the Red Sea and Reykjanes ridges. Within 300 kilometers of a hotspot center, determined by seismic tomography, mantle excess temperatures are as high as 300 degrees relative to an ambient mantle temperature of about 1300 C. Outside of this radius excess temperatures are not significant (less than 50 C), and unlikely to cause significant melting anomalies. It is likely that the southern Red Sea and northern Reykjanes ridge are directly affected by hot, buoyant upwelling from the Afar and Iceland mantle plumes, and the central Red Sea and southern Reykjanes ridge may be affected by dynamic pressure related to actively upwelling mantle around the mantle plumes.

How to cite: Molitor, Z., Jagoutz, O., Royden, L., Brown, S., Port, G., Dogru, A., and Keller, J.: Mantle Plume – Spreading Ridge Interaction: A Comparative Study of the Red Sea and Reykjanes Ridges, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11138, https://doi.org/10.5194/egusphere-egu2020-11138, 2020.

EGU2020-19491 | Displays | TS6.1

An up-to-date Mapping for the Movement and the Deformation of the Sinai Micro-plate from a Combined GPS Velocity Field

Mohamed Saleh, Frederic Masson, Nadia Abou-Aly, and Abdel-Monem Mohamed

We use combined GPS velocities covering Sinai peninsula to estimate the current rates across the Sinai micro-plate boundaries. New GPS velocities were estimated for 67 sites located within and around Sinai (Arabia, Eurasia and Nubia plates) covering the time span 1999-2018 using GAMIT/GLOBK 10.6 (Herring et al., 2015). We have combined our velocity field with two other recent solutions of GPS sites located around Sinai area. We used the VELROT tool from GAMIT/GLOBK package to combine all solutions resulting in a velocity field of 265 GPS sites in ITRF2018. Then, we selected 61 sites that represent the Sinai plate interior to estimate the Euler pole of Sinai micro-plate. Our computed the Euler pole parameters, latitude, longitude, and angular velocity for Sinai are 53.3±1.8°, -7.8±2.2°, and 0.451±0.014°/Ma, respectively, which are comparable to previous estimates, but with better uncertainties. The relative block motions at the Sinai plate boundaries are estimated using the DEFNODE code (McCaffrey, 2002) by minimizing the GPS residual motions within the blocks in a least squares sense. Our block motion model for Sinai sub-plate shows a fault-parallel velocity at the Gulf of Aqaba of 4.7-4.5 mm/yr, associated with negligible fault-normal component, which decreased toward the north direction along the Dead Sea Transform Fault. On the other hand, an opening rate of 3 mm/yr is estimated at the southern part of the Gulf of Suez with negligible fault-parallel component. At central and northern parts of the Gulf of Suez, the opening rate decreases until it vanished at the northern part of the Suez Canal while the fault-parallel component increases.

How to cite: Saleh, M., Masson, F., Abou-Aly, N., and Mohamed, A.-M.: An up-to-date Mapping for the Movement and the Deformation of the Sinai Micro-plate from a Combined GPS Velocity Field , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19491, https://doi.org/10.5194/egusphere-egu2020-19491, 2020.

EGU2020-1935 | Displays | TS6.1

Modelling constraints on rifting in the Afar region: the birth of a triple junction

Hany Khalil, Fabio Capitanio, Peter Betts, and Alexander Cruden

Rifting in the Afar region is considered to be the only known example of the formation of an incipient divergent triple junction. Taking the Afar region as an example, we use three-dimensional (3D) laboratory experiments to test hypotheses for the formation and evolution of divergent triple junctions. We systematically evaluate the role of mechanical weakening due to plume impingement versus inherited weak linear structures in lithospheric mantle under both far-field orthogonal and rotational extensional boundary conditions. The interaction between far-field boundary forces and inherited rheological heterogeneities results in a range of complex rift propagation geometries and structural features, such as rift segmentation and ridge jumps, which are comparable to those observed in the Afar region. The combination of rotational boundary conditions and inherited linear heterogeneities favours the formation of rifts that connect at high-angles. Lithospheric weakening associated with a mantle plume triggers different rifting styles but has little influence on large-scale continental breakup. When compared to the Afar region, our results suggest that the rotation of the Arabian plate since the Oligocene led to rifting of the Red Sea and the Gulf of Aden, which are distinct from the formation of the Main Ethiopian Rift. We suggest that rifting in the Afar region is not consistent with the incipient divergent triple junction hypothesis. Rather, the Afar triple junction formed as a result of complex multi-phase rifting events driven by far-field tectonic forces.

How to cite: Khalil, H., Capitanio, F., Betts, P., and Cruden, A.: Modelling constraints on rifting in the Afar region: the birth of a triple junction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1935, https://doi.org/10.5194/egusphere-egu2020-1935, 2020.

EGU2020-149 | Displays | TS6.1

How isostasy explains continental rifting in East Africa?

Mohammad Bagherbandi and Nureldin A. A. Gido

The principle of isostasy plays an important role to understand the relation between different geodynamic processes. Although, it is difficult to find an exact method that delivers a complete image of the Earth structure. However, gravimetric methods are alternative to provide images of the interior of the Earth. The Earth’s crust parameters, i.e. crustal depth and crust-mantle density contrast, can reveal adequate information about the solid Earth system such as volcanic activity, earthquake and continental rifting. Hence, in this study, a combine Moho model using seismic and gravity data is determined to investigate the relationship between the isostatic state of the lithosphere and seismic activities in East Africa. Our results show that isostatic equilibrium and compensation states are closely correlated to the seismicity patterns in the study area. For example, several studies suggest that African superplume causes the rift valley, and consequently differences in crustal and mantle densities occur. This paper presents a method to determine the crustal thickness and crust-mantle density contrast and consequently one can observe low-density contrast (about 200 kg/m3 ) and thin crust (about 30 km) near the triple junction plate tectonics in East Africa (Afar Triangle), which confirms the state of overcompensation in the rift valley areas. Furthermore, the density structure of the lithosphere shows a large correlation with the earthquake activity, sub-crustal stress and volcanic distribution across East Africa.

How to cite: Bagherbandi, M. and Gido, N. A. A.: How isostasy explains continental rifting in East Africa?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-149, https://doi.org/10.5194/egusphere-egu2020-149, 2020.

EGU2020-1658 | Displays | TS6.1

Study on the inversion structure of rift system in central and west Africa

Xiyuan Li, Wangshui Hu, Zhongying Lei, Chijun Huang, and Silin Yin

In the process of plate tectonic movement, extensional faults and conversion faults occur.In the process of studying the rift system of central and west Africa, by comparing the basin types and fault plane distribution characteristics of Africa and South America on both sides of the Atlantic ocean, it can be seen that the main continental fault on both sides of the Atlantic ocean and the fault developed at the mid-ocean ridge on the bottom of the Atlantic ocean belong to the conversion fault.The function of conversion faults is to regulate the difference in the moving speed between blocks in the contemporaneous structure. Therefore, the conversion faults developed in these three regions are similar and interrelated in terms of structure type, structure style, block movement mode and direction.The main transference faults in various regions play a role in regulating the differences of continental extension and inversion tectonic rates in the Atlantic ocean, Africa and South America.

There are two transition fault systems in the rift system of central Africa and west Africa. Under the joint action of these two transition fault systems, extensional basins and transition basins are mainly developed in the rift system of central and west Africa. Moreover, these two transition fault systems play different roles in different stages of the tectonic movement of the whole African plate.

After detailed interpretation of seismic data, it can be found that there are mainly fault-controlled inversion structures in Doseo basin and Doba basin.

As a representative of transition basins, fault-controlled inversion structures are widely developed in the Doseo basin, but they have different distribution characteristics.Among them, fault-controlled inversion structures with large inversion ranges are distributed near large faults in the basin, while fault-controlled inversion structures with small inversion ranges are far away from the structural units of the main controlled faults, the inversion structures have a small amplitude, and the stratigraphic reconstruction fragmentation degree is relatively weak. The inversion structures with weak inversion are mainly developed in the middle, western depression and southern uplift of Doseo basin.And as the representative of the extensional basin. In Doba basin, fault-controlled inversion structures are mainly developed, and the structures with high inversion rate are distributed in the central depression zone of the basin. The low inversion rate structures are distributed in the uplift and slope areas in the western part of the basin. By studying the development types and distribution locations of inversion structures in basins, it can be known that different types of basins have different transformation conditions during inversion.

Therefore, by comparing the differences in the plane and vertical characteristics of the inversion tectonic development of Doseo and Doba basins, as well as the studies on the eastern and western and non-other basins, it can be concluded that during the tectonic evolution of the rift system in central and west Africa, especially during the transition inversion stage, there were significant differences between the transition basin and the extensional basin.

How to cite: Li, X., Hu, W., Lei, Z., Huang, C., and Yin, S.: Study on the inversion structure of rift system in central and west Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1658, https://doi.org/10.5194/egusphere-egu2020-1658, 2020.

EGU2020-676 | Displays | TS6.1

High intensity ignimbritic activity in the Central sector of the Main Ethiopian Rift

Zara Franceschini, Stéphane Scaillet, Raffaello Cioni, Giacomo Corti, Federico Sani, Gaëlle Prouteau, Bruno Scaillet, and Abate Assen Melaku

The volcano-tectonic evolution of the Main Ethiopian Rift (MER) is punctuated with periods of intense silicic volcanism, characterized by large explosive caldera-forming eruptions and the production of several ignimbrite deposits. These volcanic paroxysms require large volume of evolved silicic magma accumulated in shallow chambers into the continental crust; however, the relations between magmatism and tectonics during rifting, and the influence of the distribution and timing of regional tectonics on the ascent of magma and its stalling in large magmatic reservoirs remain poorly defined.

We present new geochronological data (40Ar/39Ar dataset of 29 samples) providing new constraints on the timing, evolution and characteristics of volcanism in the Central sector of the MER, where large ignimbrite deposits and remnants of several calderas testify the recurrence of silicic flare-ups. Specifically, we investigate in detail the eastern margin of the rift, where a voluminous, widespread, crystal-rich ignimbrite (Munesa Crystal Tuff, MCT) has been described. This deposit has been correlated to a thick ignimbrite occurring at the bottom of geothermal wells in the rift, pointing to a giant eruptive event attributed to a huge caldera structure, presumably buried beneath the rift floor. At least other two widespread ignimbrite units are present along the same margin for several tens of kilometres, testifying the high volcanicity of this sector of the MER.

Our survey and analyses suggest that, at least in the eastern margin of the rift, activity was clustered in periods of large magma production and emission, resulting in the recurrence of intense volcanic phases interspersed with periods of rest of volcanism. Ignimbrites and other volcanic deposits occur in the investigated area, spanning an age interval from 3.5 Ma to as recent as 150 ka. The MCT emission, around 3.5 Ma, was followed, after a long quiescence, by an important phase with the emplacement of both mafic (lava flows and scoria cone) and evolved (ignimbrites) products between 1.9-1.6 Ma. After that, volcanism occurred more frequently, possibly with a lower amount of erupted magma and still alternating with quiescent periods, with volcanism clusters at ~ 1.3-1.2 Ma, ~ 0.8-0.7 Ma and ~ 0.3-0.2 Ma. This clustered volcanic activity will be compared with the episodic rifting of this sector of the Main Ethiopian Rift.

How to cite: Franceschini, Z., Scaillet, S., Cioni, R., Corti, G., Sani, F., Prouteau, G., Scaillet, B., and Assen Melaku, A.: High intensity ignimbritic activity in the Central sector of the Main Ethiopian Rift, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-676, https://doi.org/10.5194/egusphere-egu2020-676, 2020.

EGU2020-821 | Displays | TS6.1 | Highlight

The Buried Grand Canyon in Egypt: Structural controls on the Neogene River Nile

Ali Abdelkhalek, Jonas Kley, Mohamed Hammed, and Ahmed Saied Ali

The origin and intricate history of the River Nile are still widely disputed. Some studies have claimed that the present course of the Nile has formed at ~7-5 Ma, while others have suggested a much longer evolution. We proposed earlier that the southern and central segments of the River Nile in Egypt have originally evolved along a NW trending short-lived rift that was formed by NE-SW extension at ~25-23 Ma, and abandoned at an early stage. Here we focus on the development of the northern segment of the river, which we interpret as having both a relatively young age (~7-6 Ma) and different tectonic evolution. Gravity models and 3D seismic and well data show the presence of a deeply buried canyon west of the northern modern River Nile, 120 km southwest of Cairo, and approximately parallel to its present-day valley with a predominant NNE-NE course. The U-shaped canyon is up to 13 km wide and attains a maximum depth of around 1,900 meters, about as deep as the Grand Canyon of the Colorado River in Arizona, USA. The canyon was cut into a rising plateau along deep-seated NNE to NE-striking faults that formed at ~90-80 Ma as secondary shears to the main structures of the WNW oriented Cretaceous Beni-Suef rift and possibly have been reactivated at ~14 Ma with the origin of the Gulf of Aqaba-Dead Sea NNE sinistral transform plate boundary. The deeply incised canyon formed as a result of severe erosion due to significant sea level drop and desiccation of the Mediterranean in late Miocene time (Messinian Crisis ~7-6 Ma), which was accompanied by continued progressive uplift of the north-eastern Egyptian terrain[KJ1] . [2] The ancestral river excavated and widened a vast braided channel[3]  that cut deeply into Turonian-Campanian sediments in the Beni-Suef basin. The canyon attained its maximum depth by ~5 Ma, and subsequently it was filled by six successive clastic-dominated units of different fluvial facies.[4] 

How to cite: Abdelkhalek, A., Kley, J., Hammed, M., and Ali, A. S.: The Buried Grand Canyon in Egypt: Structural controls on the Neogene River Nile, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-821, https://doi.org/10.5194/egusphere-egu2020-821, 2020.

EGU2020-18075 | Displays | TS6.1

Are abandoned rifts tectonically active? Morphotectonic evidence from the Gulf of Suez

David Fernández-Blanco, Gino de Gelder, and Christopher A-L. Jackson

Intra-continental abandoned rifts can fail for many reasons and are typically considered to be tectonically inactive. It is widely thought that the Oligo-Miocene Suez Rift, Egypt, which is located at the propagating northern end of the Red Sea spreading ridge, was abandoned in the Pliocene when motion between the African and Arabian plates was accommodated instead by the sinistral Dead Sea transform fault. However, local evidence for Plio-Quaternary normal faulting, the presence of uplifted Quaternary shorelines along the rift margins, and low-magnitude but widespread seismicity, together suggest the Suez Rift is tectonically active. Here, we present the first detailed analysis of this post-“abandonment” tectonic activity. We analyze the fluvial and tectonic geomorphology of the rift using freely available, 30 m-horizontal resolution digital elevation models (DEMs). These data reveal widespread normal fault offsets of Plio-Quaternary rocks at outcrop-to-basin scale, even in rift sectors >250 km north of the southern terminus of the rift. River morphology, tectonic knickpoints, normalized steepness indexes (ksn), and chi (χ) maps also provide evidence for relatively young faulting. Uplifted Quaternary shorelines show that active normal faults have footwall uplift rates of up to 0.125 mm/yr, even in locations >200 km north of the rift terminus, with these rates being relatively consistent for both rift margins. Our preliminary results provide clear evidence for young and ongoing tectonic activity in the Suez Rift and thus question the notion that this evolving plate boundary is currently in a state of complete tectonic quiescence. We speculate that the present tectonic activity in the Suez Rift results from the translation of far-field stresses imposed by the Afar plume, or by a recent change in the Eulerian pole of rotation between the African and the Arabian plates. Our results call for further analyses of the recent rifting in the Suez Rift and the exploration of recent activity in other “abandoned” rifts.

How to cite: Fernández-Blanco, D., de Gelder, G., and Jackson, C. A.-L.: Are abandoned rifts tectonically active? Morphotectonic evidence from the Gulf of Suez , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18075, https://doi.org/10.5194/egusphere-egu2020-18075, 2020.

EGU2020-9401 | Displays | TS6.1

Tectonics of the Northern Red Sea, insights from multibeam bathymetric mapping of Mabahiss Deep.

Daniele Trippanera, Margherita Fittipaldi, Nico Augustin, Froukje M. van der Zwan, and Sigurjón Jónsson

The Red Sea is a unique place to study the birth of an oceanic rift basin and the interplay between magma and tectonics at a young divergent plate boundary. The Red Sea is a NNW-SSE oriented and 2000 km long rift system with a spreading rate decreasing from ~16 mm/yr in the south to ~7 mm/yr in the north. The morphology also changes along the rift axis: the south portion is a continuous and well-developed rift, clearly exposing oceanic crust, the central portion is characterized by deeps made by oceanic crust separated by shallower inter-trough zones, and the northern part contains more widely spaced and less obvious deeps with the transition to the continental crust not well defined. While the central Red Sea morphology has been extensively studied, the structure of the northern Red Sea and its link to the central Red Sea are still unclear. Indeed, the northern Red Sea rift is offset by 100 km to the central Red Sea axis by the still poorly understood Zabargad fracture zone.

Here we aim at improving the understanding of the volcano-tectonic structure of the axial part of the southern tip of the northern Red Sea that corresponds to the Mabahiss Deep. To this aim, we carried out multiple multibeam surveys with R/V Thuwal and R/V Kobi Ruegg to map the sea bottom to add to what had been done in earlier surveys. In addition, we obtained several sub-bottom profiling lines across and along the deep to better constrain the shallow sedimentary structure.

Our results show that the 15 km long, 9 km wide and 2250 m deep Mabahiss Deep along with the 800 m high and 5 km wide central volcano are the key prominent structures of the area. The deep is bordered by a series of Red Sea parallel normal faults on two sides forming a graben-like structure and thus suggesting a rift-like morphology. The central volcano is well preserved and has a 2 km wide summit caldera containing several volcanic cones and thus suggesting a permanent magmatic source underneath of a relatively young age. The ocean floor outside the deep and the volcanic edifice is mostly covered by salt flows, limiting structural analysis of the surrounding areas.

A comparison between the northern and central Red Sea suggests, although in both areas thick salt covers most of the ocean floor, that the axes have similar rift-like structures with stable axial volcanism. However, in the central Red Sea larger portions of the oceanic crust are free of salt and the deformation seems larger with more prominent faults that also affect the floor of the deeps and split apart volcanic edifices, enhancing the occurrence of diffused monogenic volcanic cones. Therefore, this might suggest, despite the central and northern Red Sea sharing the same structure and evolution, that the less volcanic and tectonic activity in the north probably reflects the decreasing spreading rate from south to north along the Red Sea.

How to cite: Trippanera, D., Fittipaldi, M., Augustin, N., van der Zwan, F. M., and Jónsson, S.: Tectonics of the Northern Red Sea, insights from multibeam bathymetric mapping of Mabahiss Deep., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9401, https://doi.org/10.5194/egusphere-egu2020-9401, 2020.

EGU2020-4641 | Displays | TS6.1

Movements of thick evaporites on the flanks of a mid-ocean ridge: the central Red Sea Miocene evaporites

Neil Mitchell, Wen Shi, Ay Izzeldin, and Ian Stewart

Thick evaporites ("salt") were deposited in the South and North Atlantic, and Gulf of Mexico basins, in some parts deposited onto the flanks of nascent oceanic spreading centres.  Unfortunately, knowledge of the history of evaporite movements is complicated in such places by their inaccessibility and subsequent diapirism.  This is less of a problem in the Red Sea, a young rift basin that is transitioning to an ocean basin and where the evaporites are less affected by diapirism.  In this study, we explore the vertical movements of the evaporite surface imaged with deep seismic profiling.  The evaporites have moved towards the spreading axis of the basin during and after their deposition, which ended at the 5.3 Ma Miocene-Pliocene boundary.  We quantify the evaporite surface deflation needed to balance the volume of evaporites overflowing oceanic crust of 5.3 Ma age, thermal subsidence of the lithosphere and loss of halite through pore water diffusion, allowing for isostatic effects.  The reconstructed evaporite surface lies within the range of estimated global sea level towards the end of the Miocene.  Therefore, the evaporites appear to have filled the basin almost completely at the end of the Miocene.  Effects of shunting by terrigenous sediments and carbonates near the coast and contributions of hydrothermal salt are too small to be resolved by this reconstruction.

How to cite: Mitchell, N., Shi, W., Izzeldin, A., and Stewart, I.: Movements of thick evaporites on the flanks of a mid-ocean ridge: the central Red Sea Miocene evaporites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4641, https://doi.org/10.5194/egusphere-egu2020-4641, 2020.

TS6.2 – Tectono-magmatic-sedimentary process of the marginal basins in the West Pacific: from convergent to divergent

EGU2020-6456 | Displays | TS6.2 | Highlight

Western Pacific marginal basin plate tectonics: overview, questions, and insights from mantle structure

Jonny Wu and John Suppe

Arc magmatism and megathrust earthquake occurrence in a subduction zone are deemed to attribute to many factors, including structural heterogeneities, fluid contents, temperature, depth of subducting oceanic crust, and etc. However, how these factors affect them is unclear. The extensive arc magmatism observed on the island arcs is considered to be an indicator on chemical exchange between the wedge mantle and the surface in a subduction zone. Megathrust earthquake frequently occurrence is also considered to be attributed to the slab melting and associated interplate coupling of the subducting plate. The Western Pacific subduction zone is regarded as one of the best Laboratory for seismologists to examine these processes due to the densest seismic networks recording numerous earthquakes. Some of the previous studies suggest that the island-arc magmatism is mainly contributed to the melting of peridotite in the mantle wedge due to fluids intrusion from the dehydration process associated with the subducting oceanic crust. They further argued that the oceanic plate could only provide water to the overlying mantle wedge for arc magmatism, but not melt itself due to that it is too cold to melt at a depth between 100 and 200km. However, some of other studies revealed that the hydrated basalt derived from the mid-ocean ridge will be melted with high T and water saturated on the upper interface of the sbuducting plate in the mantle wedge. We consider that the three-dimensional (3-D) P- and S- wave velocity (Vp, Vs) and Poisson’s ratio (σ) structures of the subduction zone, synthesized from a large-quantity of high-quality direct P-, and S-wave arrival times of source-recive pairs from the well located suboceanic events with sP depth phase data could provide a compelling evidence for structural heterogeneity, highly hydrated and serpentinized forearc mantle and dehydrated fluids in the subduction zones. In this study, we combined seismic velocities and Poisson’s ratio images under the entire-arc region of the Western Pacific subduction zone to reveal their effects on megathrust earthquake generation and arc magmatism. We find that a ~10 km-thick low-velocity layer with high-V and high-Poisson’s ratio anomalies is clearly imaged along the upper interface of the subducting Pacific slab. This distinct layer implies partial melting of the oceanic crust due to the deep-seated metamorophic reactions depending on the source of fluids and temperature regime. Such a process could refertilize the overlying mantle wedge and enrich the peridotite sources of basalts under the island arc. Significant low-V and high-Poisson’s ratio anomalies were observed in the mantle wedge along the volcanic front, indicating melting or partial melting of peridotite-rich mantle and then yield tholeiitic magma there. The present study demonstrates that the combined factors of fluid content, mineral composition and thermal regime play a crucial role in both slab melting and arc-magmatism under the Western Pacific subduction zone.

How to cite: Wang, Z. and Wang, J.: Seismic Imaging, Arc Magamtism and Megathrust Earthquake under the Western Pacific Subduction Zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1600, https://doi.org/10.5194/egusphere-egu2020-1600, 2020.

EGU2020-1404 | Displays | TS6.2 | Highlight

Crustal structure and evolution of the Niuafo'ou Microplate in the northeastern Lau Basin, Southwestern Pacific

Florian Schmid, Heidrun Kopp, Michael Schnabel, Anke Dannowski, Ingo Heyde, Michael Riedel, Martin Engels, Anouk Beniest, Ingo Klaucke, Nico Augustin, Philipp Brandl, Colin Devey, and Mark Hannington

The northeastern Lau Basin is one of the fastest opening and magmatically most active back-arc regions on Earth. Although the current pattern of plate boundaries and motions in this complex mosaic of microplates is fairly well understood, the structure and evolution of the back-arc crust are not. We present refraction seismic, multichannel seismic and gravity data from a 300 km long east-west oriented transect crossing the Niuafo’ou Microplate (back-arc), the Fonualei Rift and Spreading Centre (FRSC) and the Tofua Volcanic Arc at 17°20’S. Our P wave tomography model shows strong lateral variations in the thickness and velocity-depth distribution of the crust. The thinnest crust is present in the Fonualei Rift and Spreading Center, suggesting active seafloor spreading there. In the much thicker crust of the volcanic arc we identify a region of anomalously low velocities, indicative of partial melts. Surprisingly, the melt reservoir is located at ~17 km distance to the volcanic front, supporting the hypothesis that melts are deviated from the volcanic arc towards the FRSC in sub-crustal domains. We identify two distinct regions in the back-arc crust, representing different opening phases of the northeastern Lau Basin. During initial extension, likely dominated by rifting, crust of generally lower upper-crustal velocities formed. During an advanced opening phase, likely dominated by seafloor spreading, crust of higher upper-crustal velocities formed and is now up to 11 km thick. This thickening is the result of magmatic underplating, which is supported by elevated upper mantle temperatures in this region.

How to cite: Schmid, F., Kopp, H., Schnabel, M., Dannowski, A., Heyde, I., Riedel, M., Engels, M., Beniest, A., Klaucke, I., Augustin, N., Brandl, P., Devey, C., and Hannington, M.: Crustal structure and evolution of the Niuafo'ou Microplate in the northeastern Lau Basin, Southwestern Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1404, https://doi.org/10.5194/egusphere-egu2020-1404, 2020.

EGU2020-20752 | Displays | TS6.2 | Highlight

Origin of the Caroline mantle plume and its interaction with the Caroline basin

Guoliang Zhang, Ji Zhang, and Shuai Wang

The Caroline Rise has played an important role in the tectonic frame of the western Pacific, however, the nature and origin of the Caroline Rise has long been unclear. The boundary between the Pacific plate and the Caroline plate has long been unclear, thus, it unclear which plate is underneath the Caroline Rise. In this study, we confirmed that the Caroline Rise represents an oceanic plateau formed as a large igneous province based on seafloor sampling. In this study, we have age-dated and analyzed the whole-rock major and trace elements and Sr-Nd-Pb-Hf isotopes of the basalt samples from the Caroline Plateau. The basalt samples are classified into two groups, the alkali group and the tholeiite group. The results of age-dating indicate older ages for the tholeiite group than the alkali group. The tholeiite group basalts are apparently older than the Caroline Islands and are close to the basalts of Ontong Java Plateau in trace element compositions. We suggest that the tholeiite group basalts represent the main stage volcanism and the alkali group basalts represent the late stage volcanism of the Caroline Plateau. The alkali group basalts show trace element and isotope compositions similar to those of the Caroline Islands to the east. The tholeiitie group basalts have involved significant amount of depleted asthenosphere components, which suggests interactions of the Caroline plume with the Caroline basin spreading center. The MORB-like depleted geochemical nature of the Caroline tholeiite group basalts indicates formation of the Caroline Plateau under the young and thin Caroline plate lithosphere. Our results of age and geochemistry of the Caroline Plateau/Seamount system could be explained by the activities of the Caroline hotspot. This work was financially supported by the National Natural Science Foundation of China (91858206, 41876040).

How to cite: Zhang, G., Zhang, J., and Wang, S.: Origin of the Caroline mantle plume and its interaction with the Caroline basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20752, https://doi.org/10.5194/egusphere-egu2020-20752, 2020.

EGU2020-6525 | Displays | TS6.2 | Highlight

Chemical variations in hydrothermal systems recorded by epidote in altered oceanic crust of South China Sea

Liyan Tian, Si-Yu Hu, and Xuan-Ce Wang

The circulation of seawater within the oceanic crust promotes the extensive chemical variations of the lithosphere prior to its entering subduction zones as well as the development of the biosphere. A good understanding of the chemical variations during hydrothermal circulation is essential to further decipher the biological activities in such extreme environments. Epidote is a common byproduct, but a good indicator for hydrothermal activities during the hydrothermal alteration of oceanic crust.

This study presents the petrographic and geochemical features of epidote from depth of 850-910 m (below the surface) in the northern South China Sea margin to provide insights into the possible chemical variations in hydrothermal systems in subsurface. Eight samples with obvious epidote veins were chosen from the altered basalts in Hole 1502B of IODP Expedition 368. They cover a range with different depth and occurrences, including epidote veins, composite epidote-calcite veins, and composite epidote-silica veins. Sulfide mineralization is widespread and dominated with pyrite, chalcopyrite and sphalerite. Scanning Electron Microscopy images show that the epidote-calcite vein samples display obvious zonation structure in epidote, and the others not. The major element concentrations of Fe also show variations with epidote zonation. We further carried out in situ trace element concentration measurement on epidote minerals by Laser Ablation-Induced Coupled Plasma-Mass Spectrometry. In Chondrite-normalized diagrams, all epidote mineral samples show flat patterns with significant positive Eu anomalies, which may relate to highly oxidized conditions maximising Eu3+ incorporation. We therefore propose that the zonation of epidote may reflect the pulse of hydrothermal activities, one of which is likely to be associated with the precipitation of chalcopyrite and sphalerite.

How to cite: Tian, L., Hu, S.-Y., and Wang, X.-C.: Chemical variations in hydrothermal systems recorded by epidote in altered oceanic crust of South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6525, https://doi.org/10.5194/egusphere-egu2020-6525, 2020.

EGU2020-3557 | Displays | TS6.2

Remote predictive geological mapping as a tool for the reconstruction of the complex geodynamic evolution of Melanesia

Philipp Brandl, Anna Kraetschell, Justin Emberley, Mark Hannington, Margaret Stewart, Sven Petersen, and Alan Baxter

The offshore regions of Eastern Papua New Guinea and the Solomon Islands include several active and remnant arc and backarc systems that formed in response to complex plate tectonic adjustments following subduction initiation in the Eocene. Although there has been extensive exploration for offshore petroleum resources, and more than 54 research cruises have investigated or transited the region since 1993, a comprehensive regional geological map, including the deep marine areas, has not been available at a scale that permits quantitative analysis of the basin history. We present the first map that depicts interpreted assemblage- and formation-level lithostratigraphic units correlated across the marine basins and adjacent land masses. The mapped assemblages and large-scale formations are based on a compilation of land-based geological maps, marine geophysical data (hydroacoustics, magnetics, and gravity) integrated with the results of geological sampling, ocean drilling, seismic surveys, and seabed observations.

More than 400,000 km2 of the map area covered by ship-based multibeam and other geophysical data were inspected to derive the offshore geological units. In areas with limited data, the units were extrapolated from well-documented formations in adjacent regions with more complete information, including on land. This approach follows closely the techniques used for remote predictive mapping in other regions of the Earth where geological information is sparse. Geological boundaries were constrained by ship-based multibeam data reprocessed at 35-m to 50-m resolution and integrated with the Global Multi-Resolution Topography (GMRT) gridded at 100 m. Lithotectonic assemblages were assigned on the basis of plate structure, crustal type and thickness, age, composition, and sedimentary cover and further refined by bathymetric and geophysical data from the literature and cruise reports. The final compilation is generalized and presented here at 1:1 М. Our new approach integrates conventional mapping on land with remote predictive mapping of the ocean floor.

The newly compiled geological map illustrates the diversity of assemblages in the region and its complex geodynamic evolution. The resolution of our map allows to perform quantitative analyses of area-age relationships and thus crustal growth. Further geoscientific analyses may allow to estimate the regional mineral potential and to delineate permissive areas as future exploration targets.

How to cite: Brandl, P., Kraetschell, A., Emberley, J., Hannington, M., Stewart, M., Petersen, S., and Baxter, A.: Remote predictive geological mapping as a tool for the reconstruction of the complex geodynamic evolution of Melanesia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3557, https://doi.org/10.5194/egusphere-egu2020-3557, 2020.

EGU2020-6710 | Displays | TS6.2

Magmatic evolution in a sedimented margin and implications for lithospheric breakup: insights from high-resolution seismic data from the South China Sea

Cuimei Zhang, Xiong Pang, Ming Su, Jinyun Zheng, Hongbo Li, Yale Gu, Jiangyang Zhang, and Yanghui Zhao

The interaction between magmatic and extensional processes related to the formation of rifted margins has been and still is highly debated. The interpretation of magmatic additions, timing of onset and budget of magma during rifting and lithospheric breakup remain controversial and poorly understood. In contrast, the emplacement of magmatic additions in rift systems with high sedimentation rates provides an exceptional perspective towards resolving some of these problems.

In this paper, we present two new high-resolution seismic profiles imaging the complete transition from the hyperextended crust to oceanic crust in the northern South China Sea (SCS). Based on the observation of magma-related structures and the interrelationship with the sedimentary sequence, we define forms and timing of magmatic additions. We show that magmatic activity initiated during necking and then propagated together with the seaward formation of “new” basement , as indicated by the occurrence of sills and laccoliths during hyperextension, and ENE striking cone-shaped volcanos during the final breakup stage before the establishment of an embryonic and then steady-state oceanic crust.

First order estimations of the magmatic budget in order to decipher the magmatic evolution show that it strikingly increased during final hyperextension and the breakup stage and lasted until 23.8 Ma. Thus, magmatic activity continued even after cessation of rifting. This study enables for the first time to provide a semi-quantitative estimate of when, where and how much magma formed during final rifting and breakup at a magma-intermediate margin.

How to cite: Zhang, C., Pang, X., Su, M., Zheng, J., Li, H., Gu, Y., Zhang, J., and Zhao, Y.: Magmatic evolution in a sedimented margin and implications for lithospheric breakup: insights from high-resolution seismic data from the South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6710, https://doi.org/10.5194/egusphere-egu2020-6710, 2020.

Bohai Bay, East China Sea and South China Sea are three of the largest-scale Cenozoic petroleum-rich sedimentary basins along the Chinese continental margin. For the past decades, the wealth of geological and geophysical data was acquired by the petroleum industries, which provide an opportunity to have a synthetic study on these basins.

(1) Structure and stratigraphic framework for the Cenozoic basins in the Bohai Bay, the East China Sea and the South China Sea are revealed to be different. The Bohai Bay basin was imaged to be a pull-apart basin, through which a regional-scale strike-slip fault went. The South China Sea was controlled by extension, which generated a serial of deepwater basins on the hyper-extended crust adjacent to the oceanic crust, most of which was controlled by the detachment faults. Between the Bohai Bay basin and East China Sea is the East China Sea, at the deep level of which a serial of thrust faults occurred. It indicated the regional compression from the pacific plate toward the East China.

(2) Based on the different structure and stratigraphic sequence in the basins along the Chinese continental margin, the basins evolutions were reconstructed. In Late Paleocene to Middle Eocene, distributed faulting occurred along the Chinese continental margin. Subsequently, in Late Eocene the evolution of these three basins were observed to be different. The Bohai Bay Basin was strongly influenced by the oblique strike-slip faulting, and lasted to the latest Late Oligocene, followed by the thermal subsidence in Miocene and a pulse of acceleration subsidence since Pliocene. In contrast to Bohai Bay basin, the continental shelf basin of the East China Sea experienced a long-time compression in the context of back-arc setting, and subsequently has a regional subsidence since Early Pliocene. The continental crust of the South China Sea was thinned since Late Eocene and eventually broke apart in Oligocene to form oceanic crust, where detachment faults bounded a serial of deepwater basins.

The different in basin structures and evolutions since Late Eocene was consistent with the event of plate organization in the western Pacific at that time. Before the event, Chinese continental margin was influenced by the interaction of Eurasian and Pacific plates, e.g. double-plate system. The subduction and related retreat of Pacific plate led to the back-arc extension of the Chinese continental margin, generating widely distributed grabens and half grabens filled with sediments. After this event, the Chinese continental margin was deformed by the interaction between India, Eurasian, Pacific and Philippine Sea plates, e.g. multi-plate system. In this context, several dynamic forces affected the evolution of the Chinese continental margins was observed, e.g. the collision between India and Eurasia, the change of the subduction direction of the Pacific plate, the subduction collision of the proto-South China Sea, the northward movement of the Philippine Sea plate. These complex plate reorganizations lead to the different genetic type of basins in Chinese continental margin.

How to cite: Ren, J., Lei, C., and Zhang, J.: Structure and stratigraphic framework of the basins along the Chinese Continental Margins: new constraints on the Cenozoic plates’ reorganization in Eastern and Southeastern Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1553, https://doi.org/10.5194/egusphere-egu2020-1553, 2020.

EGU2020-5610 | Displays | TS6.2

From Mesozoic subduction to Cenozoic extension: what controlled the tectonic process of South China Sea?

Zhen Sun, Fucheng Li, Ning Qiu, and Longtao Sun

The South China Sea (SCS) is one of the largest marginal seas in the western Pacific. Widespread onshore outcrops of the late Mesozoic granitic and volcanic rocks suggest that the SCS was once an active margin associated with Paleo-Pacific or proto South China Sea subducted toward South China in the late Mesozoic. It transitioned into rifting after late Cretaceous and then spreading in Oligocene. IODP drilling indicates that SCS transitioned from subduction into sea spreading in a short time (no more than 30 Myrs) and show diachronous breakup both temporally and spatially. What controlled this tectonic process? In order to answer these questions, we used a combination of data sources, including reprocessed magnetic data, drilling/dredging samples, depositional environment and deformation style on multi-channel seismic profiles to constrain the possible spatial distribution of the Mesozoic volcanic arc first and found that the southwest part of the Mesozoic volcanic arc distributes on both sides of the southwest SCS sub-basin, while the northeast part remains nearly in its original location. The results suggest that the initial breakup sites for the SCS margin might be arc area in the southwest and fore-arc area in the northeast during the opening of SCS basin. Mathematical modeling experiments suggest that several circumstances may cause fore-arc breakup, including: steepening of the subducting plate, a pre-existing rheologically/tectonically weak zone in the arc-front/fore-arc in the subduction plate, seamount or plateau subduction and damaging of the fore-arc area. Also if the subducting slab is young or the subduction time is short, fore-arc breakup will occur. Further analysis suggested that along with the rifting, two sources of magma may have contributed to the rifting. One is supposed to be decompressive melting, the other one is deep sourced and constitute the high velocity lower crustal magmatic underplating, which is supposed to be related with the subduction slab break off.

How to cite: Sun, Z., Li, F., Qiu, N., and Sun, L.: From Mesozoic subduction to Cenozoic extension: what controlled the tectonic process of South China Sea?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5610, https://doi.org/10.5194/egusphere-egu2020-5610, 2020.

South China Sea (SCS) is not only the crucial pathway for transporting terrigenous materials from Eurasia to the Western Pacific Ocean since the early Oligocene, but also the dominant accumulation and preservation place as a result of limited material exchange between the semi-closed oceanic basin and the open ocean since the middle Miocene. Diverse factors, including global climate changes, eustatic sea level change, regional and local tectonic events, et al., controlled the sedimentary dispersal and accumulational patterns in the oceanic basin of the SCS, which can be revealed by the calculation of sediment budget at different geological times, as the sediment budget can illustrate directly the sediment influx, storage, loss in a basin system (Hapke et.al, 2010).

By interpreting the multichannel seismic profiles covering the whole oceanic basin with constraints from International Ocean Discovery Program (IODP) Expeditions 349, 367 and 368, we reconstructed the sequence stratigraphy framework of the study area, and then calculated the sedimentary budget at different geological time. This work aims to quantitate the sedimentary dispersal and accumulation in the oceanic basin for the first time.

Until now we have completed the sequence boundary identification and dating, as well as the division of sedimentary units of all multichannel seismic profiles. The grid data of different sequence boundaries have been obtained and posted on the bathymetric map, and by the time-depth conversion with appropriate function in different region referred from the drilling results of IODP expeditions, we have figured out the thickness of each sedimentary unit. In the following we will do the decompaction correction before calculating the sedimentary budget of the whole oceanic basin at different times. This work could increase our understandings on the major controlling factors and possible material sources of the deposition process.

 

How to cite: Wang, F. and Ding, W.: Sedimentary Dispersal and Accumulation in the oceanic basin, South China Sea, revealed by Sediment Budget, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6436, https://doi.org/10.5194/egusphere-egu2020-6436, 2020.

EGU2020-2273 | Displays | TS6.2

Extension discrepancy distribution of the hyper-thinned continental crust in the Baiyun Rift, northern margin of the South China Sea

Yanghui Zhao, Weiwei Ding, Jianye Ren, Jiabiao Li, Dianjun Tong, and Jiangyang Zhang

It has been widely reported that extension of the upper crust measured from faulting is far less than the lower crustal thinning at rifted continental margins. This phenomenon is referred to as “extension discrepancy”. However, recent studies found out not all rifted margins had experienced a crustal thinning increasing with depth. Here, we use observations from 3D seismic reflection data that cover the Baiyun Rift, to explore the extension discrepancy between the brittle extension and crustal thinning when the crust of the Northern South China Sea margin thinned from 30km to <12km. To achieve this, first, we restored the rift system of the Baiyun Rift in the absence of post-rift sediments and water loading. Subsequently, we applied alternative methods based on the fault geometries and the crustal thickness ratios to compare the deformation of the brittle crust and the whole crust. Results show (1) the upper crustal faulting was sufficient to explain the whole crust thinning in the basin center, indicating no extension discrepancy; (2) near the rift flanks, the upper crustal faulting is greater than the whole crustal thinning, indicating inverse discrepancy. In the northeast of the Baiyun Rift where detachment faulting occurred, magmas passively upwelled and thickened the crust due to isostasy. Consequently, the lower crust was exhumed locally during the detachment faulting. These results indicate the hyper-thinning process of the continental crust in the Northern South China Sea was substantially dominated by tectonic extension rather than thermal thinning.

How to cite: Zhao, Y., Ding, W., Ren, J., Li, J., Tong, D., and Zhang, J.: Extension discrepancy distribution of the hyper-thinned continental crust in the Baiyun Rift, northern margin of the South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2273, https://doi.org/10.5194/egusphere-egu2020-2273, 2020.

EGU2020-9137 | Displays | TS6.2

Partitioning between strike-slip and orthogonal extension in the western South China Sea

Pan Luo, Jianye Ren, Xi He, Chao Lei, Junjie Xu, Gianreto Manatschal, Nick Kusznir, and Peng Chao

Our study focuses on the Zhongjianna (ZJN) (Phu Kham) Basin, located at the western termination of the South China Sea (SCS) and separated from the Indochina continent by the N-S striking East Vietnam Boundary Fault Zone, which is a large scale strike-slip fault system. The sedimentary infill history of the ZJN basin records the complete evolution and interaction of the Indochina-SCS system and allows the tectonic and kinematic evolution of the basin to be understood.. The discovery of hyper-extended continental crust and mantle exhumation in this basin leads to the question of what is the relative role of large-scale strike-slip and orthogonal faulting in controlling crustal thinning in the ZJN basin.  

  Our preliminary results confirm the existence of hyperextended continental crust flooring the ZJN basin. Two different types of structures can be identified in this area: extension related deformation in the eastern part and strike-slip related deformation in the western part. The analysis of fault geometries and kinematics linked to timing and subsidence rates suggest that the N-S-orientated strike-slip structures dominated the continental shelf and slope area on the west side of the basin. In the basin, however, most faults strike NE-SW and are parallel to the mid-ocean ridge. Thus, it appears that the ZJN basin resulted from the partitioning between strike-slip and orthogonal extension.

In our presentation we show the results of our seismic interpretation, strain and subsidence analysis and discuss the interaction between strike-slip and orthogonal extension in setting up the hyper-extended ZJN basin and its implications for the large scale tectonic and geodynamic framework.

How to cite: Luo, P., Ren, J., He, X., Lei, C., Xu, J., Manatschal, G., Kusznir, N., and Chao, P.: Partitioning between strike-slip and orthogonal extension in the western South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9137, https://doi.org/10.5194/egusphere-egu2020-9137, 2020.

EGU2020-8920 | Displays | TS6.2

The stratigraphic and magmatic tape recorder of crustal thinning and lithospheric breakup: insights from the NW South China Sea

Peng Chao, Gianreto Manatschal, Nick Kusznir, Pauline Chenin, Jianye Ren, and Xiong Pang

In the last two decades, knowledge of the South China Sea (SCS) rifted margins has significantly evolved. However, there are still many open questions related to when, how, and under what conditions major crustal thinning (necking) and lithospheric breakup occurred and how these processes are recorded in the stratigraphic and magmatic tape recorder. In this study, we aim to explore the tectono-sedimentary-magmatic evolution of rift systems during crustal thinning and lithospheric breakup. Our study is based on observation of conjugate margins architecture along high resolution long offset reflection seismic sections through the Northwest SCS. We focus on crustal thinning and lithospheric breakup, and the transition to first oceanic crust and the birth of an oceanic spreading centre. We describe the Northwest SCS crustal architecture, define extensional domains (proximal, necking, hyper-extended, OCT, oceanic domain) and margin architecture (upper and lower plate). We determine the tectono-sedimentary evolution and discuss the evolution of deformation modes through time and space by linking the tectono-stratigraphic-magma evolution with the observed crustal thinning. These results have important implications for understanding the deformation history and processes in time and space, and enable the analysis and linkage of the tectono-stratigraphic evolution of rift systems with the observed crustal thinning and breakup processes.

How to cite: Chao, P., Manatschal, G., Kusznir, N., Chenin, P., Ren, J., and Pang, X.: The stratigraphic and magmatic tape recorder of crustal thinning and lithospheric breakup: insights from the NW South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8920, https://doi.org/10.5194/egusphere-egu2020-8920, 2020.

We present new major and trace element chemistry and Sr, Nd, and Pb isotope data from basalts, recovered from the forearc setting of the Yap Trench in the western Pacific, and discuss their melt evolution and petrogenesis within the framework of the geodynamic interactions among the Caroline Plate, the Caroline ridge, and the Philippine Sea plate. These rocks have mid-ocean ridge basalt (MORB)-like geochemical features, including medium Fe contents, tholeiitic affinity, high TiO2 values at a given Fe2O3/MgO ratio, Ti/V, Nb/Y, Ba/Yb, and Ba/Th ratios similar to those of back-arc basin basalts (BABB), and trace element patterns commonly displayed by MORB and BABB lavas. However, these basalts are characterized by highly radiogenic Sr and Pb contents, reminiscent of western Pacific sediments. We suggest that forearc magmatism was responsible for the origin and petrogenesis of these rocks. Forearc magmatism was induced by the shrinking of the Philippine Sea plate, which squeezed out the underlying back-arc basin asthenosphere with Indian–type ambient mantle characteristics to invade the forearc mantle of the Yap Trench and causes lithospheric extension. Upwelling and decompression melting of this mantle produced MORB-like lavas in the narrow forearc setting. An apparent slab tear or gap in the subducting plate facilitate the penetration of the mantle outflow. The collision of the Caroline Ridge subducted more sediments into the mantle wedge. Melting of the subducted sediments and the invasion of the Indian-type asthenosphere into the forearc account for the highly radioactive Sr and Pb isotopes of the MORB-like lavas.

How to cite: Tang, L. and Chen, L.: Chemical Geodynamics of Asthenospheric Outflow in the western Pacific: Philippine Sea Back-arc Basin Mantle Source of the Yap Trench Forearc Lavas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1727, https://doi.org/10.5194/egusphere-egu2020-1727, 2020.

EGU2020-4396 | Displays | TS6.2 | Highlight

Sediment gravity flow deposits triggered by typhoon, East China Sea Shelf, Western North Pacific

Xin Shan, Xuefa Shi, and Shuqing Qiao

Hybrid event beds and a debrite are identified in a core on the mid-shelf of East China Sea. Four units are divided according to abrupt boundary identification, with assistance of grain size analysis. The hybrid event beds typically comprise four internal divisions from the base to the top: (1) structureless muddy sand (H1a, high density turbidite); (2) massive muddy sand with mud clasts (H1b, higher density turbidite); (3) linked debrite (H3); (4) homogeneous mud (H5, fluid mud). The radiocarbon ages of the core were in the range of 3890–8526 yr BP. Based on correlation with other surrounding cores, the depositional age of hybrid event beds and the debrite may be less than 500 yr BP. The TOC and δ13C values in event beds suggest a local erosional regime. The average δ13C value for turbidite (H1a and H1b) is similar to the H3 division in the hybrid event beds, implying that the organic matter in the H1a, H1b and H3 may come from the same source area. The REE data reveals the sediment source is initially from Korean rivers. Bi-plots of (La/Lu)UCC vs. (La/Y)UCC, (La/Y)UCC vs. (Gd/Lu)UCC, (La/Yb)UCC vs. (Gd/Yb)UCC and (La/Yb)UCC vs. (Sm/Nd)UCC of four units in the core are concentrated in the similar range, indicating these event beds have the same source area. Both regimes that partial transformation from a debris flow and erosional bulking are suggested. It is unlikely that the debris flow is triggered by a hyperpycnal flow or a tsunami, because both can carry continental and/or coastal signals which have not been recognized in the core. Typhoon can be a probable triggering mechanism.

 

Acknowledgements

This paper was supported by National Program on Global Change and Air-Sea Interaction (Grant No. GASI-GEOGE-03), National Natural Science Foundation of China (Grants No U1606401 and No. 41706063) and the Taishan Scholar Program of Shandong.

How to cite: Shan, X., Shi, X., and Qiao, S.: Sediment gravity flow deposits triggered by typhoon, East China Sea Shelf, Western North Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4396, https://doi.org/10.5194/egusphere-egu2020-4396, 2020.

EGU2020-4608 | Displays | TS6.2

The significance and tectonic evolution of Huatung basin

Minghui Zhao, Jean-Claude Sibuet, Jonny Wu, Longtao Sun, and Jiazheng Zhang

The Huatung basin (HB), located between the Philippine Sea plate (PSP) and the South China Sea (SCS), has likely existed near tectonically-active plate boundaries since the early Cenozoic. It may record SCS evolution from the SCS rifting phase to today, and is a key region to understand the broad geodynamic interactions between the SCS and PSP. A left-lateral shear plate boundary between the SCS and PSP followed the Gagua ridge and was active before 56 Ma. A slight compressive component along the Gagua ridge might have occurred from 40 to 30 Ma, giving rise to the topographic uplift of Gagua ridge and adjacent ridges with possibly some underthrusting of the PSP below the HB. A significant compressive episode also occurred along a second fracture zone around 23 Ma ago. The Manila trench inception occurred along the PSP-SCS plate boundary before the end of SCS spreading, involving the subduction of the younger SCS beneath the older HB. Later the intra-oceanic Luzon arc formed and collided in a sub-parallel fashion with the Eurasian continent around 5-6 Ma ago to form Taiwan. The PSP/EU motion was oblique with respect to this plate boundary during SCS opening. However, we have no direct evidence of the HB age (early Cenozoic or early Cretaceous) and if the PSP underthrusted below the HB. We propose to carry a deep seismic refraction survey and dredge sampling of basement units to clarify this problem. This work is supported by the Chinese National Natural Science Foundation (contracts 91958212, 41730532, 41576070 and 41676043).

How to cite: Zhao, M., Sibuet, J.-C., Wu, J., Sun, L., and Zhang, J.: The significance and tectonic evolution of Huatung basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4608, https://doi.org/10.5194/egusphere-egu2020-4608, 2020.

EGU2020-6264 | Displays | TS6.2

Influences of tropical monsoon climatology on the delivery and dispersal of organic carbon over the Upper Gulf of Thailand, SE Asia

Bin Wu, Xiaodan Wu, Xuefa Shi, Shuqing Qiao, Shengfa Liu, Limin Hu, Jihua Liu, Yazhi Bai, Aimei Zhu, Narumol Kornkanitnan, and Somkiat Khokiattiwong

The seasonal reversal of monsoon climatology modulates precipitation, currents, river influx and a variety of biogeochemical processes. In the present study, we evaluated the role of tropical monsoon pertaining to fluvial discharge, sediment load, coastal current and water stratification on seasonal organic carbon dynamics during four sampling campaigns in the Upper Gulf of Thailand (UGoT), SE Asia. This study demonstrates that particulate organic carbon (POC) is closely correlated with the river influx of suspended sediment, which is generally regulated by the local rainfall. Higher POC is found near the large estuarine section (Chao Phraya River, CHAO) during southwest monsoon period and the small estuarine section (Mae Klong River, MK) during the tropical cyclones impacted November 2013. POC in the estuarine sections is influenced more by the seasonal shift than the coastal sections. Land-derived organic matter prevails in the small estuarine and coastal sections, while marine-derived organic matter dominates in the CHAO and MK impacted estuarine sections. Total organic carbon (TOC) however displays less significant seasonal monsoon variations than POC. Further, TOC tends to accumulate in the sub-silt fraction of sediments, which mainly occurs in the small estuarine and eastern coastal sections and is obviously influenced more by marine-derived factors. TOC in surface sediment of the CHAO and MK influenced sections however displays more seasonal variations with prevailing river input as evidenced by coarser sediment and higher C/N ratios. Moreover, the almost year round water stratification across the region acts as the barrier in retaining organic carbon in the estuaries and their vicinities from dispersal into the lower portion of Gulf of Thailand. High sedimentation rate (~1.1 cm·yr-1) further facilitates the organic carbon burial in the study area. The delivery, dispersal and burial of organic carbon are closely associated with the climate controlled precipitation, and thus the tropical monsoon climatology under the global warming in particular is an important factor influencing the organic carbon in the UGoT.

Acknowledgements

This study was supported by National Programme on Global Change and Air-Sea Interaction (GASI-02-IND-CJ05, GASI-GEOGE-03), the Natural Science Foundation of China (U1606401), the Qingdao National Laboratory for Marine Science and Technology (2016ASKJ13), the China-Thailand cooperation project “Research on Vulnerability of Coastal Zones”, and the Taishan Scholar Program of Shandong.

How to cite: Wu, B., Wu, X., Shi, X., Qiao, S., Liu, S., Hu, L., Liu, J., Bai, Y., Zhu, A., Kornkanitnan, N., and Khokiattiwong, S.: Influences of tropical monsoon climatology on the delivery and dispersal of organic carbon over the Upper Gulf of Thailand, SE Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6264, https://doi.org/10.5194/egusphere-egu2020-6264, 2020.

We present a paleoclimatic reconstruction for the Holocene by clay mineral analyses of sediments from core MZ02 retrieved from the mud area of the inner continental shelf of the East China Sea (ECS). The clay minerals mainly consist of illite (66%-79%) and chlorite (12%-19%), with minor kaolinite (7%-13%) and smectite (0-6%). Provenance analysis suggests that the illite-dominated clay minerals were derived mainly from the detrital outputs of the Changjiang, Minjiang, and small rivers from Taiwan Island. Our study indicates that the sea level rise since the last glacial, the strength of the Taiwan Warm Current (TWC) and Chinese Coastal Current (CCC) have controlled the dispersal and deposition of clay minerals on the ECS, that in turn determined the clay mineral compositions in the core sediments. During 13,000-9500 BP, due to the lower sea level and shorter distance between these three estuaries and core MZ02, fine sediments on the inner shelf of the ECS were primarily supplied by mixed provenances from the Changjiang, Taiwanese, and Minjiang rivers. During the early Holocene (9500-6200 BP), stronger sediment reworking and erosion at the shelf edge was responsible for the increased lateral transport of fine sediments in the ECS, which lead to a dominance of the sediment source from the Changjiang, while the Taiwanese and Minjiang rivers only provided minor components of detrital sediment to the shelf. Increased strength of TWC might have played an important role in the sediment dispersal and deposition on the inner shelf of the ECS during 6200-2400 BP, with a dominance of more than 60% sediments transported from Taiwanese rivers. Furthermore, our study implies that the Asian monsoon and the weakening of TWC were linked to the abrupt increase of Changjiang and Minjiang derived terrigenous detritus materials since 2400 BP.

 

Acknowledgments

This work was supported by National Nature Science Foundation of China (No.41106063), Science and Technology Basic Special Program of China (No.2008FY220300), Marine Public Welfare Research Project of China (No.200805063), China Postdoctoral Science Foundation (No.20100481304) and Coastal Investigation and Research Project of China (No. 908-01-CJ12).

How to cite: Liu, S., Shi, X., Fang, X., Dou, Y., Liu, Y., and Wang, X.: Spatial and temporal distributions of clay minerals in mud deposits on the inner shelf of the East China Sea: Implications for paleoenvironmental changes in the Holocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8782, https://doi.org/10.5194/egusphere-egu2020-8782, 2020.

EGU2020-8919 | Displays | TS6.2

Sedimentation at different time scales in Yellow River delta in response to course shift and water-sediment regulation

Qiao Shuqing, Shi Xuefa, Yonggui Yu, Limin Hu, Lin Zhou, Guangbo Ren, Gang Yang, Zhengquan Yao, and Naishuang Bi

The fluvial sediment to the sea is the base of coastal geomorphology and biogeochemical processes, and its transport is an important pathway to the global biogeochemical cycle. The Yellow River is one of globally well-known large rivers because of high sediment load and Chinese Mother River. Its channel shifts frequently because of high sediment load and steep river-channel gradient in the lower reaches . The terminal channel has shifted more than 50 times since 1855 and the last two changes in 1976 and 1996. Furthermore, Yellow River Conservancy Commission has began to implement Water-Sediment Regulation Scheme (WSRS) since 2002, to increase the main channel discharge capacity and to reduce deposition in the reservoirs and river channel. Surface sediment, multi-core and gravity sediment cores, remote sensing images and bathymetric data near the Yellow River delta were collected to study the impact of WSRS and river terminal change together with the water and sediment discharge at the gauging station. Especially, 7Be, 210Pb and 137Cs, grain size, sediment color and TOC/TN was measured to show sedimentary record of WSRS and channel shift on inter-and intra-annual time scale. The results show that the fresh sediment from Yellow River  during 2014 WSRS period can be transported eastward more than 80 km off the rivermouth, while cannot pass 38° easily. Meanwhile the sediment can penetrate as deep as 12 cm. The subaerial delta area is mostly stable after 2002, and its balance is mainly controlled by the surrounding artificial coastline. The subaqueous delta changed from trapping about 4.6×108 t to being eroded ~ 3.1×108 t and 1.1×108 t each year during the three stages of 1976-1996, 1996-2002 and 2002-2014. It is proposed that the subaerial delta area will change little except for the Q8 outlet area, while the subaqueous delta evolution mostly depend on the Huanghe material besides the hydrodynamic conditions. In addition, the aim of WSRS to scour the lower riverbed will recede in future. This study deepens our understanding of the fluvial sediment disperse pattern and sedimentation under the influence of human activities and hydrodynamic conditions.

Acknowledgements
This study was supported by National Programme on Global Change and Air-Sea Interaction (GASI-GEOGE-03) and the Natural Science Foundation of China (U1606401).

How to cite: Shuqing, Q., Xuefa, S., Yu, Y., Hu, L., Zhou, L., Ren, G., Yang, G., Yao, Z., and Bi, N.: Sedimentation at different time scales in Yellow River delta in response to course shift and water-sediment regulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8919, https://doi.org/10.5194/egusphere-egu2020-8919, 2020.

In order to grasp the Cenozoic extension and tectonic deformation characteristics of the crust in the southern of the South China Sea, a newly acquired multi-channel seismic profile (DZ02) acrossing the conjugate continental margin of the Southwest Subbasin, Nansha block, and Nansha Trough is explained. Four stratigraphic units (syn-rift unit, drift unit1, drift unit2 and post-rift unit) were determined with six sequence boundaries (Tg, T70, T60, T40, T20, T10). Based on the differences in tectonic units and the features of stratigraphic and structural in the southern of the South China Sea, it is divided into five structural belts from northwest to southeast, which are the northern continental margin extension zone, the Southwest Subbasin, the Nansha intracontinental extension zone, the Nansha forebulge zone, and the Nansha trough. The fault derived and whole crustal extension factors of the Nansha block are also calculated. The results show that in time, the Nansha block has undergone two phases of extension, namely the syn-rift period and the seafloor spreading period. The syn-rifting stage accounted for about 69% of the total extension, and the seafloor spreading stage of the South China Sea accounted for about 26%. In space, the whole crust extension factor is greater than the fault derived extension factor in most areas. By comparing with the multi-channel seismic profile of the eastern part of the Nansha block imply that the crustal extension process is synchronous, but the extent of the extension in the western of Nansha is always greater.

How to cite: zhaocai, W.: Seismic stratigraphy and tectonic structure from a long multi-channel seismic profile across the southern of South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9119, https://doi.org/10.5194/egusphere-egu2020-9119, 2020.

EGU2020-13579 | Displays | TS6.2

Reconstruction of sediment transported patterns since the late Miocene in the Qiongdongnan Basin, northern South China Sea

Ming Su, Zhixuan Lin, Ce Wang, Hui Chen, Shan Liu, and Kunwen Luo

Late Miocene-to-present sedimentary succession, consisting of deep-water channels, submarine canyons, shelf-edge delta and clinoform, mass transport complex (MTC), turbidites, pelagic sediments and so on, has accumulated in the Qiongdongnan Basin (QDNB) and supplied from several sediment potential provenances, including surrounding tectonic uplifts and drainage system (e.g. Hainan island, Red River system and Shenhu Uplift). This multiple sediment source system with a variety of space-time distribution is more likely to result in different transported pathways to connect with accumulated zone of the QDNB. To investigate spatial and temporal variation of sediment transported patterns since the late Miocene, the primary dataset in this study is high-resolution 2D seismic profiles that are used to interpret several types of sedimentary features and to determine the distribution within the basin. Integrated analysis of core samples and well log data summarized from previous studies is allow for acquiring high-resolution vertical information about physical and chemical properties of different types of sedimentary features. Depended on characterization and spatial distribution of depositional models, the sediment delivered pattern could be classified into three major types. (1) the downslope transports suggest that sediments were transported by gravity flows and slope failures from high topographic areas to deposit at the basinfloor, and basinward prograding deposition at the shelf or tectonic uplifts, channels/canyons developed along the slope and submarine fans formed at the lower slope are the products of downslope transports shown in the SE-trending seismic profiles; (2) the canyon-axial transports are associated with geomorphology of the Central Canyon System (CCS) across the QDNB from SWW to NEE. Abundant sediments originated at the Red River system were supplied from the west, resulting in dominantly onlap-filling turbidites with a series of erosional discordance within the head area and western segment of the CCS; (3) the combined transport is a mixture of downslope and canyon-axial sediment transports. A large volume of MTDs source from the Hainan Island in the north was transported southward and impeded by the Southern Uplift, so they tended to widen the canyon and continuously deliver eastward along CCS. These three types of sediment transported patterns since the late Miocene in the QDNB might be helpful for predicting distribution of different sedimentary characteristics, which has economic significance in the industrial field.

How to cite: Su, M., Lin, Z., Wang, C., Chen, H., Liu, S., and Luo, K.: Reconstruction of sediment transported patterns since the late Miocene in the Qiongdongnan Basin, northern South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13579, https://doi.org/10.5194/egusphere-egu2020-13579, 2020.

EGU2020-11862 | Displays | TS6.2

Research progress on the Zhongnan-Liyue Fault Zone in the South China Sea Basin

Ziying Xu, Jun Wang, Hongfang Gao, and Yongjian Yao

We give a review of the up-to-date research situation about The Zhongnan-Liyue Fault Zone (ZLFZ), than analyze the spatial distribution and tectonic deformation feature of the ZLFZ based on the geophysical data including topographic, seismic, gravity and magnetic data. The results show that the ZLFZ has obvious north-south segmentation characteristics in in the South China Sea Basin. The north section, which is between northwest sub-basin and east sub-basin, is a narrow zone with the width of ~16 km, and is NNW trend from 18°N,115.5°E to 17.5°N,116°E. Meanwhile ,the south section, which is between southwest sub-basin and east sub-basin, is a wide zone with the width of 60-80 km, and is NNW trend from the east of ZhongshaBank to the west of LiyueBank. The main fault of the ZLFZ is NNW trend along the seamounts ridge of Zhongnan. the ZLFZ of transition region is NNE trend from the north section to the south section. According the sub-basin’s sedimentary thickness and oceanic crust thickness exist obvious difference, on both sides of the ZLFZ, we speculate that the ZLFZ play an important role on geological structure of sub-basin. According to the chang of crustal structure, We speculate that the ZLFZ is at least a crustal fracture zone.

Key words: South China Sea Basin; Zhongnan-Liyue Fault Zone; Spatial distribution; Tectonic deformation 

Foundation item: National Natural Science Foundation of China (41606080, 41576068); The China Geological Survey Program (GZH201400202, 1212011220117, DD20160138, 1212011220116).

How to cite: Xu, Z., Wang, J., Gao, H., and Yao, Y.: Research progress on the Zhongnan-Liyue Fault Zone in the South China Sea Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11862, https://doi.org/10.5194/egusphere-egu2020-11862, 2020.

EGU2020-12566 | Displays | TS6.2

Subsidence discrepancy in the Valencia Trough revealed from reflection seismic observations and backstripping results

Penggao Fang, Geoffroy Mohn, Julie Tugend, and Nick Kusznir

    The Valencia Trough is commonly included as part of the set of western Mediterranean Cenozoic extensional basins that formed in relation with the Tethyan oceanic slab rollback during the latest Oligocene to early Miocene. It lies in a complex tectonic setting between the Gulf of Lions to the North-West, the Catalan Coastal Range and the Iberian chain to the West, the Balearic promontory to the East and the Betic orogenic system to the South. This rifting period is coeval with or directly followed by the development of the external Betics fold and thrust belts at the southern tip of the Valencia Trough. Recent investigations suggest that the Valencia Trough is segmented into two main domains exhibiting different geological and geophysical characteristics between its northeastern and southwestern parts. The presence of numerous Cenozoic normal faults and the well-studied subsidence pattern evolution of the NE part of the Valencia Trough suggest that it mainly formed coevally with the rifting of Gulf of Lion. However, if a significant post-Oligocene subsidence is also evidenced in its SW part; fewer Cenozoic rift structures are observed suggesting that the subsidence pattern likely results from the interference of different processes.

    In this presentation, we quantify the post-Oligocene subsidence history of the SW part of the Valencia Trough with the aim of evaluating the potential mechanisms explaining this apparent subsidence discrepancy. We analyzed the spatial and temporal distribution of the post-Oligocene subsidence using the interpretation of a dense grid of high-quality multi-channel seismic profiles, also integrating drill-hole results and velocity information from expanding spread profiles (ESP). We used the mapping of the main unconformities, especially the so-called Oligocene unconformity, to perform a 3D flexural backstripping, which permits the prediction of the post-Oligocene water-loaded subsidence. Our results confirm that the post-Oligocene subsidence of the SW part of the Valencia Trough cannot be explained by the rifting of the Gulf of Lions. Previous works already showed that the extreme crustal thinning observed to the SW is related to a previous Mesozoic rift event. Here, we further highlight that if few Cenozoic extensional structures are observed, they can be interpreted as gravitational features rooting at the regionally identified Upper Triassic evaporite level. Backstripping results combined with the mapping of the first sediments deposited on top of the Oligocene unconformity show that they are largely controlled by the shape of Betic front with a possible additional effect of preserved Mesozoic structures. At larger scale, we compare the mechanisms accounting for the origin and subsidence at the SW part of the Valencia Trough with those responsible for the subsidence of its NE part and the Gulf of Lions.

How to cite: Fang, P., Mohn, G., Tugend, J., and Kusznir, N.: Subsidence discrepancy in the Valencia Trough revealed from reflection seismic observations and backstripping results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12566, https://doi.org/10.5194/egusphere-egu2020-12566, 2020.

EGU2020-21429 | Displays | TS6.2

Multi-phase volcanisms along a stretched continental crust: insights from Xisha massif, northwestern of the South China Sea margin

Lijie Wang, Fuyuan Li, Baojin Zhang, Ziying Xu, and Zhe Wang

Volcanism occurs close to the rifting active areas, especially in the passive continental margins. Their occurrence can have considerable impacts on the continental lithosphere breakup process, hydrocarbon accumulation system in a basin, and regional heat flows. The Xisha massif surrounded by two hyper-extended continental crust and three oceanic basins that the area is underlain by stretched continental crust in the northwestern South China Sea margin. Sporadic Cenozoic volcanic samples and structures from wells, seismic data, and multi-beam data in the Xisha massif have been previously recognized. This study focuses on describing the igneous structures and mapping the volcanic distributions. With the use of drilled wells with lithologic and stratigraphic information, 2D multiple channel seismic data, and multi-beam data, the occurrence of three phases Cenozoic volcanism were mapped. The first episodic volcanism during the rifting to spreading stage in the South China Sea occurred together with Mesozoic granitic pluton. The drilling samples in the well CK-2 show that Late Eocene to Early Miocene basaltic pyroclastic rocks beneath the thick Miocene reefal limestone. Only five mound shaped structures from seismic profiles located on the basement highs and entirely overlapped by the following carbonates. The second episodic volcanism occurred during Middle Miocene that features volcanic group, isolated volcanic mounds, lava flows, and hydrothermal vents associated with sills in the northwestern Xisha massif. The volcanic groups are mainly present above a NE-SW trended sag and the long axis trends NW, the same as the Middle Miocene active fault orientation in the Qiongdongnan basin. The volume of the largest volcanic group is ca. 504 km3. From the intruded strata and deformational structures of volcanic mounds, sills, and laccolith, we found the third episodic volcanism occurred during Pliocene on a small scale. The igneous bodies mainly distributed in the southern Xisha massif. Distribution and volume of igneous bodies show that Middle Miocene stage magmatic activity is more intense than the others, where volcanism is dominant. Comparing with tectonic stress filed, continental crust structures, and sediment thickness, we found the distribution of volcanos is probably related to NE-SW stretching stress filed during Middle Miocene. A high vertical pressure caused by 20-25 km’s crust thickness and only ca. 1-3 km thickness sediment layer may build a good vertical gradient for magma transport. We indicate the intense Middle Miocene volcanism in Xisha massif is also related to the high velocity layers in the lower crust and cased the high heat flows. These phenomena probably coincided with more magma intruded in the lower crust when plenty of post spreading magmatism emplacement in the SCS margin.

How to cite: Wang, L., Li, F., Zhang, B., Xu, Z., and Wang, Z.: Multi-phase volcanisms along a stretched continental crust: insights from Xisha massif, northwestern of the South China Sea margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21429, https://doi.org/10.5194/egusphere-egu2020-21429, 2020.

TS6.4 – Rift to ridge: the record of continental breakup processes

EGU2020-378 | Displays | TS6.4 | Highlight

3D structures and sedimentary infill across the continent-ocean transition of the northern South China Sea: constraint by the drilling results from IODP Expeditions 367, 368 and 368X

Chao Lei, Jianye Ren, Geoffroy Mohn, Michael Nirrengarten, Xiong Pang, Jinyun Zheng, and Bowen Liu

Apart from the Iberia-Newfoundland margins, the South China Sea (SCS) represents  another passive margin where continent-ocean transition basement was sampled by deep drilling. Drilling data from IODP Expedition 367-368 and 368X combined with seismic profiles revealed a narrow continent-ocean transition (COT) between the Distal High sampled at Site U1501 and the Ridge B sampled at Site U1500. Results suggested that major Eocene lithospheric thinning triggered Mid-Ocean Ridge type melt production which emplaced within hyperextended continental crust leading eventually to continental breakup.  

Because of available dense seismic survey consisting of deep-penetrated seismic data imaging as deep as 12 s TWT, as well as drilling results from IODP Expeditions 367-368 and 368X, the COT in the northern SCS enables us to investigate the 3D propagation of continental breakup and the interactions between tectonic extension and magmatism. The top of acoustic basement can be consistently interpreted through all of our seismic survey and reveal various types of reliefs and nature from hyperextended continental crust to oceanic crust. In the basement, deep-penetrated seismic profiles present series of densely sub-parallel high-amplitude reflections that occurred within the lower crust. The lower boundary of these reflections is often characterized by double continual and high reflections interpreted as the Moho. Across the COT, the basement structure is characterized by: 1) Series of tilted blocks bounded by high angle faults on the Distal High and filled by syn-tectonic sedimentary wedges, 2) Rounded mounds of the basement with chaotic seismic reflection and sedimentary onlaps on these structures, 3) Series of ridges delimited by high-angle normal faults with no sedimentary wedge on the first oceanic crust.

Based on the detail stratigraphic framework constraint by drilling results from IODP Expeditions, the nature and timing of formation of these basement highs can be investigated. Some of these highs are limited by extensional faults while the nature of mounded structures located on the thinnest continental crust remain mysterious.  Our detailed analyses emphasize the occurrence and local control of syn-rift magmatism in order to build such structures. At larger scale, the hyperextended continental crust is characterized by significant 3D morphological variations both observed on dip and strike profiles. In contrast, the initial oceanic crust is characterized by a more homogenous structure and consistently juxtaposed to continental crust over a sharp and narrow zone.

 

How to cite: Lei, C., Ren, J., Mohn, G., Nirrengarten, M., Pang, X., Zheng, J., and Liu, B.: 3D structures and sedimentary infill across the continent-ocean transition of the northern South China Sea: constraint by the drilling results from IODP Expeditions 367, 368 and 368X, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-378, https://doi.org/10.5194/egusphere-egu2020-378, 2020.

EGU2020-4998 | Displays | TS6.4

Mapping the continent-ocean transition in the Eastern Black Sea Basin

Tim Minshull, Vanessa Monteleone, Hector Marin Moreno, and Donna Shillington

The transition from continental to oceanic crust at rifted margins is characterised by changes in a variety of parameters including crustal thickness, basement morphology and magnetisation. Rifted margins also vary significantly in the degree of magmatism that is associated with breakup. The Eastern Black Sea Basin formed by backarc extension in late Cretaceous to early Cenozoic times, by the rotation of Shatsky Ridge relative to the Mid Black Sea High. Wide-angle seismic data show that anomalously thick oceanic crust is present in the southeast of the basin, while further to the northwest the crust is thinner in the centre of the basin. This thinner crust has seismic velocities that are anomalously low for oceanic crust, but is significantly magnetised and has a similar basement morphology to the thicker crust to the southeast. We synthesise constraints from wide-angle seismic data, magnetic anomaly data and new long-offset seismic reflection data into an integrated interpretation of the location and nature of the continent-ocean transition within the basin. Northwest to southeast along the axis of the basin, we infer a series of transitions from mildly stretched continental crust at the Mid Black Sea High to hyper-thinned continental crust, then to thin oceanic crust, and finally to anomalously thick oceanic crust. We explore the geodynamic processes that may have led to this configuration.

How to cite: Minshull, T., Monteleone, V., Marin Moreno, H., and Shillington, D.: Mapping the continent-ocean transition in the Eastern Black Sea Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4998, https://doi.org/10.5194/egusphere-egu2020-4998, 2020.

EGU2020-637 | Displays | TS6.4

The seismic structure of the West Iberian continent-ocean transition

Irene Merino Perez, Manel Prada, César R. Ranero, Valenti Sallares, Ingo Grevemeyer, Alcinoe Calahorrano, Alejandra L. Cameselle, and Marta Neres

The West Iberian margin has been studied since the 1980 to mid 1990’s when some of the most emblematic geophysical cross-sections and borehole samples were collected in the area. Despite of this wealth of information, there is little understanding on how the transitional domain, commonly interpreted as exhumed mantle, transitions into oceanic crust. The lack of appropriate geophysical data makes the nature of the basement, and thus the origin of the structures, still debated. Also, the mechanisms of thinning occurring in the continental-ocean transition are poorly constrained due to data quality or methodological limitations.

Here, we present spatially coincident multichannel seismic (MCS) and wide angle seismic (WAS) data collected during the FRAME-2018 survey across the Tagus Abyssal Plain, South-West the Iberian margin. The MCS data were recorded with a 6-km-long streamer, while 17 Ocean Bottom Seismometers and 18 Ocean Bottom Hydrophones were deployed each 10 km and used to record the WAS data, both along a 350 km-long, E-W trending profile located at 38º N, and crossing the Tagus Abyssal Plain.

The MCS time-migrated seismic section provides a high-quality image from which we interpret the tectono-stratigraphic structure from the continent to the ocean, ~180 km eastwards from the J-anomaly. The seismic image shows three main domains: a first domain closest to the continent with tilted fault blocks with possible syn-rift sediments and a possibly continental basement. In this domain, there is high-reflectivity reflections at 1-2 s TWT from the top of the basement. Then, westwards, a domain displays gentle basement-top topography, high intra-basement complex reflectivity and deep-penetrating landward dipping reflections. No clear Moho reflection occurs. A third domain to the west correspond to a very smooth and highly reflective top of basement coincident with the magnetic J-anomaly. Further west top basement shows an irregular topography with comparatively numerous short tilted blocks.

We use refracted and reflected travel-times (TT) WAS and MCS field data to jointly invert for P-wave velocity (Vp) and the geometry of interfaces in the sediment, the top of the basement, and Moho. Combining MCS TT with WAS TT allows retrieving the Vp structure of the shallow part of the model and the geometry of seismic interfaces with a level of resolution that is beyond what can be obtained with WAS TT alone. The result of this joint WAS-MCS tomography is a Vp model of the margin that is fully consistent with the MCS image along the whole profile. The preliminary models show that the crustal structure is laterally more complex than previously modelled, presenting sharp boundaries between at least 5 different domains from the base of the continental slope to the ocean basin.

How to cite: Merino Perez, I., Prada, M., R. Ranero, C., Sallares, V., Grevemeyer, I., Calahorrano, A., L. Cameselle, A., and Neres, M.: The seismic structure of the West Iberian continent-ocean transition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-637, https://doi.org/10.5194/egusphere-egu2020-637, 2020.

EGU2020-2658 | Displays | TS6.4 | Highlight | Stephan Mueller Medal Lecture

On spreading modes and magma supply at slow and ultraslow mid-ocean ridges

Mathilde Cannat

 

The availability of magma is a key to understand mid-ocean ridge tectonics, and specifically the distribution of the two contrasted spreading modes displayed at slow and ultraslow ridges (volcanically-dominated, and detachment fault-dominated). The part of the plate divergence that is not accommodated by magma emplaced as gabbros or basaltic dikes is taken up by normal faults that exhume upper mantle rocks, in many instances all the way to the seafloor.

Magma is, however, more than just a material that is, or is not, available to fill the gap between two diverging plates. It is the principal carrier of heat into the axial region and as such it may contribute to thin the axial lithosphere, hence diminishing the volume of new plate material formed at each increment of plate separation. Magma as a heat carrier may also, however, if emplaced in the more permeable upper lithosphere, attract and fuel vigorous hydrothermal circulation and contribute instead to overcooling the newly formed upper plate (Cochran and Buck, JGR 2001).

Magma is also a powerful agent for strain localization in the axial region: magma and melt-crystal mushes are weak; gabbros that crystallize from these melts are weaker than peridotites because they contain abundant plagioclase; and hydrothermally-altered gabbros, and gabbro-peridotite mixtures, are weaker than serpentinites because of minerals such as chlorite and talc. As a result, detachment-dominated ridge regions that receive very little magma probably have a stronger axial lithosphere than detachment-dominated ridge regions that receive a little more magma.

Because magma has this triple role (building material, heat carrier, and strain localization agent), and because it is highly mobile (through porosity, along permeability barriers, in fractures and dikes), it is likely that variations in magma supply to the ridge, in time and space, and variations in where this magma gets emplaced in the axial plate, cause a greater diversity of spreading modes, and of the resulting slow and ultraslow lithosphere composition and structure, than suggested by the first order dichotomy between volcanically-dominated and detachment-dominated spreading.

In this talk I illustrate these points using results of recent studies at the Mid-Atlantic and Southwest Indian ridges.

How to cite: Cannat, M.: On spreading modes and magma supply at slow and ultraslow mid-ocean ridges, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2658, https://doi.org/10.5194/egusphere-egu2020-2658, 2020.

EGU2020-14296 | Displays | TS6.4

Tectono-magmatic and thermal evolution of the SE China margin-NW Palawan breakup

Geoffroy Mohn, Michael Nirrengarten, Andrea Schito, Nick Kusznir, Sveva Corrado, Stephen Bowden, Manuel Pubellier, François Sapin, and Hans-Christian Larsen

Continent Ocean Transitions (COTs) record the processes leading to continental breakup and localized oceanic accretion initiation. The recent IODP Expeditions 367-368 and 368X at the SE China margins combined with high quality multi-channel seismic profiles provide a unique dataset to explore the tectono-magmatic and thermal evolution from final rifting to early seafloor spreading. To investigate these issues, we developed a multi-disciplinary approach combining reflection seismic interpretations with geophysical quantitative analysis calibrated thanks to drilling results, from which we measured and modelled the thermal maturity in pre-/syn- to post-rift sediments.

Drilling results show that the transition from the most thinned continental crust to new, largely igneous crust is narrow (~20 km). During final rifting, decompression melting forming Mid-Ocean Ridge type magmatism emplaced within thinned continental crust as deep intrusions and shallow extrusive rocks concomitant with continued deformation by extensional faults. The initial igneous crust of the conjugate margins is asymmetric in width and morphology. The wider and faulted newly accreted domain on the SE China side indicates that magmatic accretion was associated with tectonic faulting during the formation of initial oceanic lithosphere, a feature not observed on the conjugate Palawan side. We suggest that deformation and magmatism were not symmetrically distributed between the conjugate margins during the initiation of seafloor spreading but evolved asymmetrically prior to the spreading ridge stabilising.

Organic matter from post-rift sediments has low thermal maturities due to limited burial and the absence of late post-rift magmatism. In contrast, pre to syn-rift sediments show significant variability in thermal maturities across the COT. Localised high thermal maturities for the pre- to syn-rift sediments requires that significant additional heat be imparted at shallow depths during breakup, likely related to magmatic intrusion or subsurface expressions of volcanism. The heterogeneous variation in thermal maturity observed across the COT reflects localised thermal perturbations caused by magmatic additions.

How to cite: Mohn, G., Nirrengarten, M., Schito, A., Kusznir, N., Corrado, S., Bowden, S., Pubellier, M., Sapin, F., and Larsen, H.-C.: Tectono-magmatic and thermal evolution of the SE China margin-NW Palawan breakup, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14296, https://doi.org/10.5194/egusphere-egu2020-14296, 2020.

EGU2020-19478 | Displays | TS6.4

Tectonic evolution of the East Vietnam-Southwest Borneo margin breakup

Sung-Ping Chang, Manuel Pubellier, Matthias Delescluse, Michael Nirrengarten, Geoffroy Mohn, Nicolas Chamot-Rooke, and Yan Qiu

We investigate the extensional processes occurring during the rifting of a marginal basin to use long-streamer multichannel seismic transects across the entire southwestern South China Sea (SCS). The basin is characterized by space and time propagating breakup followed by seafloor spreading during Cenozoic. Stretching and thinning of the continental crust were accompanied by ubiquitous large extensional detachment faults. In the proximal E Vietnam margin, rifted basins are filled with lower syn-rift sedimentation (syn-rift I). These sediments pinch out towards the distal margin. On the conjugate NW Borneo margin, the same coeval syn-rift I is truncated at the top, suggesting a period of crustal uplift affecting solely the southern margin. To illustrate the pre-breakup geometries of the southwestern SCS margins, we restore two conjugate sections near the first oceanic magnetic anomaly (20.1 Ma, C6n). The result highlights a thick pre-breakup succession (syn-rift II) offset slightly by several seaward-dipping normal faults above the exhumed basement. The magmatism intruded this hyper-extended basin and proceeded to break up the continental lithosphere eventually. The COT configuration not only illustrates asymmetrical hyper-extension but also appears in map view to have a rhombic shape controlled by N-S abrupt segments and E-W hyper-extended ones. The spatial variation of the crustal structures suggests an initial N-S extension contemporaneous with the first phase of seafloor spreading in the eastern SCS. The extensional direction significantly changed later (circa 23Ma) to NW-SE in relation to a well-documented ridge jump. Interestingly, this change in the direction of opening is coeval with the collision and the counterclockwise rotation in Borneo, thus suggesting that those events are linked. Therefore, we propose that collision was responsible for significant change in the far-field stress and influenced the extensional regime in the SCS.

How to cite: Chang, S.-P., Pubellier, M., Delescluse, M., Nirrengarten, M., Mohn, G., Chamot-Rooke, N., and Qiu, Y.: Tectonic evolution of the East Vietnam-Southwest Borneo margin breakup, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19478, https://doi.org/10.5194/egusphere-egu2020-19478, 2020.

EGU2020-7223 | Displays | TS6.4

The seismic structure of the Galicia Interior Basin from new seismic images: Implications for the West Iberia margin formation

Alejandra L. Cameselle, César R. Ranero, Luis M. Pinheiro, and Valentí Sallarès

The Galicia Interior Basin (GIB) off West Iberia, is considered an aborted rift formed in the context of opening of the North Atlantic rift system. Despite the Galicia Interior Basin being located in one of the best studied examples of magma-poor rifted margins (i.e., the West Iberia continental margin), its 3D structural variability and its role during continental rifting in the regional geodynamic context remains poorly understood. In this sense, Galicia Interior Basin represents the necessary link to understand the mechanisms of extension from the little extended shelf to the areas where continental breakup finally occurred.

Here we present new multichannel seismic data collected during FRAME cruise carried out onboard the Spanish “R/V Sarmiento de Gamboa” during summer 2018. The structure of the Galicia Interior Basin has been imaged using a 6-km-long solid-state digital multichannel streamer with 480 channels and two G-II gun arrays with a total volume of 3920 cu.in. fired every 37.5 m at 140 bar (2000 p.s.i.) pressure. The new post-stack time migrations of multichannel seismic profiles show the complex basement structure and deep sedimentary units across the region with an unprecedented detail. Additionally, we used state-of-the-art techniques to reprocessed a complementary set of vintage multichannel seismic profiles collected across the GIB. The integration of new and reprocessed seismic profiles provides the opportunity to study for the first time the 3D tectonic crustal-scale structure of the GIB.

Our images reveal syn- and post-rift sediment, tilted fault blocks, well-defined top-of-the-basement reflections, and also intra-basement and Moho reflections that offer new information about the variations in tectonic structural style during rifting. The data display an asymmetric structure and variations in the amount and distribution of crustal extension across the GIB. At the center of the basin – about 150 km landward from the continent-ocean transition – the continental basement has been thinned to 6-8 km associated with listric (in two-way travel time) normal faults without final breakup. Further offshore, the continental basement thickens again until ~20 km under the Galicia Bank, before entering the Deep Galicia Margin where continental basement thins laterally continuously to mantle exhumation and final breakup. The observed crustal structure and margin configuration represents a challenge to current models of rifting and continent-ocean transition structure, and allow to speculate on the possible causes for rift failure at the GIB in the context of the opening of the West Iberia margin.

How to cite: Cameselle, A. L., Ranero, C. R., Pinheiro, L. M., and Sallarès, V.: The seismic structure of the Galicia Interior Basin from new seismic images: Implications for the West Iberia margin formation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7223, https://doi.org/10.5194/egusphere-egu2020-7223, 2020.

EGU2020-5559 | Displays | TS6.4

Imaging the Deep Galicia margin using three-dimensional full waveform inversion

Bhargav Boddupalli, Tim Minshull, Joanna Morgan, and Gaye Bayrakci

Imaging of hyperextended zone and exhumed continental mantle rocks can improve our understanding of the tectonics of the final stages of rifting. In the Deep Galicia margin, the upper and lower crust are coupled allowing the normal faults to cut through the brittle crust and penetrate to the mantle leading to serpentinization of the mantle. Localized extensional forces caused extreme thinning and elongation of crystalline continental crust causing the continental blocks to slip over a lithospheric-scale detachment fault called the S-reflector.  

A high-resolution velocity model obtained using seismic full waveform inversion gives us deeper insights into the rifting process. In this study, we present results from three dimensional acoustic full waveform inversion performed using wide-angle seismic data acquired in the deep water environments of the Deep Galicia margin using ocean bottom seismometers. We performed full waveform inversion in the time domain, starting with a velocity model obtained using travel-time tomography, of dimensions 78.5 km x 22.1 km and depth 12 km. The high-resolution modelling shows short-wavelength variations in the velocity, adding details to the travel-time model. We superimposed our final model, converted to two-way time, on pre-stack time-migrated three-dimensional reflection data from the same survey. Compared to the starting model, our model shows improved alignment of the velocity variations along the steeply dipping normal faults and a sharp velocity contrast across the S-reflector. We validated our result using checkerboard tests, by tracking changes in phases of the first arrivals during the inversion and by comparing the observed and the synthetic waveforms. We observe a clear evidence for preferential serpentinization (45 %) of the mantle with lower velocities in the mantle correlating with the fault intersections with the S-reflector.

How to cite: Boddupalli, B., Minshull, T., Morgan, J., and Bayrakci, G.: Imaging the Deep Galicia margin using three-dimensional full waveform inversion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5559, https://doi.org/10.5194/egusphere-egu2020-5559, 2020.

EGU2020-5060 | Displays | TS6.4

Magma at rifted margins: when, where and how much?

Gianreto Manatschal, Simon Tomasi, Nick Kusznir, Cuimei Zhang, Daniel Sauter, Chao Peng, Marc Ulrich, and Pauline Chenin

Rifted margins are either classified as volcanic vs. non-volcanic or magma-rich vs. magma-poor. While such classifications are essentially based on the magmatic budget observed at rifted margins, they do not take into account the relative timing of magmatic activity with respect to tectonic activity, i.e. when and where first magma forms. High-quality reflection and refraction seismic surveys combined with drill hole data and field observations show that such a binary classification is unable to satisfactorily describe the magmatic processes related to rifting and lithospheric breakup.  

 

Our results show that the magmatic evolution of rifted margins is complex and cannot be characterized based on the volume of observed magma alone. On one hand, so-called “non-volcanic” margins are not amagmatic, as shown by the results of ODP drilling along the Iberia-Newfoundland rifted margins and field observations in fossil analogues. On the other hand, magma-rich margins, such as the Norwegian, NW Australian or the Namibia rifted margins show evidence for hyper-extension prior to magmatic activity. These observations suggest that the magmatic budget and the timing of magma production do not only depend on the amount of crustal/lithospheric extension but also on the composition and temperature of the decompressing mantle and the occurrence of mantle plumes. However, the fact that the magmatic budget may change very abruptly along strike is difficult to reconcile with the occurrence of plumes or other deep-seated, large-scale mantle phenomena only. These observations prompted us to re-examine the magmatic and tectonic processes and their interactions during rifting and lithospheric breakup and how far inheritance, rifting rates and plume-related activity may control the magmatic budget during rifting.

 

In our presentation we will review results from the global margins and will discuss the structural and magmatic evolution of so-called magma-rich, magma-poor and -intermediate rifted margins. In particular, we will try to examine when, where and how much magma forms during rifting and lithospheric breakup. The key questions that we aim to address are: 1) to what extent is melting directly related to decompression and extension , 2) how far is the magmatic budget controlled by inherited mantle composition, and 3) how important is magma storage in the mantle lithosphere during initial stages of magma production. Answering to these questions will allow to discuss to what extent the magmatic evolution of rift systems reflect the interplay between inheritance (innate/"genetic code"), actual physical processes (acquired/external factors) and plume induced processes.

How to cite: Manatschal, G., Tomasi, S., Kusznir, N., Zhang, C., Sauter, D., Peng, C., Ulrich, M., and Chenin, P.: Magma at rifted margins: when, where and how much?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5060, https://doi.org/10.5194/egusphere-egu2020-5060, 2020.

EGU2020-8215 | Displays | TS6.4

Emplacement mechanisms of a dyke swarm across the Brittle-Ductile transition

Hans Jørgen Kjøll, Olivier Galland, Loic Labrousse, and Torgeir B. Andersen

Dykes are the main magma transport pathways through the Earth’s crust and, in volcanic rifts, they are considered the main mechanism to accommodate tectonic extension. Most models consider dykes as hydro-fractures propagating as brittle tensile, mode I cracks opening perpendicular to the least principal stress. This implies that dykes emplaced in rifts are expected to be sub-vertical and accommodate crustal extension. Here we present detailed field observations of a well-exposed dyke swarm that formed near the brittle-ductile transition at a magma-rich rifted margin during opening of the Iapetus Ocean. It was related to a ca 600 million year-old large igneous province. Our observations show that dykes were not systematically emplaced by purely brittle deformation and that dyke orientation may differ from the typical mode 1 pattern. Distinct dyke morphologies related to different emplacement mechanisms have been recognized including: 1) Brittle dykes that exhibit straight contacts with the host rock, sharp tips, and en-echelon segments with bridges exhibiting angular fragments; 2) Brittle-ductile dykes with undulating contacts, rounded tips, folding of the host rock and contemporaneous brittle and ductile features; 3) Ductile “dykes” with rounded shapes and mingling between partially molten host rock and the intruding mafic magma. The brittle dykes exhibit two distinct orientations separated by ~30° that are mutually cross-cutting, demonstrating that the dyke swam did not consist of only vertical sheets oriented perpendicular to regional extension, as expected in rifts. By using the host-rock layers as markers, a kinematic restoration to quantify the average strain accommodating the emplacement of the dyke complex was performed. This strain estimate shows that the dyke swarm accommodated >100% horizontal extension, but also 27% vertical thickening. This suggests that the magma influx rate was higher than the tectonic stretching rate, which imply that magma was emplaced forcefully, as supported by field observations of the host-rock deformation. Finally, observations of typical “brittle” dykes that were subsequently deformed by ductile mechanisms as well as dykes that were emplaced by purely ductile mechanisms suggest that the fast emplacement of the dyke swarm triggered a rapid shallowing of the brittle-ductile transition. The abrupt dyke emplacement and associated heating resulted in weakening of the crust that probably facilitated the continental break-up, which culminated with opening of the Iapetus Ocean.

How to cite: Kjøll, H. J., Galland, O., Labrousse, L., and Andersen, T. B.: Emplacement mechanisms of a dyke swarm across the Brittle-Ductile transition , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8215, https://doi.org/10.5194/egusphere-egu2020-8215, 2020.

EGU2020-9029 | Displays | TS6.4

Feedbacks between magmatic intrusions, faulting, and surface processes at continental rifts

Thomas Morrow, Jean-Arthur Olive, Mark Behn, and Paris Smalls

During continental rifting, faulting, magmatic injection, and surface processes collectively shape the landscape. Although feedbacks between surface processes and faulting at rifts have been explored, the relationship between shallow magmatic intrusions, topography, and surface processes is poorly understood. Magmatic injection is controlled in part by lithospheric stress, and should therefore respond to rift-associated perturbations to the stress field. Along with normal fault formation and evolution, surficial mass redistribution via erosion, sediment transport, and deposition alters lithospheric stresses and has the potential to influence dike emplacement and long-term rift structure. Here we present a series of two-dimensional (2-D) numerical model runs utilizing the particle-in-cell, finite difference code SiStER to quantify the feedbacks between tectonic, magmatic, and surface processes that shape continental rifts. In our models, extension is accommodated through a combination of magmatic intrusion and tectonic stretching. Magmatic intrusion occurs within a narrow region when and where the sum of horizontal deviatoric stress and magmatic overpressure exceeds the tensile strength of the lithosphere. Magmatic overpressure is thus a key parameter that strongly modulates the sensitivity of dike emplacement to faulting, bending, and topographically-induced variations in lithosphere stress. Our results first probe the relationships between fault-related stresses and the timing and depth-distribution of magmatic intrusions at a rift with no active surface processes. In these cases, the locus of magmatic spreading migrates vertically in response to the evolving stress field. The 2-D tectonic model is then coupled to a 1-D landscape evolution model, which modifies topography concurrent with extension. In the simplest case, topographic diffusion effectively redistributes the topographic load, contributing to variations in injection-controlling lithospheric stresses. We compare our tectonic-responsive results with models that incorporate active surface processes to constrain the conditions under which surface processes modulate magmatic injection. Our simulations suggest that the development and redistribution of topography exerts an important control on the partitioning of tectonic and magmatic strain at extensional plate boundaries.

How to cite: Morrow, T., Olive, J.-A., Behn, M., and Smalls, P.: Feedbacks between magmatic intrusions, faulting, and surface processes at continental rifts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9029, https://doi.org/10.5194/egusphere-egu2020-9029, 2020.

EGU2020-11228 | Displays | TS6.4

Kinematics and extent of the Liguro-Piemont Ocean

Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller

Assessing the extent of a former ocean, of which only remnants are found in mountain belts, is challenging but crucial to understand subduction and exhumation processes. Here we present new constraints on the opening and width of the Liguro-Piemont (LP) Ocean (or Alpine Tethys) in Mesozoic time using plate kinematic reconstructions of the Western Mediterranean-Alpine area.

Our kinematic model is based on a compilation of geological-geophysical data and published reconstructions of the opening of the Atlantic for the motion of Europe, Africa and Iberia, and of the Cenozoic deformation along fold-and-thrust belts (Alps, Apennines, Dinarides, Provence) and extensional basins (Liguro-Provencal Basin and Sicily Channel Rift Zone) for the motion of the Adriatic plate (Adria) and Sardinia-Corsica. For Jurassic and Cretaceous times, our main assumption is to avoid significant convergence or divergence between Adria and Africa and between Iberia and Sardinia-Corsica, as there is no geological evidence for such deformation. This implies in return strike-slip motion between southern France and Iberia-Sardinia-Corsica and within the Adriatic plate.

Our model shows that the LP basin opened in three phases: (1) first a slow extensional phase of c. 4 mm/yr (full rate) in Lower-Middle Jurassic between 200-165 Ma, followed by (2) a faster (up to 1.5 cm/yr) oblique extension in Middle-Upper Jurassic between 165-154 Ma, which coincides with emplacement ages of gabbros and pillow-lavas, and (3) a final main extensional phase in Upper Jurassic between 154 and 145 Ma, with rates up to 2.3 cm/yr. At 145 Ma, Iberia starts to move relative to Europe and thus extension in the LP domain decreases rapidly till it ceases completely at about 130 Ma. We interpret the first phase as rifting of the proximal part of the continental margins (200-165 Ma) followed by hyper-extension and formation of the ocean-continent transition zone (165-154 Ma), and break-up and ultra-slow oceanic spreading during the final third phase (mainly 154-145 Ma). Along a NW-SE transect between Corsica and northern Adria, we estimate the width of the LP Ocean to a maximum of ~ 240 km (oceanic domain) and the extent of the whole rifted margins to ~ 500 km, subdivided into ~380 km for the proximal and necking zones, and ~120 km for the hyper-extended and ocean-continent transition zones. Our results are supported by high-resolution thermo-mechanical modelling of the rifting phase that, using our kinematic constraints, reproduces very well the geometry of the Adriatic margin, as obtained by published geological reconstructions of the Southern Alps.

We test other kinematic scenarios for the motion of Sardinia-Corsica and for the opening of the Ionian Basin which would increase the obliquity of rifting and reduce even more the width of the extended domain. Therefore, our calculated extent of the LP Ocean constitutes a maximum estimate providing crucial constraints for geodynamic modelling and a better understanding of subduction processes during the Alpine Orogeny. 

How to cite: Le Breton, E., Brune, S., Ustaszewski, K., Zahirovic, S., Seton, M., and Müller, R. D.: Kinematics and extent of the Liguro-Piemont Ocean , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11228, https://doi.org/10.5194/egusphere-egu2020-11228, 2020.

EGU2020-22080 | Displays | TS6.4

Conjunction between diachronic volcanic processes and transform margin leads to the unusual structure of the Demerara transform marginal plateau and its three different margins.

Thomas Museur, David Graindorge, Frauke Klingelhoefer, Walter Roest, Christophe Basile, Lies Loncke, and François Sapin

The Demerara plateau (offshore Suriname and French Guiana) is an original transform marginal plateau located at the junction between the central and the equatorial Atlantic domains. New results combining the interpretation of several datasets of high-penetration industrial MCS, academic MCS and wide-angle seismic data image a 30 km thick crust in the plateau, evolving towards three different margins to the two adjacent oceanic domains.

This work shows that this oceanic relief is a Jurassic volcanic margin located at the southern termination of the Central Atlantic rifting, and forming the divergent western margin of the Demerara plateau. New result from dredges also show the influence of a hotspot in this rifting phase. The resulting transitional domain is unusual, characterized by a progressive thinning of the margin toward the west and the presence of SDRs outer bodies on a reworked unit probably of continental origin. Unambiguous oceanic crust is identified at about 100 km from the slope break of the shelf. Toward the plateau, the outer SDR body let place to several thick superimposed inner SDR.

Then, this Jurassic domain was remarkably reworked during the Cretaceous rifting phase linked to the opening of the Equatorial Atlantic. This second event restructured this volcanic object, forming a transform northern margin and a divergent eastern margin, each with a specific transitional domain.

The presence of a volcanic margin which subsequently undergoes a non-coaxial opening with transform constraints is relatively unusual. Our data help to better constrain the transitional domains and the TOC of the Equatorial Atlantic Cretaceous margins.

The characterization of the northern and eastern extension limit of the SDRs formations and of the high velocity lower crust observed in the plateau is an important regional issue. This knowledge is necessary in particular to characterize the volumes and structures associated with the Jurassic volcanic episode, which control the thermo-structural Cretaceous evolution of the plateau and the adjacent domains.

How to cite: Museur, T., Graindorge, D., Klingelhoefer, F., Roest, W., Basile, C., Loncke, L., and Sapin, F.: Conjunction between diachronic volcanic processes and transform margin leads to the unusual structure of the Demerara transform marginal plateau and its three different margins., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22080, https://doi.org/10.5194/egusphere-egu2020-22080, 2020.

EGU2020-9586 | Displays | TS6.4

Obliquity favours propagation pulses during continental break-up

Anthony Jourdon, Laetitia Le Pourhiet, Frédéric Mouthereau, and Dave A. May

V-shaped propagators are ubiquist and the seafloor age map is often sufficient to unravel the first order features of the timing of continental break-up at regional or more global scale. Some propagators show  pulses in the rate of continental break-up propagation highlighted by the geometry of magnetic anomalies. These pulses, which were first introduced by Courtillot (1982) in the Gulf of Aden, represent a major element of plate tectonics. Despite the well documented geological record of these changes of rate, and their implications for plate kinematic reconstructions or the thermal regime of oblique margins, the dynamics of ridge and rift propagation at long/geodynamic timescale remains poorly studied nor understood. To date, despite the large progress made in understanding lithospheric dynamics and continental break-up, no lithospheric scale dynamic models has been able to produce self consistently pulse of ridgepropagation followed by a phase of stagnation. One obvious reason for this lack of dynamic ground stands from the fact that this problem mandates 3D thermo-mechanically coupled simulation approach that is just starting to emerge. In this work we chose to adopt a numerical modelling set-up after Le Pourhiet et al. (2018) to produce V-shaped propagators. Simulations investigate the influence of both kinematic and rheology of the lithosphere on the propagation trend and rate. The tectonic evolution of these margins shows 3 different modes of continental break-up propagation and a major change of deformation regime between phases of propagations and phases of stagnation.

How to cite: Jourdon, A., Le Pourhiet, L., Mouthereau, F., and May, D. A.: Obliquity favours propagation pulses during continental break-up , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9586, https://doi.org/10.5194/egusphere-egu2020-9586, 2020.

EGU2020-17271 | Displays | TS6.4

Impact of crustal rheology on oblique rift development and geometry: a numerical study

Guillaume Duclaux, Ritske Huismans, and Dave May

Fault network orientations and three-dimensional geometries of oblique rift systems and oblique passive margins vary widely at the surface of the Earth. In fact, rift width and conjugate passive margins asymmetries also evolve along-strike oblique extensional systems. This evolution can be linked to either changes in tectonic forces and plate motion direction, or transitions between contrasting geological provinces such as mobile belts and cratons.

Here, we use high-resolution 3D forward thermo-mechanical modelling with non-linear viscoplastic rheologies to assess the importance of crustal rheology on low to moderate oblique rifts and non-volcanic passive margins deformation patterns and finite geometries. We compare two crustal end-members model series, one with a stiff crust, and the second with a weak crust. We find that the rheology of the crust strongly controls the width and timing of formation of oblique rifts and passive margins. Coupling between the frictional plastic crust and upper mantle in the stiff models promotes narrow rift systems, while decoupling in the weak models promotes wide rifts. In these wide rifts, strain partitioning in the upper crust favours the development of an interconnected wide anastomosed shear zones network with a long lifespan. While stiff crustal rheology promotes Type I narrow margins, weak crustal rheology promotes the development of Type II margins, with a delayed continental crust breakup compared with the lithospheric mantle breakup. With increasing obliquity this transition in rifting style is accompanied by an evolution of the mantle lithosphere necking behaviour from cylindrical at low obliquity to segmented at higher obliquity. We compare these results with natural oblique rift systems and passive margins in order to decipher the relative impact of crustal rheology along different terrains.

How to cite: Duclaux, G., Huismans, R., and May, D.: Impact of crustal rheology on oblique rift development and geometry: a numerical study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17271, https://doi.org/10.5194/egusphere-egu2020-17271, 2020.

EGU2020-20576 | Displays | TS6.4

Massive High-Angle Normal Faulting at distal magma-poor margins: examples from South Atlantic

Michaël Denis and Jean-François Ballard

Seismic imaging of very distal margins enabled to evidence seaward-verging normal faults with slip displacements up to 6000 meters, in several areas of both African & Brazilian magma-poor margins.

Interpretation of deep seismic profiles, including 3D seismic, time- & depth-migrated, evidence sharp depth variations of the Moho, close to areas where subcontinental mantle exhumed further to successive activation of Low-Angle Normal Faults and large detachement faults.

The sharp Moho depth variations are related to giant High-Angle Normal Faults (HANF) which had offset the Moho itself and may have rooted close to the base of the serpentinized mantle. The faults are sealed within the salt, enabling to date it Late Aptian in age.

The close synchronicity between HANF activity and salt deposition reflects some dramatic changes of depositional environments, subsidence and deformation processes at the scale of the margin, especially as salt deposition is also closely related to significant increase of magmatic additions in the ultra-distal parts of the margin.

These changes are very likely related to the lithospheric break-up process and support the post-detachement timing of activation of the HANF interpreted from cross-cutting relationships on the seismics.

The evolutionary model for HANF proposed is supported by field evidence, seismic analogs and thermomechanical models: it invokes thermal, isostatic, rheologic, tectono-magmatic processes, and documents the context of South Atlantic salt deposition.

How to cite: Denis, M. and Ballard, J.-F.: Massive High-Angle Normal Faulting at distal magma-poor margins: examples from South Atlantic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20576, https://doi.org/10.5194/egusphere-egu2020-20576, 2020.

EGU2020-21717 | Displays | TS6.4

Synrift subsidence and magmatism of the Central South Atlantic passive margins based on long term 2-D thermo-mechanical modelling

Thomas Theunissen, Ritske Huismans, Frank Despinois, Jean-Claude Ringenbach, and François Sapin

Here we use observations from the central South Atlantic conjugate margins to constrain the structural style of rifting and its relation with sedimentary basin evolution during the syn and early post-rift. Three synthetics transects from North (Gabon-Brazil) to South (Angola-Brazil) are used to constrain fault distribution, margin width, crustal thickness, distribution of magmatism, syn-rift sedimentary section thickness and paleo-environment from the start of rifting in the Berriasian (145 Ma) until the early post rift in the Aptian (113 Ma). This integrated study aims to understand variations in along strike structural style, magmatic output, and sedimentary basin evolution to assess the contribution of mantle processes on topography using forward 2-D thermo-mechanical modelling. We design a model setup that reproduces South Atlantic central segment main characteristics before rifting. We then explore scenarios of lithospheric thinning where strain weakening mechanisms, degree of depletion of lithopsheric mantle and crustal rheology are the main variables. The model accounts for decompression melting with feedbacks on temperature, viscosity and density of the mantle. The subsidence in the thermo-mechanical models is calibrated with a reference ridge elevation, where a 6 km thick oceanic crust is predicted, and explained by the different contributions on buoyancy of rifted passive margin during rifting. We discuss conditions to get magma-poor margins with/without exhumed mantle at the seafloor and conditions to reach a small topographic gradient and shallow water environment between the proximal and distal domains over more than 200 km of the wide margin during most of the syn-rift.

How to cite: Theunissen, T., Huismans, R., Despinois, F., Ringenbach, J.-C., and Sapin, F.: Synrift subsidence and magmatism of the Central South Atlantic passive margins based on long term 2-D thermo-mechanical modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21717, https://doi.org/10.5194/egusphere-egu2020-21717, 2020.

Seismic observations show that some rifted continental margins may have substantial amounts of offshore sediments. For example, sediment layers of several kilometres thick are found on the margins of Mid Norway, Namibia and Angola. Intriguingly, these margins are wide, being characterised by distances of several hundreds of kilometres from typical continental crustal thicknesses of 30-40 km to clearly identifiable oceanic crust. On the other hand, some margins that are sediment-starved, such as Goban Spur, Flemish Cap and Northern Norway, have short onshore-to-offshore transitions. Variations in the amount of sediments not only impact the development of offshore sedimentary basins, but the changes in mass balance by erosion and sedimentation can also interact with extensional tectonic processes. In convergent settings, such feedback relationships between erosion and tectonic deformation have long been highlighted: Erosion reduces the elevation and width of mountain belts and in turn tectonic activity and exhumation are focused at regions of enhanced erosion. But what is the role played by surface processes during formation of rifted continental margins?

I use geodynamic finite-element experiments to explore the response of continental rifts to erosion and sedimentation from initial rifting to continental break-up. The experiments predict that rifted margins with thick syn-rift sedimentary packages are more likely to form hyper-extended crust and require more stretching to achieve continental break-up than sediment-starved margins. These findings imply that surface processes can control the style of continental break-up and that the role of sedimentation in rifted margin evolution goes far beyond the simple exertion of a passive weight.

How to cite: Buiter, S.: How syn-rift sedimentation promotes the formation of hyper-extended margins, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18622, https://doi.org/10.5194/egusphere-egu2020-18622, 2020.

EGU2020-5130 | Displays | TS6.4

Seismic wide-angle constrains on the structure of the northern Sicily margin and Vavilov Basin: implications for the opening of the Tyrrhenian back-arc basin

Ingo Grevemeyer, Cesar Ranero, Nevio Zitellini, Valenit Sallares, and Manel Prada

The Tyrrhenian Sea in the central Mediterranean Sea was form by Neogene slab roll-back of the retreating Ionian slab about 6 to 2 Myr ago. Yet, little is known about the structure of its southern margin off Sicily as well as back-arc extension and spreading in the southern Tyrrhenian Sea to the north of Sicily. The Sicilian margin is generally classified as a passive margin bounding a young back-arc basin. However, focal mechanisms from regional earthquakes suggest that the margins suffers presently from compressional tectonics. New seismic refraction and wide-angle data were collected along seismic profile WAS4 during the CHIANTI survey of the Spanish research vessel Sarmiento de Gamboa in 2015. The profile runs from the centre of the Tyrrhenian Sea – the Vavilov Basin – across the margin of Sicily, approaching the Gulf of Castellammare to the northwest of Sicily. Reanalyzed multi-channel seismic data supports compressional tectonics across a small basin paralleling the coastline of Sicily, revealing recent inversion of the Tyrrhenian Basin. Offshore of Sicily WAS4 indicates a roughly 120-140 km wide domain showing seismic P-wave velocities characteristic for continental crust (Vp ~4-6.7 km/s) and a base of crust defined by a wide-angle Moho reflection. Continental crust reaches a maximum thickness of 22 km to the north of the Gulf of Castellammare and is thinning to ~9 km to the north of the Ustica Ridge. The compressional belt occurs in continental crust to the south of Ustica Ridge. In the Vavilov Basin, a lithosphere was sample where seismic P-wave velocity increases from approx. 3-4 km/s to 7.5 km/s. This velocity depth-distribution clearly shows profound similarities to serpentinized mantle and hence un-roofed mantle. Thus, seismic constrains support results from Ocean Drilling Program (ODP) hole 651A, which sample serpentinized peridotites in the Vavilov Basin. The transition between serpentinized mantle and continental crust is rather abrupt. Thus, within a ~10 km wide transitional domain, continental crust with a thickness of~ 9 km is juxtaposed against un-roofed mantle. All available data from the Tyrrhenian Sea support wide-spread mantle exhumation in the Vavilov Basin. Therefore, the Tyrrhenian Sea provides a rather different structure when compared to marginal basins in the Western Pacific and hence may not have supported a mid-ocean ridge-type spreading system opening the basin.

How to cite: Grevemeyer, I., Ranero, C., Zitellini, N., Sallares, V., and Prada, M.: Seismic wide-angle constrains on the structure of the northern Sicily margin and Vavilov Basin: implications for the opening of the Tyrrhenian back-arc basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5130, https://doi.org/10.5194/egusphere-egu2020-5130, 2020.

EGU2020-18473 | Displays | TS6.4

Extensional tectonics during the Tyrrhenian back-arc basin formation synthetized in a new morpho-tectonic map

Maria Filomena Loreto, Nevio Zitellini, César Rodriguez Ranero, Camilla Palmiotto, and Manel Prada

A new tectonic map is presented focused upon the extensional style accompanying the formation of the Tyrrhenian back-arc basin. Our basin-wide analysis synthetizes the interpretation of vintage multichannel and single channel seismic profiles integrated with modern seismic images and P-wave velocity models, and with a new morpho-tectonic map of the Tyrrhenian (Palmiotto & Loreto, 2019). Four distinct evolutionary opening stages have been constrained: 1) the initial Langhian(?)/Serravallian opening phase actives offshore central/southern Sardinia and offshore western Calabria; 2) the Tortonian/Messinian phase dominated by extension offshore North Sardinia-Corsica, and by oceanic accretion in the Cornaglia and Campania Terraces; 3) the Pliocene phase, dominated by mantle exhumation which was active mainly in the central Tyrrhenian and led to the full opening of Vavilov Basin; and 4) the Quaternary phase characterized by the opening of the Marsili back-arc basin. Listric and planar normal faults and their conjugates bound a series of horst and graben, half-graben and triangular basins. Distribution of extensional faults, active since Middle Miocene, throughout the basin allowed us to define a faults arrangement in the northern / central Tyrrhenian mainly related to in a pure shear which evolved a simple shear opening of continental margins. At depth, faults accommodate over a Ductile-Brittle Transitional zone cut by a low-angle detachment fault possibly responsible for mantle exhumation in the Vavilov and Magnaghi abyssal plains. In the southern Tyrrhenian, normal, inverse and transcurrent faults appear to be related to a large shear zone located along the continental margin of the northern Sicily. Extensional style variationthroughout the back-arc basin combined with wide-angle seismic velocity models, from Prada et al. (2014; 2015), allow to explore the relationship between shallow deformation, represented by faults distribution throughout the basin, and crustal-scale processes, subduction of Ionian slab and exhumation.

 

REFERENCES

Palmiotto, C., & Loreto, M. F., (2019). Regional scale morphological pattern of the Tyrrhenian Sea: New insights from EMODnet bathymetry. Geomorphology, 332, 88-99.

Prada, M., Sallarès, V., Ranero, C.R., Vendrell, M.G., Grevemeyer, I., Zitellini, N. & De Franco, R., 2014. Seismic structure of the Central Tyrrhenian basin: Geophysical constraints on the nature of the main crustal domains. J. Geophys. Res.: Solid Earth, 119(1), 52-70.

Prada, M., Sallarès, V., Ranero, C.R., Vendrell, M.G., Grevemeyer, I., Zitellini, N. & De Franco, R., 2015. The complex 3-D transition from continental crust to backarc magmatism and exhumed mantle in the Central Tyrrhenian basin. Geophys. J. Int., 203(1), 63-78.

How to cite: Loreto, M. F., Zitellini, N., Ranero, C. R., Palmiotto, C., and Prada, M.: Extensional tectonics during the Tyrrhenian back-arc basin formation synthetized in a new morpho-tectonic map, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18473, https://doi.org/10.5194/egusphere-egu2020-18473, 2020.

EGU2020-6950 | Displays | TS6.4

Investigations of the Oligocene-Miocene opening of the Ligurian Basin using refraction seismic data

Heidrun Kopp, Anke Dannowski, Ingo Grevemeyer, Dietrich Lange, Martin Thorwart, Grazia Caielli, Roberto Franco, Florian Petersen, Felix Noah Wolf, and Bettina Schramm

The Ligurian Basin is located north-west of Corsica at the transition from the western Alpine orogen to the Apennine system. The Back-arc basin was generated by the southeast trench retreat of the Apennines-Calabrian subduction zone. The opening took place from late Oligocene to Miocene. While the extension led to extreme continental thinning and un-roofing of mantle material little is known about the style of back-arc rifting.

To shed light on the present day crustal and lithospheric architecture of the Ligurian Basin, active seismic data have been recorded on short period ocean bottom seismometers in the framework of SPP2017 4D-MB, the German component of AlpArray. An amphibious refraction seismic profile was shot across the Ligurian Basin in an E-W direction from the Gulf of Lion to Corsica. The profile extends onshore Corsica to image the necking zone of continental thinning.

The majority of the refraction seismic data show mantle phases at offsets up to 70 km. The arrivals of seismic phases were picked and inverted in a travel time tomography. The results show a crust-mantle boundary in the central basin at ~12 km depth below sea surface. The mantle shows rather high velocities >7.8 km/s. The crust-mantle boundary deepens from ~12 km to ~18 km within 25 - 30 km towards Corsica. The results do not map an axial valley as expected for oceanic spreading. However, an extremely thinned continental crust indicates a long lasting rifting process that possibly does not initiated oceanic spreading before the opening of the Ligurian Basin stopped.

How to cite: Kopp, H., Dannowski, A., Grevemeyer, I., Lange, D., Thorwart, M., Caielli, G., Franco, R., Petersen, F., Wolf, F. N., and Schramm, B.: Investigations of the Oligocene-Miocene opening of the Ligurian Basin using refraction seismic data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6950, https://doi.org/10.5194/egusphere-egu2020-6950, 2020.

EGU2020-10040 | Displays | TS6.4

Structure and evolution of the Jan Mayen Microcontinent

Anke Dannowski, Michael Schnabel, Udo Barckhausen, Dieter Franke, Martin Thorwart, Thomas Funck, Martin Engels, and Christian Berndt

The Jan Mayen Ridge (JMR) is a 150-km-long and 10–30 km wide seafloor expression in N-S direction in the centre of the North Atlantic and part of the Jan Mayen Microcontinent (JMMC). Previous studies show that the eastern flank of the JMR was formed during the breakup of the Norway Basin along today’s Aegir Ridge, prior to magnetic anomaly C23 (~50 Ma). The western margin of the JMMC is conjugate to East Greenland. Rifting gradually propagated northward, likely from Chron C21 (~46 Ma) onward. Fan-shaped magnetic anomalies in the Norway Basin suggest that the JMMC must have rotated counter-clockwise. The JMR is likely underlain by continental crust. Volcanic flows have been observed within the sediments in the Jan Mayen Basin (JMB). While a relatively uniform upper crust was observed throughout the JMMC, the thickness of the lower continental crust varies significantly from up to 15 km below the JMR down to almost zero thickness towards the western part of the JMB. However, the character of the lower crust and the development of the conjugate East Greenland – JMMC margins during Oligocene are still disputed.

Here, we investigate the crustal structure of the JMMC using a new 265-km-long seismic refraction line crossing the JMMC at 69.7°N in E-W direction, which was acquired on board of RV Maria S. Merian during cruise MSM67. The profile consists of 30 ocean bottom seismometers (OBS) with a spacing of 9.5 km. The dataset was complemented by on-board gravity measurements and a magnetometer array towed behind the vessel during shooting. The line extends from oceanic crust in the Norway Basin, across the microcontinent and into oceanic crust that formed at the presently active mid-oceanic Kolbeinsey Ridge. The magnetic profile shows old seafloor spreading anomalies in the east (likely anomaly 24, ~52 Ma), then low amplitude magnetic anomalies in the central portion of the profile, which are typical for many plutonic continental rocks. On the western part of the profile, high amplitude anomalies of younger oceanic crust (likely anomalies C5C trough C6, ~19–16 Ma) are recognized near the western termination of the JMB. The seismic velocity distribution and crustal thickness vary strongly along the profile, with velocities typical for oceanic crust at either end of the profile and a thickened crust (12–13 km) underneath the JMR. This suggests that the JMMC consists of thinned continental crust with a total width of 100 km.

How to cite: Dannowski, A., Schnabel, M., Barckhausen, U., Franke, D., Thorwart, M., Funck, T., Engels, M., and Berndt, C.: Structure and evolution of the Jan Mayen Microcontinent, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10040, https://doi.org/10.5194/egusphere-egu2020-10040, 2020.

EGU2020-1147 | Displays | TS6.4

Physical modeling of the formation of the microcontinent Jan Mayen

Grigory Agranov, Eugene Dubinin, Andrey Grokholsky, and Anna Makushkina

The split between the North American and Eurasian plates began in the Late Pleistocene - Early Eocene (58-60 million years). As the stretching took place, overlapping rift cracks formed. With further evolution, the crack that came from the north fully formed, while the south at that time died out, forming the axis of paleospreading (early Ypresian Age, 49.7 Ma). A hot spot was already functioning near Greenland at that time. In the Priabonian Age (33.1 million years), the hot spot ended under the axis of paleospreading. As a result, the spreading axis jumped (Peron-Pinvidic et al., 2012) creating the Jan Mine main microcontinent and the Kolbeinsain spreading ridge. In addition, the northern branch of the spreading ridge died out and the Aegir paleospreading ridge formed. These raises a number of questions arise:

-What is the mechanism for the separation of the Jan Mine continental block?

-Why did the spreading axis jumped and the Aegir Ridge wither away?

-What is the effect of the Icelandic hot spot on microblock formation?

-Are there similar structures in the world formed through a similar mechanism?

To answer these questions, a physical simulation was performed. Some of these issues were considered in (Muller et al., 2001, Gaina et al., 2003, Mjelde et al., 2008, Mjelde, Faleide, 2009).

Modelling was based on the initial geometry of rift cracks, known oldest magnetic anomalies and existing reconstructions. It showed two possibilities for the formation of the Jan Mayen microcontinent.

The first model is associated with parallel or oblique strike of rift cracks, the oncoming movement of which leads to their overlap, isolation of the microcontinental block, which experienced deformation and rotation.

The second model is associated with the presence of a local heat source (hot spot), the influence of which led to a jump of one branch of the rift towards the hot spot, and to the generation of a significant amount of magmatic material, which could significantly change the initial continental structure of the microblock. The second method, which combines the influence of the overlap zone and the hot spot, showed the best correlation with natural structures.

How to cite: Agranov, G., Dubinin, E., Grokholsky, A., and Makushkina, A.: Physical modeling of the formation of the microcontinent Jan Mayen, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1147, https://doi.org/10.5194/egusphere-egu2020-1147, 2020.

EGU2020-16107 | Displays | TS6.4 | Highlight

Upper mantle conditions during the opening of the North Atlantic Ocean

Zsófia Zalai, Jenny Collier, Gareth Roberts, and Thomas Funck

Mantle conditions during the opening of the North Atlantic Ocean and specifically the presence or otherwise of a deep mantle plume have been much debated. Current models fall into two groups: the plume impingement and the plate-driven models. The plume impingement model associates the arrival of the Icelandic plume with continental break-up of the North Atlantic and the observed excess magmatism is associated with passive upwelling and elevated mantle potential temperatures. However, the plate-driven model associates this excess magmatism with increased mantle fertility due to inherited lithospheric structure and/or small-scale convection induced by sub-lithospheric topography.

We examine the spatial and temporal variation of upper mantle conditions at the time of continental break-up using an inventory of 40 published seismic refraction velocity-depth profiles acquired between the Charlie Gibbs and the East Greenland Fracture Zones. We make use of the Hc-Vp method to estimate mantle potential temperature and the ratio of active to passive upwelling by extracting igneous crustal thickness, Hc, and its mean p-wave velocity, Vp. Finally, we compare the spatial and temporal patterns obtained to those predicted by previously proposed models of mantle conditions around the time of break-up.

Our results indicate an asymmetry in mantle potential temperature between the Greenland and the European side, the latter being 100°C hotter. The temperature anomaly also varies on a wavelength of 300-500 km along strike both margins. In most profiles, the mantle potential temperature decreases with time, with normal temperatures of 1300°C being reached 5-10 Ma after the onset of seafloor spreading at 55 Ma. This temperature appears to be “steady state” once reached. The exception to this is the Greenland-Iceland-Faroes Ridge where the “steady state” temperature is 100°C higher. However, the decreasing trend of mantle potential temperature with time is not uniform across the whole North Atlantic region: the temperature decreases by a 60°C/Ma rate at the Hatton margin, while at the Møre and Vøring margins it is considerably slower, at only 20°C/Ma. A 100°C lower than normal mantle potential temperature anomaly was found at the now extinct Aegir Ridge spreading centre even though it was located less than 300 km away from the proposed reconstructed position of the Icelandic plume. Nevertheless, the plume’s position coincides well with the highest calculated upwelling ratios. The NE Greenland margin is also characterised by moderate upwelling compared to the purely passive European side.

Overall the spatial distribution of high active upwelling ratios and widespread elevated mantle potential temperatures support the plume impingement model for the opening of the North Atlantic Ocean. This thermal anomaly was exhausted at a varying rate on the different margins in 5-10 Ma. Furthermore, the 300-500 km wide localised thermal anomalies and the proximity of the proposed plume location to a low temperature anomaly indicate moderation by local complexities that might be a manifestation of upper mantle flow induced by structural inheritance or plate tectonic processes.

How to cite: Zalai, Z., Collier, J., Roberts, G., and Funck, T.: Upper mantle conditions during the opening of the North Atlantic Ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16107, https://doi.org/10.5194/egusphere-egu2020-16107, 2020.

EGU2020-900 | Displays | TS6.4

Magnetic modeling of the West Iberian Margin constrained by new geophysical data

Marta Neres, César Ranero, Ingo Grevemeyer, Irene Merino, Valenti Sallares, Manel Prada, Alcinoe Calahorrano, and Alejandra Cameselle

The nature of the J magnetic anomaly off West Iberia and its implications on the kinematic and geodynamic evolution of the margin has been addressed by several studies, with several distinct interpretations and resulting models. The main reason for this is that one single geophysical dataset (the IAM-9 seismic profile on the Iberia Abyssal Plain) has until now imaged the respective crust and was available as constraint, leaving a large degree of uncertainty for interpretation and modeling. New geophysical imaging of the structure of J anomaly and nearby domains, preferably in different margin sectors, would then be essential to cast new light on the discussion on the Iberian margin evolution. We here present new constrained magnetic modeling for two profiles across the J anomaly off Iberia, in the Tagus and in the Iberia Abyssal Plain, respectively. These profiles were recently surveyed for wide angle and reflection seismics and for magnetic data, during the FRAME-2018 survey. The joint processing of wide angle and reflection seismic data revealed with unprecedented detail the velocity structure and the tectono-stratigraphy along the profiles. Here, we use these results as constraints for magnetic modeling of the measured anomalies, namely for detailed definition of the basement topography and identification of the different domains. Magnetic modeling allowed inferring the relative contribution of each layer and the existence of additional magnetic sources, such as intrusive bodies in exhumed mantle domains. Regarding the J anomaly, we show that it cannot be attributed only to magnetization contrasts between different layers. The J anomaly is rather the result of an anomalous highly magnetized source body, associated with a locally thicker crust, which claims for an abnormal magmatic composition with strong enrichment in iron oxides. We discuss possible origins for the found structure and composition of the J anomaly off Iberia, as well as implications of the new magnetic modeled profiles for the margin conjugation and kinematics.

The author would like to acknowledge the financial support  FCT through project UIDB/50019/2020 – IDL.

How to cite: Neres, M., Ranero, C., Grevemeyer, I., Merino, I., Sallares, V., Prada, M., Calahorrano, A., and Cameselle, A.: Magnetic modeling of the West Iberian Margin constrained by new geophysical data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-900, https://doi.org/10.5194/egusphere-egu2020-900, 2020.

EGU2020-11068 | Displays | TS6.4

Uncertainties in breakup markers along the Iberian Newfoundland margin: The need for a new North Atlantic plate model

Annabel Causer, Lucía Pérez-Díaz, Graeme Eagles, and Jürgen Adam

The Iberian-Newfoundland conjugate margins are one of the most extensively studied non-volcanic rifted margins in the world. In recent years, researchers have focused their efforts at better understanding the earliest stages of continental rifting, often relying heavily on the identification of so-called “break-up features” imaged in seismic profiles or interpreted from potential field data. Along the Iberian-Newfoundland margins, widely used break-up markers include interpretations of old magnetic anomalies from the M-Series, as well as the J-anomaly, believed to mark the occurrence and spatial extent of first oceanic lithosphere. However, uncertainties in the location and interpretation of these features have led to discrepancies between modelled depictions of the palaeopositions of Iberia and Newfoundland during the early Cretaceous as well as the timing of first seafloor spreading between the two. 

Using new seismic data from the Southern Newfoundland Basin (SNB) we are able to illustrate the unsuitability of “break-up” features along the Iberian – Newfoundland Margin for plate kinematic reconstructions. Our data shows that basement associated with the younger M-Series magnetic anomalies is comprised of exhumed mantle and magmatic additions, and most likely represents transitional domains and not true oceanic lithosphere. Magmatic activity in the SNB as early as M4 times (128 Ma), and the presence of SDR packages onlapping onto basement faults suggest that, at this time, plate divergence was still being accommodated by tectonic faulting. Therefore, young M-series anomalies (including the J-anomaly) are not suitable basis on which to reconstruct plate positions during the early stages of continental separation.

We instead follow an alternative modelling approach, not reliant on the identification of extended continental margin features, to robustly constrain North Atlantic tectonics pre-M0 (~121 Ma) times. We do this by using seafloor spreading data and a statistically robust inversion method as the basis for a number of purpose built two-plate models for Africa, Iberia, Eurasia, Greenland and North America, with quantified uncertainties. Together, these models will provide an invaluable framework within to study the evolution of the extended continental margins immediately prior to and during continental separation.

 

 

 

 

 

How to cite: Causer, A., Pérez-Díaz, L., Eagles, G., and Adam, J.: Uncertainties in breakup markers along the Iberian Newfoundland margin: The need for a new North Atlantic plate model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11068, https://doi.org/10.5194/egusphere-egu2020-11068, 2020.

The extension and thinning of the continental lithosphere during rifting may eventually lead to continental breakup. Related mechanisms are recorded within the Continent-Ocean Transitions (COT) of distal passive margins, showing different, often complex, tectono-magmatic interactions as revealed by the variability of basement architectures imaged by seismic data. Different extensional structures are interpreted in the COT, including high-angle or low-angle extensional faults dipping either oceanward or continentward. This variability appears mainly controlled by the initial rheological stratification of the lithosphere and its evolution during rifting. As a result, the relative influence between lower crustal ductility, crustal embrittlement, and serpentinization of the underlying mantle are the main parameters considered to explain the structural variability observed in the COT.

In this contribution, we document the tectonic evolution of the northern Bay of Biscay passive margin and show the impact of passive margin segmentation in controlling along strike changes in structural style during rifting and continental breakup. The Bay of Biscay is a V-shaped oceanic basin, which opened during the northward propagation of the North Atlantic Ocean. Its bordering magma-poor passive margins formed subsequently to a Late Jurassic to Early Cretaceous oblique rifting and Aptian-Albian oceanic spreading onset. A large number of studies already focused on this margin revealing a first-order along strike segmentation, but the structures accommodating the passage from one to the other segment remained poorly constrained.

We used a series of reflection seismic sections and complementary marine data sets such as dredges and drilling results from the Deep Sea Drilling Project to map the structural pattern and stratigraphic evolution related to this segment transition. Our seismic interpretations and mapping of the main rift structures define a relatively loose segment transition marked by a progressive change in structural style expressed differently between the COT and the rest of the passive margin. The differences observed between the proximal and distal parts of the margin can be explained by an evolution of the nature and depth of the main fault décollement level; crustal embrittlement and serpentinization becoming important controlling parameters oceanward. However, the progressive change in structural style observed in the distal margin from west to east from oceanward dipping to mainly continentward dipping faults is more likely to be related a different accommodation of extensional deformation across the transfer zone. This segmentation occurs near major pre-existing structures identified further continentward, suggesting a key role of inheritance.

Results of this work reveal the impact of margin segmentation in controlling changes in structural style at the end of rifting. If this soft transfer zones do not seem to be observed as far as the first oceanic crust, further work is required to determine how far it can control different interplay between tectonic and magmatic processes further oceanward in the COT.

How to cite: Tugend, J., Masini, E., Leroy, S., and Jolivet, L.: Segmentation and structural style evolution during continental breakup: observations from the Northern Bay of Biscay passive margin (offshore France), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13177, https://doi.org/10.5194/egusphere-egu2020-13177, 2020.

The Agly massif and its neighboring Mesozoic basins altogether form part of the Pyrenean Cretaceous rift preserved in the retro-wedge of the Pyrenean mountain belt. The relationships between the tectonic evolution of these syn-rift basins and the crustal-scale tectonic processes allows us to investigate the strain partitioning, the rheology and the sequence of deformation associated with the thinning of the deep crust leading to continental break-up.

Based on structural, microstructural and thermochronological studies of the deep crust of the Agly massif and the revised stratigraphy and depositional environments of the pre- and syn-rift sedimentary rocks, we propose a tectonic reconstruction of the eastern segment of the Pyrenean rift at the time of continental break-up. Two parallel cross sections allow us to discuss about the mechanical behavior of the deep crust and the control by lateral rheological heterogeneities on the spatial and temporal evolution of rifting. We emphasize the role of low-angle (decollement) and high-angle (detachment) extensional structures in the deep crust that collectively accommodate thinning and exhumation, respectively. Structural relationships between the Variscan basement and the Mesozoic basins are highlighted, such as a major extensional detachment fault system exhuming the mantle at the contact between the Agly massif and the Boucheville basin in the south. We further discuss the origin of tectono-sedimentary breccias in the context of crustal-scale thinning/exhumation processes and basins evolution.

Our different results are finally integrated in a 3D tectonic model of the distal margin, illustrating a crustal scale space-time vision of the mechanisms leading to continental break-up.

How to cite: Motus, M., Denèle, Y., Mouthereau, F., and Nardin, É.: Mechanisms of continental break-up : tectonic, stratigraphic and structural constraints from a preserved distal rifted margin (Agly massif, eastern Pyrenees), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21580, https://doi.org/10.5194/egusphere-egu2020-21580, 2020.

EGU2020-18950 | Displays | TS6.4

The kinematic evolution of the Demerara plateau and Guyana-Suriname margins

Júlia Gómez-Romeu, Emmanuel Masini, Nick Kusznir, and Sylvain Calassou

The Caribbean region has undergone a complex plate kinematics evolution due to the interaction between Central Atlantic pre-subduction paleogeography and Caribbean subduction dynamics. To better understand the initiation and dynamics of the Caribbean subduction it is important to determine the pre-subduction template. However, this template cannot be easily recognized as it either suffered from pervasive tectonic overprinting or has been consumed by subduction. To address this problem, it may be valuable to first unravel the structure and deformation history of the surrounding areas of the Caribbean region.

Here we investigate the kinematic evolution of the Triassic-Jurassic Demerara plateau and Guyana-Suriname (i.e Dp and G-S) margins which are present-day located to the south of the Caribbean subduction. To achieve our aim, we use seismic, gravity and magnetic data and apply a gravity anomaly inversion technique to determine Moho depth, crustal basement thickness and crustal thinning factor.

The Dp and G-S margins avoided subduction and consequently preserve the divergent history of Early Jurassic to Early Cretaceous rifting related to the opening of the Central Atlantic and Equatorial Atlantic respectively. This is inferred by a complex architecture of the Dp and G-S margins characterized by a set of transfer zones that crosscut each other.

By unravelling the kinematic evolution of the Dp and G-S margins we attempt to determine the pre-subduction template of the surrounding area of the Caribbean region.

How to cite: Gómez-Romeu, J., Masini, E., Kusznir, N., and Calassou, S.: The kinematic evolution of the Demerara plateau and Guyana-Suriname margins, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18950, https://doi.org/10.5194/egusphere-egu2020-18950, 2020.

EGU2020-10862 | Displays | TS6.4

Crustal Thickness and Composition of the São Paulo Plateau and Florianópolis Ridge, SE Brazilian Margin

Michelle Graça, Leanne Cowie, Nick Kusznir, and Natasha Stanton

The São Paulo Plateau (SPP) and the Florianópolis Ridge (FR), located on the Santos segment of the SE Brazilian margin in the South Atlantic, are large positive bathymetric features with a combined lateral dimension of approximately 500 km. An important question is whether they are underlain by thinned continental crust or by anomalously thick magmatic crust. Each hypothesis has implications for the breakup of the South Atlantic and the evolution of the overlying saline Santos basin.

Integrated quantitative analysis consisting of gravity inversion, RDA (residual depth anomaly) analysis and flexural subsidence analysis has been applied to a deep long-offset seismic reflection line running NW-SE across the SPP and FR. Gravity inversion predicts crustal basement thicknesses in the range of 12 to 15 km for the SPP and FR, deceasing to 7-8 km thickness at the extreme SE end of the profile. The SPP and FR are separated by a region of thinner crust approximately 80 km wide. Thinning factors from subsidence analysis for SPP and FR are typically between 0.6 and 0.7.

RDA values close to zero and a thinning factor of 1 were obtained for the region with 7-8 km thick crust at the SE end of the profile which are all consistent with normal oceanic crust rather than previously interpreted exhumed mantle. This oceanic crust is highly tectonised and corresponds to the location of the Florianópolis Fracture Zone.

Flexural backstripping and reverse thermal subsidence modelling were performed to calculate palaeo-bathymetry at breakup and give 2.5 km below sea level at the SE end of the profile consistent with this region being oceanic crust. Flexural subsidence analysis applied to base salt shows that the observed base salt subsidence requires a component of syn-tectonic subsidence as well as post-rift thermal subsidence, and that the salt was deposited while the crust was still thinning.

Joint inversion of time seismic reflection and gravity data to determine the lateral variation in basement density by comparing seismic and gravity Moho in the time domain gives a basement density under the SPP and FR of between 2600 and 2700 kg/m3. The same method gives a basement density of 900kg/m3 for the oceanic crust at the SE end of the profile. The FR basement in the NW shows a basement density similar to that of the SPP while in its SE the basement density is much higher approaching 2950 kg/m3.  We interpret the relatively low basement densities of the SPP with respect to that of oceanic crust as indicating a continental rather than magmatic composition. A similar analysis to determine basement density applied to the Evain et al. (2015) seismic refraction profile in the same location also gives a SPP basement density that supports a continental composition.

How to cite: Graça, M., Cowie, L., Kusznir, N., and Stanton, N.: Crustal Thickness and Composition of the São Paulo Plateau and Florianópolis Ridge, SE Brazilian Margin , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10862, https://doi.org/10.5194/egusphere-egu2020-10862, 2020.

EGU2020-15222 | Displays | TS6.4

Evidence of tectonic reactivation after continental breakup in the Ceará Terrace, Equatorial margin of Brazil, from 2D reflection seismics

Aline Cristine Tavares, David Lopes de Castro, Ole Rønø Clausen, Diógenes Custódio de Oliveira, Francisco Hilario R. Bezerra, and Helenice Vital

The Brazilian equatorial margin has its origin in the fragmentation of the supercontinent Pangea with the separation of the South American and African continents and is composed of divergent oblique and transform segments related to large oceanic fracture zones, which are typical of the Equatorial Atlantic (e.g., Saint Paul, Romanche, and Chain). The dynamic evolution of this margin is related to the generation of marginal ridges, which are basement highs that follow the same trend of the continental-oceanic boundary in a transform margin.

The Ceará Terrace (CT), the main target of this investigation, is an E-W-striking marginal ridge located south of the western end of the Romanche Fracture Zone (RFZ) in the continental margin of Brazil. The CT has a counterpart in the African margin, the Ivory Coast-Ghana Ridge (ICGR), which is located north of the eastern termination of the RFZ. Earlier studies show that the evolution of both marginal ridges (CT and ICGR) was mainly influenced by (1) tectonic uplift due to Late Albian-Cenomanian transpressional tectonics and (2) flexural uplift due to erosion and thermal changes caused by the passage of the oceanic spreading center.

While ICGR is the most intensely studied marginal ridge in the Atlantic equatorial margin, the CT still needs further analysis to unravel its evolutionary process. The objective of the present study is thus to map and analyze the CT to understand its time and spatial evolution. Therefore, we have used and interpreted 2D reflection seismic sections and boreholes from the Brazilian Agency of Oil and Gas.

Our study shows that the CT is an intensely deformed Lower Cretaceous structure, which originates from the Atlantic opening process. The CT is controlled by the RZF and preexisting fault zones in the continent such as the Transbrasiliano lineament (TB). The interpretation of the seismic sections shows an intense ductile and brittle deformation of the CT paleo structure (syn-rift sequence) and the sedimentary units deposited after it (drift sequence). It indicates that tectonic reactivation occurred in the period where the transform movements were already restricted to the furthest spreading center. There is also evidence that some faults affect the whole rift sequence suggesting a possible brittle reactivation of the offshore continuation of the TB due to changes in plate movements in the Late Albian. This plate shifts agrees with previous works that show compressional features concentrated in continental shelf near of CT and half-grabens linked with the offshore TB prolongation. On the other hand, there is no evidence of the influence of weakness zones in the CIGR, where the Kandi lineament (the prolongation of the TB in the African continent) is far more than 300 km of that marginal ridge.

 

Acknowledgments:

This research was supported by Programa Institucional de Internacionalização - Coordenação de Aperfeiçoamento de Pessoal (PRINT-CAPES) and Aarhus University (AU). Brazilian Agency of Oil and Natural Gas (ANP) is thanked for providing the seismic and borehole data. We also thank Schlumberger for giving access to Petrel.

How to cite: Tavares, A. C., de Castro, D. L., Clausen, O. R., de Oliveira, D. C., Bezerra, F. H. R., and Vital, H.: Evidence of tectonic reactivation after continental breakup in the Ceará Terrace, Equatorial margin of Brazil, from 2D reflection seismics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15222, https://doi.org/10.5194/egusphere-egu2020-15222, 2020.

EGU2020-20540 | Displays | TS6.4

Brazilian Equatorial Margin: evidences of magmatic intrusion and alteration of host rock from well data

Andre Aquino da Silva, Yoe Alain Reyes Perez, and Helenice Vital

The mechanisms of magmatic intrusion is very complex and are commonly associated to pristine unconformities (weak spots) on the crust that ease its emplacement on the form of sills or dikes. When occurring on the Oceanic crust these weak spots may led to the formation of volcanic islands (such as Fernando de Noronha, on the Brazilian Equatorial Margin-BEM), submarine highs. Alignment of such features are related to Plate motion and the set of volcanos of Fernando de Noronha Ridge are considered a consequence of the westward motion of the South American Plate. Occurrence of magmatic rocks were found on a set of offshore wells at different depths and away of submarine highs. These magmatic emplacement suggests be related to a deep plume-fed mechanism which is the source of all sills found on the wells, as well as the volcanic highs occurring of the BEM. The lateral extents of the sills is greatly influenced by the presence of faults when preceding the intrusion, during which also occurred incorporation of parts of the host rock as xenoliths. On the well logs it is possible to observe changes on sonic slowness for the same lithotype when close to the sills, which indicates rock alteration due to the magmatic intrusion.

How to cite: Aquino da Silva, A., Reyes Perez, Y. A., and Vital, H.: Brazilian Equatorial Margin: evidences of magmatic intrusion and alteration of host rock from well data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20540, https://doi.org/10.5194/egusphere-egu2020-20540, 2020.

EGU2020-9187 | Displays | TS6.4

Imaging magma storage in the Main Ethiopian Rift with 3-D Magnetotellurics

Juliane Huebert, Kathy Whaler, Shimeles Fisseha, Fiona Iddon, and Colin Hogg

The Main Ethiopian Rift (MER) as part of the large East African continental break-up zone is characterized by lateral extension and active volcanism. Rifting in the MER is magma assisted, with surface expressions of magmatism concentrated at en echelon Quaternary magmatic segments and off-axis linear features, but questions still remain about their respective roles in rifting.

The storage and pathways of magma ascent are of great interest for the assessment of both geohazard and geothermal energy potential. Imaging magma storage throughout the crust and in the upper mantle can be achieved by geophysical deep sounding techniques such as magnetotellurics (MT). Through MT measurements it is possible to access the electrical conductivity of the subsurface, a parameter that is greatly sensitive to the melt and water content. We present new MT data from the Central MER and a three-dimensional model of conductivity of the crust, imaging across-rift magma storage not only under the well-developed central-axis silicic volcanic complex Aluto, but also under several off-axis basaltic monogenetic volcanic fields. The conductivity model supports the idea of bi-modal magma storage in the CMER and helps constrain the melt and water content in the crust through the use of petrological melt-mixing models. Integrating our findings with the results from seismic tomography and receiver functions as well as Bouguer gravity data and petrological observations allows a comprehensive picture of magma storage and pathways in the MER.

How to cite: Huebert, J., Whaler, K., Fisseha, S., Iddon, F., and Hogg, C.: Imaging magma storage in the Main Ethiopian Rift with 3-D Magnetotellurics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9187, https://doi.org/10.5194/egusphere-egu2020-9187, 2020.

During the Meso-Cretaceous compressive tectonic event (marked by the subduction of the East European Platform under Gondwana, and the initiation of the creation of accretionary prism in front of the orogen) the absence of related magmatism, and implicitly, the lack of an "arc" is similar to that of the Alps (McCarthy et al., 2018). Afterward, in the Upper Cretaceous, the Carpathian area has evolved in an extensional geodynamic context, specific to post-collisional periods, marked by the appearance of sedimentary basins with complex evolution and Gosau type molasses (Schuller, 2004; Schuller et al., 2009). In connection to the above, or not, it has evolved a complex magmatism, from a compositional point of view and as manifestation, largely calc-alkaline, known in the geological literature as banatitic (von Cotta, 1864). Banatitic magmatism is the first such manifestation in the Carpathians, post-subduction and post-collision and the most reliable age data (using U-Pb on zircon and Re-Os on molybdenite methods) suggest a very narrow range of evolution (70.2 - 83.98 Ma, Nicolescu et al., 1999; Galhofer, 2015; 72.36 - 80.63 Ma, Ciobanu et al., 2002; Zimmerman et al., 2008), that is characteristic to short-lived magmatism. Comparatively, in Serbia (Bor-Madjanpek district), the same magmatism occurs between 86-84 Ma, in Bulgaria in the Srednogorie massif between 92-86 Ma and Rhodope massif at 67-70 Ma (von Quadt et al., 2007). The geodynamic models discussed for this type of magmatism suggest, almost all without exception, the existence of subductions that would have extended as activity from the Middle Cretaceous to the Paleogene. Or, the realities of the terrain show that this magmatism seals the mesocretacic compressive structures (napes), as Nicolescu et al. (1999) exposed for the first time in Banat region. The situation is similar in the Apuseni Mountains. From the presumption of the generation of subductions for this magmatism, the idea of an "L" form magmatic belt ("arc"), from the Apuseni Mountains to Bulgaria, was forced. If we look closely at the spatial distribution of intrusive and effusive bodies, aspect also revealed by gravimetry studies (Andrei et al. 1989), we observe that they occupy areas with specific geometries, linked to or close to the Gosau-type basins, but strictly controlled by strike-slip fractures, similar to those that have controlled the appearance of Gosau basins (Drew, 2006). The metallogenesis associated with this magmatism is represented by metalliferous accumulations of Fe, Cu, Pb, Zn, with Au, Ag and W, Mo, B, Mg, Te, Bi, Sb, with a great typological variety, spatially controlled by the same type of fractures. It is evident that the transpressive-transtensive regime worked throughout the entire range of magmatic and metallogenetic activity, controlling it. In Banat region, as well as in the Apuseni Mountains, the end of the magmatic activity ceases with mineralizing and/or bearing mineralization lamprophyres. Being so, probably the lamprophyres attend or announce the metallogenetic event.

Acknowledgments
This work was supported by two grants of the Romanian Ministry of Research and Innovation, project number PN-III-P4-ID-PCCF-2016-4-0014, and project number PN-III-P1-1.2-PCCDI-2017-0346/29, both within PNCDI III

How to cite: Tatu, M. and Iatan, E. L.: New approaches regarding the geodynamic constraints of Late Cretaceous magmatism in Carpathian area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2904, https://doi.org/10.5194/egusphere-egu2020-2904, 2020.

Early Paleozoic mafic dykes are widespread in South Qinling Belt, central China. In this study, we present new major element, trace element, zircon U–Pb age and Sr–Nd–Hf isotopic results of Early Paleozoic diabases dykes in the South Qinling Belt to explore nature of the mantle source. The South Qinling Belt diabases have low SiO2 (42.1–49.5 wt%) high TiO2 (2.89–5.17 wt%), variable MgO (4.0–9.4 wt%) contents. In primitive mantle normalized multielement diagrams, all samples are strongly enriched in the majority of incompatible trace elements but systematic depletion in Rb, K, Pb, Zr and Hf. The negative K and Rb anomaly together with high TiO2 and high Na2O/K2O character suggest magma was derived from a source rich in amphibole. Partial melting modelling indicate 20–36% partial melting of amphibole-clinopyroxene-phlogopite veins with subsequent dissolution of ~30% orthopyroxene from the wall-rock peridotite within spinel stability field can produce the observed compositions of diabases. Additionally, South Qinling Belt diabases are characterized by moderately depleted Nd (εNd(t)= +2.2 to 3.3) and Hf (εHf(t)= +6.2 to 7.2) isotopic compositions without pronounced isotope decoupling, indicating mantle metasomatism occurred shortly prior to Early Paleozoic magmatism. It is proposed that low-degree silicate melts released from asthenosphere infiltrated and solidified within lithospheric mantle, forming non-peridotitic lithologies rich in amphibole clinopyroxene and phlogopite. Subsequent lithosphere extension caused the melting of the most easily fusible material in the lithosphere, which gave rise to the Early Paleozoic alkaline magmatism in South Qinling.

How to cite: Zhang, F. and Lai, S.: Vein-plus-wall rock melting model for the origin of Early Paleozoic alkali diabases in South Qinling Belt, Central China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4336, https://doi.org/10.5194/egusphere-egu2020-4336, 2020.

TS7.1 – Apennines tectonics, sedimentation and magmatism from Permian to Present

The Western Mediterranean-Alpine belt is remarkable for its tectonic complexity, i.e. strong arcuation of plate boundaries, fast trench retreat, upper-plate extension and switch of subduction/collision polarity around the Adriatic plate (Adria). The kinematic evolution of the Western Mediterranean area is enigmatic due to the intermittently motion of small continental plates (Adria, Iberia and Sardinia-Corsica) that are caught between two major plates (Africa and Europe), converging since Cretaceous time. Reconstructing the past motion of these micro-plates is challenging due to the strong deformation of their boundaries but is key to understand the geodynamic evolution of the whole area.

The Neogene tectonic evolution is well constrained using magnetic anomalies and transform zones in the Atlantic Ocean for the motion of Europe, Iberia and Africa, and by reconstructing the amount of convergence along fold-and-thrust belts (Apennines, Alps, Dinarides, Provence) and coeval divergence along extensional basins (Liguro-Provencal and Tyrrhenian basins, Sicily Channel Rift Zone) for the motion of Adria and Sardinia-Corsica. Those reconstructions show that Adria had a slight independent motion from Africa and rotated counter-clockwise of about 5º relative to Europe since 20 Ma. However, uncertainties increase and debates arise as one goes back in time. The main debates concern the past motion of Iberia and where its motion relative to Europe is being accommodated in Mesozoic time. Different kinematic scenarios have been proposed depending on the interpretation of paleomagnetic dataset of Iberia, magnetic anomalies in the North Atlantic, and geological-geophysical record of deformation in the Pyrenees and between Iberia and Sardinia-Corsica. Those scenarios have different implications for the tectonic evolution of the Apennines, especially for the Permian-Triassic paleo-tectonic setting of Sardinia, Calabria and Adria, and for the extent and timing of closure of the Liguro-Piemont Ocean. It is important to discuss those implications to better understand subduction processes in the Apennines and their driving forces.

How to cite: Le Breton, E.: Kinematic reconstructions of the Western Mediterranean area since Triassic time: possible scenarios and their implications for the Apennines, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11301, https://doi.org/10.5194/egusphere-egu2020-11301, 2020.

The Apennine magmatism from Early Permian to present may be considered as the result of a Wilson cycle. Here, the main stages of this magmatic activity will be reviewed from a mantle source perspective in the framework of the Alpine-Apennine system.  The oldest magmatic event is represented by gabbro-derived granulites of Late Variscan age, now occurring as blocks in Late Cretaceous orogenic melanges. Their protholiths  were recognized as deep crustal cumulates derived from MOR-type tholeiitic liquids. This event may be related to the extensive magmatic underplating affecting SW Europe in conjuction with lithospheric thinning and orogenic collapse of the Variscan belt. The subsequent Mesozoic continental rifting preceding the opening of the Jurassic  Ligurian Tethys was mostly amagmatic. Nevertheless, widespread evidence of melt migration in the ascending lithosphere during passive asthenospheric upwelling is testified in the exhumed mantle bodies from the Northern Apennine ophiolites. Mantle rocks showing a considerable geochemical and isotope heterogeneity were a dominant component of the Ligurian Tethys oceanic lithosphere. In contrast, the short-lived magmatism of the Ligurian Tethys (ca. 160-165 Ma) was characterized by uniform N-MORB signatures, both in marginal  and oceanward domains of the basin, which were related to embryonic and slow-spreading ridge type oceanic lithosphere, respectively. The Nd-Hf isotopic contrast between magmatic products and associated mantle rocks (Rampone et al., 1998; Mc Carthy et al., 2015; Barry et al., 2017; this work) is a debated issue,  which could reflect the occurrence of inherited subcontinental mantle or ancient depleted domains in the convecting upper mantle. The subduction initiation in the Northern Apennine was not related to igneous activity. No record  of island-arc magmatism linked  to the Alpine east-dipping subduction stage has been recognized, possibly due to dry, mantle-dominated, subducted lithosphere (Mc Carthy et al., 2018). On the other hand, the collisional calc-alkaline magmatism coheval with the west-dipping Apennine subduction system was found only as clasts in sediments from the nascent orogen (Aveto-Petrignacola Formation). Ancient modifications of mantle sources, possibly related to the previous subduction event, have been proposed for the origin of this magmatism (Mattioli et al., 2012). The imprint of Apennine subduction on mantle sources is strikingly attested by the recent volcanism (< 5 Ma), which includes the unique magmatic associations from Tuscany and Roman provinces. Here, leucite-free (lamproites, shoshonites) and leucite-bearing (kamafugite, leucitite, plagioleucitite) K-rich magmas, were erupted in the former domains, and locally hybridized with anatectic melts. Mantle melting was triggered by post-orogenic extension following the eastward migration of the Adriatic slab. Mantle source modification through recycling of different sedimentary lithologies from the subducted slab may explain the extreme incompatible trace element enrichments and Sr-Pb-Nd-Hf isotopic signatures of the ultrapotassic magmas, coupled with their subduction-related geochemical affinity (Conticelli et al., 2015).  

References

Barry et al., 2017. Sci. Reports 7, 1870 

Conticelli et al., 2015. Lithos 232, 174–196

Mattioli et al., 2012. Lithos 134-135, 201–220.

Mc Carthy and Muntener,  2015. Geology 43, 255–258

Mc Carthy et al., 2018. Geology 46, 1059–1062

Rampone et al., 1998. Earth Planet. Sci. Lett. 163, 175–189

How to cite: Montanini, A.: Magmatism and mantle evolution in the Northern Apennines: a tale of rifting, oceanization and subduction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5328, https://doi.org/10.5194/egusphere-egu2020-5328, 2020.

EGU2020-17862 | Displays | TS7.1

Oligocene-Miocene tectonics of the SW Alps and western Apennines coupled orogenic belts, as recorded by their internal and external syn-orogenic basins

Luca Barale, Piana Fabrizio, Bertok Carlo, d'Atri Anna, Irace Andrea, and Martire Luca

The Oligocene-Miocene evolution of the westernmost part of the Northern Apennines was constrained firstly by Oligocene E-W regional sinistral shearing and then by Early Miocene shortening and Middle to Late Miocene NW-SE dextral transpression affecting the southern termination of the Western Alps arc (Maritime and Ligurian Alps) and the substrate of the Tertiary Piemonte Basin (TPB), which started to be incorporated, in the same time span, in the Northern Apennines belt

In other words, the dynamics accommodating the different motion of the WNW-directed Adria and SW Alps with respect to the ENE-directed Ligurian-Corso-Sardinian block also controlled the evolution of TPB and its Ligurian substrate since at least the Aquitanian, when a regional conterclockwise rotation began and a deep reshaping of the basin occurred, due to predominant NE-SW shortening concomitant with the Northern Apennines thrust fronts propagation (Burdigalian). On the other side, the infilling of the SW Alps foreland basin was partially controlled also by the resedimentation of non-metamorphic Cretaceous-Paleocene Ligurian units previously deposited along the Briançonnais-Dauphinois continental margin. The subsequent Late Burdigalian to Serravallian extension in the internal side of the SW Alps allowed the creation of accomodation space and the deposition of relevant thickness of sediments in the TPB, during the coeval progressive uplifting of Alpine crystalline and metamorphic units (e.g. the Argentera Massif and Dora-Maira Unit). This Alpine process constrained the shape and evolution of the TPB syn-orogenic sub-basins and their subsequent tectonic paths within the NW Apennines belt, while it was being built. The steps of this Alps-Apennines evolution have been clearly recorded by a set of regional scale, Oligocene to Pleistocene unconformities that can be continuously traced at surface in the southern part of the Piemonte region and in the subsurface of the western Po plain.

We thus remark that the evolution of the westernmost part of the Apennines can be studied largely referring to the Alpine geodynamics, since, although the Alps and the Apennines are two distinct geomorphologic and geophysical entities at the scale of the Western Mediterranean area, they share common synorogenic basins and consistent kinematic evolution in their junction zone of NW Italy.

How to cite: Barale, L., Fabrizio, P., Carlo, B., Anna, D., Andrea, I., and Luca, M.: Oligocene-Miocene tectonics of the SW Alps and western Apennines coupled orogenic belts, as recorded by their internal and external syn-orogenic basins, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17862, https://doi.org/10.5194/egusphere-egu2020-17862, 2020.

EGU2020-22549 | Displays | TS7.1

Structural analysis and 3D geological modelling of the Santerno transect in the Northern Apennines (Italy)

Griso Lorenzo, Bistacchi Andrea, and Storti Fabrizio

We present preliminary results of a structural analysis and 3D modelling project carried out along a transect in the Santerno Valley, between Firenzuola (Tuscany) and the outskirts of Imola. The aim of the project is to combine surface geological and structural data (available thanks to the national geological mapping CARG project and original surveys), with the available subsurface data (2D seismics and a few wells), and obtain a comprehensive 3D framework for deformation in this key area of the Northern Apennines. In addition, by combining geodetic, seismicity and interferometric data with the 3D structural model, we are able to obtain a better picture of the active structures in the area.

Our analysis shows that the studied transect is at the northern periclinal hinge of a regional anticline/window where the Marnoso-Arenacea Formation crops out and is crosscut by several regional-scale thrusts. Subsurface data suggest that these relatively shallow thrusts are rooted at the top of Mesozoic carbonates, that do not crop out in the area. Different balancing algorithms confirm a relevant along-strike variation of slip along these thrusts, that reduce their offset towards the periclinal hinge to the west.

In the more external part of the transect, towards the lower hills and the plain around Imola, a regional-scale pop-up, evidenced by the late-Messinian unconformity, is the main feature in subsurface datasets. This structure is rooted at the base of Mesozoic carbonates and is characterized by large and continuous ramps that can be considered candidates for recent earthquakes in the area.

How to cite: Lorenzo, G., Andrea, B., and Fabrizio, S.: Structural analysis and 3D geological modelling of the Santerno transect in the Northern Apennines (Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22549, https://doi.org/10.5194/egusphere-egu2020-22549, 2020.

Exhumation of subducted high-pressure units is favoured by relatively narrow, high-strain shear zones, where most metamorphic and deformational processes occur. Unfortunately, these are commonly overprinted and/or partly or fully obliterated along the exhumation path by younger fabrics or by metamorphic re-equilibration. Their identification and characterization are, therefore, of primary importance when aiming at reconstructing the deepest (and thus earliest) tectonometamorphic history of high-pressure crustal units.

The Northern Apennines (Italy) offer the opportunity to study a unique setting where continental units (Tuscan Metamorphic Units) were subducted to high-pressure conditions and then exhumed and juxtaposed against non-metamorphic units (Tuscan Nappe). We have studied a well exposed section in the Monticiano-Roccastrada Unit of the Mid Tuscan Ridge (MTR), where a mesoscopic (~20 m length and 5 m high) compressional duplex deforms the Palaeozoic-Triassic quartz-rich metasandstones, metaconglomerates and minor metapelites of the Monte Quoio - Montagnola Senese Unit with a top-to-the-NE sense of shear (Arenarie di Poggio al Carpino Formation; Casini et al., 2007).

Our approach is based on detailed fieldwork, microstructural and petrological investigations. Field observations reveal severe strain partitioning within the duplex between metapelite levels, corresponding to 10-50 cm thick high-strain zones, and metasandstone levels, which form relatively strain-free metric horses. Early generations of quartz veins are highly transposed (sheath folds occur) parallel to the metapelitic high-strain shear zones. Veins are composed of iso-oriented quartz, forming up to several centimetre long single-grain ribbons, Mg-carpholite (XMg~ 0.65) needles and K-white mica marking the stretching lineation. Carpholite in the transposed veins invariably defines the stretching direction of shear zones. These high-P veins coexist with a later generation of less deformed, oblique quartz veins. The mylonitic foliation in the metapelites is defined by quartz, chloritoid, pyrophyllite and K-white mica forming a stretching lineation coherent with the one visible in the veins. Geometrical, cross-cutting and petrographic relations suggest that there has occurred cyclic deformation between brittle and viscous conditions, with the veins forming broadly syn-mylonitic shearing. Thermodynamic modeling results suggest >0.8 GPa and ~350°C for the formation of both the high-pressure veins and the mylonitic foliation.

Shear zones were subsequently folded about the NNW-SSE axis of the regional antiform associated with the MTR. Later brittle overprinting is represented by quart-filled tension gashes and localized C’ planes, mostly within the more competent metasandstone levels, indicating top-to-the-SW reactivation. In summary, our results suggest a cyclic brittle-ductile behaviour occurring at high pressure conditions. This could potentially reflect the repeated alternation between aseismic creep (viscous) and coseismic slip (brittle) during the first stages of the exhumation history of this portion of the northern Apennines, from lower to middle crustal levels in a compressional top-to-the-NE setting. Dating of K-white mica is ongoing to constrain the geodynamic scenario of such shear zone.

 

Casini, G., Decandia, F.A., Tavarnelli, E., 2007. Analysis of a mesoscopic duplex in SW Tuscany, Italy: implications for thrust system development during positive tectonic inversion. Geol. Soc. London, Spec. Publ. 272, 437–446.

 

How to cite: Giuntoli, F. and Viola, G.: Cyclic brittle-ductile behaviour recorded in exhuming high-pressure continental units of the Northern Apennines., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6923, https://doi.org/10.5194/egusphere-egu2020-6923, 2020.

EGU2020-3258 | Displays | TS7.1

Hematite (U-Th)/He constraints on Plio-Pleistocene deformation and hydrothermalism in the eastern Island of Elba, northern Apennines (Italy)

Giulio Viola, Alexis Derycke, Cécile Gautheron, Francesco Mazzarini, Giovanni Musumeci, and Paolo Stefano Garofalo

The northern Tyrrhenian Sea and the inner northern Apennines (NA) are classically regarded as a late Miocene–Pleistocene back-arc system characterized by crustal extension and acidic magmatism coeval with shortening farther east at the front of the belt. The orogenic prism of the NA, which is well exposed in the easternmost Island of Elba, formed by eastward thrusting, stacking and folding of oceanic and continental units from the Eocene down to the late Miocene. Eastern Elba hosts the historically and economically most important Fe district of Italy, which, in the study area, consists of sulphide- and Fe-rich veins and breccias, in addition to minor massive Fe ore bodies of hydrothermal origin emplaced in actively deforming upper crustal conditions (Mazzarini et al., JSG, 2019). The Zuccale fault (ZF) on Elba is generally interpreted as a major normal fault, which would have greatly facilitated regional E-W extension during the late Miocene. It is an east-dipping low angle fault that displaces the nappe pile by up to 6 km. The fault architecture is complex, although it can be approximated by an exclusively brittle, flat-lying component dated to < c. 5 Ma by K-Ar on illite from fault gouge that cuts through steeper, brittle-ductile and earlier top-to-the E thrust related fabrics (Viola et al., Tectonics, 2018).

Aiming at directly constraining the syn- to post Pliocene evolution of the ZF and the age of the hydrothermal Fe deposits of the historic mining district, we performed hematite (U-Th)/He dating of the low-angle, hematite-decorated principal slip surface of the ZF at the famous Terra Nera section. Hematite samples examined in this study comprise platelet-shaped crystals (specularite), fine aggregates coating fault slip surfaces, massive veins, the fine matrix of breccias, and euhedral millimetric crystals from low strain domains. Ages from the ZF striated fault plane span the ~4.2±0.4 to 3.6±0.4 Ma time interval, fully consistent with available fault gouge illite K-Ar dates. Later NNE-SSW strike-slip faulting, associated with centimetric specularite veins, is constrained to between 2.1±0.2 and 1.7±0.2 Ma, roughly coeval with transient and local reactivation of the ZF as indicated by 1.9±0.2-1.5±0.2 Ma old euhedral, millimetric hematite infilling dilational jogs within the foliated ZF fault zone. Farther north, in the Rio Albano area, mineralised hematite breccias genetically associated with top-to-the E spectacular extensional faults are dated to between 1.6±0.2 and 0.9±0.1 Ma and postdate older ~2.7-2.6 Ma quartz-hematite veins associated with a discrete phase of top-to-the W shearing.

All obtained dates fit our independently built structural model of the investigated area, where clear crosscutting relationships and structural/metamorphic considerations have permitted establishing a sequence of kinematically constrained deformation events. For the first time we have defined the exact timing of deformation in the study area, contributing to the unravelling of the local, long and complex tectonic and mineralization history and to a better constrained regional picture.

How to cite: Viola, G., Derycke, A., Gautheron, C., Mazzarini, F., Musumeci, G., and Garofalo, P. S.: Hematite (U-Th)/He constraints on Plio-Pleistocene deformation and hydrothermalism in the eastern Island of Elba, northern Apennines (Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3258, https://doi.org/10.5194/egusphere-egu2020-3258, 2020.

EGU2020-5987 | Displays | TS7.1

The cooling, deformation and exhumation history of the late Miocene syn-tectonic Porto Azzurro pluton in a regional transfer zone (Elba Island, Italy)

Andrea Brogi, Richard Spiess, Alfredo Caggianelli, Antonio Langone, Fin Stuart, Martina Zucchi, Caterina Bianco, and Domenico Liotta

In extensional tectonic settings, stretched terrains are often associated to lithosphere partial melting and widespread magmatism with plutons emplaced in the thinned crust. Emplacement of felsic magmas, at upper crustal levels, represents the final stage of the magma transfer from profound to shallow depth. In this framework, a mostly vertical permeability controls the magma uprising migration, as induced by dominant transcurrent crustal structures. Nevertheless, the interplay between extension and prolonged heat transfer favors uplift and progressive exhumation of the magmatic bodies, during their cooling.

In this presentation, we show an example of a felsic magmatic intrusion, the Porto Azzurro pluton (inner northern Apennines), emplaced in an extensional tectonic setting and mainly controlled by a regional transfer zone related to the opening of the Tyrrhenian Basin. This is exposed in the eastern Elba Island (Tuscan Archipelago). The hosting rocks of the Porto Azzurro pluton are mainly represented by micaschist, paragneiss and quartzite, affected by contact metamorphism and intense fluid circulation. We have analysed the structures that assisted the pluton emplacement and the ones that deformed the pluton itself during its cooling, from melt-present to brittle conditions, based on the integration among fieldwork, micro-structural, petrological and EBSD analyses. Furthermore, new U/Pb geochronological data on zircons and (U-Th)/He on apatite fission track refined the age of the pluton emplacement and its cooling, adding new data about the pluton history. Existing petrological analyses of the hosting rocks allowed us to better constrain the time-evolution of the thermal perturbation, permitting to frame the deformation and exhumation history of the Porto Azzurro monzogranite in the context of the Neogene extensional tectonics affecting the inner Northern Apennines.

How to cite: Brogi, A., Spiess, R., Caggianelli, A., Langone, A., Stuart, F., Zucchi, M., Bianco, C., and Liotta, D.: The cooling, deformation and exhumation history of the late Miocene syn-tectonic Porto Azzurro pluton in a regional transfer zone (Elba Island, Italy) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5987, https://doi.org/10.5194/egusphere-egu2020-5987, 2020.

EGU2020-9351 | Displays | TS7.1

Eastward Tectonic Escape of Sicily Microplate: preliminary results

Giulia Penza, Chiara Macchiavelli, Pietro Paolo Pierantoni, and Eugenio Turco

The complex processes affecting the Tyrrhenian-Apennine System are inevitably reflected in Sicily, here considered as an independent plate starting from 5 Ma and located between Europe and Africa plates and Calabria microplate.

In particular the retreat of the Adriatic-Ionian slab and its fragmentation involve Sicily in a process of escape towards east-southeast due to the space that the slab is creating. At the same time Africa acts as an intender during its convergence with the European plate.

We show here the preliminary results of a study that aims to reconstruct the kinematic evolution of Sicily and its role in the framework of the Tyrrhenian-Apennine System.

First of all we found the margins of the plate, searching for lithospheric structures that can be considered as plate boundaries, using different types of data (high resolution bathymetric maps, seismic sections, geodetic data, focal mechanism of recent earthquakes, gravimetric maps, lithosphere thickness maps…) together with the literature.

The margins are:

-The Sicily Channel, characterized by a series of pull-apart basins related to a dextral trascurrent zone (Sicily-Africa margin);

-The Malta escarpment and the Taormina Line characterized by transpression (Sicily-Calabria margin);

-The Drepano-Ustica seamount also characterized by transpression (Sicily Europe margin).

 

Starting from the structures in the Sicily Channel, we found the Euler pole of rotation between Sicily and Africa using the GPlates software. Thanks to the software we were able to find also Sicily-Europe and Sicily-Calabria poles and the velocity vectors.

Finally, we compared the Euler poles and the velocity vectors with the geological data, trying the best fit of the two and better refine the model.

 

Key Words: Sicily microplate, Sicily Channel, Malta Escarpment, Tyrrhenian-Apennine System.

How to cite: Penza, G., Macchiavelli, C., Pierantoni, P. P., and Turco, E.: Eastward Tectonic Escape of Sicily Microplate: preliminary results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9351, https://doi.org/10.5194/egusphere-egu2020-9351, 2020.

EGU2020-9727 | Displays | TS7.1

The opening of the Tyrrhenian basin and the Apennine chain formation in the kinematic context of Africa - Europe collision

Eugenio Turco, Chiara Macchiavelli, Pietro Paolo Pierantoni, Giulia Penza, and Antonio Schettino

The Africa Europe collision, which produces the formation of the Alpine arc, in the Mediterranean area is accompanied by passive subduction processes, resulting from the sinking of the remnant Alpine Tethys and the Ionian lithosphere, and from the fragmentation of the Adriatic plate. In this complex deformation, back-arc basins (Alboran, Balearic, Tyrrhenian and Hellenic) and circum - Mediterranean mountain ranges are formed.

In this work we focus our attention on the opening of the Tyrrhenian basin and the contemporary formation of the Apennine chain.

In order to describe the evolution of the geodynamic processes that guided the formation of the Tyrrhenian basin and the Apennine chain we used the plate kinematics technique. Through careful observation of the regional structures we have divided the area of the Apennine Chain and the Tyrrhenian basin into polygons (crustal blocks or microplates) distinguished on the basis of the direction of the Tyrrhenian extension. The boundary between the polygons has been placed coinciding with the large structures that characterize the Tyrrhenian-Apennine area. The rotation poles of the individual polygons, in the frame of reference of the Sardo-Corso block, are based on the Tyrrhenian extension directions that characterize them. The velocity ratio between the polygons was determined by the slip vector of the structure (plate boundary) that separates them. To determine the rotation time of the polygons we used the stratigraphic records of the syn-rift sequences, while the rotation angle of the polygons is obtained comparing the crustal balance with the speed ratios.

Finally, the kinematic framework obtained, included in the global rotation model, allowed us to reconstruct the tectonic evolution of the central Mediterranean during the opening of the Tyrrhenian basin.

Key Words: Tyrrhenian-Apennine System, Non-rigid plate kinematics.

How to cite: Turco, E., Macchiavelli, C., Pierantoni, P. P., Penza, G., and Schettino, A.: The opening of the Tyrrhenian basin and the Apennine chain formation in the kinematic context of Africa - Europe collision, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9727, https://doi.org/10.5194/egusphere-egu2020-9727, 2020.

EGU2020-19985 | Displays | TS7.1

3D Architecture and Plio-Quaternary evolution of the Paola Basin: Insights into the Forearc of the Tyrrhenian-Ionian Subduction System

Marta Corradino, Fabrizio Pepe, Giovanni Bertotti, Vincenzo Picotti, Carmelo Monaco, and Rinaldo Nicolich

Fore-arc basins form structurally in response to a variety of subduction zone processes. The sedimentary infill records the tectono-stratigraphic evolution of the basin, and thus, provides information on the dynamic of the fore-arc region. Using seismic reflection profiles and bathymetric data, we analysed the stratigraphy and tectonics of the Paola Basin, deciphering the tectono-sedimentary mechanisms that acted in the forearc of the Tyrrhenian‐Ionian subduction system during the Plio-Quaternary. The Paola Basin is a NNW-SSE trending syncline, bounded by the Coastal Chain to the east and a regional-scale anticline, here called Paola Anticline, to the west. There are no major normal faults bordering the basin. It hosts up to 5.2 km thick Plio-Quaternary deposits, most of them supplied from Apenninic/Sila entry points and transported by longshore currents. The total subsidence reaches the value of ∼5 km. The sedimentary load varies from 60% to 75% of the total subsidence. The Pliocene to Lower Pleistocene sedimentary infill of the syncline displays a strata growth geometry consistent with a continuous rotation of the eastern limb of the Paola Anticline. Crustal folding is the mechanism that better explains the lack of significant normal faults bordering the Paola Basin, its tectonic subsidence and the uplift of the Paola Anticline. During the Late Pliocene - Early Pleistocene, contractional deformation continued, and also strike-slip movements affected both the Paola Anticline and the eastern sector of the basin. This resulted in the growth of the central sector of the Coastal Chain, leading to the definition of the Paola and Crati basins, previously connected in a larger proto basin. Also, strike-slip faults with associated releasing and restraining bends formed in the hinge zone of the Paola Anticline. The bathymetric expression of the strike-slip zone consists of structural highs and depressions that overall form the Paola Ridge. The development of strike-slip tectonics is associated to the trench-parallel component of the upper plate motion occurring in the oblique subduction setting. The growth of the Paola Anticline and Paola Basin was coeval with the opening of the Vavilov and Marsili back arc basins. Thus, extensional and contractional tectonics spatially coexisted along sectors of the upper plate of the Tyrrhenian-Ionian subduction system from Early Pliocene to Early Pleistocene. Since the Middle Pleistocene, the growth of the Paola Anticline and Paola Basin came to an end, and extensional tectonics controlled the evolution of the forearc region.

How to cite: Corradino, M., Pepe, F., Bertotti, G., Picotti, V., Monaco, C., and Nicolich, R.: 3D Architecture and Plio-Quaternary evolution of the Paola Basin: Insights into the Forearc of the Tyrrhenian-Ionian Subduction System, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19985, https://doi.org/10.5194/egusphere-egu2020-19985, 2020.

EGU2020-5266 | Displays | TS7.1

The upper Messinian-lowermost Pliocene out-of-sequence event in the southern Apennines (Italy): a study about the kinematics of the major thrust faults

Sabatino Ciarcia, Ernesto Paolo Prinzi, Francesco D’Assisi Tramparulo, and Stefano Vitale

The southern Apennines are a fold-and-thrust belt formed since the lower Miocene until the middle Pleistocene (e.g., Vitale and Ciarcia, 2013). Although a wide literature exists about the geology of this orogenic chain, few are the studies about the kinematics of the major thrusts. With this in mind, this work is aimed to investigate the out-of-sequence regional thrust system exposed in the Campania region. This system is characterized by a frontal ramp exposed along the N-NE side of the platform carbonate ridge forming the regional mountain backbone. The main structure is also exposed as a flat thrust in the Campagna and Giffoni tectonic windows located in the internal sector of the chain. We analyzed several outcrops; in some of them, we observed the Mesozoic carbonates superposed onto the upper Miocene wedge-top basin deposits of the Castelvetere Group. The kinematic analysis of major and minor structures suggests the occurrence of two thrust fault sets: (i) the oldest indicates an eastward tectonic vergence, whereas (ii) the youngest, and more developed, toward the north. In the external zones, the N-S shortening was synchronous with the deposition of the upper Messinian-lowermost Pliocene Altavilla Fm. The origin of this out-of-sequence regional deformation is still matter of debate (e.g., Vitale et al., 2017). In our opinion it was the shallow expression of a deep-seated thrusting episode within the buried Apulian slab. It was dominated by thrust ramps (thick-skinned tectonics) mainly verging to East, and by the N-verging structures associated to lateral ramps.

References

Vitale Stefano and Ciarcia Sabatino (2013) - Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria-Peloritani Terrane system (Italy). Tectonophysics, 583, 164–182.

Vitale Stefano, Tramparulo Francesco d'Assisi, Ciarcia Sabatino, Amore F. Ornella, Prinzi Ernesto Paolo and Laiena Fabio (2017) - The northward tectonic transport in the southern Apennines: examples from the Capri Island and western Sorrento Peninsula (Italy). International Journal of Earth Sciences (Geologische Rundschau), 106, 97–113.

How to cite: Ciarcia, S., Prinzi, E. P., Tramparulo, F. D., and Vitale, S.: The upper Messinian-lowermost Pliocene out-of-sequence event in the southern Apennines (Italy): a study about the kinematics of the major thrust faults, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5266, https://doi.org/10.5194/egusphere-egu2020-5266, 2020.

EGU2020-21568 | Displays | TS7.1

A critical revision of the Liguride complex in the Pollino area (Southern Apennines)

Francesco Cavalcante, Rita Catanzariti, and Giacomo Prosser

The geodynamic reconstructions of the Apennine-Tyrrhenian system strongly rely on chronological and P-T data derived from the study of ophiolite-bearing units accreted in orogenic belts, frequently affected by HP-LT metamorphic overprint. Consequently, we carried out a detailed geological survey, combined with the study of calcareous nannofossils and the analysis of mineralogical and petrographic features of low-grade metamorphic rocks, in order to reconstruct the tectono-stratigraphic relationships among different formations of the Liguride Complex and perform a critical review of the existing literature on the P-T evolution of the Liguride accretionary wedge exposed in the Pollino area of the Southern Apennines.

A geological-structural survey allowed us to distinguish four major tectonic units, characterized by an overall decrease of metamorphic grade from top to bottom. The tectonic units consist of: i) slices of continental crust rocks consisting of Albitic gneisses, Garnet gneisses and Amphibolites; ii) the Frido Unit Auctorum p.p. with a variable intensity of deformation and HP/LT metamorphic grade. This unit consist of a typical ophiolitic assemblage, including serpentinites with metadoleretites or alterated peridotites, pillow lavas, foliated metabasites, metalimestones and metabreccias, quarzites, and jaspers. The upper part of the succession is made up of calcschists and low-grade metapelites, displaying variable PT conditions from about 7 kbar and 200 °C to 12 kbar and 350 °C. A wide variation of P-T conditions suggests that the Frido Unit consists of different thrust sheets, showing a progressive increase of the metamorphic grade moving from north to south;  iii) the Seluci-Cogliandrino Unit, consisting mainly of metapelites and slices of an upper Jurassic seafloor succession with pillow lavas;  iv) the non-metamorphic Nord Calabrian Unit represented, from the bottom, by ophiolites, shales with pencil cleavage (Crete Nere Formation) and by a prevailing calciclastic unit (Saraceno Formation), topped by thrust top deposits (Albidona Formation).

Calcareous nannofossil assemblages were studied in samples coming from the main successions of the investigated area, in order to provide age constraints for the deformation of the Liguride accretionary wedge. Results show that Frido Unit did not preserve calcareous nannofossils in all analyzed samples, because of the strong deformation produced during the HP-LT metamorphic overprint. In the upper part of the Seluci-Cogliandrino Unit, Eocene inf. CNE4 biozone has been documented. On the other hand, in the lower part of the Saraceno Fm a late Albian age (CC9 p.p.) was documented, based on the occurrence of Eiffellithus turriseiffelii and Hayesites irregularis. Moreover, the occurrence of Discoaster lodoensis, Reticulofenestra dictyoda and Toweius callosus framed the lower stratigraphic interval of the Albidona Fm to the early Eocene (Ypresian; CNE4 p.p.). Based on the above data, the current views on the Cretaceous-Paleogene geodinamic evolution of the southern Apennine thrust and fold belt should be substantially revised.

 

How to cite: Cavalcante, F., Catanzariti, R., and Prosser, G.: A critical revision of the Liguride complex in the Pollino area (Southern Apennines), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21568, https://doi.org/10.5194/egusphere-egu2020-21568, 2020.

EGU2020-19622 | Displays | TS7.1

Ductile shearing of Apennine allochtonous units and Messinian terrigenous deposits on top of the Inner Apulian Platform (Monte Alpi, Southern Italy)

Giacomo Prosser, Fabrizio Agosta, Alessandro Giuffrida, Claudia Belviso, and Francesco Cavalcante

Mylonites are common structural elements in basement complexes. There, strain localization within shear zones occurs at amphibolite to greenschist facieses. More rarely, it also takes place at low-grade to anchizonal conditions in the external portions of orogenic belts. In the present contribution, we document the large-scale architecture, micro-structure, and mineralogy of a prominent shear zone exposed along the southern flank of the Monte Alpi Unit, southern Apennines, Italy. Deformation localized within the Messinian sedimentary protolith topping the carbonates of the Apulian Platform, and in the lowermost tectonic units of the Apennine allochton. Integration of results achieved after field geological mapping, outcrop structural analyses, optical and SEM micropscopy, and X-Ray diffrattometry permits to assess the time-space evolution of the main deformation mechanisms in the aforementioned shear zone. The shear zone involved Messinian shale, sandstones and conglomerates originally deposited in a foreland basin system, and Mesozoic claystones, limestones, and marls that formed in deep basinal environments. Now days, the mylonitic foliation is sub-parallel to the tectonic contact between the Messinian sedimentary cover of the Apulian carbonates and the overlying allochton. Shear-related deformation produced a foliated mylonitic fabric dipping ca. 20° S, and a well-developed, east-trending stretching lineation defined by aligned quartz and/or calcite grains. The conglomeratic levels were boudinaged, and the individual elongated pebbles re-oriented along slip direction. The microstructure of mylonites is characterized by a fine-grained calcite matrix, which shows an intense foliation due to dark bands made up of oxides, organic matter, and minor phyllosilicates. X-ray diffraction data performed on the Messinian shales and Mesozoic claystones, indicate the presence of mixed layer illite/smectite with 80-90% of illite and R1/R3 ordering thus suggesting an high digenetic grade (temperature: 120-140 °C). The two analyzed lithologies mainly differ in the presence of kaolinite, which occurs in the more proximal Messinian facies. Altogether, outcrop-scale kinematic markers such as shear bands, rootles folds and asymmetric porphyroclasts show a consistent top-to-the-east shear sense. Mineralogical and microstructural data indicate that shearing took place at a depth of 6-7 km during the Early Pliocene emplacement of the Apennine allochton on the Apulian Platform, and then exhumed by Late Pliocene low-angle normal faulting, Lower Pleistocene transpression, and Middle-Pleistocene-Holocene high-angle extensional faulting. In summary, the eastward motion of the allochton produced intense and localized low-temperature shearing in sediments on top of the Apulian Platform and in the overlying allochton. A subsequent reactivation of this shear zones as low-angle normal fault during late Pliocene exhumation is envisioned.

How to cite: Prosser, G., Agosta, F., Giuffrida, A., Belviso, C., and Cavalcante, F.: Ductile shearing of Apennine allochtonous units and Messinian terrigenous deposits on top of the Inner Apulian Platform (Monte Alpi, Southern Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19622, https://doi.org/10.5194/egusphere-egu2020-19622, 2020.

In west-directed subduction zones, as the compression moves towards the foreland, the accretionary prism progressively expands to follow the hinge migration towards the east. Although late Miocene foreland propagation implies the shift of the thrust front, in the central Apennines, the effects of the Messinian compression can be observed on a much broader area, implying out-of-sequence thrusting in the rear.

In order to understand the Messinian involvement of the previously formed Tortonian belt-foredeep system, a regional reinterpretation is here provided. The analysis of publicly available 2D seismic reflection lines across the upper and middle Latin Valley and 10 wells enables the identification of two main seismostratigraphic units: i) the Meso-Cenozoic neritic carbonates and ii) the upper Tortonian siliciclastic pelitic and arenaceous turbiditic associations of the Frosinone Formation.

The most evident reflectors are the upper Cretaceous and upper Serravallian top paraconformities, which, due to tectonic repetition can be followed at different depths. We find that minor reflectors can be attributed to the several thrusts affecting folded Meso-Cenozoic neritic carbonates. This observation allows us, together with field and well evidences, to trace several thrust sheets characterized by a general top-to-the NE sense of shear. In a few sections from the Latin Valley (e.g. Line FR-309-80), we recognized the Meso-Cenozoic neritic carbonates being thrusted together with the Tortonian Frosinone Formation, on top of a laterally variably thick siliciclastic succession. This further syn-orogenic unit could be related to the early Messinian sandstones of the Torrice Formation, implying that out-of-sequence thrusting took place in the Latin Valley during the wedge-top sedimentation. The thin-skinned fold-and-thrust fabric is defined by en-échelon distributed thrusts, NNE- and ENE striking tear faults and minor pop-up structures often determining ideal traps for hydrocarbon and geothermal fluids. Finally, conjugated NW-striking high-angle normal faults crosscut the orogenic heritage and sets a horst and graben structure associated with continental deposition and the Volsci Volcanic Field.

The limited oil exploitation over the past century has targeted only the shallower siliciclastic traps and some evidences in the shallower neritic carbornate thrust sheets. At the light of our new interpretation, the deeper carbonate units could be a new focus for hydrocarbon accumulation and may furnish targets for geothermal and/or hydrocarbon research in the area. Future work aims at quantify the Tortonian and Messinian amount of shortening by taking into consideration the adjoining Volsci Range. Finally, our findings bear implications on geodynamic reconstructions and may represent an example of the geometry and kinematic evolution of platform derived thrust sheets and similar belts worldwide associated with W-directed subduction zones.

How to cite: Vico, G. and Cardello, G. L.: Late Miocene thrust tectonics of the Latin Valley: insights from seismic lines (Central Apennines, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20774, https://doi.org/10.5194/egusphere-egu2020-20774, 2020.

In collisional belts, foredeep turbidites are tracers of the evolution of the orogenic wedge. Syn-depositional tectonics affects the sedimentary facies distribution of the turbidite deposits, while post-depositional tectonics generates the major structures that deform the foredeep basins. The Aquitanian to Burdigalian Cervarola turbiditic succession is one of the main Oligo-Miocene foredeep units that characterize the northwestern portion of the Northern Apennines. The reconstructed sin and post depositional evolution of the Cervarola succession reveals that orogen-transversal tectonic structures strongly and persistently controlled this turbiditic succession, from the time turbidites were infilling the foredeep basin (Aquitanian-Burdigalian) to the time this foredeep deposits became a major and complex thrust sheet of the Northern Apennines orogenic wedge (post-Burdigalian-Present). The syn-depositional history of the Cervarola turbiditic succession has been defined through a detailed facies analysis that has allowed the basin morphology to be accurately constrained. Then, the post-depositional history has been addressed to define the multi-scale deformations preserved in the Cervarola succession through the following approaches: 1) analysis of published geological maps, 2) detailed field mapping, 3) construction of geological cross sections across the major folds, 4) analysis of meso-scale structures and 5) analysis of a seismic reflection profile. The study has outlined that the foredeep basin morphology was tectonically controlled and segmented by compressive structures transversal to the NW-SE basin elongation. The same structures were also present during the post-depositional compressive phases that built up the orogenic wedge and they have been even reactivated in the latest extensional events that have dismembered the mountain range. These orogeny-transversal and long-lasting (~23Myrs) lineaments cross-cut the entire tectonic stacking of the Northern Apennines, affecting tectonic units which suffered different amount of translation during the mountain building, making the reconstruction of the geological evolution possible only with an integrated approach as performed in this work.

How to cite: Piazza, A., Tinterri, R., and Artoni, A.: The “syn” and “post” depositional evolution of a foredeep basin segmented by orogen-transversal tectonic structures: the case of the Cervarola Sandstones Formation, Miocene, Northern Apennines, Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10031, https://doi.org/10.5194/egusphere-egu2020-10031, 2020.

The “Livorno-Sillaro” line represents one of the most important transversal structure of the inner Northern Apennines.  It has been described in the literature as a major strike-slip fault (e.g., Bortolotti, 1966; Carmignani et al., 1994; Pascucci, 2005; Pascucci et al., 2007), and it is divided into two segments, eastern and western. 

A stratigraphic-sequence frame for the late-Quaternary deposits has been developed by using the different facies associations defined through a large subsurface database analysis. Moreover, a correlation has been done between subsoil deposits and the outcropping sediments on the hilly areas (Livorno, Pisa and Cerbaie hills) surrounding the Arno valley.

Additionally, a morphotectonic analysis of the hydrographic networks and relief distribution has been done the Lidar data (DTM), supplied by the Tuscany Region, at the 2 m and 10 m of resolution. Specifically, the river system is particularly sensitive to deformation processes. The fluvial streams are in fact characterized by low geomorphological inertia and, therefore, by response times of a few hundred thousand years to the tectonic processes in progress.

As a result of the integrated multidisciplinary analysis, it was possible to highlight a tectonic activity in the middle Pleistocene -Holocene interval of the western portion of the "Livorno-Sillaro" lineament neglected in the geological literature until now.

References

Bortolotti V. (1966) – La tettonica trasversale dell’Appennino – La linea Livorno-Sillaro. Bollettino della Società Geologica Italiana, Vol.85, pp. 529-540, 3 ff., 1 tav.

Carmignani L., Decandia F.A., Fantozzi P.L., Lazzarotto A., Liotta D. & Meccheri M. (1994) – Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics. Vol. 238, pp. 295-315.

Pascucci V. (2005) – Neogene evolution of the Viareggio Basin, Northern Tuscany (Italy). GeoActa. Vol. 4, pp. 123-128.

Pascucci V., Martini I.P., Sagri M. & Sandrelli F. (2007) – Effects of transverse structural lineaments on the Neogene-Quaternary basins of Tuscany (inner Northern Apennines, Italy). Sedimentary Processes, Environments, and Basins: A Tribute to Peter Friend.

 

How to cite: Sarti, G., Giannico, V. G., Pittaro, D., and Porta, L.: New insight on the sedimentary record related to the late-Quaternary tectonics of the western segment of the “Livorno-Sillaro” (Northern Tuscany, Italy)., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19557, https://doi.org/10.5194/egusphere-egu2020-19557, 2020.

A geological mapping project was performed on the 1:10,000 scale in the northern Amerini Mts. (Narni–Amelia Ridge, Central Apennines), coupled with facies analysis and multidisciplinary outcrop characterisation. This project was focused on the Jurassic-Lower Cretaceous succession, in order to reconstruct the Mesozoic palaeogeography and tectono-sedimentary evolution of the study area. This sector of the Apenninic Chain (i.e. Umbria-Marche-Sabina palaeogeographic domain) experienced the Early Jurassic rifting phase, which dismembered the vast Calcare Massiccio carbonate platform. The development of a rugged submarine topography, coupled with drowning of the benthic factories, were the main effects of this normal faulting. The complex submarine physiography, made of structural highs and lows, is highlighted by facies and thickness variations of the Jurassic and Lower Cretaceous deposits. The hangingwall blocks hosted thick (hundreds of metres) pelagic successions, with variable volumes of admixed gravity-flow deposits. These successions onlapped the horst blocks along escarpments, rooted in the rift faults, where the pre-rift Calcare Massiccio was exposed. The tops of footwall blocks (Pelagic Carbonate Platforms or PCPs) were capped by thin (few tens of metres or less), fossil-rich and chert-free, condensed pelagic successions. This rift architecture was evened out at a domain scale in the Early Cretaceous. Successively, Miocene orogenic and Plio-Pleistocene extensional faulting caused uplift and exhumation of the Mesozoic rocks.

In the study area, geothematic mapping associated with the analysis of basin-margin unconformities and successions revealed a narrow and elongated Jurassic structural high (Mt. Croce di Serra - Mt. Alsicci structural high), surrounded by Jurassic basinal pelagites. The PCP-top condensed succession is not preserved. The chert-rich basinal units rest on the horst-block Calcare Massiccio through unconformity surfaces (palaeoescarpments), as marked by the silicification of the (otherwise chert-free) shallow-water limestone. The onlap successions embed megablocks of Calcare Massiccio (hundreds of metres across), detached from their parent palaeoescarpments. Very thin, condensed deposits form discontinuous veneers on the olistoliths of Calcare Massiccio (epi-olistolith deposits) and are onlapped by younger basin-fill pelagites. The beds surrounding the olistoliths are characteristically bent due to differential compaction, as their (newly acquired) strikes mimic the outline of the stiff objects they were burying.

Indirect evidence for a Toarcian, post-rift, tectonic pulse can be locally mapped, and is documented by angular unconformities between the Pliensbachian and Toarcian pelagites, as well as by mass-transport deposits found in the Rosso Ammonitico (Toarcian).

The same goes for millimetric to centimetric neptunian dykes made of Maiolica pelagites cross-cutting the Corniola Fm. (Sinemurian-Pliensbachian). These dykes, coupled with the occurrence of unconformities between Aptian-Albian pelagites (Marne a Fucoidi Fm.) and Lower Jurassic rocks (Calcare Massiccio and Corniola formations), provide evidence for a further Early Cretaceous tectonic phase, recently reported from the southern sectors of Narni-Amelia ridge.

How to cite: Zuccari, C., Cipriani, A., and Santantonio, M.: Mesozoic palaeogeography and tectono-stratigraphic features of the northern Amerini Mts. (Central Apennines, Italy): new constraints on their Jurassic and Cretaceous evolution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3871, https://doi.org/10.5194/egusphere-egu2020-3871, 2020.

EGU2020-10374 | Displays | TS7.1

Permian sporomorphs from upper Palaeozoic succession of Southern Tuscany (Italy): new constraints for the stratigraphy and palaeogeographic setting of the Tuscan Domain

Amalia Spina, Andrea Brogi, Enrico Capezzuoli, Simonetta Cirilli, and Domenico Liotta

Recent biostratigraphic, sedimentological and petrological studies in the inner Northern Apennines (Italy) permit to refine the upper Palaeozoic successions of southern Tuscany, allowing new hypothesis to frame these formations in the Permian palaeogeographical scenario of the western Mediterranean domain. The Tuscan pre-Triassic deposits, belonging to the Monticiano-Roccastrada Unit, are generally barren or scarce in term of biomineralized fossiliferous content. They were mostly affected by HP-LT to LP-HT metamorphism that, together with the limited distribution of deposits, made difficult their stratigraphic correlation.

The present study is focused on two metamorphic units (i.e. Filladi e metacalcari di Fosso della Falsacqua Formation and Filladi e quarziti del Torrente Mersino Formation) which age attribution and correlation was strongly debated in the literature.

The Filladi e metacalcari di Fosso della Falsacqua Formation (minimum estimated thickness of about 150 m), cropping out in Monte Leoni area, is mainly characterized by black to dark-grey phyllite, metasiltstones and metasandstones with dark limestone intercalations. Due to the lack of biomineralized fossil content, by lithostratigraphic correlation with other formations cropping out in Tuscany, this formation was differently assigned to late Carboniferous-early Permian or Devonian.

The Filladi e quarziti del Torrente Mersino Formation (minimum estimated thickness of about 200 m) crops out in the Boccheggiano mining area and mainly consists of black to dark-grey quartz-phyllite, quartz metaconglomerates, light-grey quartzites, green phyllites and quartzites and light-grey phyllites. This formation resulted barren of fossil content and has been differently assigned to Ordovician-Silurian, Silurian-Devonian, late Carboniferous-Permian and Triassic by lithostratigraphic correlation with other Tuscan-Sardinian successions.

In the present study, the first finding of a middle Permian well-preserved microflora adds more constrains to the age attribution of these studied formations. This new age assignment permits to correlate the investigated formations with the coheval ones belonging to southern Tuscany (i.e. Farma Formation) and Elba Island (Rio Marina Formation) characterized by a similar microfloral content. Moreover, the occurrence of Gondwana-related sporomorphs, in all the studied formations, points to a new palaeogeographic scenario of the upper Palaeozoic successions from the northern Gondwana margin. The results of this integrated study inclines to consider the fragmentation of the northern margin of Gondwana as a result of several transtensional (pull-apart) basins where different laterally-related depositional environments leaded the sedimentation of these Tuscan middle Permian formations.

How to cite: Spina, A., Brogi, A., Capezzuoli, E., Cirilli, S., and Liotta, D.: Permian sporomorphs from upper Palaeozoic succession of Southern Tuscany (Italy): new constraints for the stratigraphy and palaeogeographic setting of the Tuscan Domain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10374, https://doi.org/10.5194/egusphere-egu2020-10374, 2020.

EGU2020-19978 | Displays | TS7.1

Origin and metamorphic reworking of the Buca della Vena Tl-rich orebody (Alpi Apuane, Italy)

Simone Vezzoni, Diego Pieruccioni, Andrea Dini, Giancarlo Molli, and Cristian Biagioni

The origin and evolution of an orebody hosted in metamorphic terrane is a prime topic in economic geology because they have implications on exploration as well as on related potential geo-environmental health hazards. The Alpi Apuane orebodies has long been known; however, their ore genesis and the relationships with the Apenninic age deformation and metamorphism is still a matter of debate. Indeed, they are still an interesting field of research, as proved by the recent discovery of a remarkable Tl anomaly associated to the baryte ± pyrite ± Fe-oxides ores of southern Alpi Apuane, northern Tuscany, Italy [1]. The present work reports a new detailed field and underground geological-structural investigation, performed from cartographic- to microscopic-scale, integrated by available drill-logs data, of one of these Tl-rich orebodies - the Buca della Vena ore.

The present study gives new insights on some aspect of the ore-forming events and discusses previous interpretations. According to our investigations, the ore settings were acquired during successive geological events related to an early hydrothermal-magmatic phase, likely of Permian age, and to the more recent Apenninic deformations. We suggest that the proto-ore was produced by hydrothermal activity related to the post-Variscan magmatic cycle (documented by the Permian age “Fornovolasco metarhyolite” Fm [2]), causing ore-formation, tourmalinization and hydrothermal alteration halo in the Cambrian-Lower Ordovician phyllites host-rocks. In our model, the ores were then partially exhumed suffering supergene alteration with development of minor Fe-oxides sedimentary mineralizations during the upper Norian-Hettangian. Finally, the previous hydrothermal and sedimentary ores, along with the host-rocks, were involved in the Apenninic orogenesis, and were recrystallized, and partially remobilized acquiring the current mineralogical, textural, and structural settings.

References:

[1] Biagioni, C., D’Orazio, M., Vezzoni, S., Dini, A., Orlandi, P., 2013. Mobilization of Tl-Hg-As-Sb-(Ag,Cu)-Pb sulfosalt melts during low-grade metamorphism in the Alpi Apuane (Tuscany, Italy). Geology, 41, 747-750.

[2] Vezzoni, S., Biagioni, C., D’Orazio, M., Pieruccioni, D., Galanti, Y., Petrelli, M., Molli, G., 2018. Evidence of Permian magmatism in the Alpi Apuane metamorphic complex (Northern Apennines, Italy): New hints for the geological evolution of the basement of the Adria plate. Lithos, 318-319, 104-123.

How to cite: Vezzoni, S., Pieruccioni, D., Dini, A., Molli, G., and Biagioni, C.: Origin and metamorphic reworking of the Buca della Vena Tl-rich orebody (Alpi Apuane, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19978, https://doi.org/10.5194/egusphere-egu2020-19978, 2020.

EGU2020-2341 | Displays | TS7.1

Upper Carboniferous-Permian tectonics in Central Mediterranean: an updated revision

Giancarlo Molli, Andrea Brogi, Alfredo Caggianelli, Enrico Capezzuoli, Domenico Liotta, Amalia Spina, and Ivan Zibra

An updated revision of the upper Carboniferous-Permian tectonics recorded in Corsica, Calabria and Tuscany is here proposed. We combine our and literature data to document how the sedimentary, tectono-metamorphic and magmatic upper Carboniferous-Permian record fits with a regional-scale tectonic scenario characterized by trascurrent fault systems associated with stretched crustal domains in which extensional regional structures, magmatism and transtensional basins developed. In Corsica, altogether with well-known effusive and intrusive Permian magmatism, the alpine S.Lucia nappe exposes a kilometer-scale portion of the Permian lower to mid-crust, with many similarities to the Ivrea-Verbano zone. The two distinct Mafic and Leucogranitic complexes, which characterize this crustal domain are juxtposed by an oblique-slip shear zone named as S.Lucia Shear Zone. Structural and petrological data document interaction between magmatism, metamorphism and shearing during Permian in the c. 800-400 °C temperature range. In Calabria (Sila, Serre and Aspromonte), a continuous pre-Mesozoic crustal section is exposed. The lower crust portion of such section is mainly made up of granulites and migmatitic paragneisses with subordinate marbles and metabasites. The mid-crustal section includes an up to 13 km thick sequence of granitoids of tonalitic to granitic composition, emplaced between 306 and 295 Ma and progressively deformed during retrograde extensional shearing to end with a final magmatic activity between 295 and 277 Ma, consisting in the injection of shallower dykes in a transtensional regime. The section is completed by an upper crustal portion mainly formed by a Paleozoic succession deformed as a low-grade fold and thrust belt, locally overlaying medium-grade paragneiss units, and therefore as a whole reminiscent of the external/nappe zone domains of Sardinia Hercynian orogen. In Tuscany we document, how late Carboniferous/Permian shallow marine to continental sedimentary basins characterized by unconformity and abrupt change in sedimentary facies (coal-measures, red fanglomerate deposits) and acid magmatism well fit a transtensional setting with a mid-crustal shear zone linked with a system of E-W trending (in present orientation) upper crust splay faults. We will frame the whole dataset in a regional framework of first-order transcurrent shear zones network which includes a westernmost S.Lucia Shear Zone and an easternmost East Tuscan Shear Zone, with intervening crustal domains in which extensional to transtensional shearing occured.

How to cite: Molli, G., Brogi, A., Caggianelli, A., Capezzuoli, E., Liotta, D., Spina, A., and Zibra, I.: Upper Carboniferous-Permian tectonics in Central Mediterranean: an updated revision, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2341, https://doi.org/10.5194/egusphere-egu2020-2341, 2020.

TS7.2 – Fold-thrust belts as linking elements between orogen and foreland deformation - nature, models, processes

Accretionary wedge systems result from scraping clastic sedimentary sequences off a descending oceanic plate at subduction zones. Sediments covering the incoming, subducting oceanic plate may be accreted at the wedge front forming a typical imbricate fan. Buried parts of the stratigraphic sequence may underthrust the wedge body and get subsequently accreted at its base (underplating) or even descend further into the mantle. Tectonic underplating requires a step-down of the major décollement horizon representing in fact the subduction plate interface. Intense underplating at the rear of accretionary wedges ultimately leads to antiformal stacking and, in combination of surface erosion, to the uplift of sediments formerly accreted at the base of wedges. In the present study, I try to determine and quantify the main features leading to tectonic underplating and subsequent uplift of underthrust incoming sediments at subduction zones. To do so, a numerical model is set up defined by a downgoing rigid plate, an overlying sedimentary sequence and a rigid backstop resulting in sediment accretion. The implementation of two weak décollement layers allows for the potential development of tectonic underplating. Tested parameters for the tectonic evolution of such systems include décollement strength, surface erosion, elastic stiffness of the downgoing plate and geometry of the rigid backstop. The applied numerical code is based on the finite difference marker-in-cell technique with a visco-elasto-plastic rheology. Results indicate that underplating is intensified when i) the stratigraphically lower décollement is strengthened with respect to the upper one, ii) surface erosion is increased, or iii) the downgoing plate becomes stiffer. Modelling results are compared to natural cases of accrretionary wedges where sediments have been underplated (and eventually exhumed) as in the Makran, the Franciscan, or the Appalachians.

How to cite: Ruh, J. B.: Numerical modelling of tectonic underplating in accretionary wedges, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5607, https://doi.org/10.5194/egusphere-egu2020-5607, 2020.

We studied the Karwendel mountains of the Northern Calcareous Alps fold-and-thrust belt, that formed during the Upper Cretaceous. The study area exposes one of the principal thrusts that emplaces Triassic sediments on the top of Cretaceous rocks. Based on a detailed structural analysis (Kilian and Ortner, 2019) it has been demonstrated that the folds above the thrust are buckle folds.

With the finite element modelling, we aimed to create folds with wavelengths comparable to those observed in the field. The model set up is a simple layer cake model based on the stratigraphy of the western Northern Calcareous Alps. We used ABAQUS a finite element software to create the model. The material model is linear elasticity. During modelling, we tested different material characteristics and layer thickness. In all model runs a very weak décollement (possibly salt) is necessary to produce folds. We further tested the influence of erosion and re-sedimentation on the development of structures. We concluded that the growth of folds having wavelengths comparable to the field examples depends on the thickness of the competent layer, whereas the thickness of the incompetent layer has negligible influence.

We suggest that fold development in this part of the Northern Calcareous Alps is dependent on the interplay between the growth of evaporite-cored anticlines and surface erosion.

Reference

Kilian, S., Ortner, H.: Structural evidence of in-sequence and out-of-sequence thrusting in the Karwendel mountains and the tectonic subdivision of the western Northern Calcareous Alps. Austrian Journal of Earth Sciences, Vienna, 2019, V.112/1, p.62-83, DOI: 10.17738/ajes.2019.0005.

How to cite: Kilian, S., Ortner, H., and Schneider-Muntau, B.: Buckle fold growth in the western Northern Calcareous Alps fold-and-thrust belt of Austria– finite element modelling and field observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5256, https://doi.org/10.5194/egusphere-egu2020-5256, 2020.

EGU2020-21901 | Displays | TS7.2

Mapping strain in the footwall of a thrust: Preliminary results from 3D bulk fabric of illite.

Charles Aubourg, Gracia-Puzo Francho, Casas-Sainz Antonio, Izquierdo-Llavall Esther, Boiron Tiphaine, and Saur Hugo

The Sigues fold (Aragon, Spain) presents an exceptional outcrop where 1) the footwall is largely exposed, 2) it is constituted of homogenous shales, 3) the strain varies at distance from the emergent thrust, with all steps of cleavage development. The best model to explain the strain distribution is the trishear propagation of a thrust with a P/S ratio of 1.  However, from East to West, the thrust geometry is changing progressively from blind thrust to flat ramp. The topographic surface as well as the position of the emerging part of the thrust determine the geometry of the structure. This is, therefore, a place with variable geometries, which allow us to describe the different geometric stages of the ramp-and-flat model that we are used to find in major orogenic thrusts.

To map the strain, we measured the magnetic fabric of hundreds of shale fragments (weighting a few grams) in dozens of localities. The magnetic fabric is governed primarily by illite. Hence, the magnetic fabric represents a 3D view of illite organization, i.e. the matrix of those shales (see Gracia-Puzo et al., EGU, EMRP3.8). The measurement of 3D fabric of illite takes about a minute per fragment and is non-destructive.

Magnetic fabric of shale fragments provides three useful parameters, the degree of anisotropy, the shape parameter from oblate to prolate, and the length of the confidence angle of the minimum axis of tensor. We show that all these three parameters are highly sensitive to strain. While each locality provides homogenous results from ~15 fragments (covering few square meters each), it is statistically different from one site to the other, with trends consistent with distance to the main thrust. Assuming rigid rotation of illite particles, we calculate the strain using Eigen values of magnetic fabric tensor.

Our preliminary maps shows: 1) that the strain increases considerably (from units to tens in %) when approaching the main thrust, 2) at a distance of more than 1 km, several strain gradients are detected, suggesting that blind thrusts propagate in the footwall. Serial N-S cross-sections are expected to describe the lateral variability on the structure, the deformation accumulated on the footwall and also establishing the portion of the hanging wall which is being affected and the décollement of the thrust. Our approach is thus promising to map strain in shales from deformed regions, both from natural outcrops, or from boreholes.

How to cite: Aubourg, C., Francho, G.-P., Antonio, C.-S., Esther, I.-L., Tiphaine, B., and Hugo, S.: Mapping strain in the footwall of a thrust: Preliminary results from 3D bulk fabric of illite. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21901, https://doi.org/10.5194/egusphere-egu2020-21901, 2020.

EGU2020-1916 | Displays | TS7.2

Formation and forward propagation of the Indosinian Nanpanjiang foreland basin and foreland thrust belt in SW China

Wen-Xin Yang, Dan-Ping Yan, Liang Qiu, Michael. L Wells, Jian-Meng Dong, Tian Gao, and Zhi Zhang

Nanpanjiang Basin (also called the Youjiang Basin or Dian-Qian-Gui Basin in literatures), the foreland basin of the Indosinian orogenic belt, is located on the boundary belt between the South China and Indochina Blocks. This foreland basin is characterized by a transition from the Early Triassic shallow-marine carbonate platforms to Middle and Upper Triassic continental facies clastic rocks and reworked by the subsequent Indosinian foreland thrusting and deformations. The development of the Indosinian foreland fold-and-thrust belt remains underappreciated in part because of the loose constraints of the transition from basin deposition to deformation and erosion. In this study, we present two geological cross-sections that synthesized field geological investigations, together with the structural interpretation of three seismic profiles, and LA-ICP-MS detrital zircon age constraints. The results reveal that the thrust belt is characterized by fault-related folds with duplex and imbricate thrusts, which yield the NNE-trending regional shortening estimate of ~36%. The new constraints indicate that the Nanpanjiang foreland basin formed before 237 Ma (D11) was overridden by the following NNE-ward progressive deformations, including 237-225 Ma thick-skinned thrusts (D12), 223-183 Ma thin-skinned thrusts (D13), and after that entire basin-involved deformation (D14). Subsequently, D1 was re-deformed and superimposed by the Middle to Late Jurassic NNE-striking fault-related fold system (D2). D11-4 reveals a NNE-verging propagation in-sequence foreland thrusting which overrode the foreland basin and the corresponded NNE-ward progressive foreland basin during the Indosinian.

How to cite: Yang, W.-X., Yan, D.-P., Qiu, L., Wells, M. L., Dong, J.-M., Gao, T., and Zhang, Z.: Formation and forward propagation of the Indosinian Nanpanjiang foreland basin and foreland thrust belt in SW China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1916, https://doi.org/10.5194/egusphere-egu2020-1916, 2020.

EGU2020-11748 | Displays | TS7.2

Contractional inheritance and rheology controls in a FTB: the Argentinian Precordillera, Central Andes (30°S)

Matthieu Branellec, Nuria Carrera, Josep Anton Munoz, Jean-Claude Ringenbach, and Jean-Paul Callot

The Central Andes (12°S-36°S) stretches over more than 2400km. They are characterized by strong longitudinal and latitudinal segmentation (Sierra Pampeanas, Precordillera, Cordillera Frontal, Cordillera Principal from east to west), each domain having distinctive basement involvement and showing different structural styles. The Argentinian Precordillera, located at 30°S, has long been interpreted as a thin-skinned wedge detached below into the lower part of Paleozoic succession. It makes up a typical Coulomb foreland thrust belt system. However, the impact of the Paleozoic inheritance derived from the various orogenic stages on the current structural style has been overlooked. The Chanic structures that developed in Silurian / Devonian times have been reactivated by the Andean deformation that took place from Oligocene to Plio-Pleistocene times. The current structure of the Precordillera has been the subject of numerous studies in the last decades. Thanks to compilation of this literature and fieldwork, we present a new cross-section considering these 2 superimposed events. This cross-section can be divided into 2 different zones depending on the dominant structures. The western Precordillera involves an Ordovician succession characterized by Chanic superimposed folding phases with cleavage development. On the contrary, in the eastern part, most of the observed structures were developed during Andean orogeny. The structural style is characterized by thrusts faults and penetrative deformation is absent. The Sierras Pampeanas in the East are a Miocene thick-skinned system that makes up a typical broken foreland system. The association of both systems of Precordillera and Sierras Pampeanas delineate an inheritance-controlled original orogenic thin-skinned system that turns to the east into a broad thick-skinned system involving up to Precambrian rocks.

How to cite: Branellec, M., Carrera, N., Munoz, J. A., Ringenbach, J.-C., and Callot, J.-P.: Contractional inheritance and rheology controls in a FTB: the Argentinian Precordillera, Central Andes (30°S), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11748, https://doi.org/10.5194/egusphere-egu2020-11748, 2020.

EGU2020-22109 | Displays | TS7.2

A mountain of folds: triangle zone in the fold-and-thrust belt of the External Pamir, Kyrgyzstan

Thomas Voigt, Jonas Kley, and Christoph Wehner

Triangle zones are thrust sheets or stacks of thrust sheets underlain by foreland-directed thrusts and overlain by a kinematically linked “passive” roof thrust - a backthrust - directed towards the hinterland. They are not uncommon in thin-skinned fold-and-thrust belts. Most triangle zones are known from seismic data and drilling. We describe a km-scale example exposed on a flank of the Altyn Dara valley near the thrust front of the Pamir mountains in Kyrgyzstan. The External Pamir is a high-level thrust belt built from non-metamorphic strata of Permian to Neogene age. It is bounded on its internal, southern side by the Main Pamir thrust with metamorphic rocks in its hanging-wall and in the north by the Pamir Frontal thrust which juxtaposes it with undeformed foreland strata of the Alai valley.

The triangle zone has formed where the basal detachment of the External Pamir ramps up from Lower Cretaceous redbeds into a succession of Upper Cretaceous marine pelites with a few intercalated limestone horizons. The strongly deformed Upper Cretaceous strata are contained between a north-directed thrust and a south-directed backthrust, both of which carry Lower Cretaceous rocks in their hanging-walls. In stark contrast to classical models, the core of the triangle zone is occupied by a bundle of essentially unfaulted, isoclinal upright folds. The subvertical axial planes diverge slightly upwards and changing elevations of the synclinal troughs suggest an anticlinorium. This structure is exposed over a vertical distance of 1 km in the steep flank of Pik Sverdlova. The folds involve four shaly packages and three limestone horizons. The initial total thickness of this succession was about 500 m. A strong slaty cleavage is developed in the shales, but the limestones do not show marked thickness variations between the long, straight fold limbs and the tight but rounded hinges. Assuming negligible penetrative strain in the limestones, unfolding the sinuous bed length suggests 10 km of horizontal shortening accommodated by folding.

Its overall geometry suggests that the triangle zone originated as a wide zone of detachment folding above a thrust fault propagating at the base of the weak Upper Cretaceous shales. The strong contraction may indicate some kind of buttress towards the foreland such as a syndepositional fault against which the Cenomanian-Turonian succession thinned or terminated, or the backthrust itself if it initiated early on. At any rate, the highly shortened bundle of folds was at some point bypassed along a deeper detachment in Lower Cretaceous strata into which the backthrust merges.

The internal structure of the Pik Sverdlova triangle zone would be difficult to image by conventional seismic techniques. Vertical drilling would also be unlikely to fully reveal the folded architecture. We speculate that in many triangle zones folding may be a more important mechanism than incorporated in the prevailing thrust-stacking models.

 

How to cite: Voigt, T., Kley, J., and Wehner, C.: A mountain of folds: triangle zone in the fold-and-thrust belt of the External Pamir, Kyrgyzstan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22109, https://doi.org/10.5194/egusphere-egu2020-22109, 2020.

The New Guinea Orogen evolved by the accretion of volcanic arcs onto the northern Australian margin during the Cenozoic arc-continent collision. Since that time, the northern Australian margin has undergone oblique convergence with Pacific plate involving volcanic arcs and intra-oceanic basin in between. The resulting FTBs are the Papuan FTB, the Mobile Belt and the Aure-Moresby FTB belonging to the curved shape New Guinea Highlands.

Previous regional structural studies were focus to the Central Papuan FTB. Concerning the Aure-Moresby FTB, few studies based mainly on field work describe a highly deformed Neogene underfilled foreland basin with mixed carbonate-siliciclastic deposits. One regional cross-section through the onshore Aure-Moresby FTB is proposed by Kugler during his PhD in 1967. In this regard, some lack of consistency about the regional structural style can be highlighted such as the different timing and amount of shortening between the Papuan and Aure-Moresby FTBs and the large N-S positive flower structure to explain the uplift of the Aure FTB.

The main goals of this study on the Aure-Moresby Foreland FTB are: (i) to discuss the impact of the mechanical stratigraphy on structural style, (ii) to estimate the significance of basement involvement and its morphology, (iii) to determine the shortening by comparing the regional balanced and restored cross sections, (iv) to estimate the relative ages of tectonic deformation and to propose a 2D kinematic model illustrating the evolution of the orogenic system since the Late Cretaceous.

For this purpose, 2D seismic profiles, chronostratigraphic synthesis, remote sensing mapping, wells and gravimetric data have been integrated in order to construct a consistent structural evolutionary model of the Aure FTB. This study is mainly focused on the interpretation of NE-SW trending 2D seismic lines in Move software to build a balanced cross-section from the hinterland to the foreland Aure foredeep.

This study shows that the Aure-Moresby FTB structure is the result of thin-skinned deformation along Late Cretaceous, Miocene and Pliocene detachment levels affected by recent thick-skinned deformation. The section is characterized by multiple fault-propagation folds detached at various level within the Mesozoic and Cenozoic. In the central Aure FTB, two main structural steps show major uplifts that correspond to the wide Dude Anticlinorium and the Kapau Margin interpreted as crustal scale thrusting rooted at the brittle/ductile transition and connected with the Cretaceous décollement level. Crustal scale deformation seems to be transmitted into Mesozoic and Cenozoic decollements and disharmonic levels forming the frontal folded zone. In the frontal Aure FTB, Miocene carbonate may be involved in the deformation forming potentially Pleistocene structural traps. Based on flexural slip restoration technique, 28 km of shortening have been calculated within the sedimentary cover along 250 km that correspond to a ratio of 11,2 %.

How to cite: kergaravat, C., ringenbach, J., and Verges, J.: Evolution of the Aure-Moresby Foreland FTB (Papua New Guinea): Constraints from balanced crustal scale cross-section and forward modeling., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13310, https://doi.org/10.5194/egusphere-egu2020-13310, 2020.

EGU2020-7670 | Displays | TS7.2

Varying thrust geometry along the Central Atlas fronts: structural criteria for 3-D reconstruction

Antonio M. Casas, Pablo Calvín, Pablo Santolaria, Tania Mochales, Hmidou El-Ouardi, ESther Izquierdo, Teresa Román-Berdiel, Sara Torres, Andrés Pocoví, Belén Oliva-Urcia, Bennacer Moussaid, Marcos Marcén, Andrés Gil-Imaz, Vicente Carlos Ruiz, María Felicidad Bógalo, Elisa Sánchez, Ángela Herrejón, Ángela Jiménez, Juan José Villalaín, and Irene Falcón

Multiple constraints, including poorly known parameters, determine along-strike changes of frontal thrust structures in fold-and-thrust belts. Along the 400 km long, continuous Central Moroccan Atlas belt, structural style shows significant changes, preserving similar figures of shortening. This implies the absence of large-scale vertical-axes rotations, as demonstrated by paleomagnetic studies accomplished during the development of this project. The main factors controlling thrust geometry are:

- the geometry of Triassic-Jurassic extensional basins subsequently inverted during Cenozoic compression, with especial mention to changes of cover thickness and orientation of structures

- transfer of displacement between the northern and southern thrust systems

- transfer of displacement between the basement (Paleozoic) units and the Mesozoic cover through the Upper Triassic detachment. This factor strongly determines the width of the belt in each transect, as it occurs in other basement-and-cover fold-and-thrust belts

- cover/detachment thickness ratio.

- localization and partitioning of deformation between different structures in the inner part and the borders of the massif

- amount of superposition between different cover thrust sheets, including folded thrusts

- structural style, changing from thin-skinned style to large recumbent folds along strike, probably depending on P-T conditions and cover thickness

- backthrusts related to low cover thickness/detachment thickness ratio, especially frequent in the northern Atlas thrusts

- differential shortening between sections related to layer-parallel shortening and folds associated with cleavage development in the central part of the chain

- influence of previous structures, such as individual diapirs, salt walls or igneous intrusions that modify the pre-compressional geometry of the detachment level, nucleate structures and favor buttressing. This feature can also be a source of errors in the calculation of shortening.

All these factors result in strong along-strike changes such as branching of thrust surfaces, progression of deformation towards the foreland and differential cleavage development. Influence of structures developed during the basinal/diapiric/igneous stage results in a variability of trends that varies between from less than 10° to more than 30°, what allows in some cases to distinguish between structures controlled by basinal features and newly formed thrusts.

In spite of the different techniques for cross-sections reconstruction, and in some cases, the different interpretations for the origin of structures, the shortening figures obtained along the chain are remarkably constant, on the range of 35 km, thus implying a 18 to 30% of shortening for most of the transects what attests for the reliability of the results.

Recognition and quantification of factors controlling the development of structures is the fundamental step to determine the main thrust surfaces, and the secondary backthrusts in a region where basin inversion is one of the main constraints. Structural criteria point to a dominant southward vergence and secondary northwards-directed thrusts. Minor strike-slip components were probably localized in the core of the chain. Present-day 3-D reconstruction of the Atlas is currently being done considering all these inputs as well as those obtained from merging the vast dataset obtained.

How to cite: Casas, A. M., Calvín, P., Santolaria, P., Mochales, T., El-Ouardi, H., Izquierdo, E., Román-Berdiel, T., Torres, S., Pocoví, A., Oliva-Urcia, B., Moussaid, B., Marcén, M., Gil-Imaz, A., Ruiz, V. C., Bógalo, M. F., Sánchez, E., Herrejón, Á., Jiménez, Á., Villalaín, J. J., and Falcón, I.: Varying thrust geometry along the Central Atlas fronts: structural criteria for 3-D reconstruction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7670, https://doi.org/10.5194/egusphere-egu2020-7670, 2020.

EGU2020-13016 | Displays | TS7.2

New Versus Conventional Approach for Modeling Flexure of Foreland Basins

Mortaza Pirouz, Jean-Philippe Avouac, Adriano Gualandi, Muhammad Hassan Quddusi, and Weitong Huang

We constrain foreland basins geometry to assess the equivalent elastic thickness of the lithosphere and the loads that have originated due to the collisional process. Geometry of the foreland relates to the topography loading and hidden subsurface load based on simple 2D flexural models have been done for many foreland basins during 80 and 90s (for example for Zagros, Taiwan, and Colville foreland in Alaska) and most of them highlighted that present topographic and basin loads are not enough to provide such a deflection and extra buried loads are expected. Recent 3D flexure models using conventional approaches are used to estimate the elastic thickness of the lithosphere and may highlight a need for the buried loads. In the conventional approach, we apply topographic and basin loads and use the common assumption that the space created due to the deflection is filled with material of crustal density. This takes place in the deflection function by Δρ=ρmantlecruct. The conventional approach thus includes the static subsurface load associated with the buoyancy of the crustal root. In the new approach, we assume that the deflection is filled with air Δρ=ρmantleair and the sub-surface load is proportional to the topographic load. The load from topography and sub-surface loads is then simply λ times the topographic load. This approach allows accounting for quantifying all sub-surface loads correlated with topography, including the effect of the crustal root. In the new approach the Moho depth, representing the ratio between the root and topographic height, can be considered and the results give more clue about recognizing and quantifying buried load or mantle dynamics loads. With the new approach, we investigated Zagros, Taiwan, and Colville basin-Alaska foreland basins and obtained very precise models with less than 5% misfit between observations and predictions. Previous studies highlight that the buried loads are needed to obtain comparable results to the observations. However, our results show that the best models do not need extra buried loads with a reasonable ratio between topographic relief and crustal root using the new modeling approach.

Abbreviations: Tc, thickness of undeformed lithosphere; wt, deflection due to topographic load; Pt, topographic load; ρm, density of Mantle; ρc, density of crust; ρa, density of air; g, gravity acceleration; β, flexural parameter; Hr, root thickness; Ht, topographic height, and λ, ratio between root thickness and topographic height.

How to cite: Pirouz, M., Avouac, J.-P., Gualandi, A., Quddusi, M. H., and Huang, W.: New Versus Conventional Approach for Modeling Flexure of Foreland Basins, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13016, https://doi.org/10.5194/egusphere-egu2020-13016, 2020.

EGU2020-11043 | Displays | TS7.2

Western Europe tectonic evolution : probing the relative role of inheritance and sub-lithospheric processes

Frédéric Mouthereau, Paul Angrand, Juliette Rat, and Maxime Daudet

Abstract : The heterogeneous continental lithosphere of Western Europe inherits billion of years of tectonic evolution, mineral transformation and magmatic addition. Its deformation over broad regions form collisional orogens and large forelands basins, which tectonic evolution is controlled by the interactions between its inherited properties, large-scale plate convection and smaller-scale plate subduction. How these first-order interactions are connected through time and space to control collision evolution is however largely unknown. Here we explore the evolution of the Alpine collision along a transect stretching between northern Africa and Europe. We show that the complex patterns of Alpine deformation from the Rif-Betic, Pyrenean collision and Europe primarily reflects continental fragmentation and drastic weakening of the lithosphere that occurred during the Late Permian-Triassic. Subsequent rifting episodes from Jurassic to Early Cretaceous left imprints on the thermal evolution of sedimentary basins, together with significant increase of Iberia topography, asthenospheric flow, and plate-scale dispersion of terrigenous sediments. The lack of large oceanic domain, at the transition between Atlantic and western Tethys, resulted in the distributed of shortening over a broad region from north Africa, Iberia and Europe, in the upper Cretaceous (~70 Ma). Detailed contraints on the sequence of shortening throughout West Europe from Late Cretaceous to the Tortonian reveals that the overall evolution of the west-alpine orogenic domain is primarily controlled by the nature and architecture of the continental lithosphere but became progressively controlled by sub-lithospheric processes associated with late/post-orogenic tectonic evolution.  

How to cite: Mouthereau, F., Angrand, P., Rat, J., and Daudet, M.: Western Europe tectonic evolution : probing the relative role of inheritance and sub-lithospheric processes , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11043, https://doi.org/10.5194/egusphere-egu2020-11043, 2020.

The Franconian Basin in SE Germany has seen a complex stress history indicative of several extensional and compressional phases e.g. the Iberia-Europe collision acting on a pre-faulted Variscan basement. Early Cretaceous extension is followed by Late Cretaceous inversion with syntectonic sedimentation and deformation increasing progressively from SW to NE culminating in the Franconian Line where basement rocks are thrusted over the Mesozoic cover. The development of this intracontinental fold-and-thrust belt is followed by Paleogene extension associated with the formation of the Eger Graben, which is then succeeded by a new compressional event as a consequence of the Alpine orogeny.

We use existing data from literature and geological maps and new field data to construct balanced cross-sections in order to reveal the architecture of the Cretaceous fold-and-thrust belt. In addition, we undertake paleostress analysis using a combination of fault slip information, veins and tectonic and sedimentary stylolites to identify stress events in the study area, as well as their nature and timing. Furthermore, we try to understand how basement faults influence younger faults in the cover sequence.

Our paleostress data indicates that at least five different stress events existed in Mesozoic to Cenozoic times (from old to young): (1) an N-S directed extensional stress field with E-W striking normal faults, (2) a NNE-SSW directed compressional stress field causing thrusting and folding of the cover sequence, (3) a strike slip regime with NE-SW compression and NW-SE extension, (4) an extensional event with NW-SE extension and the formation of ENE-WSW striking faults according to the formation of the Eger Graben in the E, and finally (5) a strike slip regime with NW-SE compression and NE-SW extension related to Alpine stresses. The geometry of faulting and deformation varies significantly over the regions with respect to the influence of and distance to inherited Variscan structures.

We argue that the extensional event of stress field (1) provides spacing for Early Cretaceous sedimentation in the Franconian Basin. This is followed by the creation of an intracontinental fold-and-thrust belt during stress fields (2) and (3) with a slight rotation of the main compressive stress during these events in Late Cretaceous. We associate the following extension to the development of the Eger Graben in Miocene time. Finally, a NW-SE directed compression related to Alpine stresses in an intracontinental strike-slip regime is following. Reconstruction of the Cretaceous fold-and-thrust belt reveals mainly fault propagation folding with deep detachments sitting below the cover sequence indicating thick-skinned tectonics. We argue that the Franconian Line is a thrust with a steeply dipping root that belongs to the same fold-and-thrust belt.

How to cite: Köhler, S., Duschl, F., Fazlikhani, H., and Köhn, D.: Inversion tectonics, intracontinental fold-and-thrust belts and complex stress fields in central Europe: the history of the Franconian Basin revealed by paleostress analysis, geological maps and field observations. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2601, https://doi.org/10.5194/egusphere-egu2020-2601, 2020.

EGU2020-6742 | Displays | TS7.2

Late-Stage Alpine Continent-Continent Collision: Implications from Exhumation of the External Crystalline Massifs

Marco Herwegh, Alfons Berger, Edi Kissling, Nicolas Bellahsen, and Yann Rolland

Late stage Alpine collision is the result of collision of the European and Adriatic continental plates. For this stage, particularly the External Crystalline Massifs (ECM) and their forelands provide information on deformation style/kinematics, exhumation history and geodynamic driving forces. Using the ECMs as marker for the non-thinned European passive continental margin, the margin’s paleogeography with its curved geometries controls in parts later compressional tectonics. During closure of the Valaisan in Eocene times, a major NW-SE trending sinistral transfer zone must have acted as lateral ramp between the NNW migrating Penninic front and the westerly situated European margin units (Argentera and Maritime Alps, stage 1 of Schmid et al. 2017). Hence, first transpressive movements were documented by transpressional strike-slip faults in the case of Argentera and southern Belledonne s.l. Massifs. The SW-NE trending ECMs became affected during a first stage of horizontal tectonics in Oligocene, when first the margin sediments were scrapped off their substratum (Helvetics, Chaînes Subalpines, Dauphinois) followed by thick-skinned thrusting. Transport directions gradually changed from W to N from the Western towards the Eastern ECMs. This spread in transport direction is the consequence of an Alp-internal vertical uplift (Internal Crystalline Massifs (ICM), Lepontine dome) induced by indentation of Adriatic mantle into European lithosphere (stage 2 of Schmid et al. 2017). With further down-bending of the European crust, a major change to a vertical tectonic deformation style occurred in Mid to Late Miocene. Steep reverse faults in the ECMs, in parts with oblique slip components (Mont Blanc), witness this stage with its enhanced vertical rock uplift component. The latter is most pronounced in the Aar Massif and gradually decreases towards the West (Belledonne s.l.). With continuous ICM exhumation in Late Miocene, deformation style switches again to horizontal tectonics, leading to ‘en bloc’ exhumation above basement thrusts of all massifs (Belledonne to Aar Massifs). Progressive shortening induced thrust propagation into the foreland sediments as well as the Jura mountains. In the case of the Argentera Massif, oroclinal bending probably led to a substantial anticlockwise rotation, which goes in hand with the rotation of the entire SW Alpine arc (stage 3 of Schmid et al. 2017). In a geodynamic context, the ‘Adriatic push model’ could explain aforementioned stages of classical horizontal tectonics. Not so, however, the observed severe components of vertical tectonics in the case of ECMs. Here, lower crustal delamination, with a loss of lithospheric negatively buoyant forcing and consequent strong increase in positive buoyancy explains generation and activity of steep reverse faulting in the ECMs. In this context, the ‘orogeny slab rollback’ model provides a physically more consistent framework to explain the observed deformation sequences of late-stage continent-continent collision.

Schmid, S.M., Kissling, E., Diehl, T., van Hinsbergen, D.J., Molli, G., 2017. Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps–Apennines orogenic system. Swiss Journal of Geosciences 110, 581-612.

How to cite: Herwegh, M., Berger, A., Kissling, E., Bellahsen, N., and Rolland, Y.: Late-Stage Alpine Continent-Continent Collision: Implications from Exhumation of the External Crystalline Massifs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6742, https://doi.org/10.5194/egusphere-egu2020-6742, 2020.

A bivergent orogenic belt and its foreland basins form an intimately coupled system for which cause-effect relationships have generated much debate. This is the case in the Pyrenees, where the contemporaneity of crustal thermal events (cooling) with foreland tectonic events (subsidence) during convergence has, until recent years, remained unclear due to little quantification of processes during early orogenesis. Over the last 5 years, the development of new tools for generating, manipulating and modelling data and processes in geo-thermochronology has been stimulating new research that challenged established paradigms in both Pyrenean pro- and retro-foreland systems. Results obtained for these systems must now be compared and integrated into a reconstruction of the Pyrenean orogen history.

In this study we first review published detrital geo-thermochronology data in the eastern to central Pyrenees, harmonizing the way by which they are inverted for the inference of sediment provenance with use of current statistical modelling methods. Second, we re-interpret these detrital data in terms of provenance for both Pyrenean pro- and retro-foreland systems. Last, we compare the geo-thermochronological signals in both foreland basins to reconstruct orogen dynamics in the Pyrenees. We critically assess the implications of this newly proposed reconstruction for the validity of conceptual models for orogenic evolution and of plate kinematic models in the northwestern Mediterranean region.

How to cite: Ternois, S., Léger, J., Pik, R., and Ford, M.: Reconstructing orogen dynamics from detrital geo-thermochronological signals in pro- and retro-foreland basins: A case sudy of the Pyrenees, France, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19638, https://doi.org/10.5194/egusphere-egu2020-19638, 2020.

EGU2020-18993 | Displays | TS7.2

Structural relief across the NW segment of the Zagros Mountain Front Flexure in the Kurdistan Region of Iraq: implications for basement thrusting

Mjahid Zebari, Christoph Grützner, Philipp Balling, and Kamil Ustaszewski

Within the NW segment of the Zagros belt in the Kurdistan Region of Iraq, the Zagros Mountain Front Flexure separates the High Folded Zone from the Foothill Zone and forms a pronounced topographic and structural step. Due to the lack of outcrops and subsurface data, balanced and kinematic valid geometrical interpretations for the subsurface deformation associated with this step are not well constrained yet. To solve this, we estimated the structural relief across seven regional transects crossing the Mountain Front Flexure and we constrained the geometry of deformation from deformed-state and forward-modeled balanced cross-sections. The calculated structural relief for six out of seven transects ranges from 2 to 3 km. By using forward modeling, we show that predominantly thick-skinned deformation is needed to explain this amount of relief across the Mountain Front Flexure. Our best-fitting result suggests c. 6.5 km of displacement along a basement thrust fault that dips c. 25° at the top of the basement and that is shallowing downwards. About 4.2 km of this displacement on the basement fault were accommodated up-section by thrust-related and detachment folding of the Triassic and younger units within two prominent anticlines. About 2.3 km of displacement was transferred to the Foothill Zone, forming detachment folds above the Triassic detachment level. Inclined river terraces on the flank of anticlines within the Foothill Zone indicate ongoing displacement on this basement fault. The amount of shortening within the low topographic part of the belt from the deformation front to the limit of seismogenic thrusting within the Imbricated Zone, implies that the Late Miocene to Quaternary shortening rates there were much lower than the present-day geodetically derived convergence rates for this part of belt. These results shed new light on the geometry of the Zagros and its structural evolution.

How to cite: Zebari, M., Grützner, C., Balling, P., and Ustaszewski, K.: Structural relief across the NW segment of the Zagros Mountain Front Flexure in the Kurdistan Region of Iraq: implications for basement thrusting, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18993, https://doi.org/10.5194/egusphere-egu2020-18993, 2020.

EGU2020-11758 | Displays | TS7.2

Inheritance processes of active extensional deformation in ocean-continent subduction zones: the example of the northern Andes compressional margin in Ecuador

Cédric Bulois, François Michaud, Marianne Saillard, Nicolas Espurt, Marc Regnier, María-José Hernandez Salazar, Yvonne Font, Pedro Reyes Benítez, Jean-Yves Collot, Jean-Noël Proust, Elia D'Acremont, Laure Schenini, and Diego Barba

Over the last 23 Myr, the roughly east-directed subduction of the Nazca Plate beneath South America led to the formation of several mountain ranges associated with the overall northern Andes evolution. Along the active southwestern Ecuadorian margin, the compressional setting involves the Cretaceous-Miocene Chongón-Colonche / Santa Elena terranes, overlain by recent sedimentary basins. This geological setting, generally interpreted as an onshore-offshore forearc system, evolves in close relation with the active tectonic escape of the North Andean Sliver and the opening of the Gulf of Guayaquil. This region is characterised by a widespread extensional deformation in the upper plate that overprints moderate subduction and crustal earthquakes.

To better document such extensional processes, we specifically explore the offshore shelf and the littoral area of the Santa Elena Peninsula using academic and industrial 2D seismic profiles calibrated with local wells and field observations. We document a trench-parallel fault network, composed of >20km-long normal faults that take place on top of the former Chongón-Colonche accretionary wedge. These faults are linearly-steep along the trench, and are listric toward the continent where they clearly control fault-block rotation. They separate flexural basins developing on the platform ahead the Chongón-Colonche Cordillera, and are associated with immerged terraces most likely formed during the Last Glacial Maximum. They also may link to further onshore marine terraces developing since the Pleistocene across the coastline.

These observations suggest a peculiar dismantlement of the margin, mainly affected by tectonic erosion involving reactivation of former compressional features. Normal faults are specifically interpreted as a regional syn-orogenic collapse of the Chongón-Colonche Cordillera, which may result from transecting subducting ridges, fracture zones and seamounts controlling, at least partially, the geometry and the nature of the deformation along the southwestern Ecuadorian margin. This deformation pattern is likely linked to a weak interseismic coupling along the subduction interface to which the active opening of the Gulf of Guayaquil overlaps. This project is funded by the project ANR MARACAS ANR-18-CE31-0022 (MARine terraces along the northern Andean Coast as a proxy for seismic hazard ASsessment).

How to cite: Bulois, C., Michaud, F., Saillard, M., Espurt, N., Regnier, M., Hernandez Salazar, M.-J., Font, Y., Reyes Benítez, P., Collot, J.-Y., Proust, J.-N., D'Acremont, E., Schenini, L., and Barba, D.: Inheritance processes of active extensional deformation in ocean-continent subduction zones: the example of the northern Andes compressional margin in Ecuador, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11758, https://doi.org/10.5194/egusphere-egu2020-11758, 2020.

Tectonic subdivisions of larger geologic units reflect the geologic knowledge at the time of creation. In many thrust belts the original subdivisions had been created during the first comprehensive mapping campaigns at the end of the 19th to early 20th century and reflect the geologic knowledge at that time. Even if many thrusts were identified correctly, no formal framework existed to give guidelines of how to distinguish tectonic units. Nevertheless, these subdivisions are still in use.

We analyze the thrust sheets of the Northern Calcareous Alps of western Austria and southern Germany and test the implicit assumptions underlying most tectonic subdivisions against field observations:

Assumption 1: Thrust transport is large and thrusts do not end laterally. However, several major thrusts do loose stratgraphic offset and end laterally.

Assumption 2: Allochthons are surrounded by thrusts on all sides. Unfortunately, any fault has been used to delimit allochthons.

Assumption 3: Thrusting should bring old on young rocks. In some cases, allochthons have been delimited by out-of-sequence thrusts, that stack young on old rocks. In other cases, the allochthon is a mountain-size glide block that was buried by younger sediments, and the trace of the thrust is an unconformity in the field.

As a consequence we propose a revised tectonic subdivision of the western part of the NCA, that avoids some of the problems discussed here, and is entirely based on the emplacement of old-on-young rocks across thrusts.

How to cite: Ortner, H. and Kilian, S.: Tectonic subdivisions in thrust belts – cleaning up the western Northern Calcareous Alps (NCA), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9494, https://doi.org/10.5194/egusphere-egu2020-9494, 2020.

EGU2020-9969 | Displays | TS7.2

Prediction uncertainties in salt detached fold and thrust belts – examples from the surface and subsurface of the Northern Calcareous Alps (Austria)

Klaus Pelz, Pablo Granado, Michael König, Elizabeth P. Wilson, Philipp Strauss, Eduard Roca, Wolfgang Thöny, and Josep Anton Muñoz

As shown for fold and thrust belts worldwide and for the Northern Calcareous Alps (NCA) in particular, the initial thickness and spatial distribution of autochthonous salt exerts fundamental control on deformation localization and structural style. The initial sedimentary geometries of mini-basins formed by downbuilding into or rafting on salt do influence the geometries of thrust sheets during subsequent shortening. The lateral extent and spacing of individual thrust sheets and the overall cylindricity of structures is governed by initial facies changes and thickness variations within and across mini-basins and salt ridges between them. During convergence, remaining inflated salt localizes shortening whereas mini-basins may react as rather rigid blocks. As deformation culminates at these secondary welds that eventually become thrusted and squeezed, apparent structural closures might become exploration targets but potentially yield more complex internal geometries and less predictable facies distribution.

In this contribution we show several cross sections constrained by surface and subsurface data in the eastern NCA and below the Vienna Basin. We compare areas with abrupt changes in stratigraphic thickness, limited lateral extent of individual thrust sheets and highly non-cylindrical structural style along strike to areas where thrust sheets extend over several tens of kilometers along strike with remarkably cylindrical structures, little thickness variations and less abrupt facies changes. Predictive capabilities in underconstrained areas (i.e., insufficient seismic imaging and/or resolution, lack of well control, bad outcrop conditions) are analyzed and compared to closures with well control and pre-drill expectations. Evidently, culminations can be predicted with more confidence in areas with little variation in facies and sedimentary thicknesses. Reliability of predictions generally degrades with decreasing thrust sheet size, observable non-cylindricity within and in between thrust sheets, and with increased complexities at the edges of mini-basins (e.g., squeezed and thrusted flaps). Internal geometries of mini-basins need to be imaged and analyzed properly to narrow down these uncertainties at potential culminations along the edges.

How to cite: Pelz, K., Granado, P., König, M., Wilson, E. P., Strauss, P., Roca, E., Thöny, W., and Muñoz, J. A.: Prediction uncertainties in salt detached fold and thrust belts – examples from the surface and subsurface of the Northern Calcareous Alps (Austria), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9969, https://doi.org/10.5194/egusphere-egu2020-9969, 2020.

Contractional rejuvenation of syn-rift salt-bearing minibasins by numerical simulations

Pablo Granado1, Jonas B. Ruh2

1 Institut de Recerca Geomodels, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain

2 Structural Geology and Tectonics Group, Geological Institute, Department of Earth Sciences, ETH Zurich, Switzerland

This work presents numerical experiments of contractional rejuvenation of passive margin minibasins and related diapiric structures and the involvement in inverted rift and fold-and-thrust belt systems. We use 2D finite difference numerical experiments with a temperature-dependent Maxwell-type visco-elasto-plastic rheology. Our experiments consist of a first phase of extension controlled by basement faults overlaid by a thick salt-bearing unit covered by a pre-kinematic layer. Extension led to forced folding and stretching of the pre-kinematic layer triggering diapirism, fixing the lateral dimensions of minibasins, whereas syn-rift accommodation space was controlled by extension of the basement faults plus salt evacuation provided by sediment load. Rate of extension controlled: i) internal growth geometries of minibasins; ii) the amount of downbuilding, and iii) the timing and extent of primary welds. Contractional reactivation was then carried out as end member modes of thin-skinned shortening over the basement steps, full inversion of extensional faults (i.e. thick-skinned), and combinations of both, always including erosion and syn-contractional sedimentation. Results provide an extensive template of structural styles and related kinematic evolutions including minibasin rotation and imbrication, squeezing of salt structures and surface flaring, and development of deep contractional growth synclines. Modelling results will be compared to natural case studies.

How to cite: Granado, P. and B. Ruh, J.: Contractional rejuvenation of syn-rift salt-bearing minibasins by numerical simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2583, https://doi.org/10.5194/egusphere-egu2020-2583, 2020.

The Jura Mountains are a thin-skinned fold-and-thrust belt (FTB) in the northern foreland of the European Alps, extending over northern and western Switzerland and eastern France. The Jura FTB was detached in Triassic evaporites during Late Miocene and Pliocene compression. Prior to this, the pre-Mesozoic basement was intensely pre-structured by inherited faults that had been reactivated under changing stress fields during the Mesozoic and Cenozoic structural evolution of continental Europe. In order to understand the connection between thin-skinned FTB formation and pre-existing basement structures, we compiled boreholes and geological cross-sections across the Northern Alpine Foreland and derived elevation, thickness and erosion models of defined Mesozoic units and the top of the pre-Mesozoic basement.

Our models confirm the presence of basement faults concealed underneath the detached cover of the Jura Mountains. The pre-Mesozoic basement shows differences in structural altitudes resulting from partially overlapping lithospheric processes. They include graben formation during evolution of the European Cenozoic Rift System (ECRIS), flexural subsidence during Alpine forebulge development and lithospheric long-wavelength buckle folding. Faults in connection with these processes follow structural trends that suggest the reactivation of inherited Variscan and post-Variscan fault systems. We discuss the spatio-temporal imprint of lithospheric signatures on the pre-Mesozoic basement and their consequence on the formation of the Jura Mountains FTB. Untangling structures within the pre-Mesozoic basement leads us to a modern understanding of the long-term evolution of the detached Mesozoic cover. Furthermore, it allows us to improve the prediction of ages that are potentially preserved within the Mesozoic cover of the Jura FTB.

How to cite: Schori, M., Sommaruga, A., and Mosar, J.: The pre-Mesozoic basement underneath the Jura Mountains fold-and-thrust belt: an overview from models and maps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14942, https://doi.org/10.5194/egusphere-egu2020-14942, 2020.

EGU2020-18669 | Displays | TS7.2 | Highlight

Low-temperature thermochronology and vitrinite reflectance data reveal longwavelength uplift in the Alpine foreland basin

Sarah Louis, Elco Luijendijk, Christoph von Hagke, István Dunkl, Ralf Littke, and Jonas Kley

Foreland basin sediments mirror the history of an orogeny. Deformation and geodynamic processes in low spatial extend (e.g. dozens of km) can be quantified using kinematic restoration. Processes happening deep underneath an orogen show a large spatial manifestation that is difficult to quantify in time and space. Marine units at surface outcrops show 900 m of net uplift since deposition in undeformed parts of the alpine foreland basin. Existing low-temperature thermochronology data from the Swiss part of the Molasse Basin show a thermal overprint that indicates exhumation of more than 1.5 km. We quantify the wavelength of deep seated processes of the Alpine orogen by generating and analyzing a holistic dataset of the entire alpine foreland basin. In addition to compiling existing data from the western part of the basin we have generated a new apatite (U-Th)/He and vitrinite reflectance data set from the central and eastern part of the basin. The new apatite (U-Th)/He ages in the German part of the basin show exhumation below or close to the detection limit (~1.5 km). Within the folded and thrusted Molasse, exhumation is localized along thrusts and the thermochronological data indicates thrusting between 10 to 20 Ma. Vitrinite reflectance data reveals a trend of exhumation increasing from East to West. Parts of the central German Molasse basin have been exhumed as well. Thus, on the large scale we can see longwave exhumation patterns in the western part of the basin that affect both the deformed and undeformed parts of the basin which cannot only be related to Jura thrusting.

How to cite: Louis, S., Luijendijk, E., von Hagke, C., Dunkl, I., Littke, R., and Kley, J.: Low-temperature thermochronology and vitrinite reflectance data reveal longwavelength uplift in the Alpine foreland basin , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18669, https://doi.org/10.5194/egusphere-egu2020-18669, 2020.

EGU2020-9889 | Displays | TS7.2

3D geological model of the Po Plain subsurface: an example of open geological base data for basin analysis

Chiara D'Ambrogi, Maurizio Marino, Fabio Carlo Molinari, Michele Morelli, Andrea Irace, Luca Barale, Fabrizio Piana, Gianfranco Fioraso, Pio Di Manna, and Pietro Mosca

The Po Plain is a one-of-a-kind place where to study the evolution of the orogen-foreland pair. It is a complex geological system consisting mainly of Triassic to Quaternary sedimentary successions that have recorded the tectonic evolution of the paleoAdriatic continental margin during the Middle-Late Triassic and Jurassic time interval, as well as the development and mutual interaction of the Western Alps, Southern Alps and Northern Apennines orogenic belts, and related synorogenic basins, during the Cenozoic. 

These peculiarities allow for achieving analyses on several topics (e.g., the relations between opposite-verging thrust systems, the role of the inherited paleogeography, the geometry and evolution of the foredeep and thrust-top basins, the presence and the activity of seismogenic faults), individually treated by previous studies, with focus on limited time-intervals, or detailed 3D models of limited areas.

Nevertheless, a comprehensive and accessible 3D model of the general framework of the entire Po Plain subsurface is still unavailable.

In this respect, the HotLime Project (GeoERA Programme) will fill the gap providing a publicly accessible 3D framework model of the geometry of some stratigraphic horizons, focusing on crucial stratigraphic intervals, extended from Piemonte to Emilia-Romagna Region - Adriatic coastline, covering an area larger than 21,000 km2. In the HotLime Project, the model will be used as input for the geothermal assessment of carbonate reservoirs.

The 3D model, built as a whole, will include five regional-wide stratigraphic horizons  (e.g. top or unconformity surface), from Triassic to Pleistocene, plus additional less extended horizons, and the 3D geometry of more than 150 faults (i.e., Mesozoic extensional faults and Paleogene to Neogene thrusts).

This comprehensive 3D geological model of the Po Plain subsurface is based on an integrated analysis of surface and subsurface geological/geophysical data (the latter provided by ENI SpA), that allows for better interpreting and correlating the key horizons. The input dataset includes: 305 well data; 799 2D seismic profiles, with a mean spacing of 5 km; detailed surface data from geological maps at different scales. The final 3D model benefits from the comprehensive and coherent interpretation of the overall input dataset, and the time-depth conversion of the 3D model as a whole through a 3D velocity model.

The objective of this work is to build a general-purpose 3D geological model that will serve a multiplicity of specific topics, and provide a powerful 3D image of this complex foreland basin. It highlights the position and geometry of inherited structures and allows for analyzing their relations with stratigraphic variations of the sedimentary infill (e.g., unit thickness); besides, the comparison of the mutual relations of the compressional faults with the pre-existing discontinuities. The fault distribution and clustering will be also compared with the deformations observed on the highly-detail modeled Pliocene and Pleistocene horizons, giving a fundamental input for the calculation of slip/uplift rates and definition of the activity of the faults.

 

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166

How to cite: D'Ambrogi, C., Marino, M., Molinari, F. C., Morelli, M., Irace, A., Barale, L., Piana, F., Fioraso, G., Di Manna, P., and Mosca, P.: 3D geological model of the Po Plain subsurface: an example of open geological base data for basin analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9889, https://doi.org/10.5194/egusphere-egu2020-9889, 2020.

EGU2020-7685 | Displays | TS7.2

Timing and magnitude of vertical-axis rotations in the eastwards-flanking synorogenic sediments of the South-Pyrenean fold-and-thrust belt. Kinematics and origin of the salient curvature.

Charlotte Peigney, Elisabet Beamud, Óscar Gratacós, Luis Valero, Ruth Soto, Eduard Roca, and Josep Anton Muñoz

The South-Pyrenean fold-and-thrust belt consists of three major thin-skinned thrust sheets (Bóixols, Montsec and Serres Marginals) made up of uppermost Triassic to Oligocene cover rocks emplaced during Late Cretaceous-Oligocene times. In its central part, it forms a major salient (the Pyrenean South-Central Unit) whose geometry is controlled by the areal distribution of the pre-orogenic Upper Triassic and synorogenic Eocene salt décollement layers. Both westwards and eastwards, the salient is fringed by Paleogene synorogenic deposits that are deformed by detachment folds with orientations ranging from N-S to E-W. In the western edge of the salient, the varying trend of the folds is a result of synorogenic vertical axis rotations (VAR) which caused the clockwise rotation of the folds from an initial predominant E-W trend to the current NW-SE to NNW-SSE trend. The salient, at least on its western part, developed from a progressive curve originated from divergent thrust transport directions and distributed shortening.

The aim of our study is to get a better understanding of the whole salient, by studying the kinematics of the deformation on the most frontal part of its eastern edge. Here, some sparse anticlockwise rotations have been reported but their origin and their possible relationship with the distribution of the salt décollements has not yet been addressed. For this purpose, 78 paleomagnetic sites have been sampled on the synorogenic upper Eocene-Oligocene materials of the NE Ebro foreland Basin, in the Artesa de Segre area, focusing on the limbs of oblique salt-cored anticlines (Ponts, Vilanova de l’Aguda, Cardona) which are detached above the synorogenic Eocene-Oligocene evaporites of the Cardona and the Barbastro formations. VAR analyses principally show anticlockwise rotations similar to those previously identified to the North in the Oliana Anticline, although a small number of clockwise rotations were also detected.

In addition to the VAR analysis, a magnetostratigraphic study of the Eocene-Oligocene continental materials of the northern limb of the Sanaüja Anticline has been conducted in order to constrain the age of these rotations from stratigraphic correlations. The demagnetization of 104 samples from a ca. 1100 m thick magnetostratigraphic section shows Priabonian to Rupelian ages for this succession. The integration of our results on timing, direction and magnitude of foreland VAR with previous paleomagnetic and structural data from both the western and eastern boundaries of the frontal thrust of the Pyrenean South-Central Unit will allow the understanding of the kinematics of the thrust salient as a whole.

How to cite: Peigney, C., Beamud, E., Gratacós, Ó., Valero, L., Soto, R., Roca, E., and Muñoz, J. A.: Timing and magnitude of vertical-axis rotations in the eastwards-flanking synorogenic sediments of the South-Pyrenean fold-and-thrust belt. Kinematics and origin of the salient curvature., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7685, https://doi.org/10.5194/egusphere-egu2020-7685, 2020.

EGU2020-5585 | Displays | TS7.2

Relief rejuvenation in response to intraplate neotectonics in the Betics foreland (southern Spain)

Inmaculada Expósito, Alejandro Jiménez-Bonilla, José Luís Yanes, Juan Carlos Balanyá, and Francisco Moral

How to cite: Expósito, I., Jiménez-Bonilla, A., Yanes, J. L., Balanyá, J. C., and Moral, F.: Relief rejuvenation in response to intraplate neotectonics in the Betics foreland (southern Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5585, https://doi.org/10.5194/egusphere-egu2020-5585, 2020.

Fold and thrust belts are a notorious challenging environment when it comes to providing structural models for the subsurface, and the Eastern Carpathians Bend Zone (ECBZ) is no exception.

Hosting the largest onshore oil fields in Romania, this is a highly mature hydrocarbon area, with most of the fields producing since the late nineteenth century. Characterise by superimposed tectonic events, most notably the mid-Miocene compression (when most of the shortening occurred) the area is also well known for multiple detachment levels and salt tectonics. As a consequence, the reservoirs, especially the Oligocene - lower Miocene (sub-salt), thought very prolific are structurally complex, heterogeneous and compartmentalised. It is a constant struggle for the geologist to create structural maps of these reservoirs due to complex deformation, inconsistent data and poor seismic resolution. Some of the most significant issues are related to scattering of dip data and the overall difficulties in correlating well logs. In some cases, even the logs of the side-track well do not correlate with the initial log.

In order to get a better understanding of these complex structures, we used the nearby Oligocene - lower Miocene surface exposures. First, detailed fieldwork coupled with drone photogrammetry and interpretation of 3D virtual outcrop models revealed that upright, gently plunging folds as well as overturned and recumbent folding occurs at these stratigraphic levels. Fold limbs are occasionally cross-cut by forethrust or backthrust. Also, parasitic folding and fold-accommodation faults have been identified. Apart from this rather complex but typical tectonic structures, a network of sand intrusions is also present in the Oligocene - lower Miocene sequence. The injectites, dykes, sills or composite intrusions are sourced from the quartz-rich sandstones and injected into the adjacent rocks. The dyke networks are intersecting the adjacent rocks at high angles and appear to follow fold-related fractures. Also, some preserved fluidized layers respond to fold tightening by thickness redistribution and intrusion. Injection is therefore considered to be syn-kinematic with the mid-Miocene tectonic stage when most of the shortening in the area occurred. Intrusion was most likely driven by the fluid overpressures built up due to active contractional tectonics, with intrusion events potentially triggered by associated seismicity.

Their presence can explain some of the reservoir heterogeneities and challenges in well correlation. For example, one well through a misinterpreted dyke will provide misleading information regarding reservoir architecture, including dip data and highlighting that not every change in dip is due to folding or faulting.  Finally, as the dykes commonly follow fold-related fractures, it is highly possible to intrude fault planes as well, thus potentially influencing the shale gouge ratio and fault seal capacity.

The outcrops in the ECBZ are good surface analogues for global examples of hydrocarbon reservoirs affected by remobilized sand intrusions. A better understanding of these complex structures, especially in a compressional setting, can improve both subsurface structural interpretation and reservoir characterisation.

How to cite: Tamas, D. M., Tamas, A., Schleder, Z., and Krezsek, C.: Syn-tectonic sand intrusions - an added complexity to a highly deformed fold and thrust belt and implication for subsurface structural interpretation: Eastern Carpathians Bend Zone, Romania, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-438, https://doi.org/10.5194/egusphere-egu2020-438, 2020.

Gare Kakheti foothills are located between Lesser Caucasus and Kakheti Ridge and are mainly represented by the series of NEN dipping thrust faults, most of which are associated with fault‐related folds. Gare Kakheti foothills as a part of the Kura foreland fold-and-thrust belt developed formerly as a foreland basin (Oligocene-Lower Miocene) (e.g. Alania et al., 2017). Neogene shallow marine and continental sediments in the Gare Kakheti foothills keep the record on the stratigraphy and structural evolution of the study area during the compressive deformation. Interpreted seismic profiles and structural cross-sections across the Udabno, Tsitsmatiani, and Berebisseri synclines show that they are thrust-top basins. Seismic reflection data reveal the presence of growth fault-propagation folds and some structural wedges (or duplex). The evolution of the Udabno, Tsitsmatiani, and Berebisseri basins is compared with simple models of thrust-top basins whose development is controlled by the kinematics of competing for growth anticlines. Growth anticlines are mainly represented by fault-propagation folds. The geometry of growth strata in associated footwall synclines and the sedimentary infill of thrust-top basins provide information on the thrusting activity in terms of location, geometry, and age.
This work was supported by Shota Rustaveli National Science Foundation (SRNSF - #PHDF-19-268).

 

How to cite: Razmadze, A.: Structure of the Gare Kakheti foothills using seismic reflection profiles: implications for kinematic evolution of the Georgian part of Kura foreland fold-and-thrust belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2564, https://doi.org/10.5194/egusphere-egu2020-2564, 2020.

EGU2020-2325 | Displays | TS7.2 | Highlight

Structure of the south-central Taiwan fold-and-thrust belt

Dennis Brown, Joaquina Alvarez-Marron, Hao Kuo-Chen, Yih-Min Wu, Giovanni Camanni, and Cristina Biete

Studies of mountain belts worldwide have shown that the structural, mechanical, and kinematic evolution of their foreland fold-and-thrust belts are strongly influenced by the structure of the continental margins that are involved in the deformation. The area on and around the island of Taiwan provides an unparalleled opportunity to investigate this because the entire profile of the SE margin of the Eurasian plate, from the shelf in the north to the slope and continent-ocean transition in the south and the offshore, is currently involved in a collision with the Luzon arc on the Philippine Sea plate. Taiwan can, then, provide key insights into how such features as rift basins on the shelf, the extensional faults that form the shelf-slope break in the basement, or the structure of the extended crust and morphology of the sedimentary carapace of the slope can be directly reflected in the structural architecture, the location and pattern of seismicity, topography, and the contemporaneous stress and strain fields of a fold-and-thrust belt. For example, east-northeast striking faults that have been mapped on the necking zone of the Eurasian margin can be traced into the island of Taiwan where they are causing important along-strike changes in various aspects of the structural, mechanical, kinematic, and morphological behavior of the fold-and-thrust belt. In particular, across the upper part of the necking zone there is an abrupt north-south change in structure, an increase in the amount of seismicity, an increase in topography, a rotation of the direction of maximum compressive horizontal stress, of the GPS displacement vectors, the compressional strain rate, and the maximum shear strain rate. These changes are interpreted to be caused by east-northeast striking, dextral strike-slip faulting in the basement that is taking place as a result of the reactivation of pre-existing faults along the upper part of the necking zone. The abrupt southeastward increase in topography across the upper part of the necking zone is the surface expression of the basal thrust of the fold-and-thrust belt ramping down into the basement, with maximum elevations reached in the basement-involved thrust sheets, suggesting a causal link between basement involvement in the thrusting and high topography. On the shelf, the roughly northeast-oriented Hsuehshan Trough is inverting along almost north-south striking basin bounding faults that penetrate into the middle crust and have well-clustered, deep seismicity. There are no substantial differences in the contemporaneous stress and strain field. There is, however, a clear relationship between basement involvement in the thrusting and the development of high topography in the Hsuehshan Range. Only the upper part of the slope is involved in the fold-and-thrust belt in southernmost Taiwan. In this area, there is a reduction of the amount of seismicity and lower topography. The largest part of the corresponding thrust wedge developed in the lower slope is offshore. This work is funded by the Spanish Ministerio de Ciencia, Innovación y Universidades grant PGC2018-094227-B-I00.

How to cite: Brown, D., Alvarez-Marron, J., Kuo-Chen, H., Wu, Y.-M., Camanni, G., and Biete, C.: Structure of the south-central Taiwan fold-and-thrust belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2325, https://doi.org/10.5194/egusphere-egu2020-2325, 2020.

Interrogation of sediment archives allows for documentation of both hinterland and foreland deformation. Examples of their use as an archive of Himalayan foreland deformation include the work of Govin et al. (Geology, 2018) in which determination of the timing of drainage rerouting of the palaeo-Brahmaputra has allowed us to date the timing of surface uplift of the Shillong Plateau, and the work of Najman et al (Tectonics, 2018) in which the presence of the major Paleogene unconformity previously recognised in the Himalayan foreland basin, was shown to extend much further south into the foreland, allowing for a broader range of possible causal mechanisms to be discussed. There are numerous examples of the use of the Himalayan foreland basin sediment record to determine orogenic tectonics, this being a complementary approach to bedrock studies of the orogen. For example, Govin et al. (in review) and Lang et al (GSAB 2016), used detrital mineral lag time studies targeted to the Siwalik Himalayan foreland sediment archive, to demonstrate when the rapid exhumation of the eastern Himalayan syntaxis commenced. Comparison with a similar dataset derived from a more distal sediment archive of the Bengal Fan (Najman et al. GSAB 2019), shows the advantages (as well as disadvantages) in the use of proximal sediment archives.

How to cite: Najman, Y.: Foreland basin sediment archives: highlighting their use in documenting deformation of the orogenic hinterland and foreland., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3800, https://doi.org/10.5194/egusphere-egu2020-3800, 2020.

EGU2020-18768 | Displays | TS7.2

Geological structure and active deformation in the fold-thrust belt of southern Taiwan in relation to crustal-scale structure

Maryline Le Béon, John Suppe, Yu-Huan Hsieh, Mong-Han Huang, Hsin-Hua Huang, and Chih-Tung Chen

            The fold-thrust belt of southern Taiwan currently accommodates rapid westward shortening in the order of 4.5 mm/a and is estimated to have developed since the Late Pliocene. It is the locus of the 2016 Mw6.4 Meinong earthquake, which involved fault slip at multiple levels in the mid-to-upper crust. It nucleated at ~15 km depth and also triggered shallow structures that reach the surface or nearly. To characterize the structure of the piedmont and investigate the broader tectonic setting of the event, we build two east-west regional balanced cross-sections based on surface geology, subsurface data, coseismic and interseismic geodetic data, and published nanno- and magneto-stratigraphy. We also document the first-order evolution of the piedmont and how the piedmont structures relate to the inner part of the mountain belt based on the cross-section restoration and the analysis of the seismic velocity structure of the plate boundary.

From the Coastal Plain towards the east, we propose a series of three active west-dipping backthrusts, rooted on a ~4.0-km-deep detachment, the Tainan detachment. The detachment lies within the base of the 3-km-thick Plio-Pleistocene Gutingkeng mudstone, which represents the initial foreland basin sediments. Syntectonic sediments and rapid shortening and uplift observed from geodetic measurements attest for the activity of these structures since the Late Pleistocene. Further east, the Tainan detachment ramps down to ~7 km depth, allowing the east-dipping Lungchuan and Pingchi thrusts to bring Upper Miocene continental-shelf formations to the surface. The cross-section restoration indicates less than 10 km shortening since ~450 ka or less on the Tainan detachment and the frontal backthrusts, while the east-dipping Lungchuan and Pingchi thrusts each consumed ~10 km shortening. Another ramp from ~7 to ~11 km depth is expected further east based on older sediments and slates exposed on the hanging wall of faults in the inner part of the mountain belt. This ~11-km-depth detachment seems to correspond with an inversion in seismic velocities at ~12 km depth beneath the slates belt, interpreted as slates over-riding lower-velocity passive margin sediments. Therefore, the detachment and thrusts system proposed from our cross-section appears to correspond to the main plate interface, where significant shortening was consumed in a thin-skinned deformation style, involving only foreland basin sediments near the deformation front.

The Meinong earthquake coseismic surface deformation suggests that, in addition to the deepest (15-20 km) main fault plane, the ~4-7-km-depth ramp, the Tainan detachment and the backthrusts slipped aseismically during after the earthquake. In contrast, the earthquake nucleated below the main detachment and, based on tomographic models, there is no clear structural connection between deep and shallower structures. The Meinong event locates near the interface between Cenozoic basement rocks and post-rifting sediments, similarly to the 2010 Mw6.3 Jiashian event. We propose that this interface is the locus of moderate-magnitude events, which seismic waves triggered limited slip on shallower faults, rooted within the weak, fluid-rich Gutingkeng mudstone. This interface may have developed as a secondary detachment level with limited total shortening.

How to cite: Le Béon, M., Suppe, J., Hsieh, Y.-H., Huang, M.-H., Huang, H.-H., and Chen, C.-T.: Geological structure and active deformation in the fold-thrust belt of southern Taiwan in relation to crustal-scale structure, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18768, https://doi.org/10.5194/egusphere-egu2020-18768, 2020.

The northwestern Sichuan region experienced the evolutionary process of a marine Craton basin in the Sinian-Middle Triassic and a continental basin in the Mesozoic-Cenozoic. Several regional tectonic activities cause the complicated stratigraphic distribution and structural deformations in deep layers. During key tectonic periods, the characteristic sedimentary and deformation structures were formed, including the platform margin of Dengying formation, the western palaeohigh at the end of Silurian, and the passive continental margin of late Paleozoic-middle Triassic. The Meso-Cenozoic intra-continental compressional tectonic processes since the late Triassic controlled the formation of complex thrusting structures surrounding and inside the basin. The northern Longmenshan fold-thrust belt has footwall in-situ thrust structures, controlled by two sets of detachments in the Lower Triassic and the Lower Cambrian, presenting a multi-level deformation structure with shallow folds, the middle thin-skin thrusts and the deeper basement-involved folds. From the perspective of structural geology, the Dengying formation of the Upper Sinian is mainly distributed in the eastern and northern areas of the northwest Sichuan basin where the Jiulongshan fold is the favorable exploration belts. Using the three-dimensional seismic reflection data, we recognize the structural characteristics of the platform margin of Dengying formation. Meanwhile, we apply new methods of two-dimensional and structural restoration based on mechanical constrains to gain insights into the development of the Jiulongshan anticline which forms the trap for the Jiulongshan field. The result of structural restoration indicates that, the formation of the Jiulongshan anticline is controlled by two-stage contractional thrusts. In the early days, there was no significant relief in Jiulongshan area, and the southwestern top of the Sinian Dengying formation was the paleo-high. The anticline was gradually formed in the Late Jurassic-the Early Cretaceous, presenting an approximately E-W strike structure. This structure was transformed by the N-E contractional stress to become an anticline in NE-SW direction.

 

How to cite: Wang, L.: Mechanics and paleo geomorphy of the platform margin of Dengying formation in the Jiulongshan field, Sichuan Basin, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4172, https://doi.org/10.5194/egusphere-egu2020-4172, 2020.

The North China (NCC) is one of the oldest cratons in the world. The tectonic evolution processes of the NCC have been debated for decades (Zhao and Zhai, 2013; Zhao, 2007; Zhao et al., 2002, 2003, 2005, 2009; Zhai et al., 2005; Zhai and Santosh, 2011; Wilde et al., 2002, 2005; Kroner et al., 2005; Kusky et al., 2001, 2007; Kusky and Li, 2003; Faure et al., 2007; Trap et al., 2012; Hu et al., 2013; Zhao et al.,2019). The controversy focuses on the time of the formation of the NCC is in the late Paleoproterozoic or the late Archean. The key point of the controversy is that there are serious disagreement about the nature and implications of the late Paleoproterozoic orogen in the NCC. Some researchers thought the NCC underwent compression in 1.85 Ga according to previous researchers (Zhai et al., 2005; Zhai and Santosh, 2011; Zhao et al., 2019). Some researchers even thought that the NCC was finally formed resulted from the collision of the east block and the west block (Kusky et al., 2001, 2007; Kusky and Li, 2003; Trap et al., 2012; Zhao et al., 2002a, 2003a, 2005, 2009;). Recently, we found that NE-NEE trending extensional ductile shear zones developed in the Paleoproterozoic granitic gneiss (2.4Ga) in the northern margin of the Zhongtiaoshan, the middle part of the NCC. The ductile shear zone was unconformity covered by the Changcheng System and the deformation ages according to the 40Ar/39Ar dating results is 1.92 Ga, which indicate that the deformation time was in the late Paleoproterozoic. Therefore, We propose that that the NCC was in the post-collision extension environment or lateral and vertical extrusion of blocks might have happened after the orogeny in late Paleoproterozioc.

How to cite: Cui, J.: Indentation tectonics of the Zhongtiaoshan Block in the Trans-North China Orogen, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7817, https://doi.org/10.5194/egusphere-egu2020-7817, 2020.

The eastern Sichuan Basin, South China, is characterized by approximately parallel thin-skinned fold-and-thrust belts with exposed narrow anticlines and wide synclines. The structural deformation, however, has remained controversial due to the previous poor seismic data. In this study, the new collected pre-stack long-offset 2D- and 3D seismic data have been applied, and a 200-km long cross section perpendicular to the fold-and-thrust belts has been constructed to analyze the structural style and geometric and kinematic evolution. The stratigraphic succession is composed of competent layers separated by three main incompetent layers being multiple detachments, which are the Cambrian evaporites, the Lower Silurian shales, and the Middle-Lower Triassic evaporites, respectively. The basal detachment, the Cambrian evaporites, played a dominant role in the structural deformation, above which the fold-and-thrust belts were generated, and the middle and top detachments accommodated the displacement during the deformation. The main structural styles are detachment folds, fault propagation folds, back thrusts and basement-involved folds. The evolution succession of the fold-and-thrust belts should be kink band, detachment folds, and sequential thrusts of the forelimb and backlimb of the folds. The style of deformation is dependent on the mechanical characters of stratigraphic succession, i.e., the thickness variation of competent and incompetent layers in the stratigraphic units.

How to cite: Gu, Z.: Multiple detachments of thin-skinned fold-and-thrust belts in the eastern Sichuan Basin, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20903, https://doi.org/10.5194/egusphere-egu2020-20903, 2020.

EGU2020-7785 | Displays | TS7.2

Geometrical and chronological constraints for magnetic signatures in the Central High Atlas

Tania Mochales, Ahmed Manar, Antonio María Casas-Sainz, Pablo Calvin, Pablo Santolaria, Juan José Villalaín, Vicente Carlos Ruiz, Andrés Gil-Imaz, Sara Torres, Andrés Pocoví, Bennacer Moussaid, Teresa Román-Berdiel, Hmidou El Ouardi, Esther Izquierdo-Llavall, Belén Oliva-Urcía, Marcos Marcén, María Felicidad Bógalo, Elisa Sánchez-Moreno, Ángela Herrejón, and Ángela Jiménez and the CHA Team

New residual magnetic map is presented to help decipher the magnetic imprints in the Central High Atlas (CHA) fold-and-thrust belt. The total intensity map shows a main direction mimicking the N070 trend which features the Atlas range. Detailed structural and paleomagnetic studies performed in the selected area demonstrate that similar shortening figures are observed in western and eastern portions. Differences in structural style are the consequence of (i) the inherited structure from the Triassic-Jurassic rifting stage, to Cenozoic inversion, (ii) the differential displacement through the Upper Triassic detachment level and (iii) superposition of cover thrust sheets.

 

Remarkable magnetic anomalies are recorded, from negative values (<-400 nT) in the southern foreland, to positive (>500 nT) in the core of the range. The western sector of the chain is defined by intermediate to high anomalies, probably related to NE-SW basement structures, which favored the emplacement of Triassic CAMP basalts and/or Jurassic gabbro bodies, within the syn-rift sequence. The central part of the range is characterized by high and very high positive anomalies with an irregular distribution, probably linked to Middle-Late Jurassic diapirism produced during extension and intrusion of gabbroid bodies at the core of diapirs, whose structure nucleated NE-SW anticlinal ridges. The eastern sector is characterized by intermediate to low intensity anomalies, likely associated to thick series of basinal Jurassic limestones, whose sequences were stacked (during the Cenozoic compressional stage) by means of kilometer-scale thrusts. Very high positive, linear anomalies seem to be related to Jurassic gabbro intruding directly into the carbonate facies in the eastern sector. Widespread negative anomalies are detected in the foreland southern basin. In this case, the remanent signature could be related to the Paleozoic magmatic provinces.

How to cite: Mochales, T., Manar, A., Casas-Sainz, A. M., Calvin, P., Santolaria, P., Villalaín, J. J., Ruiz, V. C., Gil-Imaz, A., Torres, S., Pocoví, A., Moussaid, B., Román-Berdiel, T., El Ouardi, H., Izquierdo-Llavall, E., Oliva-Urcía, B., Marcén, M., Bógalo, M. F., Sánchez-Moreno, E., Herrejón, Á., and Jiménez, Á. and the CHA Team: Geometrical and chronological constraints for magnetic signatures in the Central High Atlas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7785, https://doi.org/10.5194/egusphere-egu2020-7785, 2020.

EGU2020-8036 | Displays | TS7.2

3-D geological model of the Central High Atlas fold-and-thrust belt

Pablo Santolaria, Antonio M. Casas, Pablo Calvín, Tania Mochales, Hmidou El-Ouardi, Esther Izquierdo, Teresa Román-Berdiel, Sara Torres, Andrés Pocoví, Belén Oliva-Urcia, Bennacer Moussaid, Marcos Marcén, Andrés Gil-Imaz, Vicente Carlos Ruiz, María Felicidad Bógalo, Elisa M. Sánchez-Moreno, Ángela Herrejón, Ángela Jiménez, Juan José Villalaín, and Irene Falcón

The Atlas system, an ENE-WSW intracontinental chain in the NW of Africa, grew because of the inversion of Mesozoic extensional basins during the Cenozoic convergence between the African and European plates. The Central High Atlas (CHA) is located in the mid-western sector of the chain and is characterized by (i) the presence of an Upper Triassic décollement, (ii) thick Lower-Middle Jurassic sedimentary sequences, and (iii) the occurrence of diapirs and igneous bodies which are especially common in the central part of the chain. The northern and southern borders are characterized by fold-and-thrust-systems involving the Paleozoic basement and the Mesozoic cover and showing significant displacements, especially towards the South.

Framed on a multidisciplinary structural project aiming to reconstruct the 4-D structure of the CHA, the purpose of this work is to gather a vast constraining dataset into a present-day, regional, 3-D geological model of the CHA fold-and-thrust belt. This 3-D reconstruction gives special weight to along- and across-strike variations of the geometry of the basement and cover structures and the distribution of salt and igneous bodies. The 3-D model is founded by 23 serial cross-sections, constrained by surface geology and more than 1900 structural data and complemented by geophysical modelling. The model considers regional structures having enough lateral continuity and so we ruled out minor, local features. Stratigraphically, we considered 5 horizons: (1) the top of the Triassic located below the detachment level, and partially equivalent to the top of the basement, (2) the base of the Jurassic succession (i.e. the top of the detachment level), (3) the Lower-Middle Jurassic limit and, towards the southern and northern fronts and foreland basins, (4) the bases of the Cretaceous and (5) the Cenozoic succession.

The reconstruction of the 3-D model entailed a strong feedback between the model and the cross-sections. The incipient 3-D model helped to refine the lateral consistency between cross-sections regarding branch and tip lines, cut-offs, fault angles, etc., and so to improve and further constrain them.

Thick to thin skinned deformation dominates the eastern, central and northwestern areas of the chain while thick skinned deformation occurs in the westernmost transects. The chain is defined as an asymmetric, doubly verging fold-and-thrust belt. A north-dipping, basement regional fault represents the main rooting structure of the CHA. Its geometry varies from and almost horizontal (West), to a 10°-12° (Centre) and 15° (East) thrust ramp surface. As this fault intersects the cover, it splits into a regional thrust front with several thrust branches. To the north, antithetic basement faults change to a thrust relay system as they intersect the Mesozoic sequence. Along the core of the chain, the structural style is characterized by open salt bodies, welded diapirs and steep thrusts having relatively limited lateral continuation. The Toundoute Unit, located in the central-western sector represents a basement-and-cover thrust stack where the basement is exhumed and crops out.

This 3-D structural model provides the bases for further 4-D reconstruction of the CHA and, at the same time, served as a constraining approach for cross-section construction.

How to cite: Santolaria, P., Casas, A. M., Calvín, P., Mochales, T., El-Ouardi, H., Izquierdo, E., Román-Berdiel, T., Torres, S., Pocoví, A., Oliva-Urcia, B., Moussaid, B., Marcén, M., Gil-Imaz, A., Carlos Ruiz, V., Felicidad Bógalo, M., Sánchez-Moreno, E. M., Herrejón, Á., Jiménez, Á., Villalaín, J. J., and Falcón, I.: 3-D geological model of the Central High Atlas fold-and-thrust belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8036, https://doi.org/10.5194/egusphere-egu2020-8036, 2020.

EGU2020-8342 | Displays | TS7.2

Why do triangle zones exist? Insights from numerical models

Betti Hegyi, Zoltan Erdos, Ritske S. Huismans, and Christoph von Hagke

Triangle zones in fold and thrust belts are enigmatic structures bound by foreland verging thrust zones and back-thrusts verging towards the hinterland. The geometry as well as kinematic evolution of these structures has been the subject of a wide range of studies over the last few decades. The understanding of triangle zone mechanics is incomplete although different driving mechanisms for their formation have been proposed. So far few – mostly analogue – modeling studies have focused on understanding the primary factors controlling their formation. Factors suggested to have a first order control on the formation of triangle zones include the rheological properties of the detachment and overburden rocks, the thickness of the overburden rocks, syn-tectonic erosion and sedimentation rate, fluid over-pressure conditions, and the angle of the detachment. Here we use the arbitrary Lagrangian-Eularian finite element code FANTOM to examine the development of triangle zones. We focus especially on the effect of the angle and rheology of the detachment, the rheology of the overburden strata, and syn-tectonic deposition. 

How to cite: Hegyi, B., Erdos, Z., Huismans, R. S., and von Hagke, C.: Why do triangle zones exist? Insights from numerical models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8342, https://doi.org/10.5194/egusphere-egu2020-8342, 2020.

EGU2020-18590 | Displays | TS7.2

Role of structural inheritances in the development of the Mountain Front Flexure in the Lurestan region of the Zagros belt

Stefano Tavani, Giovanni Camanni, Michele Nappo, Marco Snidero, Alessandra Ascione, Ettore Valente, Gholamreza Gharabeigli, Davoud Morsalnejad, and Stefano Mazzoli

The Mountain Front Flexure is a major structure of the Zagros orogenic system, and is underlain by the deeply rooted and seismically active Mountain Front Fault system. These coupled structural features divide the belt from its foreland and their trace is sinuous, forming salients and recesses. The origin and tectonic significance of the Mountain Front Fault system and its sinuosity are still unclear, with most of hypotheses pointing to a strong structural control exerted by geological inheritances. In this work we combine interpretation of seismic reflection profiles, earthquake data, geomorphic analysis, and geological observations, to build a balanced cross section across the Mountain Front Flexure in the Lurestan region. Our data are suggestive of a hybrid tectonic style for the Lurestan region, characterised by a major and newly developed crustal ramp in the frontal portion of the belt (i.e the Mountain Front Fault) and by the reactivation of steeply dipping pre-existing basin-bounding faults, along with a minor amount of shortening, in the inner area. Specifically, the integration of our results with previous knowledge indicates that the Mountain Front Fault system developed in the necking domain of the Jurassic rift system, ahead of an array of inverted Jurassic extensional faults, in a structural fashion which resembles that of a crustal-scale footwall shortcut. Within this structural context, the sinusoidal shape of the Mountain Front Flexure in the Lurestan area arises from the re-use of the original segmentation of the inverted Jurassic rift system.

How to cite: Tavani, S., Camanni, G., Nappo, M., Snidero, M., Ascione, A., Valente, E., Gharabeigli, G., Morsalnejad, D., and Mazzoli, S.: Role of structural inheritances in the development of the Mountain Front Flexure in the Lurestan region of the Zagros belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18590, https://doi.org/10.5194/egusphere-egu2020-18590, 2020.

TS7.4 – Dynamics and Structures of the Tethyan realm: Collisions and back-arcs from the Mediterranean to the Himalayas

The tectonic evolution of the Mediterranean is well studied, but the models often cover a limited period of geological time and are not always placed in a wider context. Its evolution is linked to the surrounding African and Eurasian continents and their relative movements.

A new fully deformable tectonic model of the Mediterranean has been created as part of a proprietary plate model. This work has led to the identification of key global tectonic events influencing the development of the Mediterranean from the Early Permian to the present day. This first fully-deformable plate model of the Mediterranean enables to account for the shortening and extension that occurred in the area at a temporal resolution of 1 Ma. In most available plate models, plates are rigidly rotated back to their paleo-position, meaning they preserve their present-day size and shape. In some recent papers, the extent of deformation has been illustrated for selected time-slices, but these models cannot be considered to be ‘deformable’ because the deformation is not modelled in a continuous manner.

Following Hercynian orogenesis and until the break-up of Pangea, the Mediterranean was dominated by extensional tectonics along its southern margin, as a series small continental blocks rifted from the northern margin of Gondwana. The opening of the Central Atlantic in the Late Triassic-Early Jurassic led to displacement between Eurasia and Africa south of Iberia and the development of the Alpine Tethys, as the Atlantic initially propagated northwards to the east of Iberia. Rotation of Africa caused by the opening of the South Atlantic in the Late Jurassic-Early Cretaceous led to a ‘jump’ in spreading to the west, at the Iberia-Newfoundland margin. These larger scale plate motions overprinted the more local impacts of continued extension along the northern margin of Africa (e.g. Pindos Ocean). Opening of the North Atlantic once again changed the relative motion of Eurasia and Africa, and initiated a period of oceanic subduction and collision that culminated in the Alpine orogeny. Crucial to this story is the paleo-position of Apulia/Adria, which remained attached to Africa and was able to act as an indenter into Eurasia during the Alpine compression. Evidence for this connection will be presented and discussed.

 

 

How to cite: Agostini, S., Otto, S., Watson, J., and Howgate, R.: Tectonic evolution of the Mediterranean region from a global plate kinematics perspective: insights from a new deformable tectonic model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18224, https://doi.org/10.5194/egusphere-egu2020-18224, 2020.

EGU2020-4929 | Displays | TS7.4

Deep seated density anomalies across the Iberia-Africa plate boundary and its topographic response

Ivone Jiménez-Munt, Montserrat Torne, Manel Fernàndez, Jaume Vergés, Ajay Kumar, Alberto Carballo, and Daniel Garcia-Castellanos

The modes in which the lithosphere deforms during continental collision and the mechanisms involved are not well understood. While continental subduction and mantle delamination are often invoked in tectonophysical studies, these processes are difficult to be confirmed in more complex tectonic regions such as the Gibraltar Arc. We study the present-day density and compositional structure of the lithosphere along a transect running from S Iberia to N Africa crossing the western Gibraltar Arc. This region is located in the westernmost continental segment of the African-Eurasian plates, characterized by a diffuse transpressive plate boundary. An integrated and self-consistent geophysical-petrological methodology is used to model the lithosphere structure variations and the thermophysical properties of the upper mantle. The crustal structure is mainly constrained by seismic experiments and geological data, whereas the composition of the lithospheric mantle is constrained by xenolith data. The results show large lateral variations in the topography of the lithosphere-asthenosphere boundary (LAB). We distinguish different chemical lithospheric mantle domains that reproduce the main trends of the geophysical observables and the modelled P- and S-wave seismic velocities. A sublithospheric body colder than the surrounding mantle is needed beneath the Betics-Rif to adjust the measured potential fields. We link this body to the Iberian slab localized just to the east of the profile and having some effect on the geoid and Bouguer anomalies. Local isostasy allows explaining most of the topography, but an elastic thickness higher than 10 km is needed to explain local misfits between the Atlas and the Rif Mountains. This work has been supported by Spanish Ministry by the projects MITE (CGL2014-59516) and GeoCAM (PGC2018-095154-B-100).

How to cite: Jiménez-Munt, I., Torne, M., Fernàndez, M., Vergés, J., Kumar, A., Carballo, A., and Garcia-Castellanos, D.: Deep seated density anomalies across the Iberia-Africa plate boundary and its topographic response, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4929, https://doi.org/10.5194/egusphere-egu2020-4929, 2020.

EGU2020-5332 | Displays | TS7.4

Comparison of the crust and upper mantle structure of the Alboran and Algerian domains (Western Mediterranean): Tectonic significance

Ajay Kumar, Manel Fernàndez, Jaume Vergés, Montserrat Torne, and Ivone Jimenez-Munt

We present a comparison of the present-day crust to upper-mantle structure in the Western Mediterranean along two NW-SE oriented geo-transects in the Alboran and Algerian basins. The Alboran domain geo-transect traverses the Iberian Massif, the Betics, the Alboran Basin and ends in the northern margin of Africa between the Tell and Rif mountains. The Algerian domain geo-transect traverses the Catalan Coast Ranges, the Valencia Trough, the Balearic Promontory, the Algerian basin, the Greater Kabylies and ends in the Tell-Atlas Mountains in the northern margin of Africa. We model the thermal, density (i.e. compositional) and seismic velocity structure by integrating geophysical and geochemical dataset in a self-consistent thermodynamic framework. The crustal structure is constrained by seismic experiments and geological cross-sections, whereas seismic tomography models and mantle xenoliths constrain the upper mantle structure and composition. The Algerian Basin lithosphere shows a typical oceanic lithosphere composition, whereas the Alboran Basin lithosphere is slightly fertile. The lithospheric mantle beneath the Betics and Greater Kabylies are also fertile compared to the Iberian and African lithospheres showing the involvement of the fertile sublithosphere mantle during the later stages of subduction. In the Valencia Trough, the lithosphere is fertile in comparison to the Balearic Promontory lithosphere, which is similar to Iberian lithosphere. A lithosphere-scale thickening is observed in the Betics, and the Greater Kabylies, and thinning follows towards the Alboran and Algerian back-arc basins. Detached slabs with anomalous temperature of-320 oC, with oceanic lithosphere composition beneath the Greater Kabylies, and Iberian lithosphere composition beneath the Betics, are required to fit the geoid height. Our results impose important constraints for the geodynamic evolution models of the Western Mediterranean.

This work has been supported by SUBTETIS (PIE-201830E039) project, EU Marie Curie Initial Training Network ‘SUBITOP’ (674899-SUBITOP-H2020-MSCA-ITN-2015), the Agencia Estatal de Investigación through projects MITE (CGL2014-59516) and GeoCAM (PGC2018-095154-B-100), and the Agency for Management of University and Research Grants of Catalonia (AGAUR-2017-SGR-847).

How to cite: Kumar, A., Fernàndez, M., Vergés, J., Torne, M., and Jimenez-Munt, I.: Comparison of the crust and upper mantle structure of the Alboran and Algerian domains (Western Mediterranean): Tectonic significance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5332, https://doi.org/10.5194/egusphere-egu2020-5332, 2020.

EGU2020-9535 | Displays | TS7.4

The Westernmost Mediterranean evolution: A review of the Alboran and Algero-Balearic basins stratigraphy

Laura Gómez de la Peña, César Ranero, Eulàlia Gràcia, and Guillermo Booth-Rea

The Alboran Basin is the westernmost of the Mediterranean basins. It is composed of different sub-basins and connects toward the east with the Algero-Balearic Basin. Regional studies of these basins are mainly from the ´90s, but the restricted seismic coverage and generally low quality (old acquisition and processing methods) of the seismic profiles were not enough to perform a detailed analysis of the entire sediment infill. More recent works characterize in detail a particular area, but the correlation between the different sub-basins remained beyond the scope of those works. Furthermore, these recent works are usually focused only on the Messinian and younger stratigraphy. Thus, the correlation of the sediment history across the entire region and its integration with the regional tectonic evolution has not been achieved. This results in a bunch of models, different for each sub-basin and not always coherent among them, which makes difficult the understanding of the geodynamic evolution of the region

Based on ~4500 km of new and reprocessed multichannel seismic profiles, together with well and dredge data, we are able to review the westernmost Mediterranean stratigraphy at a regional scale. We have correlated the sediment units deposited since the beginning of the formation of the different sub-basins, and we present for the first time a coherent stratigraphy and large-scale tectonic evolution of the whole region. The results provide the information to test and refine models of the geodynamic evolution of the westernmost Mediterranean.

The main objectives are: (i) To define a seismostratigraphy framework for the entire region, integrating previous interpretations and correlating the sedimentary units among depocentres; (ii) To propose an evolutionary model for each sub-basin; and (iii) To integrate all sub-basins results in an updated general kinematic model for the westernmost Mediterranean region.

Main results shed light on the particular evolution of each sub-basin as well as in the entire basin evolution. The Late Oligocene - Miocene represents the formation stage of the basins, controlled by the evolution of the Gibraltar subduction system. During this period, each sub-basin shows different sedimentary units, supporting differences in their evolution. The Plio-Quaternary corresponds to the deformation stage, driven by the Eurasian-African plates convergence. The Plio-Quaternary sediments are covering the entire area, instead of being restricted to the sub-basins. This latter period is characterized by contractional and strike-slip deformation, accommodated mainly by re-activation of pre-existing crustal structures.

How to cite: Gómez de la Peña, L., Ranero, C., Gràcia, E., and Booth-Rea, G.: The Westernmost Mediterranean evolution: A review of the Alboran and Algero-Balearic basins stratigraphy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9535, https://doi.org/10.5194/egusphere-egu2020-9535, 2020.

EGU2020-448 | Displays | TS7.4

Subduction of a rifted passive continental margin: the Pohorje case of Eastern Alps - constraints from geochronology and geochemistry

Ruihong Chang, Franz Neubauer, Johann Genser, Yongjiang Liu, and Sihua Yuan

A-type subduction is considered to occur at the final stage of continent-continent collision. In many cases, the UHP/HP metamorphic conditions are well known but data on the type of subducted continental crust is lacking. In terms of end members, the type of subducted crust is either (1) normal thick continental crust or (2) the crust from the center of a rift zone, which is influenced by strong extension, high-temperature metamorphism due to thinning of even the continental mantle lithosphere and strong magmatism. To resolve these alternative scenarios, we investigated the southernmost part of the Eclogite-Gneiss Unit (EGU) of Cretaceous metamorphic age exposed in the Pohorje Mountains in Eastern Alps. There, UHP eclogites and ultramafic mantle rocks are exposed in a matrix of paragneiss and hitherto undated granitic orthogneises (Kirst et al., 2010). This study presents, for the first time, geochronological and geochemical data from newly discovered Permian granitic orthogneisses in this area. LA-ICP-MS zircon U–Pb ages of the orthogneisses are 255±2.2 Ma and 260±0.81 Ma, which are interpreted as the age of zircon crystallization in a magma. In contrast, all rounded zircons from paragneissic rocks give Cretaceous ages (89.34±0.69 Ma and 90.8±1.2 Ma), considered as the age of UHP/HP metamorphism. These zircons overgrew older zircons of Permian and rare older ages tentatively indicating that the metasedimentary could be not older than latest Permian. Zircon εHf(t) values of the four ortho- and paragneisses with (176Hf/177Hf) initial from 0.282201 to 0.282562, TDM2 are Proterozoic (1390~1970 Ma). The granitic orthogneisses show the geochemical features (high (La/Lu) N ratios (160.3–307.3), strong negative Eu anomalies) of an evolved granite molten from continental crust. This type of orthogneisses could be considered as the source magma of seemingly rootless Late Permian to Triassic pegmatites (Knoll et al., 2018) widespread within the EGU further to the north. The paragneisses are heterogeneously composed and are associated with eclogites and ultramafic cumulates of oceanic affinity (De Hoog et al., 2011). We argue that the Permian granitic orthogneisses might be derived from partial melting of lower crust in a rift zone. We consider, therefore, this segment of the EGU as part of the distal Late Permian rift zone, which finally led to the opening of the Meliata Ocean during Middle Triassic times. If true, the new data also imply that the stretched continental crust was potentially not much wider than ca. 100 km, was subducted and then rapidly exhumed during early Late Cretaceous times.

 

References

De Hoog, J.C.M., Janák, M., Vrabec, M., Hatton, K.H., 2011. In: Dobrzhinetskaya, L., Faryad, S.W., Wallis, S., Cuthbert, S. (Eds.), Ultrahigh-pressure Metamorphism: 25 Years After the Discovery of Coesite and Diamond. Elsevier Insights, pp. 399–439.

Janák, M., Froitzheim, N., Yoshida, K., Sasinková, V., Nosko, M., Kobayashi, T., Hirajima, T., Vrabec, M., 2015. Journal of Metamorphic Geology 33, 495–512.

Kirst, F., Sandmann. S., Nagel. T., et al. 2010. Geologica Carpathica 61(6), 451-461.

Knoll, T., Schuster, R., Huet, B., Mali, H., Onuk, P., Horschinegg, M., Ertl, A., Giester, G., 2018. Canadian Mineralogist 56, 489-528.

How to cite: Chang, R., Neubauer, F., Genser, J., Liu, Y., and Yuan, S.: Subduction of a rifted passive continental margin: the Pohorje case of Eastern Alps - constraints from geochronology and geochemistry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-448, https://doi.org/10.5194/egusphere-egu2020-448, 2020.

EGU2020-11134 | Displays | TS7.4 | Highlight

Using geodynamic modeling to test plate tectonic scenarios of the Mediterranean-Alpine area

Boris Kaus, Eline Le Breton, Georg Reuber, and Christian Schuler

Using geological and geophysical data, it is possible to reconstruct the past motion of tectonic plates involved in the Alpine orogeny and propose possible scenarios for their geological evolution. However, those scenarios have not yet been tested for geodynamic consistency.

Here, we perform 3D thermomechanical geodynamic simulations of the Mediterranean-Alpine area starting with a plate tectonic reconstruction at 20 Ma based on the work of Le Breton et al. (2017). The models include viscoelastoplastic rheologies and a free surface, and thus simulate the spontaneous occurrence of shear zones as well as the development of topography. Whereas some aspects of the tectonic reconstruction are well constrained (i.e. past position of the plates and subduction-collision fronts), many details such as the dip and length of the subducted plates, their thermal structure as well as their rheology, are unknown. The models are run forward in time to see to which extent they are consistent with the kinematic reconstructions. Perhaps unsurprisingly, our initial modelling attempts show a wide variety of behavior, including slab break off events and slab rollbacks in the wrong directions. Yet, in all cases tested so far, the model evolution does not reproduce the present-day geological setting, with Adria frequently moving too far towards the east and breaking apart internally, frequently no Alpine chain forming and in some cases new subduction zones developing within the Western Mediterranean that swallow Sardinia and Corsica.

Reproducing geological scenarios with thermomechanical geodynamic modelling thus requires substantial additional work, both from the modelling side (testing the effect of uncertain parameters on the behaviour of plates and subduction zones), as well as from the plate reconstruction side (assessing which parameters are well constrained and need to be reproduced).  Nevertheless, interesting insights can already be obtained from our models, and in our presentation, we will highlight some of the links between interacting subducting plates and plate motion.

Le Breton E, Handy MR, Molli G, Ustaszewski K (2017) Post-20 Ma Motion of the Adriatic Plate: New Constraints From Surrounding Orogens and Implications for Crust-Mantle Decoupling. Tectonics 36:3135–3154. doi: 10.1002/2016TC004443

 

How to cite: Kaus, B., Le Breton, E., Reuber, G., and Schuler, C.: Using geodynamic modeling to test plate tectonic scenarios of the Mediterranean-Alpine area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11134, https://doi.org/10.5194/egusphere-egu2020-11134, 2020.

EGU2020-20638 | Displays | TS7.4

Geodynamic evolution of the East Carpathian Foreland Basin since the Middle Miocene: Implications for sediment supply to the Black Sea and Dacian Basin

Arjan de Leeuw, Stephen Vincent, Anton Matoshko, Andrei Matoshko, Marius Stoica, and Igor Nicoara

The Carpathian orogen is part of the Alpine-Himalayan collision zone and formed as the result of the collision of the Tisza-Dacia and ALCAPA mega-units with the European southern margin, following a protracted phase of subduction, slab roll-back and accretionary wedge formation. The foreland basin of the East Carpathians is 800 km long and stretches out across Poland, Ukraine, Moldova and Romania. We use the results of our intensive field research to unravel the sedimentary architecture of this basin and reveal how it responded to the final phases of foreland vergent thrusting, continental collision and subsequent slab detachment. We discuss the asymmetry in the basins evolution and eventual inversion and relate this to the diachronous evolution of the Carpathian orogen. We also address the impact of changing subsidence patterns and base-level changes on connectivity with the Central and Eastern Paratethys, important for faunal exchange and patterns of endemism. We finally show that continental collision led to the establishment of a Late Miocene NW-SE prograding axial drainage system in the foreland supplying abundant sediment to the NW Black Sea, thus triggering large-scale shelf edge progradation.

How to cite: de Leeuw, A., Vincent, S., Matoshko, A., Matoshko, A., Stoica, M., and Nicoara, I.: Geodynamic evolution of the East Carpathian Foreland Basin since the Middle Miocene: Implications for sediment supply to the Black Sea and Dacian Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20638, https://doi.org/10.5194/egusphere-egu2020-20638, 2020.

EGU2020-7531 | Displays | TS7.4

The Neotethys suture in the eastern Bulgarian Rhodopes

Jan Pleuger, Zlatka Cherneva, Linus Klug, Elis Hoffmann, Michael Schmidtke, Nikolaus Froitzheim, Neven Georgiev, Kalin Naydenov, Kristoph Stegmann, Alexandra Pohl, Marisa Germer, Alexander Borchert, and Martina Menneken

Following a tectonic scheme proposed by Janák et al. (2011; Journal of Metamorphic Geology 29, 317-332) and Pleuger et al. (2011; Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 162, 171-192), the Rhodopes are composed of four nappe complexes, from bottom to top the Lower, Middle, and Upper Allochthon and the Circum-Rhodope Belt. Rocks derived from Adria and/or Pelagonia (Lower Allochthon) are separated from rocks of European origin (Upper Allochthon) by lithologically variegated thrust sheets containing sporadic occurrences of ophiolites (Middle Allochthon). These ophiolites typically yield magmatic protolith ages of c. 160 Ma and were metamorphosed under amphibolite- to eclogite-facies conditions. They represent Neotethyan lithosphere subducted below Europe in the Late Cretaceous to Palaeogene whereas the Circum-Rhodope Belt contains ophiolites of the same protolith age but with lower metamorphic grade (greenschist facies at most) and was obducted onto the former European margin in the Jurassic. We present LA-ICP-MS U-Pb zircon and additional geochemical data from the Luda Reka Unit in the Bulgarian Eastern Rhodopes. This unit consists mostly of amphibolite, metagabbro, and metadiorite that yielded two protolith ages of 163.5±2.6 Ma and 154.2±1.0 Ma. The trace element patterns resemble those of typical back-arc basalts and lower oceanic crustal cumulates. Initial epsilon Nd values of six samples calculated to 154 Ma were +10.8 ±0.8 (2σ; n = 6), in agreement with average basalts derived from depleted ambient mantle. A pegmatite crosscutting the Luda Reka Unit yielded a magmatic age of 52.04±1.1 Ma. Such pegmatites are widespread in the Luda Reka Unit (Middle Allochthon) suggesting that emplacement of this unit over the Bjala Reka Orthogneiss Unit (Lower Allochthon) where such pegmatites are lacking happened only after c. 52 Ma. The Bjala Reka Orthogneiss Unit forms the footwall of the top-to-the-SSW Bjala Reka Detachment that became active in the Late Eocene. Where the Luda Reka Unit is lacking, the Bjala Reka Orthogneiss Unit is overlain by rocks that were collectively described as “Low-grade Mesozoic Unit” (e.g. Bonev & Stampfli 2008; Lithos 100, 210-233). Based on peak temperatures determined by Raman spectroscopy of organic matter, two tectonic units can be distinguished in the “Low-grade Mesozoic Unit”. The temperature peak was at c. 530 °C in the Mandrica Unit below and at c. 285 °C in the Maglenica Unit above. For the Mandrica Unit, minimum peak pressures of c. 1.4 GPa were obtained by Raman spectroscopy of quartz inclusions in garnet, indicating that this unit underwent subduction-related metamorphism. Because of this marked difference in peak metamorphic grade, we attribute only the anchimetamorphic Maglenica Unit to the Circum-Rhodope Belt while the high-pressure Mandrica Unit probably represents the Upper Allochthon. Both units are presently separated by the top-to-the-NW Mandrica Detachment that was active before the Bjala Reka Detachment. Our new findings show that the easternmost Rhodopes expose a condensed section through all four nappe complexes, notably including the Neotethys suture.

How to cite: Pleuger, J., Cherneva, Z., Klug, L., Hoffmann, E., Schmidtke, M., Froitzheim, N., Georgiev, N., Naydenov, K., Stegmann, K., Pohl, A., Germer, M., Borchert, A., and Menneken, M.: The Neotethys suture in the eastern Bulgarian Rhodopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7531, https://doi.org/10.5194/egusphere-egu2020-7531, 2020.

EGU2020-7529 | Displays | TS7.4

Role of dextral strike slip faulting in the distribution of Aegean extension since Miocene times inferred from receiver function analysis

Agathe Faucher, Christel Tiberi, Frédéric Gueydan, and Alexandrine Gesret

Aegean plate is marked since Eocene by widespread NE-SW extension induced by the African slab roll-back. In Miocene times, E-W shortening created by the westward Anatolian extrusion overlays the extension, with the formation of Miocene dextral strike slip faults in addition to normal faults. We propose to quantify the role of large dextral strike slip faults in accommodating Aegean extension, using receiver functions to image Moho geometry.

Aegean extension is particularly evidenced by a topographic difference between the emerged continental Greece and the submerged Cyclades. In this study we characterize the associated Moho geometry with a particular focus on the transition between these two domains. From a geological point of view, the transition between continental Greece and the Cyclades is marked by two dextral strike slip faults: the Pelagonian fault (onshore) and the South Evvia fault (offshore). Our objective is also to show a potential Moho signature of these strike slip faults.  We processed receiver functions (RF) from the MEDUSA stations located in Attic and Evvia.

Our results show that the Moho is deeper beneath continental Greece (~27km) than beneath the Cyclades (~25km). A detailed azimuthal study of RF distribution shows a flat Moho underneath Continental Greece. The crustal thickness is also almost constant inside the Cyclades, as already suggested by previous studies. However, the transition between the Cyclades and Continental Greece is not continuous. These two crustal blocks are separated by the Pelagonian and the South Evvia strike slip faults in a narrow transition zone (~75km). In this zone (South Evvia/Attica), dip and strike of the Moho vary and suggest a crustal signature of the strike slip structures observed at the surface. These strike slip faults therefore accommodate in a narrow zone the inferred variations in crustal thicknesses between the Cyclades and Continental Greece.

Our data show that differences in topography between Continental Greece and the Cyclades are isostatically compensated, reflecting various amount of crustal thinning larger in the Cyclades than in Continental Greece. Inside these two crustal blocks, we imaged a flat Moho, suggesting a wide rift extension process associated with the formation of numerous Miocene and Plio-Quaternary basins.  The dextral strike slip faults at the edges of the continental blocks (Continental Greece and Cyclades) accommodated the inferred variations in the amount of crustal thinning, suggesting that they act as continental transfer zones at crustal-scale during Miocene Aegean Extension.

How to cite: Faucher, A., Tiberi, C., Gueydan, F., and Gesret, A.: Role of dextral strike slip faulting in the distribution of Aegean extension since Miocene times inferred from receiver function analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7529, https://doi.org/10.5194/egusphere-egu2020-7529, 2020.

Field, geochemical and geochronological research on Late Cretaceous and Early Cenozoic volcanic rocks in Kyrenia Range provide constraints on the tectono-magmatic evolution of the northerly, active continental margin of the Southern Neotethys. Field mapping in the western Kyrenia Range demonstrates that frontal (southerly) thrust sheets are dominated by felsic volcanogenic rocks. U-Pb zircon dating indicates that the felsic volcanics erupted at 72.9 ± 1.0 Ma (Late Campanian). These volcanics are interpreted as the products of sub-aqueous continental margin arc volcanism based on geochemical evidence. The exposed arc volcanics are somewhat younger than arc-derived volcaniclastic sediments in W Cyprus (80.1 ± 1.1 Ma), and are also younger than arc-related granitic rocks (88-82 Ma) cutting the Tauride active continental margin (Malatya-Keban platform) in SE Turkey. Structurally higher (more northerly) imbricate thrust sheets include Late Cretaceous (Maastrichtian) and Early Cenozoic basalts that are underlain by a Mesozoic continental carbonate platform (metamorphosed), and interbedded with pelagic and redeposited carbonates that formed in an active continental margin setting. The basalts have within-plate geochemical characteristics, although with a variable subduction influence in some areas (e.g., western Kyrenia Range) that could be either be contemporaneous or inherited from Late Cretaceous (c. 70-80 Ma) subduction. Modern and ancient comparisons (e.g., Tyrrhenian Sea) suggest that the basaltic rocks represent incipient, extensional marginal basin formation. Integration with comparable evidence of continental margin arc magmatism in SE Turkey and elsewhere provides a picture of arc magmatism and marginal basin formation along an active continental margin, prior to collision during the Miocene.

How to cite: Chen, G. and Robertson, A.: Formation of a Late Cretaceous continental margin arc and an Early Cenozoic back-arc basin in the Kyrenia Range, northern Cyprus related to S-Neotethyan subduction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7260, https://doi.org/10.5194/egusphere-egu2020-7260, 2020.

EGU2020-8898 | Displays | TS7.4 | Highlight

The Slab Puzzle of the Alpine-Mediterranean Region: Insights from a new, High-Resolution, Shear-Wave Velocity Model of the Upper Mantle

Amr El-Sharkawy, Thomas Meier, Sergei Lebedev, Jan Behrmann, Mona Hamada, Luigia Cristiano, Christian Weidle, and Daniel Köhn

The fascinatingly complex tectonic make-up of the Mediterranean region comprises small, strongly-curved retreating subduction zones, associated back-arc basins, and the continental collisions along the northern and eastern margins of the Adriatic microplate. It remains a challenge to resolve the geometry of the subducted slabs in the Mediterranean upper mantle. Here, we present new evidence for the location and lateral and vertical extent of slab segments from a new, high-resolution, Rayleigh-wave tomography. The tomographic model spans the depth range from the crust down to 300 km and is complemented by intermediate-deep seismicity data in the circum-Mediterranean region.

An automated procedure to measure inter-station Rayleigh wave phase velocities is applied to a large, heterogeneous dataset from all publically available stations around the Mediterranean in the time period from 1990 to 2015. Furthermore, for the first time, data from the Egyptian National Seismological Network (ENSN) are used regional seismic tomography. The resulting large set of about 200,000 inter-station phase velocity measurements is inverted for a set of phase-velocity maps spanning a very broad period range (8 - 350 s). The maps are then inverted, point by point, for a 3D, S-velocity model using a stochastic, particle-swarm-optimization inversion.

We distinguish between attached slab segments reaching down to the bottom of the model and shallow slabs of shorter length or detached slab segments resulting both from horizontal tearing. We discuss evidence for continental subduction east of Cyprus, for continuous NE-dipping subduction in the Antalyan region and NW dipping subduction in the SE Aegean in the area of Rhodes. An attached slab is imaged beneath the Hellenides reaching down to at least 300 km depth whereas beneath the Dinarides a short slab is found down to about 150 km depth above a slab tear. The slab in the southern Carpathians seems to be partly detached. A south-dipping slab is imaged in the central Alps but shallow bivergent subduction is favoured in the eastern Alps. In the western Alps, a shallow slab east-dipping Eurasian slab segment is in close proximity to the nearly vertically dipping attached slab segment beneath the northern Apennines and the southern Po plain. In the central Apennines a slab gap is found whereas the NE-dipping Calabrian Slab seems to partly detached along the northern Sicilian coast. The Kabylides Slab that appears to be attached along the North African coast but detached along the margin of the shelf in the Sicily Channel, is clearly separated from the Calabrian Slab in the NE and the Alboran-Betics Slab in the west. According to our model, the latter slab consists of two segments: a shallow Alboran one and a detached Betics slab segment. We summarize our interpretations in a map of the Mediterranean slab segments and indicate open questions.

How to cite: El-Sharkawy, A., Meier, T., Lebedev, S., Behrmann, J., Hamada, M., Cristiano, L., Weidle, C., and Köhn, D.: The Slab Puzzle of the Alpine-Mediterranean Region: Insights from a new, High-Resolution, Shear-Wave Velocity Model of the Upper Mantle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8898, https://doi.org/10.5194/egusphere-egu2020-8898, 2020.

EGU2020-189 | Displays | TS7.4

Western Anatolian Record of Subduction Initiation through Collision

Megan Mueller, Alexis Licht, Faruk Ocakoğlu, Clay Campbell, Mustafa Kaya, Begüm Kurtoğlu, Gui Akşit, Michael Taylor, Grégoire Métais, Pauline Coster, and K. Christopher Beard

The 1,700-km-long Izmir-Ankara-Erzincan suture (IAES) in Anatolia (Turkey) marks where Gondwanan and Laurasian microcontinents collided during the Cretaceous and Paleogene. The timing and dynamics of subduction and collision along the IAES are poorly constrained resulting in competitive paleogeographic scenarios requiring unique geodynamic and biogeographic reconstructions of the Mediterranean domain and broader Alpine-Zagros-Himalayan orogen. In western Anatolia, orogenic development following subduction initiation has been poorly documented. The timing of collision is debated: sometime in the Late Cretaceous to Early Eocene. Eocene slab breakoff is inferred from geochemical data but is either not supported or unresolved in mantle tomography and has not been tested using other techniques. 

We use the Saricakaya and Central Sakarya Basins in western Anatolia to appraise models of subduction initiation, intercontinental collision and slab breakoff in northwest Turkey and to discuss the implications of our results for geodynamic evolution of the IAES. From measured sections, volcanic zircon geochronology, and sedimentary provenance proxies, we demonstrate that there was little topographic development associated with early subduction stages. We refine the age of intercontinental collision to the Maastrichtian-middle Paleocene. We challenge the interpretation of Eocene slab breakoff and provide a new model of syncollisional evolution in western Anatolia in which convergence, underthrusting, and accommodation space creation dominate during the early Eocene. 

Finally, we compare results in western Anatolia to central Anatolia to determine that there was a synchronous magmatic history and onset of deformation along the IAES, thus supporting synchronous collision models of the IAES. The location, chronology and style of deformation and topographic development in western Anatolia is an important counterpoint to popular orogenic cyclicity models.

How to cite: Mueller, M., Licht, A., Ocakoğlu, F., Campbell, C., Kaya, M., Kurtoğlu, B., Akşit, G., Taylor, M., Métais, G., Coster, P., and Beard, K. C.: Western Anatolian Record of Subduction Initiation through Collision, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-189, https://doi.org/10.5194/egusphere-egu2020-189, 2020.

EGU2020-322 | Displays | TS7.4

Geochronology and Lu-Hf isotopic study of the granodioritic pulse in the Qaradagh batholith (NW Iran)

Vartan Simmonds, Mohssen Moazzen, Gültekin Topuz, and Ali Mohammadi

The Qaradagh batholith in northwest Iran mainly comprises granodioritic rocks, which makes more than 50% of the batholith. This lithology is the first intrusive pulse within this batholith and the oldest Tertiary magmatism in the region, though other younger pulses of granite, diorite, quartz-diorite, syenite, quartz-syenite, monzonite, quartz-monzonite, quartz monzodiorite, monzogranite and gabbro intruded the main body. These magmatic rocks have intruded the Upper Cretaceous and Paleogene sedimentary, volcano-sedimentary and igneous rocks.

The Qaradagh batholith hosts vein-type and some local stock-work type Cu–Au–Mo mineralization, especially in its central parts, while skarn-type deposits have been formed at its contacts with peripheral carbonate rocks. Its extension towards the north into the neighboring south Armenia (which is part of the South Armenian Block) is known as the Meghri–Ordubad pluton (MOP), which hosts several large porphyry Cu–Mo deposits and other precious and base metal mineralizations. U–Pb geochronology on the zircons separated from the granodioritic unit yielded a weighted 206Pb/238U mean age of 43.81 ± 0.18 (MSWD=1.38) and a Pb*/U concordia age of 44.04 ± 1.00 Ma (MSWD= 24), which correspond to Middle Eocene.

Since the Qaradagh batholith and especially its earliest magmatic phase are considered as the oldest plutonic event of the Cenozoic age in northwest Iran, thus this investigation testifies to the fact that intrusive activities of Tertiary in this region has commenced in Middle Eocene, contrary to the opinion of the majority of authors who believe that plutonism in this region occurred during Oligocene.

However, this age is much older than the molybdenite Re–Os ages of quartz-sulfide veins hosted by granodioritic rocks (25.19 ± 0.19 to 31.22 ± 0.28 Ma), indicating that mineralization in this batholith is related to another much younger intrusive phase, and even to several phases, as the published ages of molybdenites from various veins and mineralized zones show a large interval. Comparing the obtained age with those from the MOP in southern Armenia indicate that southern part of the MOP is almost coeval with the emplacement of the granodioritic rocks in Qaradagh batholith.

The U and Th contents of the zircons range from 17.1 to 1534.0 and from 4.9 to 641.0 ppm, respectively, with Th/U ratios between 0.66 and 5.82 (mean of 1.26), indicating a magmatic source. Meanwhile, the εHf(t) values of the zircons range from 8.7 to 11.1 with the mean of 9.5, which are plotted between the CHUR and the Depleted Mantle evolution lines, indicating a juvenile and homogeneous magmatic source and the predominance of mantle-derived magmas with limited crustal assimilation.

How to cite: Simmonds, V., Moazzen, M., Topuz, G., and Mohammadi, A.: Geochronology and Lu-Hf isotopic study of the granodioritic pulse in the Qaradagh batholith (NW Iran), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-322, https://doi.org/10.5194/egusphere-egu2020-322, 2020.

EGU2020-3709 | Displays | TS7.4

Migration of post-collisional volcanism in northwestern Iran at plate tectonic velocities

Axel Schmitt, Jalil Ghalamghash, Razieh Chaharlang, Jamshid Hassanzadeh, and Seyed Mousavi

Post-collisional magmatism of Neogene-Quaternary age is manifested in a long but disjointed belt of volcanoes broadly paralleling the Arabia-Eurasia suture zone. Volcanic compositions in this belt share geochemical characteristics with subduction-related magmas, yet they postdate subduction and formed in the wake of continental collision. Potential mechanisms for melt generation in the absence of subduction include slab break-off, lithospheric mantle delamination, or incorporation of fusible crustal rocks or sediment into the mantle through subduction or collision, leading to volcanism seemingly randomly distributed in time and space. In northwestern Iran, the two largest post-collisional volcanic centers are Sahand and Sabalan stratocones, which are located at distances of 150 and 300 km on a line perpendicular to the strike of the suture zone, where they overlie rocks of the Eocene-Oligocene Urumieh-Dokhtar magmatic arc. Here, we present U-Pb zircon ages for intermediate lavas and pyroclastic rocks from Sabalan volcano which complement published data for the Sahand and Sabalan systems [1, 2]. In both sample suites, inherited zircon from the basement is scarce and restricted to Cretaceous and Eocene-Oligocene ages for Sahand, and Archean, late Proterozoic and Oligocene-Miocene ages for Sabalan. Individual samples display coherent young populations that likely crystallized shortly before eruption. In addition, many samples show evidence of antecrystic zircon, indicating a long-lived subvolcanic reservoir where older intrusive rocks became recycled. Because of this recycling, the overall zircon age distribution of each volcano better represents the duration of magmatic activity than a compilation of eruption ages would. Based on the oldest antecrystic zircon ages, the onset of magmatism is constrained to ca. 10 Ma for Sahand, and ca. 5 Ma for Sabalan. This age difference shows a progression in the onset of magmatism that is consistent with plate tectonic velocities of ~30 mm/a. This rate and the northeastward direction of the volcanic migration also matches the reconstructed convergence of the Neotethyan oceanic lithosphere towards Eurasia. Apparent pulses in zircon production for both, Sahand and Sabalan, as well as a tailing off in the frequency of older ages are likely due to sampling bias of the volcanic stratigraphy, where younger eruptive products may have destroyed or obscured older units. Regardless of this bias, U-Pb and U-Th disequilibrium zircon ages from both volcanoes consistently indicate late Pleistocene eruptions as young as <173 ka and <110 ka for Sahand and Sabalan, respectively. The systematic younging of the onset of volcanism for these two volumetric dominant volcanic centers in northwestern Iran suggests that passage of a detached oceanic slab following closure of the Neotethys is a viable mechanism for post-collisional magmatism in the region.

[1] Ghalamghash, J., Schmitt, A. K., & Chaharlang, R. (2019), Lithos, 344, 265-279.

[2] Ghalamghash, J., Mousavi, S. Z., Hassanzadeh, J., & Schmitt, A. K. (2016), J Volc Geotherm Res, 327, 192-207.

How to cite: Schmitt, A., Ghalamghash, J., Chaharlang, R., Hassanzadeh, J., and Mousavi, S.: Migration of post-collisional volcanism in northwestern Iran at plate tectonic velocities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3709, https://doi.org/10.5194/egusphere-egu2020-3709, 2020.

EGU2020-304 | Displays | TS7.4

The Durkan Complex in the western Makran Accretionary Prism (SE Iran): Evidence for a Late Cretaceous tectonically disrupted oceanic seamount

Edoardo Barbero, Morteza Delavari, Asghar Dolati, Luca Pandolfi, Emilio Saccani, Michele Marroni, Marco Chiari, Valeria Luciani, and Rita Catanzariti

The Makran Accretionary Prism (SE of Iran) represents the less known segment of the Alpine-Himalayan orogenic system. It results from the Cretaceous to present-day convergence between the Arabian and Eurasian plates that was accommodated by the northward subduction of the Neotethys Ocean below the southern margin of Eurasia. As a peculiar feature, the Makran is the only segment of the Alpine-Himalayan orogenic system, in which subduction is still active. The North Makran is the innermost structural domain of the accretionary wedge. It consists of distinct complexes and tectonic units representing remnants of the Cretaceous-Paleocene accretionary-subduction phases. Among these, the Durkan Complex consists of several tectonic units, which include deformed Early Cretaceous-Paleocene carbonatic and volcanic successions, as well as rare Carboniferous, Permian and Jurassic slices of platform limestones. The Durkan Complex is commonly interpreted as representing the disrupted sedimentary cover of the passive margin of a micro-continent known in literature as the Bajgan-Durkan Complex. However, its stratigraphic succession, as well as the age and geochemistry of the volcanic rocks are still poorly known. Nevertheless, such data are fundamental for constraining its meaning for the pre-Eocene geodynamic evolution of the Makran Accretionary Prism. For this reason, we present new stratigraphic and petrological data on the westernmost sector of the Durkan Complex.

Our data show that the Durkan Complex includes distinct tectonic slices showing both slightly metamorphic and non-metamorphic highly-deformed stratigraphic successions. Stratigraphic data allow us to recognize three main types of successions. Type I consists of an alternation of pillow lavas and Albian-Cenomanian pelagic shales and radiolarites. Type II consists of pillow and massive lavas with minor volcaniclastic arenites grading up to an alternation of volcanic and volcaniclastic rocks and Cenomanian pelagic limestones and shales. Local intercalations of mass-transport deposits are common, particularly in the upper part of the sequence. Type III consists of pillow lava flows, volcanic breccia, and volcaniclastic sandstone overlain by an Albian-Cenomanian carbonatic platform. All these successions are stratigraphically overlain by a post-Cenomanian pelagic and hemipelagic sequence. Ages were determined by foraminifera and radiolarian biostratigraphy. The volcanic rocks in the distinct successions show similar geochemical features. They consist of basalt and minor trachybasalt showing alkaline affinity with high Nb/Y ratios (0.62 – 4.4), as well as marked LREE/HREE enrichment. The overall geochemical features of the rocks are comparable with those of alkaline oceanic within-plate basalts and plume-type MORBs.

In summary, our data show that the rock assemblages of the Durkan Complex represent the remnants of a seamount rather than remnants of continental margin successions, as it was previously described. The distinct successions of the Durkan Complex show tectono-stratigraphic features that can be reconciled to the cap (Type III), the slope (Type II), and the foothill (Type I) of a typical seamount environment. Finally, our new findings and regional-scale comparisons suggest that the Late Cretaceous alkaline magmatic pulse recorded in the Durkan Complex was likely related to mantle plume activity in the Makran sector of the Neotethys.

How to cite: Barbero, E., Delavari, M., Dolati, A., Pandolfi, L., Saccani, E., Marroni, M., Chiari, M., Luciani, V., and Catanzariti, R.: The Durkan Complex in the western Makran Accretionary Prism (SE Iran): Evidence for a Late Cretaceous tectonically disrupted oceanic seamount, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-304, https://doi.org/10.5194/egusphere-egu2020-304, 2020.

The left-lateral Doruneh Fault System (DFS) bounds the north margin of the Central Iranian microplate, and has played an important role in the structural evolution of the Turkish-Iranian Plateau and of Afghanistan. The western termination of the DFS is a sinistral synthetic branch fault array that shows clear kinematic evidence of having undergone recent slip sense inversion from a dextral array to a sinistral array in the latest Neogene or earliest Quaternary. Similarly, kinematic evidence from the Anarak Metamorphic complex at the southwestern most branch of the DFS terminal fault array suggests that this core complex formed at a transpressive left stepping termination and that it was inverted in the latest Neogene to a transtensional fault termination. The recognition that the DFS and possibly other faults in NE Iran were inverted from dextral to sinistral strike slip in the latest Neogene, and the likely connection between the DFS and the Herat Fault of Afghanistan suggests that the evolutions of Afghanistan and the Indo-Asian collisional system are linked to the tectonic evolution of the Turkish-Iranian Plateau. This speculative model explains the Late Neogene tectonic realignment of the Arabia-Eurasia collision zone in terms of the interaction between the Afghan blocks that were extruding west from the Indo-Asian collision and the Turkish Iranian collision zone that was evolving to the east as Arabia sutured diachronously with Eurasia. The collision of the Afghan blocks with East Iran effectively locked the respective eastern and western free boundaries for the Arabia-Eurasia, and Indo-Asian collisional belts and forced them to diverge away from one another. If confirmed, this explains the Late Miocene to Pliocene tectonic reorganization that is recognized across the Middle East and has implications for geologic process models across the region. Regional tectonic reorganization and/or inversion may (1) invert and possibly breach older Cenozoic structures while forming a younger generation of post-Miocene structures, (2) reorganize drainage and sediment supply networks, and sealing and obscuring older structural and stratigraphic bodies under younger sediments, (3) rejuvenate existing structures and trigger secondary fluid migration, and (4) increase exhumation, sediment supply, and subsidence in late Neogene basins across the region.

How to cite: Guest, B.: Slip-sense inversion in Iran: Implications for Eurasian tectonics , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7360, https://doi.org/10.5194/egusphere-egu2020-7360, 2020.

EGU2020-4012 | Displays | TS7.4

Crustal Structure and Earthquakes beneath the Jammu and Kashmir Himalaya

Supriyo Mitra, Swati Sharma, Debarchan Powali, Keith Priestley, and Sunil Wanchoo

We use P-wave receiver function (P-RF) analysis of broadband teleseismic data recorded at twenty two stations spanning the Jammu-Kishtwar Himalaya, Pir Panjal Ranges, Kashmir Valley, and Zanskar Ranges in Northwest Himalaya to model the seismic velocity structures of the crust and the uppermost mantle. Our network extends from the Shiwalik Himalaya (S) to the Tethyan Himalaya (N), across the major Himalayan thrust systems and litho-tectonic units. We perform Vp/Vs-Depth stacking of P-RF and joint inversion with surface wave dispersion data. Our analysis show that the underthrust Indian crust, beneath the Jammu-Kishtwar Himalaya, has an average thickness of ~40 km and dips northward at ~7-9º. The overlying Himalayan wedge increases in thickness northward from the Shiwalik Himalaya (~8–10 km) to the Tethyan Himalaya (~25–30 km). The underthrust Indian crust Moho is marked by a large positive impedance contrast and lies at a depth of ~45 km beneath the Shiwalik Himalaya and ~65 km beneath the Higher Himalaya, deepening northward beneath the Tethyan Himalaya. We observe Moho flexure across the Mandli-Kishanpur Thrust (MKT), in the Shiwalik Himalaya, and beneath the Kishtwar window. Each time to Moho deepens by ~10 km, from ~45 km to ~55 km, and from ~55 km to ~65 km, respectively. The Moho is remarkably flat at ~56 km beneath the Pir Panjal Ranges, from its southern foothills to the northern flank in the Kashmir Valley. North of the Kashmir Valley the Moho dips steeply underneath the Zanskar Ranges from ~56 km to ~62 km. Along the Jammu-Kishtwar common conversion point (CCP) profile the Main Himalayan Thrust (MHT) is highlighted by the low velocity layer (LVL) at a depth of ~8 km beneath the Shiwalik Himalaya to ~25 km beneath the Higher Himalaya. The average dip on the MHT is ~9º and has a frontal ramp beneath the Kishtwar window. The MKT, MBT and MCT are marked by LVLs which splays updip from the MHT. Average crustal Vp/Vs shows that beneath the Shiwalik Himalaya, west of the MFT anticline the crust is mafic in nature while towards the east the crust is felsic in nature. Beneath the Lesser Himalaya the crust is largely felsic, while beneath the Pir Panjal range the crust is intermediate to mafic. North of the Kashmir Valley, beneath the Zanskar range the crust is felsic to intermediate in nature. We compare the source mechanism of the 2013 Kishtwar earthquake (Mw 5.7) and hypocentral location of small-to-moderate earthquake beneath Kishtwar region with the CCP profile. Our results show that these earthquakes occurred on or above the MHT in the unlocking zone, between the frictionally locked shallow segment and deeper creeping segment of the MHT. This marks the zone of stress build-up on the MHT in the interseismic period and is possibly the zone of megathrust initiation.

How to cite: Mitra, S., Sharma, S., Powali, D., Priestley, K., and Wanchoo, S.: Crustal Structure and Earthquakes beneath the Jammu and Kashmir Himalaya, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4012, https://doi.org/10.5194/egusphere-egu2020-4012, 2020.

EGU2020-22472 | Displays | TS7.4

Lower crustal recycling: Reconciling Petrological and Numerical Constraints from the Pamir

Ryan Stoner, Mark Behn, and Bradley Hacker

Geochronological and thermobarometric data from a lower crustal xenolith suite in the Pamir offer a unique record of the transport of lower crust to mantle depths after an episode of slab breakoff. We compare petrologically constrained pressure-temperature-time paths from the xenoliths to pressure-temperature-time (P-T-t) paths of tracked markers in 2-D numerical geodynamic models of density foundering with thermodynamically calculated densities. We investigate whether gravitational “drip” instabilities or the peeling back of a dense layer—delamination—can reproduce the P-T-t paths seen in the xenoliths, with the ancillary goal of capturing the positive feedback between mechanical thickening and densification of the lower crust. Key thermobarometric observations from the xenoliths we try to match in our numerical study are: (1) initial heating at near-constant pressure followed by (2) a sharp increase in pressure with continued heating. We find that thick crustal sections develop P-T-t paths in numerical models of delamination that match the observations from xenoliths: the lower crust initially heats due to return flow from upwelling asthenosphere, and then foundering mantle lithosphere and crust show a marked increase in pressure with additional heating. Initial gravitational drip instabilities founder with relatively little heating yet may thin the mantle lithosphere sufficiently to allow for subsequent delamination or asymmetric drips to nucleate in the region of hotter, thinner mantle lithosphere. Such subsequent asymmetric drips or delamination entrain crust that closely follows the P-T-t path from xenoliths. This suggests that the xenoliths were not derived from an initial drip instability, but instead from later instabilities or delamination enabled by thinning of the lithosphere. In all models where density foundering occurs, the positive feedback between contraction and densification of the lower crust leads to the loss of initially positively buoyant lower crust. The combination of geological and numerical methods constrains the geometry and triggers of lower crustal foundering during collision. Contraction alone does not match the record of foundering; the lithosphere must have also been asymmetrically thinned.

 

How to cite: Stoner, R., Behn, M., and Hacker, B.: Lower crustal recycling: Reconciling Petrological and Numerical Constraints from the Pamir, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22472, https://doi.org/10.5194/egusphere-egu2020-22472, 2020.

Alkaline magmatism is commonly generated in extensional settings, playing an important role in constraining the timing of slab breakoff. Eocene post-collisional magmatism is widely distributed along the Gangdese belt of southern Tibet. However, few Eocene post-collisional alkaline magmatism has been identified. Here, we present a comprehensive study of whole-rock geochemistry, zircon U-Pb ages and Sr-Nd-Hf isotopes of the Mayum alkaline complex from the Southern Lhasa Subterrane, providing an insight into the timing of breakoff of the Neo-Tethyan slab. The alkaline complex is composed of amphibolite syenite, quartz syenite and alkaline granite. The mafic microgranular enclaves are ubiquitous in the syenites. Zircon U-Pb analyses indicates that the alkaline rocks were generated in Early Eocene (ca. 53-50 Ma). These ages suggest that the alkaline rocks emplaced shortly (10-15Ma) after the continental collision between the Indian and Eurasian plates. The alkaline rocks have high SiO2 (64.32-77.36 wt.%), Na2O + K2O (6.63-9.03 wt.%) contents, low MgO (0.14-2.52 wt.%) contents. These rocks show obvious arc-like geochemical features in trace elements, i.e., enrichment in LILEs (e.g., Rb, K), LREEs, Th and U, and depletion in HFSEs (e.g., Nb, Ta, Ti), HREEs with strongly to moderately negative Eu anomalies (δEu=0.28–0.72). These features together with high FeOT/MgO, Ga/Al, Ce/Nb and Y/Nb values, and low Ba, Sr contents, suggesting that the Mayum alkaline rocks belong to an A2-type granitoids. Besides, the alkaline rocks have homogeneous initial 87Sr/86Sr ratios (0.7052-0.7059) and negative εNd(t) values (-2.1 to -0.9) for whole-rock, and positive zircon εHf(t) values (+0.73 to +11.16). Nd-Hf isotope decoupling suggests that the alkaline was likely produced by mixing of mantle- and crust-derived magmas under a post-collisional extensional setting. Combined with previous published results, we propose that the slab breakoff of the subducting Neo-Tethyan oceanic lithosphere at least prior to Early Eocene (ca. 53Ma). The Eocene Mayum alkaline complex might be related to asthenosphere upwelling trigged by the slab breakoff.

How to cite: Chen, X. and Xu, H.: Eocene post-collisional magmatism in Himalaya orogenic belt: evidence from petrography, zircon U-Pb age and Sr-Nd-Hf isotope of the Mayum alkaline complex, southern Lhasa subterrane, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16977, https://doi.org/10.5194/egusphere-egu2020-16977, 2020.

EGU2020-904 | Displays | TS7.4

Reconciling plate convergence and orogeny: The influence of India-Asia convergence rate on the formation of the Himalayas

Ben S. Knight, Fabio A. Capitanio, and Roberto F. Weinberg

The collision of India and Eurasia since ~50 Ma has resulted in a broad range of deformation along the Himalaya-Tibetan orogeny, accommodating >2700 km of convergence. The region is characterised by the Tibetan Plateau, the Himalayan internal units and fold-and-thrust belt from North to South. These formed as a consequence of a convergence history characterised by a progressive decrease in velocity, from ~10 cm/yr 50 Ma, to ~8 cm/yr 42.5 Ma and to present-day values of ~4 cm/yr around 20 Ma. Here, we test the controls of such a convergence velocity history on the orogeny of a viscoplastic wedge during collision, above a subducting continental lithosphere. We compare numerical models simulating India-Asia plate convergence and collision, comparing the structures observed throughout the evolution with those observed in the Himalayan-Tibetan region. The models display distinct phases of growth and structural style evolution in the Himalayan-Tibetan region that are a result of the change in convergence velocity and long-term collision. After an initial stacking, the high convergence velocity forces deformation migration towards the upper plate, where a plateau forms, while late stage slowdown of collision favours the formation of the Himalayan fold-and-thrust belt. While the latter is in agreement with the structuring of the southermost domains and the South Tibetan Detachment (STD) fault, the former provide constraints to the initial uplift of the Tibetan Plateau.

How to cite: Knight, B. S., Capitanio, F. A., and Weinberg, R. F.: Reconciling plate convergence and orogeny: The influence of India-Asia convergence rate on the formation of the Himalayas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-904, https://doi.org/10.5194/egusphere-egu2020-904, 2020.

EGU2020-14987 | Displays | TS7.4

The Mechanism and Dynamics of N-S trends normal faults in Tibetan Plateau: Insight From Thermochronology, Magnetotellurics, Magmatism and GPS Measurements

Han-Ao Li, in-Gen Dai, Le-Tian Zhang, Ya-Lin Li, Guang-Hao Ha, and Cheng-Shan Wang

The N-S trends normal faults are widespread through the whole Tibetan Plateau. It records key information for the growth and uplift of the Tibetan Plateau. Numerous models are provided to explain the causes of rifting in the Tibetan Plateau based on the low-temperature thermochronology1. With the developments of the geophysical and magmatic geochemistry methods and its applications on the Tibetan Plateau, we could gain more profound understanding on the sphere structure of the Tibetan Plateau. This would give us more clues on how the deep process affect the formation and evolution of the shallow normal faults. However, few researchers pay attention on this and the relationship between the surface evolution and deep process of these faults. In order to solve these puzzles, we collected the published thermochronology data, magnetotelluric data, faults-related ultrapotassic, potassic and the adakitic rocks ages and present-day GPS measurements. We find that the distribution of the N-S trends normal faults are closely related to the weak zones in the middle to lower crust (15-50 km) revealed by the magmatism and magnetotelluric data2. Besides, the present-day GPS data show that the E-W extension rates match well with the eastward movements speeds interior Tibetan Plateau3. Combined with the thermochronology data (25-4 Ma), we concluded that 1.The weak zone in the middle to lower crust influence the developments and evolution of the N-S trends normal faults. 2. The material eastward flow enhance the N-S normal faults developments. 3. The timing of the middle to lower crustal flow may begin in the Miocene.

Key words: N-S trends normal faults; Thermochronology; Magnetotellurics; Magmatism; GPS Measurements; middle to lower crustal flow

References:

1Lee, J., Hager, C., Wallis, S.R., Stockli, D.F., Whitehouse, M.J., Aoya, M. and Wang, Y., 2011. Middle to Late Miocene Extremely Rapid Exhumation and Thermal Reequilibration in the Kung Co Rift, Southern Tibet. Tectonics, 30(2).

2Pang, Y., Zhang, H., Gerya, T.V., Liao, J., Cheng, H. and Shi, Y., 2018. The Mechanism and Dynamics of N-S Rifting in Southern Tibet: Insight from 3-D Thermomechanical Modeling. Journal of Geophysical Research: Solid Earth.

3Zhang, P.-Z., Shen, Z., Wang, M., Gan, W., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Hanrong, S. and Xinzhao, Y., 2004. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9).

Acknowledgements:

We thank Shi-Ying Xu, Xu Han, Bo-Rong Liu for collecting data. Special thanks are given to Dr. Guang-Hao Ha and Professors Jin-Gen Dai, Le-Tian Zhang,Ya-Lin Li and Cheng-Shan Wang for many critical and constructive comments.

How to cite: Li, H.-A., Dai, I.-G., Zhang, L.-T., Li, Y.-L., Ha, G.-H., and Wang, C.-S.: The Mechanism and Dynamics of N-S trends normal faults in Tibetan Plateau: Insight From Thermochronology, Magnetotellurics, Magmatism and GPS Measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14987, https://doi.org/10.5194/egusphere-egu2020-14987, 2020.

EGU2020-18249 | Displays | TS7.4

The structure of the Central-Eastern Rif (Morocco) and the disregarded subduction of the North-West African paleo-margin

Oriol Gimeno, Dominique Frizon de Lamotte, Rémi Leprêtre, Faouziya Haissen, Achraf Atouabat, and Geoffroy Mohn

The Rif Belt (Northern Morocco) forms the western edge of the Alpine-Himalayan orogenic system developed during the convergence between the Africa and Eurasia plates. Compared to other mountains belts, the External Rif, which preserves remnants of the North African paleo-margin, presents two unusual features: (1) the presence of metamorphic massifs [External Metamorphic Massifs (EMMs)] and (2) the existence of large allochthonous thrust-sheets that travelled far away [the Higher Nappes]. In this contribution, we combined structural, stratigraphic and metamorphic data, complemented by new field observation and thermochronology results, to revisit the structure of the External Rif and to review its Cenozoic evolution. The External Rif was the site of a poly-phased tectonic evolution recorded before and after of a major unconformity: the so-called “Mesorif Unconformity” postdating an important Midde-Late Eocene deformation. This tectonic event is well-preserved in the North-African paleo-margin because of its under-thrusting (“subduction”) below the Maghrebian Tethys, the former oceanic domain separating Iberia from Africa. The MP-LT metamorphism, recorded in the EMMs (Temsamane Units in Morocco), is a direct vestige of this process.  By contrast, traces of this event are absent in the oceanic units of the Intrarif Domain, element of the Maghrebian Tethys. After the “Mesorif Unconformity”, i.e. during the Miocene, the regional geodynamics is dominated by the westward translation of the Alboran Domain and the coeval deformation of the Ketama Unit (Intrarif) in front of it. This process results directly from the subduction of the Maghrebian Tethys, which happened at that time. The docking of the Ketama Unit against the already exhumed EMMs allowed an uplift and the subsequent detachment of the top of its lithostratigraphic pile, individualizing the Higher Nappes. During their gravity-driven travel towards the foredeep basin, they dragged at their floor the already exhumed Senhadja Nappes, inherited from the distal-most part of the NW African margin. All these elements are integrated in a coherent model integrating the External Rif in the geodynamics of the West Mediterranean.

How to cite: Gimeno, O., Frizon de Lamotte, D., Leprêtre, R., Haissen, F., Atouabat, A., and Mohn, G.: The structure of the Central-Eastern Rif (Morocco) and the disregarded subduction of the North-West African paleo-margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18249, https://doi.org/10.5194/egusphere-egu2020-18249, 2020.

EGU2020-7704 | Displays | TS7.4

Superposition of nappe stacking and extensional exhumation in the Sierra de los Filabres (Southeast Spain)

Kristóf Porkoláb, Jasper Hupkes, Liviu Matenco, Ernst Willingshofer, and Jan Wijbrans

The Sierra de los Filabres mountain range in the Betics system of SE Spain is one of the best natural laboratory to investigate processes associated with nappe stacking and subsequent exhumation of metamorphic rocks during the orogenic evolution. Existing research separates the Iberia-derived high-pressure, amphibolite facies Nevado-Fillabrides complex in a lower tectonic plate position from the lower grade ALCAPECA microcontinent-derived Alpujárride complex in an upper tectonic plate position. Their nappe-stack contact is also defined as an extensional detachment that controls the exhumation of the higher grade Nevado-Fillabrides complex. We have tested this model with a detailed (micro-)structural and lithological analysis complemented by 40Ar/39Ar white mica dating of key shear zones. We aim to define key shear zones that separate different tectonic units, to determine the kinematics and timing of main deformation phases, and to understand the interplay between burial and exhumation structures. The results show that shearing related to the subduction burial up to the amphibolite facies is ~ top-NW in present-day coordinates. Three amphibolite facies nappe units are distinguished, which may correspond to proximal and more distal parts of the former hyper-extended Iberian margin. The bottom and top nappes consist of continental material, while the middle nappe is largely made of mafic and ultramafic rocks. Top-NW shearing was coeval with the isoclinal and tight asymmetric folding of the formations. These structures were overprinted by upright folds and greenschist facies shear zones that still developed under compression. These contractional structures are cross-cut by ~ top-W shear zones associated with exhumation that show evidences of gradually decreasing P-T conditions during extension from ductile shearing to normal faulting. We show that the same protolith can be followed in amphibolite grade below and in low greenschists grade above the main extensional detachment. This demonstrates that the extensional detachment did not follow and reactivate exactly the former nappe contact between the Nevado-Fillabrides and Alpujárride complexes. Our single grain fusion 40Ar/39Ar ages on white micas show a range of 10 to 20 Ma in case of nappe contacts or extensional shear zones, while yield a significantly older, 25-40 Ma age cluster in case of a sample far away from the main shear zones in the core of the Nevado-Fillabrides dome. This age cluster could either represent excess Ar in the sample, or resetting due to a distinct tectono-metamorphic event that occurred prior to the Early Miocene subduction of the Nevado-Fillabrides complex. The latter case would require the reconsideration of recent tectonic reconstructions of the region.

How to cite: Porkoláb, K., Hupkes, J., Matenco, L., Willingshofer, E., and Wijbrans, J.: Superposition of nappe stacking and extensional exhumation in the Sierra de los Filabres (Southeast Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7704, https://doi.org/10.5194/egusphere-egu2020-7704, 2020.

EGU2020-10358 | Displays | TS7.4

Late stage of the Gibraltar arc subduction system (western Mediterranean): from slab-tearing to continental-edge delamination

Ana M. Negredo, Flor de Lis Mancilla, Carlos Clemente, Jose Morales, and Javier Fullea

The Gibraltar arc subduction system is the result of the fast westward roll-back of the Alboran slab at the westernmost end of the Mediterranean Sea. This westward motion is controlled, at its northern edge, by slab tearing along a so called STEP (Subduction-Transform-Edge-Propagator) fault under the Betics orogen. The Alboran subduction process is in its last evolutionary stage, where the oceanic lithosphere has been fully consumed and the continental lithosphere attached to it collides with the overriding plate. In this situation the continued slow convergence between Iberia and Africa could lead to a short stage of continental subduction. However, the particular setup after slab tearing, characterized by a sharp lateral contrast between the orogenic Betic lithosphere and the adjacent thinned lithosphere of the overriding Alboran domain, is also prone to trigger continental delamination, i.e. the detachment between the crust and the lithospheric mantle. Several lines of evidence indicate that northwards mantle delamination is likely occurring in the central Betics. The fast average topographic uplift during the last 8 Ma together with the lack of spatial correspondence between the highest topography (Sierra Nevada Mountains) and the thickest crust indicate that the topography could be partly supported by asthenospheric upwelling due to continental delamination. In this study we take advantage of an unprecedented resolution seismic receiver functions lithospheric mapping in the Betic orogen to investigate the conditions for, and consequences of, edge delamination in the Iberian margin after slab tearing. We show that given a weak enough Iberian lower crust the delaminated lithospheric mantle peels off the crust and adopts a geometry consistent with the imaged southward dipping Iberian lithosphere in the central Betics. In contrast, the thinned lower crust beneath the Iberian margin in the eastern Betics prevented mantle delamination via asthenospheric inflow into the lower crust.

How to cite: Negredo, A. M., Mancilla, F. D. L., Clemente, C., Morales, J., and Fullea, J.: Late stage of the Gibraltar arc subduction system (western Mediterranean): from slab-tearing to continental-edge delamination , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10358, https://doi.org/10.5194/egusphere-egu2020-10358, 2020.

EGU2020-9221 | Displays | TS7.4

Neogene-to-Quaternary post-orogenic tectonic evolution and CaCO3-rich fluids from the Tabernas basin (eastern Betics, Spain) reveal control by deep-seated processes in the mantle

Marine Larrey, Frédéric Mouthereau, Emmanuel Masini, Sylvain Calassou, Aurélien Virgone, Eric Gaucher, Damien Huyghe, and Nicolas Beaudoin

Since Miocene times, the crustal thinning in eastern Betics and the Alboran region associated with westward slab retreat led to the formation and exhumation of metamorphic domes and EW-directed narrow basins.

The Tabernas basin preserves a sedimentary records of the last stages of metamorphic domes exhumation (14 to 8 Ma). Structural constraints from fault patterns and sedimentary archives show evidence in the field for E-W strike-slip faults that developed close to dome-basin contacts. The evolution of strike-slip faulting and extensional basins reveals strain partitioning during the late Miocene that is consistent with the present-day regional NNW-directed compression and WSW-directed/orogen-parallel extension that result from the NW-SE Africa-Europe plate convergence. A regional cross-section further emphasizes the role of crustal-scale strike-slip faulting and slab detachment and delamination under the Alboran domain.

Calcite veins that developed during the orogen-parallel extension in the metamorphic basement and the Tortonian sedimentary rocks show a wide variety of stable isotopes ratios. Calcite cements have δ18O values ranging from -17.23‰ to -5.30‰ for, and from -15.77‰ to -1.6‰ for δ13C isotopic ratios. This patterns is interpreted to reflect the increase of freshwater input buffered by the composition of host carbonate rocks.

Continental carbonates of Quaternary ages are widespread in the Tabernas basin. Travertines show a close structural relationship with N170 and N50 normal faults, implying tectonically-controlled Ca/CO2 leakages. Their δ13C values are compatible with a hydrothermal origin from a deep-seated carbon source (δ18O median of -7.5‰, δ13C median of 2.1‰). Degassing associated with regional volcanism from the Serravallian until the Tortonian-Messinian ages is likely to be also the main vector of recent CO2 storages in rocks. The U-Th ages of travertines, ranging from 8ka ± 0.2 to 354ka ±76, further outline interactions with captive aquifer from 350ka and subsequent Ca/CO2 leakages due to geodynamic changes.

How to cite: Larrey, M., Mouthereau, F., Masini, E., Calassou, S., Virgone, A., Gaucher, E., Huyghe, D., and Beaudoin, N.: Neogene-to-Quaternary post-orogenic tectonic evolution and CaCO3-rich fluids from the Tabernas basin (eastern Betics, Spain) reveal control by deep-seated processes in the mantle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9221, https://doi.org/10.5194/egusphere-egu2020-9221, 2020.

EGU2020-10520 | Displays | TS7.4

Image of the Iberian Tethys paleomargin beneath the eastern Betic mountain range

Flor de Lis Mancilla, Jose Morales, Antonio Molina-Aguilera, Daniel Stich, Jose Miguel Azañon, Teresa Teixido, Benjamin Heit, and Xiaohui Yuan

We obtain P-wave receiver functions from recordings at a dense seismic broadband transect, deployed along 170 km across the eastern Betic orogen in south Spain. Migrated images show the crustal structure of the orogen in detail. In particular, they reveal the situation of the subducted Iberian paleomargin, with full preservation of the proximal domain and the ~50 km wide necking domain. Crustal thinning affects the lower continental crust. The Variscan crust of the Tethys margin is bending downward beneath the Betics, reaching ~45 km depth, and terminates abruptly at a major slab tear fault. The distal domain of the paleomargin cannot be reconstructed, but the migrated section suggests that material has been exhumed through the subduction channel and integrated into the Betic Orogene. This supports an origin of the HP-LT Nevado-Filabride units from subducted, hyperextended Variscan crust.

How to cite: Mancilla, F. D. L., Morales, J., Molina-Aguilera, A., Stich, D., Azañon, J. M., Teixido, T., Heit, B., and Yuan, X.: Image of the Iberian Tethys paleomargin beneath the eastern Betic mountain range, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10520, https://doi.org/10.5194/egusphere-egu2020-10520, 2020.

EGU2020-10681 | Displays | TS7.4

Cenozoic multiphase orogenic deformations in Northern Calabria Arc: hints from geological mapping in the Longobucco Basin

Giulia Innamorati, Simone Fabbi, and Massimo Santantonio

The Meso/Cenozoic geodynamic evolution of the Calabria Peloritani Arc (CPA) has been, and is still, hotly debated, this sector of the Apennine chain being an exotic continental ribbon scraped off from its original position (European Plate) during the south-eastward migration of the Apenninic slab.

The Southern sector of the Arc (Peloritani Mts.) has been analysed using a multidisciplinary approach. An analysis of pre-, syn- and late-orogenic siliciclastic deposits (Militello Fm, Frazzanò Flysh, Capo d’Orlando Fm) is essential for our understanding of how orogenic phases developed through the Late Cretaceous and Palaeogene. Biostratigraphical constraints reveal a multi-step compressive history, with discrete events (Alpine phase – Balearic phase – Apenninic phase)

The Northern sector of the Arc is conversely less well known, namely with regards to its pre-Serravallian history, due to the lack of continuous exposures of the Meso/Cenozoic sedimentary cover. One remarkable exception is the Longobucco Basin (Sila Greca, CS), where a Meso/Cenozoic succession covers unconformably the igneous and metamorphic Hercynian basement.  A geological mapping project of the Longobucco Basin is proving instrumental in constraining the Cenozoic dynamics of this sector of the Arc. In particular, the Paludi Fm has been analysed. This is a multifaceted lithostratigraphic unit, made of conglomerates/breccias, reddish marls and arenaceous turbidites, whose composition testifies the dismantling of an orogen. This unit is in turn crosscut and deformed by north eastward verging thrusts dated as Burdigalian by Vignaroli and co-authors (2014), therefore it also apparently predates a younger tectonic phase (see the Frazzanò Flysch in Southern CPA for an analogy).

Despite the regional importance of this Unit, its age is highly debated in the literature, ranging from the Late Cretaceous to the Aquitanian, according to different Authors. In this light, a biostratigraphic study of this unit ( nannoplancton, micro- and macroforaminifer)a, has been performed.

Field mapping has revealed a wealth of sedimentary structures ascribable to ductile and or/brittle-ductile deformation, typical of mass transport deposits (i.e. slumps, non-tectonic thrusts, pseudo sigma structures, asymmetric rootless folds and ductile shear zones). The occurrence of olistostromes, with evidence of syn-emplacement deformation, has been mapped. These plastically deformed bodies are Late Cretaceous in age (Aptian to Maastrichtian). They document lost parts of the succession, eroded during the uplift phases and cannibalized within a younger part of the succession, which must therefore be post-Cretaceous.

Being the age obtained from micropaleontological data comprised between the Eocene and the Oligocene, we must preliminarily ascribe the emplacement stage to an alpine phase. The Burdigalian thrusting event predates the opening of the Tyrrhenian sea and the detachment of the CPA from the Corsica-Sardinia block. It cannot therefore be ascribed to an Apenninic s.s. phase. We attribute this thrusting event to an earlier phase (Balearic phase) related to the Corsica-Sardinia block rotation.     

Vignaroli G., Minelli L., Rossetti F., Balestrieri M.L. & Faccenna C. (2012) - Tectonophysics, 538, 105-119.

How to cite: Innamorati, G., Fabbi, S., and Santantonio, M.: Cenozoic multiphase orogenic deformations in Northern Calabria Arc: hints from geological mapping in the Longobucco Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10681, https://doi.org/10.5194/egusphere-egu2020-10681, 2020.

The Late Cretaceous magmatic rocks within the southwestern part of the Pannonian Basin basement (Croatia) occur in two areas: Voćin volcanic mass (VVM) at the northwestern part of Mt. Papuk (near town of Voćin, covering the area of ~10km2) and volcanic mass of Mt. Požeška Gora (PVM, area of ~30 km2). Both volcanic masses consist of basalts and rhyolites, and in lesser extent of pyroclastic material. Granite can be found it the PVM. Interconnection of this two masses and Late Cretaceous ages have been proposed based on the petrography and mineralogical features of previously studied samples and rather arguable data: K-Ar dating on basalts from VVM (~73−52 Ma) and Rb-Sr isochron age on granite and rhyolite from PVM (~72 Ma). The age has been recently refined with the zircon LA-ICP-MS age dating (~82 Ma), but the magma source of this bimodal formation, geotectonic position, setting and its regional importance still have not been explained in detail.

In order to conduct preliminary research, two localities with acid effusive rocks were sampled from the VVM (Rupnica geosite and Trešnjevica quarry), and three more from PVM (near the village of Vesela, Pakao Creek and the granite from quarry near the village of Gradski Vrhovci).

Acid rocks are characterized by a highly siliceous composition (up to 75 wt.% SiO2), enrichment in alkalies (high-K calc-alkaline towards to shoshonite series) and aluminium (peraluminous affinity), followed by high FeOT/(FeOT+MgO) ratios matching ferroan magmas. They classify as rhyolites or alkali-rhyolites/granite. Microelements including REE show that studied rocks have characteristics of A2-type of post-collisional/post-orogenic acid rocks, most common A-type of rocks formed during rifting caused by extension and thinning of continental crust. According to geotectonic classification diagrams, rocks from PVM show geochemical signature of volcanic arc, while VVM shows signature of within plate environment.

External zircon morphology seems to be uniform with prevailing J3−J5-type for rhyolites and D-type for granite and with average ratio of 2.2:1. Those types are characteristic for the high-temperature magmas (confirmed with the calculated Zr-saturation temperature of 850−930°C) originating from the lower crust or even upper mantle. Inclusions of hematite, F-apatite and anatase have been detected with Raman spectrometry in zircon from all samples, with the most significant findings of kumdykolite and kokchetavite inclusions detected in samples from Vesela and Gradski Vrhovci. Latter inclusions are metastable phases crystallized from enclosed melt and are indicators of a rapid cooling of the host magma.

According to the results presented here, acid rocks show rather uniform geochemistry, which speaks in favor of the early ideas of the unique magmatic complex, although today at the surface they are separated by ~35 km in distance. Those rocks show potential to be of great regional importance bearing new information about the evolution in the Late Cretaceous in the area of Sava Zone, a suture zone between Tisia Mega-Unit (European plate) and Adria microplate, which spatially and temporally marks the closure of the Neotethys Ocean.

Support by the Croatian Science Foundation (IP-2014-09-9541) is acknowledged.

How to cite: Schneider, P. and Balen, D.: High-temperature acid magmatic rocks from the Late Cretaceous suture zone between European plate and Adria microplate (Croatia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10088, https://doi.org/10.5194/egusphere-egu2020-10088, 2020.

EGU2020-5919 | Displays | TS7.4

2D Numerical Simulation of Intraoceanic Subduction during the Upper Jurassic Closure of the Vardar Tethys

Nikola Stanković, Vesna Cvetkov, and Vladica Cvetković

In this study we report interim results of our ongoing research that involves the application of numerical modeling for constraining the geodynamic conditions associated with the closure of the Vardar branch of the Tethys Ocean. The study is aimed at better understanding the ultimate fate of the Balkan ophiolites, namely at addressing the question whether these ophiolites represent relicts of an ocean that completely closed during Upper Jurassic/lowermost Cretaceous time (Vardar Tethys) or they also contain remnants of the ocean floor of a Late Cretaceous oceanic realm (Sava – Vardar) [Schmid et al., 2008].

In our numerical models we try to simulate a single intraoceanic subduction that commences in the Lower/Mid Jurassic and ends in the Lower Cretaceous, transitioning into oceanic closure processes and subsequent collision between Adria and Eurasia plates. These convergent-collision events should have led to the formation of ophiolite-like igneous rocks of the so-called Sava - Vardar zone.

A series of numerical simulations were performed with varying parameters. In the scope of our numerical simulations, the set of equations is solved: the continuity equation, the Navier-Stokes equations and the temperature equation. Marker in cell method was incorporated in solving this system with finite difference discretization of the equations on a staggered grid. To utilize this numerical method a thermo-mechanical code I2VIS [Gerya et al., 2000; Gerya & Yuen, 2003] was used for obtaining the final results. 

Our actual 2D thermo-mechanical models cover the crust and the upper portion of the mantle with varying starting widths of the Vardar Ocean in the Lower Jurassic. The ocean is modeled with two segments: the western subducting slab and the eastern overriding slab. Slabs with different ages and thicknesses were used and the convergence rate is varied. The intraoceanic subduction is assumed to have been initiated along the mid oceanic ridge. Two continents (i.e. Adria and Eurasia) with different thicknesses of the continental lithosphere and crust are also modeled adjacent to a single oceanic realm between them.

The parameter study is in function of defining conditions under which the hypothesized scenario occurs. So far, we have succeeded in reproducing westward obduction onto the Adriatic margin, which is in accordance with the geological observations, i.e., with the top-west emplaced West Vardar ophiolites [see Schmid et al., 2008 for references]. However, our model is yet to produce sufficient amounts of back-arc extension along the Eurasian active margin and that is crucial for explaining the formation of the igneous provinces occurring within the Late Cretaceous Sava – Vardar zone and the Timok Magmatic Complex.

How to cite: Stanković, N., Cvetkov, V., and Cvetković, V.: 2D Numerical Simulation of Intraoceanic Subduction during the Upper Jurassic Closure of the Vardar Tethys, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5919, https://doi.org/10.5194/egusphere-egu2020-5919, 2020.

EGU2020-13101 | Displays | TS7.4

The westernmost Late Miocene-Pliocene volcanic activity in the Vardar Zone (North Macedonia) – geochronology, petrology and geochemistry of Pakoševo, Debrište and Šumovit Greben volcanic centers

Kata Molnár, Stéphane Dibacto, Pierre Lahitte, Marjan Temovski, Samuele Agostini, Zsolt Benkó, Artur Ionescu, Ivica Milevski, and László Palcsu

Late Miocene to Pleistocene volcanism within the Vardar zone (North Macedonia) covers a large area, has a wide range in composition and it is largely connected to the tectonic evolution of the South Balkan extensional system, the northern part of the Aegean extensional regime. The scattered potassic to ultrapotassic volcanism developed south from the Scutari-Peć fault zone since 6.57 Ma [1]. The focus of this study is on three volcanic centers located on deep structures or thrust faults along the western part of the Vardar zone, for which there is none to very little geochronological and geochemical data available. Pakoševo and Debrište localities are represented as small remnants of lava flows cropping out at the southern edge of Skopje basin and at the western edge of Tikveš basin, respectively. Šumovit Greben center is considered as part of the Kožuf-Kozjak/Voras massif (6.5-1.8 Ma [1]), and it is located on its westernmost side, at the southern edge of Mariovo basin, which is largely comprised of volcanoclastic sediments. Here we present new eruption ages applying the unspiked Cassignol-Gillot K-Ar technique on groundmass, petrological and geochemical data, supplemented with Sr and Nd isotopes to complement and better understand the Neogene-Quaternary volcanism in the region. Obtaining the eruption ages of these volcanic centers could also help to better constrain the evolution of the sedimentary basins. All of the three centers belong to the shoshonitic series based on their elevated K-content. The oldest center amongst these three localities, as well as other Late Miocene centers within the region, is the trachyandesitic Debrište, which formed at ca. 8.1 Ma, and exhibits the highest Nd isotopic ratios (0.512441-0.512535). The trachybasaltic Pakoševo center formed at ca. 3.8 Ma and, based on its Nd isotopic ratio (0.512260), represents the strongest sign of crustal contamination. The rhyolitic Šumovit Greben center is a composite volcanic structure formed at ca. 3.0-2.7 Ma. Its youngest eruption unit has a slightly larger Nd isotopic ratio (0.512382), representing a less evolved magma at the end of its activity.

This research was funded by the GINOP-2.3.2-15-2016-00009 ‘ICER’ project, the French-Hungarian Cooperation Program TÉT-FR-2018-00018 and the HORIZON 2020 grant N 676564.

References:

[1] Yanev et al., 2008 – Mineralogy and Petrology, 94(1-2), 45-60.

How to cite: Molnár, K., Dibacto, S., Lahitte, P., Temovski, M., Agostini, S., Benkó, Z., Ionescu, A., Milevski, I., and Palcsu, L.: The westernmost Late Miocene-Pliocene volcanic activity in the Vardar Zone (North Macedonia) – geochronology, petrology and geochemistry of Pakoševo, Debrište and Šumovit Greben volcanic centers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13101, https://doi.org/10.5194/egusphere-egu2020-13101, 2020.

In the Aegean sector of the Alpine orogen of the Eastern Mediterranean, the Sakar-Strandzha Zone (SSZ) represents a major tectonic unit that straddles the territories of Bulgaria and Turkey. The westernmost part of the SSZ in Bulgaria includes the area along the Maritsa river valley and the St. Iliya Heights, both connected through several small outcrop areas under the Cenozoic sedimentary cover. In Bulgaria, the Triassic felsic magmatism along the Maritsa river valley was inferred by Chatalov (1961) on the basis of the stratigraphy, but only a single U-Pb zircon age revealed Early Triassic (ca. 249 Ma) felsic magmatism in the SSZ of Turkey (Aysal et al., 2018). Here, we constrain the timing of Triassic magmatism using U-Pb LA-ICP-MS zircon geochronology of felsic magmatic bodies in the western part of the SSZ in Bulgaria.

A sample from a (meta) rhyolite body yielded a concordant age of 237.8 ± 3.4 Ma, which confirmed a crystallization likely concomitant with the deposition of the Triassic clastic rocks in the northern Maritsa river valley. To the east along the valley, a leucocratic granite body located south of the Permian Sakar batholith (ca. 295-296 Ma, Bonev et al., 2019), yielded a concordant age of 242.1 ± 1.8 Ma for the crystallization, having crosscutting relationships with the high-grade metamorphic basement. A leucocratic and K-feldspar porphyric meta-granite bodies yielded concordant ages of 243.3 ± 5.8 Ma and 240.6 ± 2.3 Ma, respectively, for the crystallization within the so-called Harmanli block to the south along the valley. At St. Iliya Heights a sample from the Prochorovo Formation (meta) rhyolite body yielded a concordant age of 245.4 ± 1.5 Ma for the crystallization, which implies an Early Triassic age of the clastic rocks with which it inter-fingers. In the area between the Maritsa river valley and the St. Iliya Heights at the village of Svetlina a leucocratic meta-granite body yielded a concordant age of 229.6 ± 2.4 Ma. The concordantly dated zircons that yielded Triassic ages of the igneous/meta-igneous protoliths all have Th/U ratios compatible with the magmatic process. The major elements of the dated samples reveal calc-alkaline to high-K-alkaline peraluminous felsic compositions similar to the adjacent Late Carboniferous-Permian igneous/meta-igneous rocks of the SSZ.

The U-Pb zircon ages reveal Early-Middle Triassic magmatic phase (ca. 245-230 Ma) in the western SSZ of Bulgaria. These age data provide a regional-scale temporal link for the Triassic magmatism extending to the easternmost extremity of the SSZ in Turkey. The Triassic continental type felsic magmatism in the western SSZ is interpreted to result from the ongoing Paleotethyan subduction under the Eurasian plate, which magmatism follows the development of a Late Carboniferous-Permian continental magmatic arc of the SSZ (Bonev et al., 2019).

References

Aysal, N., Şahin, S.Y., Güngör, Y., Peytcheva, I., Öngen, S., 2018. Journ. Asian Earth Sci., 164, 83-103.

Bonev, N., Filipov, P., Raicheva, R., Moritz, R., 2019. Int. Geol. Rev., 61, 1957-1979.

Chatalov, G., 1961. Compt. Rend. Acad. Bulg. Sci., 14, 503-506.

Acknowledgements: The study was supported by the NSF Bulgaria DN04/6 contract.

How to cite: Bonev, N., Filipov, P., Raycheva, R., and Moritz, R.: Triassic magmatism along the Eurasian margin of the Palaeotethys: U-Pb zircon age constraints from the western part of the Sakar-Strandzha Zone, Bulgaria, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9122, https://doi.org/10.5194/egusphere-egu2020-9122, 2020.

The Panagyurishte strip of Central Srednogorie zone, Bulgaria is part of the peri-Tethyan Upper Cretaceous Apuseni-Banat-Timok-Srednogorie magmatic arc belt and it is famous for its rich copper-porphyry and epithermal systems. The magmatic events related to the formation of the known ore systems are dated in the interval of 93–85 Ma and were followed by a period of deposition of carbonate and sandy turbidites during the latest stages of the Cretaceous and Paleocene. The main deformational event of the Central Srednogorie zone occurred after the Maastrichtian due to the closure of the arc basin and affected not only the Upper Cretaceous sequences (including the ore systems) but also the fragments of the Early Alpine edifice.

The present study is focused on the structural analysis of several regional faults that affected the Mesozoic (Triassic and Late Cretaceous) sequences in different parts of the Panagyurishte strip. The study of the post-ore deformations is important to reveal the history and current position of the ore bodies and their host rocks.

Most of the documented faults follow the main NW-SE to W-E orientation of the Panagyurishte strip. They do not represent single discrete fault surfaces but usually are segmented and the fault zones are several tens to hundreds of meters wide, often complicated by the presence of imbricate structures. Some of the faults involve rocks from the crystalline basement but most of the documented structures juxtapose different parts of the Mesozoic sequences. The deformation is brittle in almost all lithological varieties to brittle-ductile in some of the clayey limestones and turbidites at macroscopic view. Both evidence for compressional and dextral strike-slip tectonics are documented as slickenside fibres, geometry of Riedel shears and folds, lithological markers. It is difficult to distinguish them in time as no stratigraphic reference units, overprinting relationships or structural interferences between them are observed. In the different parts of the basin, either compression or strike-slip deformation are dominant. This fact, as well as the echelon configuration of the faults support the idea for their synchronous development in dextral transpressional setting and reactivation in time of the older transtenssional structures that controlled the opening of the Late Cretaceous basin.

 

Acknowledgements. The study is supported by the grant DN 04/9 funded by the National Science Fund, Ministry of Education and Science, Bulgaria.

 

How to cite: Balkanska, E. and Georgiev, S.: Structural analysis of faults related to the Late Cretaceous and Paleocene evolution of the Central Srednogorie zone, Bulgaria, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7790, https://doi.org/10.5194/egusphere-egu2020-7790, 2020.

EGU2020-122 | Displays | TS7.4

Predicted spatial distribution of major copper deposits types in southeastern Europe

Felix Camenzuli, Hartwig E. Frimmel, and Adam Wooldridge

The future search for mineral deposits will focus more and more on discoveries under cover. Indirect methods, such as prospective mapping, help in the early stages of exploration programmes to delineate potential target areas and thus reduce costs. On the Balkan peninsula, copper and gold ores have been mined for thousands of years and it hosts Europe’s highest concentration of large porphyry Cu (-Au) deposits. Over the last decades, the region’s mining history was strongly influenced by state-controlled mining under the previous communist regimes and the sudden demise of this mining activity after the collapse of the Union of Soviet Socialist Republics (USSR) in 1991. Following the shutdown of the mining industry and political, social and ethnic tensions in the years thereafter, the region remained comparatively poorly explored and thus holds a high potential for modern brown- and greenfield exploration. This is exemplified by several new discoveries of porphyry Cu (-Au) deposits, e.g. Kiseljak (Serbia) and Skourries (Greece).

Here we report on a regional-scale prospectivity mapping approach applied to the Balkan peninsula, covering Bosnia and Herzegovina, Serbia, Montenegro, Albania, Kosovo, Macedonia, Bulgaria and Greece. The area of interest (AOI) has an acreage of >1 Mill. km2. We modelled the distribution of both porphyry and related epithermal Cu-Au deposits, ophiolite-hosted volcanogenic massive sulphide (VMS) and sediment-hosted stratiform Cu (SSC) deposits with the help of ESRI ArcGIS. The models used were knowledge-driven and mainly based on Fuzzy overlays using Gamma operator and µ-value of 0.975. Areas favourable for porphyry and epithermal Cu-Au deposits follow magmatic arcs that are of Cretaceous and Tertiary age. While the Cretaceous arc has long been known for its fertility, our results suggest that the Tertiary arc is at least as promising. The results were validated by both the magmatic arcs, recommended porphyry Cu tracts and known deposits or occurrences. Our areas of high probability explain 67 % of the 72 existing deposits/occurrences if the location of the latter is considered with a 5 km radius. As the examined VMS deposits are ophiolite-hosted, they are distributed along the ophiolite-bearing tectonic units. Prediction of so-far undefined ophiolites based on lithology lead to a better comparability of prospective areas for VMS deposits throughout the AOI. By validation with locations of existing mines within a radius of 2.5 km, 50% of 16 known deposits lie in areas with a probability of ≥0.5. So far no SSC deposits, which constitute the globally second most important source of Cu, have been discovered in the AOI. Our results suggest that areas favourable for SSC deposits might exist in parts of Bosnia and Herzegovina, where the critical geological prerequisites for SSC formation were found in close vicinity. Whether this close spatial relationship, some of which is most likely tectonic, was realized at the right times remains to be investigated.

How to cite: Camenzuli, F., Frimmel, H. E., and Wooldridge, A.: Predicted spatial distribution of major copper deposits types in southeastern Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-122, https://doi.org/10.5194/egusphere-egu2020-122, 2020.

EGU2020-21708 | Displays | TS7.4

Tracing marker horizons in the Serifos Island metamorphic core complex (Cyclades, Greece)

Konstantinos Soukis, Katerina Andropoulou, Bernhard Grasemann, Varvara Antoniou, and Stelios Lozios

Mapping metamorphic rocks in areas with complex tectonometamoprhic history and multi-phase syn-metamorphic isoclinal folding, usually means not having safe stratigraphic evidence such as biomarkers or marker layers to make correlations between formations and units or to assign ages. Novel analytical techniques can be very useful but raise the cost and they do depend on meticulous field work. Therefore, traditional methods such as detailed geological mapping may be the only way to reach to valid correlations.

The Cycladic Islands in the Aegean domain is an area where rocks present a complex history of subduction, accretion and subsequent syn-and post-orogenic exhumation along crustal scale detachments. Fossils are very rarely preserved and lithologies are quite similar throughout the column. Serifos Island is the area where the top-to-S West Cycladic Detachment System (WCDS) was firstly identified and mapped in detail. The detachment is exposed at the northernmost (Platys Ghialos) and the southernmost (Megalo Livadi, Cape Avessalos) part of the Island, having Cycladic Blueschist Unit rocks in the footwall and Upper Unit rocks in the hanging wall. The geometry of the fault resulted from late stage doming on the island scale.

At Platys Ghialos, the structurally highest part of the WCDS footwall, a very distinct lithological sequence is observed exactly below the ultramylonitic marble of the Detachment zone. This sequence includes a marble metaconglomerate, which serves as the main index layer, blue-gray marble, schist, metaconglomerate and metabasite layers. Detailed mapping of the western part of Serifos in 1:5.000 scale, shows that this succession is traced all the way from Platys Ghialos to Megalo Livadi. Also, it revealed meso- to macroscopic scale isoclinal refolding. The overall pattern proves the footwall has a periclinal geometry which follows the doming of the detachment.

How to cite: Soukis, K., Andropoulou, K., Grasemann, B., Antoniou, V., and Lozios, S.: Tracing marker horizons in the Serifos Island metamorphic core complex (Cyclades, Greece), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21708, https://doi.org/10.5194/egusphere-egu2020-21708, 2020.

EGU2020-10753 | Displays | TS7.4

The Vari Unit in the hanging wall of the West Cycladic Detachment System (Agios Georgios, Greece): A small island with a big message

David Schneider, Bernhard Grasemann, Kostis Soukis, Benjamin Huet, Anna Rogowitz, Hugh Rice, Karolina Linder, Johannes Loisl, Stelios Lozios, Vasilis Anastasopoulos, and Nicholas Lemonnier

The timing and kinematics of low-angle normal faulting in the Cyclades (Aegean region, Greece) has been a matter of debate, mainly because the detachments arch over the islands and only remnants of the fault systems and small klippen of hanging-wall rocks are preserved. The small (4.3 km2) island of Agios Georgios, 20 km south of the Attica Peninsula, lies structurally above the West Cycladic Detachment System (WCDS). The island consists of metavolcanic greenschists and grey pelitic schists defined by an Ms+Chl+Ep/Czo+Ab±blue Amp assemblage. Zoned blue amphiboles occur both within albite porphyroclasts and the matrix in greenschists, and in pelitic schists. A locally strongly deformed granitoid dominates the east end of the island, which also contains zoned amphiboles (partly relict magmatic?), actinolite often replacing hornblende and two generations of white mica. The granitoid yields a zircon U-Pb date of 248.2 ± 1.0 Ma (MSWD: 0.83) with Variscan inheritance. Dynamically recrystallized feldspar in both the granitoid and host rocks suggests upper greenschist to amphibolite facies conditions. The white mica in the host rock forms bundles that define an anastomosing foliation, and although strongly deformed in many parts, stretching lineations and shear-sense indicators show variable orientations. New 40Ar/39Ar geochronology on the mica yields c. 60-47 Ma dates, and new zircon (U-Th)/He dates indicate cooling <200°C at c. 21 Ma. The new geochronology and lack of a strong top-to-SW directed deformation, diagnostic of the WCDS, indicates that the island lies well above the detachment system.

Thirty km to the NNE, along a section perpendicular to the strike of the WCDS, lies the small (18.5 km2) island of Makronisos, where the WCDS and the footwall are exposed. The island consists of greenschists and pelitic/graphitic schists with quartzites and blue-grey mylonitic marbles, and metabasites containing blue amphiboles. The structurally highest level consists of white to pale grey/reddish ultramylonites up to 40 m thick lying on the central ridge of the island and along the NE and NW coasts. Strongly clustered stretching lineations and macro-/microscopic shear-criteria indicate a top-to-SSW shear sense. Deformation mechanisms in quartz (LT-bulging) and calcite (recrystallization) indicate deformation at ~300°C. Albite porphyroclasts may preserve an older foliation and an earlier, higher grade metamorphism. This record is consistent with cooling during top-to-SSW deformation. New 40Ar/39Ar analyses on white mica yield ages of 22-15 Ma, markedly younger than the ages from Ag. Georgios. Published zircon (U-Th)/He dates from the Western Cyclades footwall record cooling at 14-9 Ma. The relict status of the HP-mineral assemblages suggests Makronisos is part of the Lower Cycladic Blueschist Nappe (i.e. below the Trans Cycladic Thrust) and hence the ultramylonites are interpreted as the footwall of the early ductile high strain zone forming the WCDS. The older dates and distinctly different structural styles on Ag. Georgios indicate that as the hanging wall to the WCDS it is comparable to the Vari Unit on Syros, likely an extensional allochthon of the Pelagonian block.

How to cite: Schneider, D., Grasemann, B., Soukis, K., Huet, B., Rogowitz, A., Rice, H., Linder, K., Loisl, J., Lozios, S., Anastasopoulos, V., and Lemonnier, N.: The Vari Unit in the hanging wall of the West Cycladic Detachment System (Agios Georgios, Greece): A small island with a big message, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10753, https://doi.org/10.5194/egusphere-egu2020-10753, 2020.

EGU2020-19426 | Displays | TS7.4

Geochemical and geological evidence for a Triassic transition from subduction- to rift-related volcanic activity in the Cycladic Blueschist Unit in Attica (Greece)

Christina Stouraiti, Stelios Lozios, Konstantinos Soukis, Hilary Downes, and Andy Carter

Triassic geodynamic phenomena in the Aegean area are largely controlled by subduction of the Paleotethys ocean and opening of the Neotethys oceans. Triassic volcanosedimentary sequences have a complex composition in many cases, reflecting both subduction and rifting setting.

Detailed mapping of NE Attica (Penteli Mt., Marathonas, Varnavas) revealed the existence of a structurally lower meta-volcanosedimentary sequence, which, comprises quartzofeldspathic rocks, schists, quartzite, metabasite and acid meta-volcanics This sequence is isoclinally folded in the macro-scale with marble layers and the axial plane foliation displays greenschist facies assemblages, whereas earlier HP minerals are mostly preserved as inclusions in albite porphyroblasts. The sequence of rocks has been investigated for their geochemical composition and their field relationships. Two assemblages of volcanic rocks are distinguished based on geochemical criteria: (a) a predominant subalkaline andesite-rhyolite series with a significant proportion of meta-tuffs in the stratigraphic sequence and (b) minor alkali basalts. Lenses of felsic meta-volcanic rocks alternate with siliciclastic layers showing sedimentary banding and allow for an interpretation of a volcano-sedimentary succession.

The geochemical characteristics of the alkali basalts are typical of rift settings (positive anomalies in Nb, Ta, Ti and P) and plot in the field of within plate basalts in the tectonic discrimination diagrams.  The trace element and Rare Earth Element characteristics of the andesites and rhyolites in the subalkaline group show many characteristics of subduction zone melts e.g. negative Nb and Ta anomalies, positive Pb anomaly and LREE-enriched suggesting that a metasomatized mantle wedge source played an important role in the formation of the calcalkaline magmas. A geodynamic model of rift formation in the active continental margin of Pelagonia is proposed to explain the transition from a subduction- to an extension-related magmatic activity in the Late Permian/Triassic time in the broader NE Attica-central Evvia region.

How to cite: Stouraiti, C., Lozios, S., Soukis, K., Downes, H., and Carter, A.: Geochemical and geological evidence for a Triassic transition from subduction- to rift-related volcanic activity in the Cycladic Blueschist Unit in Attica (Greece), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19426, https://doi.org/10.5194/egusphere-egu2020-19426, 2020.

EGU2020-19863 | Displays | TS7.4

A new Miocene detachment from Antiparos Island (Cyclades, Greece)

Dimitrios Baroutsos, Konstantinos Soukis, Erich Draganits, David A Schneider, Bernhard Grasemann, and Stelios Lozios

Numerous studies throughout the world have focused on the structure and evolution of metamorphic core complexes and the exhumation of subducted rocks in back-arc areas of orogenic belts. The Cycladic Islands (central Aegean Sea, Greece) are key areas for studying mechanisms of high-pressure rock exhumation. In that domain, the highly attenuated upper plate is preserved only as sparse extensional allochthons in the hanging wall of crustal-scale detachments. Several detachment systems have been identified on a number of islands indicating overall bivergent extension during the late Oligocene–Miocene. The island of Antiparos is situated at the center of the Cyclades, SW of the larger Paros Island where the top-to-N Paros-Naxos Detachment has exhumed pre-Alpine basement and metamorphosed Permian-Mesozoic rocks of the Cycladic Blueschist Unit (CBU). The tectonostratigraphic relationship of an enigmatic element, the Dryos Unit, remains unclear.

Detailed mapping in Antiparos revealed the existence of a sub-horizontal normal fault along the eastern coast of the island. This fault juxtaposes CBU in the footwall against the Dryos Unit and scarce (?)late Miocene clastic sediments in the hanging wall.

The CBU occupies most of the island and consists of marble alternating with schists and gneiss layers. The earlier HP assemblages are totally overprinted by mainly amphibolite facies metamorphism. An axial plane foliation to NE-SW isoclinal folds is accompanied by NE-SW stretching lineation. As indicated by recrystallization of feldspars and high-grade deformation mechanisms these structures formed under amphibolite facies conditions. Towards the detachment the foliation is reworked by a brittle-ductile mylonitic foliation and a brittle-ductile S -C’ fabric can be observed.

Numerous kinematic indicators such as σ- and δ-clasts, Riedel shears, flanking structures S-C’ fabric, observed within the ultramylonitic rocks of the footwall and the mylonites/cataclasites of the hanging wall indicate top-to-NE sense of shear, comparable to the sense of shear in the Paros-Naxos detachment.

The Dryos Unit is observed only along the central eastern coast of Antiparos, above the low-angle detachment and comprises lower grade (greenschist facies) metabasite, calc-phyllite and pink marble. Deformation in the structurally upper part is characterized by intense refolding and a steep axial plane foliation. At the structurally lower part a strong mylonitic foliation prevails, overprinted by intense cataclastic deformation. The stretching lineation is mostly NW-SE but in the lower part and towards the detachment it rotates to NE-SW. The late Miocene sediments are found adjacent to the Dryos rocks in two localities, comprising mainly sandstone, mudstone and conglomerate in which, large blueschist clasts are abundant.

The new data presented in this study combined with existing data from Paros Island substantially add to the continuation and structure of the complex Paros-Naxos detachment system, domed at an island scale. Furthermore, it suggests that most probably the Dryos Unit is not an upper part of the Cycladic Blueschist Unit but belongs to a different unit, possibly of Pelagonian origin.

How to cite: Baroutsos, D., Soukis, K., Draganits, E., Schneider, D. A., Grasemann, B., and Lozios, S.: A new Miocene detachment from Antiparos Island (Cyclades, Greece), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19863, https://doi.org/10.5194/egusphere-egu2020-19863, 2020.

EGU2020-7157 | Displays | TS7.4

Testing the Mesozoic plate configuration of the Eastern Mediterranean domain

Michael Nirrengarten, Geoffroy Mohn, François Sapin, Jon Teasdale, Charlotte Nielsen, Julie Tugend, and Dominique Frizon de Lamotte

At the transition between the Atlantic and the Tethys oceanic systems, the plate kinematic configuration of the East Mediterranean domain during the early Mesozoic is still poorly understood. Several factors like the Messinian salt, the different compressional events, the thick carbonate platforms and Cenozoic deltaic deposits combine to blur the imaging of Eastern Mediterranean rifted margins. This has led to distinct and often markedly contrasting interpretations of the timing of opening (ranging from Carboniferous to Cretaceous), structural evolution (divergent to transform segments) and kinematics (N-S to WNW-ESE extension).

To address this long-standing problem, we gathered disparate geological observations from the margins surrounding the Eastern Mediterranean Sea to integrate them in a global plate model. Distinct, end-member plate kinematic scenarios were tested, challenged and iterated by observations from the Eastern Mediterranean rifted margins.

The N-African and NW-Arabian margins of the Eastern Mediterranean Sea are relatively weakly reactivated by the different compressional events and were chosen as the starting point of our integrative tectonic study. Legacy plate models for the area mostly show N-S to NNE-SSW opening of the Eastern Mediterranean of pre-Jurassic age. We have integrated dense industrial seismic data, deep boreholes and dredge data, as well as enhanced satellite gravity images that strongly suggests WNW-ESE oriented lithospheric extension and sea floor spreading during the Late Triassic to Early Jurassic.

Our approach starts by the mapping of the main extensional and compressional structures, the different crustal domains and the pre-rift facies distribution. We investigate the potential conjugate margins now located and imbricated in the Dinarides, Hellenides and Taurides on the northern side of the East Mediterranean Sea by looking at the drowning ages of the Mesozoic carbonate platform and the related rift structures. We refine the full fit and initial spreading of the Atlantic Ocean using crustal thickness and features observed on both sides of the system to calibrate the motion of Eurasia and Africa, which determine the space available to develop the Eastern Mediterranean Sea. Initial tests on the evolution of the main tectonic plates highlight an insufficient eastward motion of Africa relative to Eurasia (Iberia) to accommodate the extension of Eastern Mediterranean during the Jurassic with a purely WNW-ESE direction of extension. Further hypotheses remain to be tested. However, for now, a scenario involving poly-phased and poly-directional motion of the conjugate continent “Greater Adria” during Jurassic is favoured to model the Eastern Mediterranean plate evolution in relation with the closure of the Neo-Tethys further north.

How to cite: Nirrengarten, M., Mohn, G., Sapin, F., Teasdale, J., Nielsen, C., Tugend, J., and Frizon de Lamotte, D.: Testing the Mesozoic plate configuration of the Eastern Mediterranean domain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7157, https://doi.org/10.5194/egusphere-egu2020-7157, 2020.

EGU2020-12184 | Displays | TS7.4

Western Tethys subduction history constrained through upper and lower mantle structure coupled to kinematic reconstruction

Derya Gürer, Douwe J J van Hinsbergen, Douwe van der Meer, and Wim Spakman

A current frontier in paleogeographic and geodynamic research is the reconstruction of the plate tectonic evolution of deep-time ocean basins. However, deep-time plate reconstructions of now-subducted ocean basins are challenging and often result in competing tectonic models, particularly when the upper plate was oceanic and is only preserved as ophiolitic relics. Correlations between paleogeography and tomographically imaged slab remnants has unlocked Earth’s modern mantle structure as an archive for the analysis of such deep-time geological processes. The geology of the western Tethyan realm from Greece to Oman in northeastern Arabia, holds records of the subsequent closure of the Paleo- and Neotethyan oceanic realms and of plates and microcontinents therein due to subduction since the Permian. Kinematic restorations reveal that the western Tethys contained at least three discrete plate systems bounded by transform faults, similar to the Atlantic Ocean today. Previous tomography-geology studies have interpreted the upper and lower mantle structure in terms of subduction history for the Aegean and Arabian segments, but particularly lower mantle structure of the Anatolian segment has not been resolved in detail before. In this segment, kinematic restorations have suggested that at least four subduction zones were responsible for the consumption of oceanic lithosphere, two consuming the Paleotethys, and two consuming the Neotethys. For the Neotethys system, slab segmentation may have led to more than two slab segments in the final mantle architecture. We here interpret the upper, and for the first-time, the lower mantle structure associated with the Anatolian segment, thereby unraveling western Tethys oceanic lithosphere lost to subduction since the Early Triassic, and link this to mantle structure and subduction evolution of the Aegean and Arabian segments. The modern mantle structure as imaged in the tomographic P-wave speed model UU-P07, tested against multi-model vote maps, provides means to find the relics of the complex subduction history and to discern between existing tectonic models. The tomographic  model reveals ten major positive wave speed anomalies interpreted as slab remnants: the previously identified Aegean, Algerian, Emporios, Antalya, Egypt (which is part of the Arabian slabs), Cyprus, Mesopotamia, Al Jawf, and Zagros slabs, and the newly identified Pontide and Herodotus slabs, partly in the upper, but mostly in the lower mantle. We compare the dimensions, locations, and orientations of these slabs with the kinematically-restored subducted area of the Neotethys, and identify the deepest lower mantle anomalies (Emposios, Herodotus, Al Jawf) as remnants of Paleotethys subduction of the three segments, and the remaining anomalies as the expression of complex Neotethys subduction, consistent with recent kinematic restorations of Eastern Mediterranean and Arabian orogenic history. Moreover, we confirm recent findings that the orientation of slabs influences their net sinking rate, with vertical slabs subducted at mantle-stationary trenches sinking faster than flat-lying slabs that once draped the mantle transition zone due to roll-back or trench advance.

How to cite: Gürer, D., van Hinsbergen, D. J. J., van der Meer, D., and Spakman, W.: Western Tethys subduction history constrained through upper and lower mantle structure coupled to kinematic reconstruction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12184, https://doi.org/10.5194/egusphere-egu2020-12184, 2020.

EGU2020-8519 | Displays | TS7.4

Upper Cretaceous Stratigraphy and Volcanism in the İğneada region, Pontides, NW Turkey

Ezgi Sağlam, Turgut Duzman, and Aral I. Okay

The Pontide Upper Cretaceous magmatic arc can be traced for over 1000 km along the southern Black Sea coast from Georgia to Bulgaria.  The arc extrusive sequence is well-exposed in the İğneada region in Thrace close to the Bulgarian border. The Upper Cretaceous sequence in İğneada region overlies the schists and phyllites of Strandja Massif with an unconformity. It  has a thickness of over 700 meters and consists at the base of Cenomanian shallow marine sandy limestone, which pass up into pelagic limestone, marn and volcanogenic siltstone with Turonian planktonic foraminifera, including Marginotruncana pseudolinneana, Marginotruncana marginata, Whitenella sp., Whitenella praehelvetica, Muricohedbergella sp.  This indicates that the arc volcanism in the region started in the Turonian. The pelagic limestone, marl, and calcareous siltstone series passes up into a volcanic-volcaniclastic sequence of andesitic tuff, lapillistone, agglomerate, andesitic and basaltic-andesitic lava flows. The volcaniclastic rocks are intercalated with lava flows and with rare pelagic limestone and shale beds. Although it is disrupted by several faults, the volcanic sequence can be traced from older to younger along the coast of İğneada. The sequence starts with andesitic volcaniclastic rocks and lava flows, and changes to basaltic-andesitic and then, again to andesitic rocks. The ocean floor alteration, which is found in all volcaniclastic and volcanic rock samples, and the intercalated pelagic limestones show that the rocks were deposited in deep submarine conditions in an intra-arc to fore-arc environment. Campanian (80.6 ±1.5 Ma) U-Pb zircon ages, which are obtained from the andesitic tuffs at the base of the volcanic-volcaniclastic sequence, indicate a continued magmatism from Turonian to Campanian.

How to cite: Sağlam, E., Duzman, T., and Okay, A. I.: Upper Cretaceous Stratigraphy and Volcanism in the İğneada region, Pontides, NW Turkey, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8519, https://doi.org/10.5194/egusphere-egu2020-8519, 2020.

EGU2020-12776 | Displays | TS7.4

Magmatic arcs, ophiolite belts and sedimentary basins in Anatolia interpreted from magnetic data

Vahid Teknik, Hans Thybo, and Irina Artemieva

Maps of depth to magnetic basement and crustal average susceptibility for the Anatolian plateau and adjacent regions are calculated by applying a spectral method to the magnetic data. The first map provides information on the shape of the sedimentary basins and the latter map is used for tracking magmatic arcs and ophiolite belts, which are covered by sediment and/or overprinted by different phases of magmatism and ophiolite emplacement. This is possible because magmatic and ophiolite rocks generally have the highest magnetic susceptibility values, and the huge contrast to sedimentary rocks makes magnetic data very useful.

The results shows a heterogeneous pattern associated with a mosaic of the many continental blocks, Tethyside sutures, magmatism and former subduction systems in Anatolia. Major basins such as northern part of the Arabian plateau, Black Sea basin, Mediterranean Sea basin and central Anatolian micro-basins are highlighted by very deep magnetic basement. Shallow magnetic basement is generally prominent in eastern Anatolia, and may represent that large amounts of magmatic rocks were emplacement during the convergence and compression of the Arabian plate, whereas a sporadic and asymmetric pattern of sedimentary basins in western Anatolia may have developed in the frame of the extensional regime. The average susceptibility map reveals extension of the Pontide magmatic arc in the north of Anatolia, following the coastline of the Black Sea. The average susceptibility indicates magmatism or ophiolite emplacement around the Kirşehır block. A 400 km long NW–SE elongated average susceptibility anomaly extends from south to NW of the Kirşehır beneath the Quaternary sediments, while the depth to magnetic basement indicate more than 6 km sediments. We speculate that this anomaly indicates a covered magnetic arc or a trapped part of oceanic crust. The westeward extension of the Urima-Dokhtar magmatic arc (UDMA) from the Iranian plateau fades away towards to Central Anatolian plateau. It suggest a geological boundary around the border between Iran and Turkey, which caused different magmatism between the two sides. A near zero magnetic anomaly in the Menderes massif region in the southwest of Turkey indirectly suggests a high geothermal gradient and hydrothermal activity that reduce the susceptibility of the rocks. This observation is in agreement with the crustal thinning and many geothermal fields of the Menderes massif.

How to cite: Teknik, V., Thybo, H., and Artemieva, I.: Magmatic arcs, ophiolite belts and sedimentary basins in Anatolia interpreted from magnetic data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12776, https://doi.org/10.5194/egusphere-egu2020-12776, 2020.

EGU2020-17835 | Displays | TS7.4

Deep Slab folding and the deformation of the Persian domain

Alexandre Boutoux, Arthur Briaud, Claudio Faccenna, Paolo Ballato, Federico Rossetti, Francesca Funicello, and Eric Jean-Philippe Blanc
  • To unravel the Neotethys subduction history and the evolution of the slab morphology at depth since the mid-Cretaceous, we produced a synthesis of the main events affecting the Persian domain. This synthesis is focused on the upper and lower plates (i.e. the Persian and the Neotethys ocean, respectively) of the subduction system and is based on the compilation of available structural, geochemical and geochronological data. Overall, this compilation allows exploring the structural evolution of the Persian domain and the Neotethys oceanic lithosphere on map view and along selected cross-sections.
  • Furthermore, we performed a 2D single-sided numerical model where we explored the slab behavior at depth and its influence on upper plate deformation. The model suggests that episodic deformation is driven by the folding slab behavior at the mantle transition zone. We combine our data and numerical model into a conceptual scenario to overcome the complexity of the kinematics of the Neotethys slab since the Early Cretaceous. Our modeling approach shows that back-arcs opening and associated extensional deformation are driven by the roll-back of the folded slab into the mantle transition zone. In contrast, back-arc closure and upper plate shortening are triggered by the roll-over of the folding slab. Finally, we associate the widespread, upper plate, Early Miocene marine flooding event to the Neotethys slab avalanche into the lower mantle.

How to cite: Boutoux, A., Briaud, A., Faccenna, C., Ballato, P., Rossetti, F., Funicello, F., and Blanc, E. J.-P.: Deep Slab folding and the deformation of the Persian domain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17835, https://doi.org/10.5194/egusphere-egu2020-17835, 2020.

The Neo-Tethys-related Chaldoran ophiolite in NW Iran and at the Turkish border is a part of the larger Khoy ophiolite. Cumulate and isotropic gabbro along with serpentinized peridotite, pillow basalt, pelagic limestone, rare radiolarites, and volcano-sedimentary units are the main rock types in the area. The gabbros occur as lenses with ultramafic rocks, or as relatively large exposures with fault contact with ultramafic rocks. In this study, we provide new whole-rock geochemistry, mineral chemistry and zircon U/Pb age for the cumulate gabbros from the Chaldoran area. Gabbros have tholeiitic composition and are highly depleted. Chondrite normalized rare earth elements (REE) pattern for gabbros are comparative with REE patterns for N-MORB, but overall with more depleted features. The N-MORB normalized multi-elements pattern shows high depletion in HREE and HFSE and enrichment in some LREE and LILEs. Negative anomaly for some HFSE relative to N-MORB, along with enrichment in LILE for the samples indicates the source region as subduction influenced mantle. The cumulated gabbro whole rock and Clinopyroxenes geochemistry indicate an intra-oceanic forearc setting for the studied samples. They also have many similarities to boninite in mineral and whole rock geochemistry. U-Pb zircon dating of the gabbro samples indicates 95.3-114.1 Ma ages for the generation of the gabbros parent magma. The original magma was related to the later stages of the forearc setting in the subduction initiation (SI) stage. This ‘SI’ related Albian-Cenomanian the Chaldoran depleted gabbro likely are the continuation of Taurus SI related late Cretaceous ophiolite complexes in Turkey.

How to cite: Rezaei, M., Moazzen, M., and Yang, T.-N.: Geochemistry of Cretaceous subduction initiation related cumulate gabbros in a forearc setting from Chaldoran ophiolite, NW Iran, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21232, https://doi.org/10.5194/egusphere-egu2020-21232, 2020.

Metamorphic rocks in the Alborz Mountains are mainly known from the HP-LT Asalem-Shanderman Complex, the Gasht Complex, Gorgan Schists, and the Fariman Schists near Mashad. Recent argon ages are limited to eclogites and blueschists of the Asalem-Shanderman Complex, where phengites yielded c. 350 Ma step-heating ages that reflect cooling, following peak metamorphism related to subduction of the Palaeotethys Ocean (Rosetti et al. 2016).

The Gasht Complex in the Gasht-Masuleh area comprises metasediments and metabasic rocks metamorphosed at amphibolite-facies peak metamorphic conditions (c. 630°C and 8.6 kbar, Razaghi et al., 2018). The metamorphism is most probably related to the accretion of Cimmerian terranes to the Turan Terrane in the late Triassic following closure of the Palaeotethys Ocean and resulting in the Cimmerian Orogeny.

Micas from metapelites, amphibole from an amphibolite and magmatic white mica from deformed granite from the Gasht Complex yield very similar 40Ar/39Ar step-heating plateau ages between 175.1 ± 0.5 Ma and 177.0 ± 0.4 Ma (2 sigma) that are independent of grain size and nominal closure temperatures. In addition, clearly retrograde white mica replacing andalusite porphyroblasts in a metapelite yielded a similar plateau age of 176.1 ± 0.5 Ma.

In the Gasht-Masuleh area the contact between basement and the cover rocks is largely tectonic due to later faulting, but the Gasht Complex must have formed the depositional basement to the late Triassic- Middle Jurassic Shemshak Group. Sedimentation started in the Carnian above the regionally developed Eo-Cimmerian unconformity in the central and eastern Alborz and continued until the mid-Bajocian.

Notably, within the Shemshak Gp. a distinct, regional scale unconformity developed in the mid-Bajocian (c. 170 Ma) recognized by rapid coarsening in sediment grain size. Only locally, in the eastern Alborz Mountains, it developed as an angular unconformity related to block rotation. This Mid-Cimmerian unconformity formed as a result of tectonic movements causing rapid uplift and erosion.

Our c. 175 – 177 Ma mica and amphibole plateau ages for the Gasht Complex are unlikely to reflect slow cooling following the (Carboniferous? Late Triassic?) metamorphism, as this would result in increasingly younger ages for amphibole, white mica and biotite. Instead, the indistinguishable ages for peak metamorphic and retrograde minerals must be due to very rapid cooling at the Toarcian-Aalian boundary (c. 174 Ma) that resulted from rapid basement uplift and at the surface caused the mid-Bajocian Mid-Cimmerian unconformity. Thus, the c. 175 – 177 Ma 40Ar/39Ar ages document the thermal response of the basement below the Shemshak Group to a mid-Jurassic extensional tectonic event.

From a regional perspective, the Mid-Cimmerian unconformity may represent the break-up unconformity of back-arc rift basins that formed due to northward Neotethys subduction to the south of the Alborz Mountains (Wilmsen et al. 2009) and/or the onset of sea-floor spreading within the South Caspian Basin to the north (Fürsich et al. 2009).

Fürsich et al. 2009, Geol. Soc., London, Spec. Publ. 312, 189-203. Razaghi et al., 2018, Geosciences 27, 269-280. Rosetti et al. 2016, J. Geol. Soc. London 174, 741-758. Wilmsen et al. 2009, Terra Nova 21, 211–218.

How to cite: Rezaei, L., Timmerman, M. J., Moazzen, M., and Sudo, M.: Latest Toarcian (c. 175-177 Ma) 40Ar/39Ar mineral ages for amphibolite-facies basement rocks of the Gasht Complex, Alborz Mountains, North Iran: deep crustal response to mid-Jurassic rifting, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1334, https://doi.org/10.5194/egusphere-egu2020-1334, 2020.

EGU2020-22380 | Displays | TS7.4

An attempt to reconstruct central and eastern Iranian ophiolite puzzle

Nalan Lom, Abdul Qayyum, and Douwe J.J. van Hinsbergen

Iran is a mosaic of continental blocks that are surrounded by Palaeo-Tethyan and Neo-Tethyan oceanic relics. Remnants of the ophiolitic rock assemblages are exposed around the Central Iranian Microcontinent (CIM), discretely along the Sanandaj-Sirjan Zone and in Jaz-Murian. The Present-day “ring” distribution of the Iranian ophiolites is not straightforwardly explained by a simple subduction zone architecture. One of the key features to solve the Iranian puzzle is the CIM which is surrounded by Sabzevar ophiolites in the north (99-77 Ma), Birjand-Nehbandan ophiolites in the east (~110 Ma) and Inner Zagros ophiolites in south-southwest (~103-94 Ma). The CIM consists of three major fault bounded sub-blocks, from east to west, Lut, Tabas, and Yazd. They represent an Atlantic-type continental margin that began rifting in Permo-Triassic as a result of opening of Neotethys Ocean. Subsequent convergence in Cretaceous to Paleogene time close the ocean basins around the CIM and emplaced the ophiolites onto the passive margins. Neogene Arabia-Eurasia collision induced replacement structures e.g., strike‐slip reactivation of normal faults that were associated with major block rotations.

We aim to kinematically restore the opening and closure history of the ocean basins found as ophiolitic relics around the CIM. Key in our analysis is the Doruneh and Great Kavir faults of Central Iran that continues into northern Afghanistan as the Herat Fault. Present-day GPS velocity vector measurements and deformation pattern show a NE-SW orientated shortening in Iran. Structural analysis of the Doruneh Fault indicates slip sense inversion before ~5 Ma. This observation is consistent with the deactivation of the dextral Herat Fault. Pre-Pliocene dextral movement in excess of 500 km along the Doruneh and Great Kavir faults may kinematically accommodate a major counter-clockwise rotation (~65o) of the CIM since the late Jurassic that has been inferred based on previous palaeomagnetic studies. This enables the transport of the Jandaq ophiolite from Aghdarband in the north to Anarak region of Central Iran and, duplication of curved Birjand-Nehbandan ophiolites in Sistan suture. If correct, this may imply that the closure history of the Central Iranian basins is directly connected to the large-scale Cretaceous to Paleogene extrusion tectonics in western Tibet and Hindu Kush regions. This preliminary study shows restoration of the post-Mesozoic deformation is essential to reconstruct the suture zones and pre-collisional setting in Iran, Afghanistan, and Pakistan.

How to cite: Lom, N., Qayyum, A., and van Hinsbergen, D. J. J.: An attempt to reconstruct central and eastern Iranian ophiolite puzzle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22380, https://doi.org/10.5194/egusphere-egu2020-22380, 2020.

The Pamir plateau, located north of the western syntaxis of the India­–Eurasia collision system, is regarded as one of the most possible places of the ongoing continental deep subduction. Based on a N-S trending linear seismic array across the Pamir plateau, we use the methods of harmonic analysis of receiver functions and the cubic spline interpolation of surface wave dispersions to coordinate their resolutions, and perform a joint inversion of these datasets to construct a 2-D S-wave velocity model of the crust and uppermost mantle. A spatial configuration among the intermediate-depth seismicity, Moho topography, and low-velocity zone(LVZ)s within the crust and upper mantle is revealed. The intermediate-depth seismic zone is enclosed in a mantle LVZ which extends upward to the crustal root and connects with a lower crustal LVZ in the northern Pamir. Just above it, another crustal LVZ is collocated with a Moho uplift. These results not only further confirm the deep subduction of the Asian lower continental crust beneath the Pamir plateau, but also indicate the importance of the metamorphic dehydration of the subducting continental crustal material in the genesis of the intermediate-depth seismicity and crustal deformation.

How to cite: Li, W., Chen, Y., Tan, P., and Yuan, X.: Geodynamic processes of the continental deep subduction: constraints from the fine crustal structure beneath the Pamir Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12873, https://doi.org/10.5194/egusphere-egu2020-12873, 2020.

The Qilian Shan orogenic belt, located in the northeastern margin of the Tibetan Plateau, undergoes intensive Cenozoic structural deformation with large lateral growth since the Miocene. The Cenozoic growth of the Qilian Shan is possibly resulted by the passive subduction of the North China Craton due to the far-field effect of the continuous Indo-Asian collision. Thus, the Qilian Shan can be seen as a syntectonic crustal-scale accretionary wedge above a middle intra-crustal weak layer. To date, the detailed Cenozoic crustal deformation manner of the Qilian Shan and its adjacent two basins remains unclear, especially for the southward propagation towards the Qaidam Basin. Whereas, the spatio-temporal characteristics of deformation distribution between the Qilian Shan and the adjacent two basins are critical to fulfill the lateral growth of the Tibetan Plateau. Hence, we conducted a series of high-resolution 2-D numerical models to investigate factors that influence crustal strain distribution. The first series models are thick-skinned models with single décollement, while Series II are two-décollement layer model, regarding the interaction between thick- and thin-skinned tectonics beneath the two adjacent basins. After 150 km of total convergence, model results suggest that the single décollement layer model is not sufficient in depicting the present-day crustal deformation pattern, while strain localization pattern from two-décollement layer model meets well with the geological and geophysical observations. The Hexi Corridor Basin may be involved with deep-crustal thrusting while the dominant deformation is still thin-skinned tectonics. Series III adds the filling-up sedimentation based on the conditions of Series II. We reveal that the differential sedimentation types between the Qaidam Basin and the Hexi Corridor Basin greatly depress fault propagation towards the Qaidam Basin. Note that, how deformation transfers into the Qaidam Basin remains controversial. To date, the above models still need to evolve. However, in summary, our study highlights the crustal deformation of the two margins of northeastern Tibetan Plateau is controlled by the décollements and differential sedimentation styles.

How to cite: Zhang, Z., Zhang, H., and Shi, Y.: The bivergent growth of the Cenozoic Qilian Shan, northeastern Tibetan Plateau: Insights from numerical models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12325, https://doi.org/10.5194/egusphere-egu2020-12325, 2020.

EGU2020-13583 | Displays | TS7.4

Love Wave Group Velocity Tomography of India, Himalaya and Tibet

Monumoy Ghosh and Supriyo Mitra

We present Love wave group velocity tomography calculated from broadband waveform data from Indian seismograph networks and global dataset downloaded from the IRIS-DMC. We first calculate path average 1-D fundamental mode Love wave group velocity between 10 s and 120 s period of the Transverse component of the seismograms. Then we combine these 1-D path average measurements using linear tomographic inversion, assuming great circular arc propagation, to compute 2-D group velocity map of the region at discrete periods. The region is adaptively parametrized to get high resolution at higher raypath density. We performed checker-board test to ascertain the resolution of the tomography maps and compute ray density map, raypath cross density map, and raypath orientation map to quantitatively analyze the controls of these parameters on the checker board resolution recovery. Tomographic maps at lower period show good correlation to the local geologic structures like low velocity in basins and high velocity in cratons and shields. At mid-period maps high velocity roots of cratons and low velocity in Tibet and Andaman- Burma subduction can be seen. At higher period low velocity in Tibet conforms with previous observations. We will do linear inversion of Love wave group velocity to get 3D SH wave velocity structure of the region.

How to cite: Ghosh, M. and Mitra, S.: Love Wave Group Velocity Tomography of India, Himalaya and Tibet, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13583, https://doi.org/10.5194/egusphere-egu2020-13583, 2020.

EGU2020-3213 | Displays | TS7.4

Late Paleozoic- Early Mesozoic tectonics of Hainan Island: Key to understanding Paleotethyan geology

Huiying He, Peter Cawood, and Yuejun Wang

In Southeast Asia, establishing the origin and associated tectonic setting of Late Paleozoic-Early Mesozoic igneous rocks is complicated by structural overprinting and the complex tectonic evolution of the Paleotethyan regime. Hainan Island, located at the south-eastern margin of the Paleotethys, and lacking significant tectonic overprints is a key to understand amalgamation history of the Indochina and South China blocks and to constraining the tectonic evolution of Paleotethys ocean in southeast Asia.

The Late Paleozoic-Early Mesozoic record of igneous rocks on Hainan Island includes the following. 1) ca. 350 Ma island arc andesites and ca. 330 Ma metabasites, the latter with both MORB- and arc-like geochemical affinities, positive εNd(t) values of +5.86 – +9.85 and rare inherited zircons with a zircon age of 1400 Ma inferred to be derived from a MORB source with the input of a slab-derived component. Together with the ~350 Ma island arc andesites, the Carboniferous tectonic environment is supposed to be a continental back-arc basin setting. 2) Late Permian gneiss granitoids (272-252 Ma) characterized by a gneissic foliation and calc-alkaline I-type geochemical affinities with negative Nb-Ta and Ti anomalies, related to metasomatized mantle wedge modified by the sediment-derived component in a continental arc setting. 3) ca. 257 Ma arc-like andesites, which further validate a subduction-related setting. 4) Peraluminious Early-Middle Triassic massive granitoids (251–243 Ma) with slightly high A/CNK ratios, δ18O values (up to 11.75 ‰) and Sr/Y ratios, inferred to have formed in a compressive regime from a mixed source of greywacke and metabasite. 5) Middle-Late Triassic (242–225 Ma) high-K calc-alkaline granitoids with high zircon temperatures (842–867°C) and geochemical signatures of A-type granites. They show slightly low whole-rock εNd(t) and zircon εHf(t) values, suggestive of the derivation from a metabasite–greywacke source in an extensional setting. 6) ca. 240 Ma gabbro-dolerites showing enrichment in LILEs, depletion in HFSEs, negative εNd (t)-εHf (t) values (−8.45 to −1.05 and −5.9 to −2.7, respectively) and crustal-like δ18O values (7.26–8.70‰), it is implied that the Hainan Island entered into post-collisional environment in response to the asthenosphere upwelling shortly after the closure of back-arc basin.

Thus, Hainan Island provides a record of Carboniferous back-arc basin opening, followed by an extended Permian–Triassic history of subduction-related consumption leading to orogenic assembly and extensional collapse between the South China and Indochina blocks. Such a tempo-spatial pattern is consistent with that along the Song Ma–Ailaoshan suture zone rather than the magmatic history of eastern South China and indicates that the Paleotethys extended west to at least Hainan Island in the Late Paleozoic-Early Mesozoic.

How to cite: He, H., Cawood, P., and Wang, Y.: Late Paleozoic- Early Mesozoic tectonics of Hainan Island: Key to understanding Paleotethyan geology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3213, https://doi.org/10.5194/egusphere-egu2020-3213, 2020.

EGU2020-7166 | Displays | TS7.4

Crustal and Uppermost Mantle Structure Across Central Myanmar by Joint Analysis of Receiver Functions and Rayleigh-wave Dispersion

Yiming Bai, Yumei He, Xiaohui Yuan, Myo Thant, Kyaing Sein, and Yinshuang Ai

The territory of Myanmar, situated at the eastern flank of the India-Asia collision zone, is characterized by complex tectonic structure and high seismicity. From west to east, this region consists of three nearly NS-trending tectonic units: the Indo-Burma Ranges, the Central Basin and the Shan Plateau. Detailed structure of the crust and uppermost mantle beneath Myanmar can provide crucial constraints on regional tectonics, subduction dynamics as well as seismic hazard assessment. Yet seismic velocity structure beneath this region is poorly determined due to sparse regional seismic networks.

In this study, we utilize seismic data recorded at 80 broadband stations in Myanmar, among which 70 stations were deployed in 2016 under the project of China-Myanmar Geophysical Survey in the Myanmar Orogen (CMGSMO), 9 stations are operated by IRIS and the remaining one is from GEOFON. We measured the Rayleigh-wave phase velocity dispersion from the ambient noise cross-correlations at periods between 5 s and 40 s by using the automatic frequency-time analysis (AFTAN). A fast marching surface wave tomography (FMST) approach was then adopted to invert the 2-D phase velocity maps in the study region. Our preliminary results show variable crustal structure across central Myanmar, with a strong low-velocity zone north of 22°N in the Indo-Burma Ranges. Since Rayleigh-wave dispersion is more sensitive to absolute velocity speed than to velocity contrasts, the ongoing study jointly inverts the dispersion data with P-wave receiver functions to better determine the velocity discontinuities and thus provides tighter constraints on the shear-velocity structure beneath central Myanmar.

How to cite: Bai, Y., He, Y., Yuan, X., Thant, M., Sein, K., and Ai, Y.: Crustal and Uppermost Mantle Structure Across Central Myanmar by Joint Analysis of Receiver Functions and Rayleigh-wave Dispersion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7166, https://doi.org/10.5194/egusphere-egu2020-7166, 2020.

EGU2020-19604 | Displays | TS7.4

Pyroclastic rocks from Kanchanaburi and Uthai Thani Province, Inthanon Zone, Western Thailand

Suwijai Jatupohnkhongchai, Sirot Salyapongse, Burapha Phajuy, Daniela Gallhofer, and Christoph Hauzenberger

A series of pyroclastic rocks are mapped as a Silurian-Devonian unit in the Kanchanaburi-Uthai Thani area, Western Thailand, which belongs to the Inthanon Zone. These pyroclastic rocks were discovered and described for the first time in 1977 and mentioned in the 1:250,000 Suphanburi geologic map sheet and report. Since then these rocks were poorly investigated and their formation and geotectonic setting is unclear. As a result, we report petrographic, geochemical and geochronological data of these pyroclastic rocks. Petrographically, the pyroclastic rocks can be described as a meta-quartz-K-feldspar crystal tuff, a meta-quartz crystal tuff, and a meta-lithic tuff. They are made up of mm sized clasts in a finely grained matrix. The clasts consist of potassium feldspar, rounded quartz, embayed quartz, trachytic and metasedimentary rock clasts embedded in a highly altered devitrified fine-ash matrix containing sericite.

The whole-rock composition shows enrichments in SiO2 and K2O and a strong depletion in CaO and Na2O which is related to late alteration of the volcanoclastic rocks. Based on the immobile element classification plot of Pearce 1996, the tuffs can be classified as trachyandesite, trachyte, dacite and rhyolite. Their chondrite-normalized REE patterns display light REE enrichment with nearly flat heavy REE and a negative Eu anomaly, typical for calcalkaline volcanic rocks. Most samples fall in the volcanic arc granites field in the granite discrimination diagrams of Pearce 1984.

Zircons extracted from the tuffs will be used to constrain their crystallization age by U-Pb LA-MCICPMS dating. This allows us to constrain the age of formation and to place this in context with the closure of the Paleotethys.

How to cite: Jatupohnkhongchai, S., Salyapongse, S., Phajuy, B., Gallhofer, D., and Hauzenberger, C.: Pyroclastic rocks from Kanchanaburi and Uthai Thani Province, Inthanon Zone, Western Thailand, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19604, https://doi.org/10.5194/egusphere-egu2020-19604, 2020.

TS7.5 – Central Asian Tectonics –Pamir, Tian Shan and Tibet from Paleozoic to Present

EGU2020-1270 | Displays | TS7.5 | Highlight

Diachronous Tibetan Plateau landscape evolution derived from lava field geomorphology

Mark Allen and Robert Law

Evolution of the Tibetan Plateau is important for understanding continental tectonics because of its exceptional elevation (~5 km above sea level) and crustal thickness (~70 km). Patterns of long-term landscape evolution can constrain tectonic processes, but have been hard to quantify, in contrast to established datasets for strain, exhumation and paleo-elevation. This study analyses the relief of the bases and tops of 17 Cenozoic lava fields on the central and northern Tibetan Plateau. Analyzed fields have typical lateral dimensions of 10s of km, and so have an appropriate scale for interpreting tectonic geomorphology. Fourteen of the fields have not been deformed since eruption. One field is cut by normal faults; two others are gently folded with limb dips <6o. Relief of the bases and tops of the fields is comparable to modern, internally-drained, parts of the plateau, and distinctly lower than externally-drained regions. The lavas preserve a record of underlying low relief bedrock landscapes at the time they were erupted, which have undergone little change since. There is an overlap in each area between younger published low-temperature thermochronology ages and the oldest eruption in each area, here interpreted as the transition between the end of significant (>3 km) exhumation and plateau landscape development. This diachronous process took place between ~32.5o - ~36.5o N between ~40 and ~10 Ma, advancing northwards at a long-term rate of ~15 km/Myr. Results are consistent with incremental northwards growth of the plateau, rather than a stepwise evolution or synchronous uplift.

How to cite: Allen, M. and Law, R.: Diachronous Tibetan Plateau landscape evolution derived from lava field geomorphology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1270, https://doi.org/10.5194/egusphere-egu2020-1270, 2020.

EGU2020-5082 | Displays | TS7.5

Early Eocene rapid exhumation record in the region of Nima, central Tibet, as determined by low-temperature thermochronology

Weiwei Xue, Yani Najman, Xiumian Hu, Cristina Persano, Finlay M. Stuart, Wei Li, and Ying Wang

Knowledge of the geological history of the Tibetan plateau is critical to understanding crustal deformation process, and the plateau’s influence on climate. However, the timing of Tibetan plateau development remains controversial. The Nima Basin along the Jurassic-Cretaceous Bangong Suture in central Tibet provides well-dated records of exhumation in this area. Here, we present detrital zircon U-Pb, apatite U-Th/He (AHe) and apatite fission track data (AFT) from upper Cretaceous and Oligocene red sandstones and conglomerates in the Nima Basin, as well as from the Xiabie granite in the hanging wall of the basin-bounding Muggar Thrust. 4 granite conglomerate clasts from the above yield zircon U-Pb ages ranging between 114-122 Ma, which likely come from the Xiabie granite. 7 granitoid/sandstone conglomerate clasts yield AHe ages ranging from 21-58 Ma, while AFT ages range from 34-83 Ma. Thermal history inversion modelling for five of the above samples show a consistent rapid cooling from 100 ℃ to 30 ℃ between 50-40 Ma, the cooling rate decreased significantly after 40 Ma. Implications of these data, integrated in the context of previously published data for the wider region (e.g. Rohrmann et al. 2012; Haider et al., 2013; Li et al., 2019) will be discussed.

 

Reference

Rohrmann, A et al., 2012, Thermochronologic evidence for plateau formation in central Tibet by 45 Ma: Geology, v. 40, p. 187-190.

Haider, V. L et al., 2013, Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau: Journal of Asian Earth Sciences, v. 70-71, p. 79-98.

Li, H. A et al., 2019, The formation and expansion of the eastern Proto-Tibetan Plateau: Insights from low-temperature thermochronology: Journal of Asian Earth Sciences, v. 183, 103975.

How to cite: Xue, W., Najman, Y., Hu, X., Persano, C., Stuart, F. M., Li, W., and Wang, Y.: Early Eocene rapid exhumation record in the region of Nima, central Tibet, as determined by low-temperature thermochronology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5082, https://doi.org/10.5194/egusphere-egu2020-5082, 2020.

EGU2020-5865 | Displays | TS7.5

Cenozoic growth of West Kunlun Mountains and tectono-sedimentary evolution of adjacent SW Tarim Basin-New spatial model based on seismic data

Wenhang Liu, Piotr Krzywiec, Stanisław Mazur, Fanwei Meng, Qingong Zhuo, and Zhuxin Chen

Kunlun Mountains, SW part of the Tarim Basin and S edge of the Bachu Uplift in central Asia collectively form the northernmost segment of the vast Cenozoic deformation zone and associated depositional areas formed in course of the India – Euroasia collision. Five seismic transects from the SW Tarim Basin (Yechang - Hotan area) calibrated by deep wells were used in order to assess lateral variations of a structural style and syn-tectonic sedimentation in this part of the basin. Pre-Cenozoic substratum of SW Tarim Basin is formed by crystalline basement covered by Paleozoic strata, with important mid-Cambrian evaporites (Awatage Formation) that served as first, deep detachment level. Cenozoic sedimentary infill consists of several kilometers of shallow water to terrestrial clastics with Paleogene evaporites of the Bashiblake Formation at their base. Paleogene evaporites acted as a second, shallow detachment. Mid – late Miocene to Quaternary wedging along the front of the Kunlun Mts., associated with formation of a large-scale duplex consisting of slivers built of Precambrian to Permian rocks, resulted in progressive, laterally variable uplift of the S margin of the Tarim Basin documented by well-preserved growth strata that have been also described in the field. Jade Anticline, large intra-basinal structure that is located in the central part of the Tarim Basin, previously interpreted as a regional wrenching zone, was reinterpreted as a thin-skinned syn-depositional “fish tail” structure, detached in the Paleogene evaporites and formed in Quaternary above local basement elevation. Northernmost late Miocene compressional deformations have been recognized along the S edge of the Bachu Uplift in its Western and central segment. They formed due to complex interplay of thick-skinned basement reverse faulting responsible for regional elevation of basement blocks, and two types of thin-skinned thrusting: southward directed thrusting detached within the mid-Cambrian evaporites and northward directed thrusting detached within the Paleogene evaporites. Compressional deformations along the S edge of the Bachu Uplift are diminishing and eventually disappearing towards the East. All these findings point to significant transfer of compressional stresses into the far foreland of the W Kunlun Mountains and laterally variable tectonic coupling between the Tibet Plateau and central part of the Tarim Basin.

Seismic data used in this study was kindly provided by China National Petroleum Corporation (PetroChina). IHS Markit is thanked for providing academic license of Kingdom seismic interpretation software.

How to cite: Liu, W., Krzywiec, P., Mazur, S., Meng, F., Zhuo, Q., and Chen, Z.: Cenozoic growth of West Kunlun Mountains and tectono-sedimentary evolution of adjacent SW Tarim Basin-New spatial model based on seismic data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5865, https://doi.org/10.5194/egusphere-egu2020-5865, 2020.

EGU2020-4599 | Displays | TS7.5

Seismic Behavior Along a Fault Segment in an Active Continental Collision Zone: New Paleoseismic and Structural Data of the Pamir Frontal Thrust in the Alai Valley, Kyrgyzstan, Central Asia.

Magda Patyniak, Angela Landgraf, Atyrgul Dzhumabaeva, Alana M. Williams, Sultan Baikulov, J Ramon Arrowsmith, Kanatbek Abdrakhmatov, and Mnfred R. Strecker

The Pamir Frontal Thrust (PFT) constitutes the northernmost boundary of the Pamir mountain range at the NW edge of the India-Eurasia collision zone. Due to the ongoing collision this active system propagates into and overthrusts the Quaternary deposits of the Alai Valley, an intermontane basin separating the Pamir from the Tien Shan in the north. Geodetic data across the Central Pamir document a shortening rate of 25 mm/yr, with a dramatic decrease of ~10 mm over a short distance across the northernmost Trans-Alai range (250 km aperture); this suggests that almost half of the shortening in the greater Pamir – Tien Shan collision zone is absorbed along the PFT.

Consequently, the frontal thrusts must accommodate a significant amount of slip and may be capable of generating ≥M7 earthquakes in this part of the orogen. In contrast to similar tectonic settings along the Himalayan megathrust, the present-day seismicity in the Pamir apparently does not reflect the long-term deformation history. Despite few studies in the late 20th century, and an extensive data base of recent earthquakes, the relationships between seismicity and the geometry of the thrust zone are not well understood. In this context our study aims to improve the understanding of the earthquake geology of the PFT by asking two principal questions: (1) How much of the PFT is activated during an earthquake rupture? (2) Does the paleoseismic slip history agree with the geodetically-derived shortening rate?

Here, we present our results of five analyzed paleoseismic trenches that reveal the youngest manifestation of thrusting along the central segment of the PFT. We combined field-based observations with a TanDEM-X data, UAV-based DEMs, and dGPS profiling for an offset analysis along the fault scarp. The interpretation of the trench stratigraphy and event horizons in the context of these tectonic landforms was combined with radiocarbon and luminescence dating to develop an earthquake chronology.

We find robust evidence for at least three surface-rupturing events during the past 6 kyr. At least one event can be recognized in all five trenches separated by ~10 km, indicating a full-length activation of the central fault segment during rupture. Ages obtained from uplifted fluvial terraces coupled with the total cumulative fault offset indicate a Holocene slip rate of up to 3.5 mm/yr. Based on dip-slip motion offsets per event we estimated an average earthquake paleo-magnitude ranging between M6.5-7.0.

Despite the regional extent of the central PFT, and a rather high displacement gradient across it, our results suggest a seismic behavior characterized by strong surface-rupturing earthquakes, short surface ruptures, and low slip rates. Earthquakes along this structure do not cover the total geodetic shortening, which suggests that a strongly segmented PFT system may be linked with active seismogenic deformation in the alluvial-fan covered piedmont regions to the north. However, the preservation potential for fault scarps in the piedmont may be low in this highly dynamic environment due to climate-driven fluvial and glacial processes in the high sectors of the Pamir.

How to cite: Patyniak, M., Landgraf, A., Dzhumabaeva, A., Williams, A. M., Baikulov, S., Arrowsmith, J. R., Abdrakhmatov, K., and Strecker, M. R.: Seismic Behavior Along a Fault Segment in an Active Continental Collision Zone: New Paleoseismic and Structural Data of the Pamir Frontal Thrust in the Alai Valley, Kyrgyzstan, Central Asia., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4599, https://doi.org/10.5194/egusphere-egu2020-4599, 2020.

EGU2020-12995 | Displays | TS7.5

Control of pre-existing crustal architecture on Cenozoic formation of the Pamir

Edward Sobel, Johannes Rembe, Jonas Kley, Renjie Zhou, Baiansuluu Terbishalieva, and Jie Chen

The Cenozoic Pamir comprises the western equivalent of the Tibetan plateau, offset to the north by ca. 300 km. A significant geodynamic question is what controls the lateral extent of the Pamir. Here we suggest that the width of the Pamir is controlled by east-west variations in the rheology of blocks farther to the north. In particular, the rigid, Precambrian-cored Tarim block, directly north of Tibet, apparently does not extend farther west. Indirect evidence for this crustal structure is derived from the late Paleozoic - early Mesozoic evolution of the northern and external Pamir. The northern part of the Western Kunlun comprises Proterozoic Tarim basement; such rocks are unknown on the northern margin of the Pamir. In the late Ordovician or Silurian, the Kudi suture formed, representing the consumption of the Proto-Tethys and the collision of Tarim with the southern part of the Western Kunlun terrain. Although the Western Kunlun has been considered to be the lateral equivalent of the North Pamir, the Kudi suture does not appear to be preserved in the Pamir. In contrast, the North Pamir preserves remnants of a broad Carboniferous ocean which are not recognized in the Western Kunlun. The northern margin of this ocean is unclear; it may have merged with the Turkestan ocean, on the southern margin of the Tian Shan. There are no documented basement units directly north of the Pamir; the basement Garm block lies at the northwest corner of the Pamir and may represent a fragment of Tarim which we suggest must have been rifted away by the Ordovician. The North Pamir Carboniferous deep marine units are unconformably overlain by upper Carboniferous and lower Permian shallow marine units at the eastern and western ends of the North Pamir, suggesting a contractile episode; the contact appears to be conformable in the central part. The lower Permian is overlain by an uppermost Permian - Triassic back-arc basin or rift, which stretches ca. 500 km east-west. There is no evidence that this basin extended into the Western Kunlun. Therefore, the location of the Cenozoic Pamir corresponds to the extent of both Carboniferous oceanic crust and Permo-Triassic extended or oceanic crust. We suggest that the differences between the Western Kunlun Shan and the North Pamir reflect the presence and absence, respectively, of the rigid Tarim block to the north. Although it has been suggested that the geometry of the Pamir reflects the geometry of a promontory at the northwest corner of the Indian indentor; this seems highly improbable given the pre-Cenozoic history. Rather, we suggest that differences in the evolution of the Pamir and Tibet are first-order consequences of the different rheologies of the northern crustal backstops of these two regions.

How to cite: Sobel, E., Rembe, J., Kley, J., Zhou, R., Terbishalieva, B., and Chen, J.: Control of pre-existing crustal architecture on Cenozoic formation of the Pamir, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12995, https://doi.org/10.5194/egusphere-egu2020-12995, 2020.

The Tianshan belt is one of the key regions in understanding the tectonics of the Central Asian Orogenic Belt (CAOB), as it presents a typical example of subduction, accretion and collision. Its tectonic evolution is recently in hot debate and draws more and more attention of the international geological society. As a major tectonic segment, the Middle Chinese Tianshan was considered to witness the most significant tectonic events. On the basis of structural and geochronological works, three zones have been recognized namely: 1) the northern zone, composed of weakly metamorphosed sedimentary rocks of Silurian to Carboniferous ages; 2) the central zone, comprised of well sheared amphibolite, marble, quartzo-schist, quartzite, garnet-biotite schist, and orthogneiss; and 3) the southern zone, which consists of amphibolite facies metamorphic rocks whose protolith is considered to be Silurian to Devonian. The most significant deformation was marked on the various schist or gneiss of the central zone. E-W striking, vertical or sub-vertical foliation with horizontal or sub-horizontal mineral and stretching lineations indicate conspicuous strike-slip shearing. Shear criteria indicate a dextral sense of shearand geochronological results indicates it looks like two phase deformation (~290 Ma and ~250 Ma). South-dipping foliation with northward thrusting in the northern zone and north-dipping foliation with southward thrusting in the southern zone show a large-scale flower structure related to the early stage of the dextral strike-slip tectonics of the central zone. The absolute timing of the dextral strike-slip deformation is also discussed in the light of available radiometric dating. Our structural data emphasizes that the post-collisional dextral wrenching has largely modified the architecture of the Tianshan orogenic belt and played a critical role in the tectonic evolution of Central Asia.

How to cite: Lin, W. and Li, L.: A syn-collisional or post-collisional belt? In the view from the middle segment of the Central Tianshan Belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6248, https://doi.org/10.5194/egusphere-egu2020-6248, 2020.

The high-grade metamorphic complexes in the Chinese Altai were previously regarded as the Precambrian basement and thus important for unravelling tectonic evolution of the Altai orogen. This study reports detailed filed investigation, zircon U-Pb-Hf isotopic and whole-rock geochemical data for the paragneissic rocks from Northern Fuyun Complex (NFC), southern Chinese Altai. Detrital zircons from the paragneisses have a predominant early Paleozoic age population (ca. 535-435 Ma), with minor Neoproterozoic and sparse Mesoproterozoic to Archean ages. The geochemical analyses together with the euhedral shape of the detrital zircons suggest that their sedimentary protoliths mainly came from felsic-intermediate igneous rocks with low maturity. In combination with the cumulative distribution curves of zircon age spectra, the variable zircon εHf(t) values (-25 to +13), as well as the immature geochemical compositions, we infer that the protoliths were most likely deposited on an active continental margin in the early Paleozoic and sourced mainly from proximal igneous rocks, which are comparable to the Habahe Group. Similar detrital zircon age spectra of early Paleozoic sequences from the Chinese Altai, Mongolia Altai and Khovd Zone support the existence of a giant accretionary wedge developed along the western margin of the Ikh-Mongol Arc system, resulting from continuous northeast-dipping oceanic subduction. This research was financially supported by the National Key R&D Program of China (2017YFC0601205), Hong Kong RGC GRF (17302317 and 17303415) and NSFC Projects (41730213 and 41190075).

How to cite: Cui, X., Sun, M., Zhao, G., Zhang, Y., Yao, J., and Han, Y.: Early-Paleozoic geodynamics of the Altai orogen: Constraints from geochemical and zircon U-Pb-Hf isotopic study of paragneissic rocks from the southern Chinese Altai, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1798, https://doi.org/10.5194/egusphere-egu2020-1798, 2020.

Situated at the northwestern end of the India–Asia collision zone, the northeastern Pamir is an important area to explore intracontinental tectonic processes and geodynamic models. In this study, thermochronology is applied to constrain the Late Cenozoic exhumation history of the northeastern Pamir. A new thermochronological data set, combined with previous thermochronological data, suggests that (1) the Late Cenozoic exhumation of the northeastern Pamir began at ~22–18 Ma; (2) the strong crustal contraction in the hinterland of the northeastern Pamir occurred during ~13–10 Ma and ~8–6 Ma; and (3) the east-west extension along the Kongur Shan dome initiated at ~5–3 Ma, and it has resulted in the exhumation of the core of the dome with an average rate of ~2–4 mm/a. I propose that (1) the Early Miocene exhumation of the northeastern Pamir is related to the initiation of the Main Pamir thrust; (2) the first and second stages of the strong crustal contraction are respectively correlated with the northward propagation of the crustal channel flow in the northeastern Pamir and the initial collision between the northeastern Pamir and the Tian Shan; and (3) the east-west extension is driven by the extrusion of the ductile channel flow.

How to cite: Chen, S.: Thermochronological constraints on the Late Cenozoic evolution of the northeastern Pamir, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8576, https://doi.org/10.5194/egusphere-egu2020-8576, 2020.

EGU2020-12959 | Displays | TS7.5 | Highlight

Foreland thrusting and slab formation in the Pamir

Jonas Kley, Edward R. Sobel, Johannes Rembe, Thomas Voigt, Chen Jie, Langtao Liu, and Rasmus Thiede

The western and northern sectors of the northward convex Pamir arc are underlain by a steep Benioff zone dipping east to south, traced by earthquakes to depths of 250 km in the southwest and 150 km in the northeast. This slab has been interpreted to indicate intracontinental subduction. However, the convergence accommodated in thrust belts around the western and northern Pamir margins seems to fall short of the values required to produce the observed slab lengths. Delamination models in which the slab only consists of Asian mantle lithosphere avoid that problem but predict shallow asthenosphere beneath the Pamir, conflicting with geophysical evidence. This contradiction is resolved in a forced delamination scenario (Kufner et al. 2016) where indenting/underplating Indian lithosphere forces down and immediately replaces the delaminating Asian lithosphere. In this scenario the formation of the slab would be largely accommodated by south-directed thrust imbrication at crustal level, unrelated to substantial north-vergent thrusting in the Pamir.

Based on published and our own analyses of foreland thrusting we propose that the formation of the slab does to some extent reflect shortening in the Pamir thrust belts. Thin-skinned shortening in the Tajik basin and the External Pamir further north and east decreases northeastward from 150 to 75 and 30(?) km. The slab lengths show a similar trend. Interpreted mimimum shortening values correspond to 60-50 (20?) percent of the slab length on the same transect. With crustal and lithospheric thicknesses taken from seismological data, 70 km of shortening on a translithospheric thrust fault are sufficient to subduct mafic lower crust to asthenospheric depth and probably induce eclogite formation. Rather than the comparison with slab lengths alone, which may be biased by low estimates of shortening, geometrical relations call for additional slab delamination and rollback towards the foreland. The sedimentary cover stacked in the thin-skinned belts restores to at least tens of km of across-strike (N-S) width, underlain by a subhorizontal to gently dipping basal décollement. Basement-involving faults on the internal borders of the thin-skinned belts such as the Darvaz fault and Main Pamir thrust (MPT) must merge with or flatten into this décollement and thus cannot directly connect to the present-day updip end of the slab via a steeply dipping fault. We hypothesize that the Pamir slab was initiated by a translithospheric thrust fault (MPT and equivalents) around 20 Ma and owes at least half of its length to displacement on these faults and imbrication of the sedimentary cover in their footwalls. Delamination and rollback lengthened the slab and displaced it north- and westward. Mantle lithosphere, not necessarily of Indian affinity, contemporaneously moved in from the southeast, preventing the opening of a lithospheric gap and upwelling of asthenosphere.

 

Reference:

Kufner, S. K. et al. (2016). Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia). Earth and Planetary Science Letters, 435, 171-184.

How to cite: Kley, J., Sobel, E. R., Rembe, J., Voigt, T., Jie, C., Liu, L., and Thiede, R.: Foreland thrusting and slab formation in the Pamir, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12959, https://doi.org/10.5194/egusphere-egu2020-12959, 2020.

EGU2020-4115 | Displays | TS7.5

Time resolved rutile U/Pb data derived from LA-ICPMS – a case study from the North Pamir

Johannes Rembe, Renjie Zhou, Edward R. Sobel, Jonas Kley, and Rasmus Thiede

Rutile is frequently found in metamorphic and less commonly in igneous rocks, as well as sediments derived from the former rock types. It may contain enough U (typically up to ~100ppm) to be dated by U/Pb geochronology. In detrital studies, rutile U/Pb ages supplement zircon U/Pb data, as zircon age peaks often reflect magmatic activity, while rutile U/Pb age peaks can be connected to metamorphic events. Using Zr-in-rutile thermometry, one could also estimate metamorphic facies of the terrane, from which detrital rutile grains are derived. Zircon U/Pb dating provides usually a crystallization age, while rutile gives cooling ages that are dependent on the size of the diffusion domain and its cooling rate. The closure temperature has been estimated at ca. 600°C. A major challenge of rutile U/Pb geochronology is the variable amount of common Pb present and most rutile dating requires the correction for common Pb. A widely used method is the Stacey & Kramers approach, which estimates a formation age for a group of rutile grains and assigns them an age-dependent initial Pb isotope composition from the terrestrial Pb evolution curve (Stacey and Kramers, 1975). We present detrital rutile U/Pb data measured by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) from Mesozoic and Cenozoic units in the North Pamir in Central Asia. The laser ablation system obtains a time resolved signal of all required isotopes. Using data reduction schemes in Iolite (Paton et al., 2011) and VizualAge (Petrus and Kamber, 2012), the signal is routinely integrated to a single spot age for each ablation pit. Following a similar approach for apatite (Stockli et al., 2017), we subdivided the signal of each single spot into several time-slices and obtained data that crosses diffusion domains or compositional zones within a single rutile grain. Time slices in most cases are aligned along a Discordia in the Tera-Wasserburg diagram, enabling us to calculate a lower intercept age and initial 207Pb/206Pb ratio. We also discuss similarities and differences between these internally corrected ages and the Stacey & Kramers approach-corrected ages.

 

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26 (12), 2508–2518.

Petrus, J.A., Kamber, B.S., 2012. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research 36 (3), 247–270.

Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26 (2), 207–221.

Stockli, D.F., Boyd, P., Galster, F., 2017. Intra-grain common Pb correction in apatite by LA-ICP-MS depth profiling and implications for detrital apatite U-Pb dating. EGU General Assembly Abstract Volume.

 

How to cite: Rembe, J., Zhou, R., Sobel, E. R., Kley, J., and Thiede, R.: Time resolved rutile U/Pb data derived from LA-ICPMS – a case study from the North Pamir, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4115, https://doi.org/10.5194/egusphere-egu2020-4115, 2020.

The Nankalayuergun fold zone in the North Tarim Basin, NW China, provides an exceptional opportunity for documenting the structural characteristics and evolution of en echelon folds along transpressional fault zone. However, the genetic mechanism of these en echelon detachment folds remains debatable due to poor understanding of the deep structure. Combined with seismic and borehole data, we characterized the geometries and kinematics of Nankalayuergun fold zone, revealed its Cenozoic evolution, and discussed the formation mechanism. The stratified fold zone was geometrically decoupled by salt structures, and the structural style of three salt-influenced folds had individual characteristics due to differences in salt thickness. The timing and strength of Cenozoic deformation of three en echelon detachment folds has a sequential evolution tendency from northwest to southeast. The structural relief of supra-salt fold is the sum of Cenozoic detachment and sub-salt Paleozoic-Mesozoic transpressional folds, indicating that sub- and supra-salt structures are kinematically coupled. Segmentation of Deep Nankayuergun Transpressional Fault (DNTF) can be observed by gravity and seismic data. The supra-salt detachment folds differ from classic echelon structures in that it is only located on the active side of the DNTF. Furthermore, the hinges of the supra-salt folds located right above the sub-salt transpressional fold scarps, corresponding to the reactivation of three DNTF segments. The transpressinoal regimes, sub-salt structures, and the heterogeneity of salt rock are major factors forming the polygenetic echelon detachment folds. The case presented in this study displayed a specific pattern of salt-influenced en echelon structures along transpressional faults and highlighted the influence of pre-exiting structures on the geometry and kinematics of shallow folds, even though salt can decouple sub- and supra-salt deformation.

How to cite: Chen, J. and He, D.: Stratified and polygenetic en echelon detachment folds: Cases for Nankalayuergun fold zone, North Tarim Basin, NW China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8221, https://doi.org/10.5194/egusphere-egu2020-8221, 2020.

Locating Tarim during assembly and breakup of Supercontinent Rodinia remains enigmatic, with different models advocating a Tarim-Australia linkage or a location between Australia and Laurentia at the heart of unified Rodinia. In this study, zircon U-Pb dating results first revealed middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim. These sedimentary rocks were deposited between ca. 880 and 750 Ma in a rifting-related setting slightly prior to breakup of Rodinia at ca. 750 Ma. A compilation of Neoproterozoic geological records indicates that the Altyn Tagh orogen in southeastern Tarim underwent ca. 1.0-0.9 Ga collision and ca. 850-600 Ma rifting related to assembly and breakup of Rodinia, respectively. In order to place Tarim in Rodinia, available detrital zircon U-Pb ages and Hf isotopes from Meso- to Neoproterozoic sedimentary rocks in relevant Rodinia blocks are compiled. Comparable detrital zircon ages (at ca. 0.9, 1.3-1.1, and 1.7 Ga) and Hf isotopes indicate a close linkage among southeastern Tarim, Cathaysia, and North India, but rule out a North or West Australian affinity for Tarim. In addition, detrital zircons from northern Tarim exhibit a prominent age peak at ca. 830 Ma with minor spectra at ca. 1.9 and 2.5 Ga but lack Mesoproterozoic ages, which are comparable to those from northern and western Yangtze. Together with comparable geological responses to assembly and breakup of Rodinia, a new Tarim-South China-North India connection is inferred in the periphery of Rodinia.

How to cite: Liu, Q.: A Tarim-South China-North India connection in the periphery of Rodinia: Constraints from provenance of middle Neoproterozoic sedimentary rocks in the Altyn Tagh orogen, southeastern Tarim, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2108, https://doi.org/10.5194/egusphere-egu2020-2108, 2020.

EGU2020-726 | Displays | TS7.5

Structure, strain and AMS of the Uzunakhmat thrust sheet (Talas Range, Kyrgyz North Tian Shan)

Anastasia Kushnareva, Artem Moskalenko, and Alexander Pasenko

The Talas Range forms the northwest part of the Caledonides of the Northern Tian Shan. Based on differences in the structural style, metamorphism and sedimentary successions, three thrust sheets have been identified – the Uzunakhmat, Talas, and Kumyshtag thrust sheets. The Talas and Kumyshtag thrust sheets consist of Neoproterozoic-Ordovician terrigenous and carbonate rock units, whereas the Uzunakhmat thrust sheet consists of Neoproterozoic terrigenous rocks metamorphosed up to greenschist facies. The Uzunakhmat thrust sheet is separated from the Talas and Kumyshtag thrust sheets by the southwest-dipping Central Talas thrust (CTT). The dextral strike-slip Talas-Fergana Fault bounds the Uzunakhmat thrust sheet in the southwest. The main deformation events occurred in the Middle-Late Ordovician.

Structural and strain studies were done along profiles normal to the strike of folds and faults and located in the northwest and southeast parts of the Uzunakhmat thrust sheet. We also incorporate in our study structural profile in the central part of the Uzunakhmat thrust sheet, documented by Khudoley (1993) and Voytenko & Khudoley (2012).

The main strain indicators were detrital quartz grains in sandstones. Rf/φ and Normalized Fry methods were used to identify the amount of strain. Oblate ellipsoids predominate with Rxz values varying mostly from 1,6 to 2,4. Long axes of strain ellipsoids are sub-horizontal with the southeast to east-southeast trend. Similar trends have long axes of the anisotropy magnetic susceptibility ellipsoid being parallel to fold axes, cleavage-bedding intersection and mineral lineation as well as the trend of the major thrusts, including CTT.

The modern shape of the Uzunakhmat thrust sheet is similar to an elongated triangle, pinching out northwest and expanding southeast. Cross-section balancing corrected for the amount of strain shows along-strike decreasing of shortening in the southeast direction. Total shortening varies from 35% to 55% between sections located about 15 km from each other. Such significant variation in shortening corresponds to variation in structural style with much more tight folds and more numerous thrusts for cross-sections with a higher amount of shortening. However, the restored length of all cross-sections is quite similar pointing to the approximately rectangular initial shape of the Uzunakhmat thrust sheet. Our interpretation is that during the Caledonian tectonic events, the Uzunakhmat thrust sheet was displaced in the northwest direction with accompanied thrusting and folding of rock units within the thrust sheet. These deformations formed the modern shape of the thrust sheet in accordance with the amount of shortening detected by cross-section balancing. This interpretation also implies that modern erosion did not significantly affect shape of the Uzunakhmat thrust sheet formed after the Caledonian deformation.

Khudoley, A.K., 1993. Structural and strain analyses of the middle part of the Talassian Alatau ridge (Middle Asia, Kirgiystan). J. Struct. Geol. 6, 693–706.

Voytenko N.V., Khudoley A.K. Structural evolution of metamorphic rocks in the Talas Alatau, Tien Shan, Central Asia: Implication for early stages of the Talas-Ferghana Fault. // C. R. Geoscience. 2012. V. 344. P. 138–148.

How to cite: Kushnareva, A., Moskalenko, A., and Pasenko, A.: Structure, strain and AMS of the Uzunakhmat thrust sheet (Talas Range, Kyrgyz North Tian Shan), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-726, https://doi.org/10.5194/egusphere-egu2020-726, 2020.

EGU2020-20754 | Displays | TS7.5

Distinct Orogenic Processes in the South- and North-Central Tien Shan from Receiver Functions

Xuewei Bao, Bingfeng Zhang, and Yixian Xu

Uplifting mechanisms for the Tien Shan, an active intracontinental orogenic belt, have been under debate for decades, a key issue being how the convergence has been accommodated at depth. Here we investigate the Moho structure across the central Tien Shan by common-conversion-point imaging and H-k-c stacking of receiver functions from a dense array. The observed Moho exhibits distinct characteristics among sub-blocks. Southward-dipping diffuse Moho is imaged in the Southern Tien Shan (STS), in contrast with the relatively flat and sharp Moho beneath the Tarim Basin. This feature along with the large Moho offset beneath the South-Boundary Fault suggests that the shortening and thickening of Tien Shan crust rather than the underthrusting of the Tarim Basin are responsible for the uplift of the STS. In the Northern Tien Shan, however, the imaged Moho doublet provides direct evidence for the underthrusting of the Kazakh Shield accommodating the convergence there.

How to cite: Bao, X., Zhang, B., and Xu, Y.: Distinct Orogenic Processes in the South- and North-Central Tien Shan from Receiver Functions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20754, https://doi.org/10.5194/egusphere-egu2020-20754, 2020.

      The Tibetan Plateau, resulting from the active Eurasian-India collision, presents a major scientific challenge in understanding its growth and propagation. One key region is the Longmen Shan mountain belt in western Sichuan, which forms the steepest margin of the plateau and has been active as demonstrated by the Mw 7.9 Wenchuan (2008) and Mw 6.6 Lushan (2013) earthquakes. Tectonic history of the Longmen Shan belt and the neighboring Songpan-Garze terrane, however, began in the Triassic Indosinian orogenesis, which complicates the geologic records. But the major thickening of Tibet was formed in Himalayan orogenesis. Therefore, quantitative constraints on the pre-Tertiary tectonic evolution of the region are crucial in delineating Himalayan geodynamics. In this study, the raman spectroscopy of carbonaceous material (RSCM) geothermometer is applied to the metasediments of the Longmen Shan and Sonpan-Garze terrane to obtain their peak metamorphic states. Combining existing metamorphic, geochronologic and thermochronologic data, better rock thermal histories may be reconstructed, providing insights to the structure and development of the orogenic system.

      In this study, 50 samples were collected in eastern margin of Tibetan Plateau along several transects in NW-SE direction, perpendicular to the structural grain of the Longmen Shan and into the Songpan-Garze terrane. Together with existing data, distribution of the peak temperatures from RSCM analyses is not correlated to later igneous intrusions, ruling out significant contact metamorphism overprint. Along the WenChuan Fault, the Songpan-Garze terrane is of higher grade than the Longmen Shan, indicating it is a major reverse shear zone. The rather high RSCM temperatures (over 500 °C) acquired from Songpan-Garze metasediments are inconsistent with past models as remnants of a classical accretionary prism; the complex wedge kinematics involving significant basal accretion observed in the slate belt of Taiwan orogen may give clues in reconstructing the structure and evolution of eastern Tibetan Plateau.

Keywords: Tibetan Plateau; Longmen Shan; RSCM geothermometer

How to cite: Chang-Chien, W.-C., Chen, C.-T., and Tan, X.-B.: Perliminary thermal metamorphic constraints on tectonic evolution in the eastern margin of Tibetan Plateau: lessons from the slate belt of Taiwan?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2114, https://doi.org/10.5194/egusphere-egu2020-2114, 2020.

EGU2020-20677 | Displays | TS7.5

Early Permian Paleomagnetic Result from the South Beishan (NW China) and Its Implications for the Tectonic Evolution of the SW Central Asian Orogenic Belt

Xin Zhu, Yan Chen, Bo Wang, Stéphane Scaillet, Michel Faure, and Xinghua Ni

The Beishan Orogenic Belt plays an important role in understanding the Paleozoic tectonic evolution of the Central Asian Orogenic Belt and the final closure time of the Paleo-Asian Ocean. However, although numerous geochronologic, geochemical, and isotopic data have been obtained, no consensus has been reached yet on the Early Permian tectonic setting for this region and, thus, the final closure time of the Paleo-Asian Ocean, mainly because of the nonuniqueness of the interpretations deduced from such data base. Therefore, other methods are urgently needed to provide more constraints from different perspectives. We present here a paleomagnetic study on the Gubaoquan doleritic dike swarm in the South Beishan area. Thermo-magnetic experiments and room-temperature hysteresis loops reveal that single-domain and multi-domain magnetite is the principal carrier of remanence. Anisotropy of magnetic susceptibility of studied dikes shows a horizontal magnetic foliation with a magnetic lineation generally parallel to the dikes’ strike. Plagioclase 40Ar/39Ar dating result of one dolerite sample collected from the margin of a 10m-thick dike provides a cooling age at 300~284 Ma. Scanning electronic microscope observation coupled with energy-dispersive X-ray spectrometry shows that the remanence carrier is mainly euhedral without evident chemical alteration nor secondary mineral formation. Characteristic remanent magnetizations are successfully isolated from twenty dikes, and pass baked contact test. According to Deenen et al. (2011) statistical criteria, the distribution of the remanence directions reflects the contribution from paleosecular variation of the geomagnetic field. Taking all data together, the Gubaoquan doleritic dike swarm probably preserves a primary remanence. Consequently, an Early Permian paleomagnetic pole for the South Beishan can be calculated at λ = 80.2°N, φ = 300.3°E, A95 = 5.3° and N = 20. Comparisons of this new result with published ones from neighboring blocks bring us following implications for the tectonic evolution of the SW CAOB: 1. Neither relative latitudinal movement nor relative rotation can be paleomagnetically detected among Yili, Turpan-Hami, and South Beishan since the Early Permian. 2. Significant relative rotations have taken place between South Junggar and Tarim with respect to South Beishan-Turpan-Hami-Yili, respectively, since the Early Permian, corresponding to large-magnitude strike-slip displacements along mega-shear zones. 3. No obvious relative latitudinal movement has occurred between South Beishan and its neighboring blocks (Tarim, South Junggar, Yili, Turpan-Hami, and Dunhuang) since the Early Permian, combined with other evident, suggesting that the Paleo-Asian Ocean probably have closed before the Early Permian, and South Beishan was in a rift setting in the Early Permian.

How to cite: Zhu, X., Chen, Y., Wang, B., Scaillet, S., Faure, M., and Ni, X.: Early Permian Paleomagnetic Result from the South Beishan (NW China) and Its Implications for the Tectonic Evolution of the SW Central Asian Orogenic Belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20677, https://doi.org/10.5194/egusphere-egu2020-20677, 2020.

Craton is the stable unit of the lithosphere. The cratonic basin is thus the sedimentary basin developed upon craton. It has long been recognized as a kind of basin characterized by minor tectonic deformation and stable architecture. With the increasing evidences in the recent years, it is noticed that it has much more mobility, and is controlled not only by the lithospheric plate movements but also by the deep mantle activation. To explore the mobile behaviour of cratonic basin is an important window to address the intra-continental deformation mechanism. Taking the Ordos basin as an example, based on the new deep boreholes, the high-resolution seismic reflection profiles, cores, and the outcrops around the basin, the paper establishes the chronology of tectonic movement around the Ordos basin utilizing the integrated method of the isotopic dating, the bio-stratigraphy, and the sequence stratigraphy. It shows that, the basin developed the ten regional unconformities, underwent multi-period volcanic activities during the Middle Proterozoic, the late Early Paleozoic, the Late Triassic, and the Early Cretaceous. It was subjected to multi-stage compression, such as the Late Ordovician to Devonian, the Late Triassic, the Late Jurassic to Early Cretaceous, and the Neogene to Quaternary. Upon the crystalline basement of the Archaean and the Lower Proterozoic, the basin underwent five distinct extension-compression cycles, such as the extension in middle Proterozoic and compression in late Proterozoic, the extension in Cambrian to early Ordovician and compression in late Ordovician to Devonian, the extension in Carboniferous to middle Triassic and compression in late Triassic, the extension in early to middle Triassic and compression in late Jurassic to Cretaceous, and the extension in Paleogene and compression in Neogene to Quaternary, with a charter of a much longer period of the earlier cycle and a shorter period of the later cycle, and a longer period of extension and a shorter period of contraction in each cycle. The extension-compression cycle controlled the formation and evolution of the Ordos oil and gas super basin.

How to cite: He, D.: Chronology of Tectonic Movement of Cratonic Basin: Insight from New Evidences from Ordos Basin, North China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6404, https://doi.org/10.5194/egusphere-egu2020-6404, 2020.

TS7.6 – The Alps and neighbouring mountain belts (Apennines, Dinarides, Carpathians): a multidisciplinary vision (AlpArray)

EGU2020-13779 | Displays | TS7.6

Teleseismic P-wave travel time tomography of the Alpine upper mantle using AlpArray seismic network data

Marcel Paffrath and Wolfgang Friederich and the AlpArray Working Group

We perform a teleseismic P-wave travel time tomography to examine geometry and slab structure of the upper mantle beneath the Alpine orogen. Vertical component data of the extraordinary dense seismic network AlpArray are used which were recorded at over 600 temporary and permanent broadband stations deployed by 24 different European institutions in the greater Alpine region, reaching from the Massif Central to the Pannonian Basin and from the Po plain to the river Main. Mantle phases of 347 teleseismic events between 2015 and 2019 of magnitude 5.5 and higher are evaluated automatically for direct and core diffracted P arrivals using a combination of higher-order statistics picking algorithms and signal cross correlation. The resulting database contains over 170.000 highly accurate absolute P picks that were manually revised for each event. The travel time residuals exhibit very consistent and reproducible spatial patterns, already pointing at high velocity slabs in the mantle.

For predicting P-wave travel times, we consider a large computational box encompassing the Alpine region up to a depth of 600 km within which we allow 3D-variations of P-wave velocity. Outside this box we assume a spherically symmetric earth and apply the Tau-P method to calculate travel times and ray paths. These are injected at the boundaries of the regional box and continued using the fast marching method. We invert differences between observed and predicted travel times for P-wave velocities inside the box. Velocity is discretized on a regular grid with an average spacing of about 25 km. The misfit reduction reaches values of up to 75% depending on damping and smoothing parameters.

The resulting model shows several steeply dipping high velocity anomalies following the Alpine arc. The most prominent structure stretches from the western Alps into the Apennines mountain range reaching depths of over 500 km. Two further anomalies extending down to a depth of 300 km are located below the central and eastern Alps, separated by a clear gap below the western part of the Tauern window. Further to the east the model indicates a possible high-velocity connection between the eastern Alps and the Dinarides. Regarding the lateral position of the central and eastern Alpine slabs, our results confirm previous studies. However, there are differences regarding depth extent, dip angles and dip directions. Both structures dip very steeply with a tendency towards northward dipping. We perform various general, as well as purpose-built resolution tests, to verify the capabilities of our setup to resolve slab gaps as well as different possible slab dipping directions.

How to cite: Paffrath, M. and Friederich, W. and the AlpArray Working Group: Teleseismic P-wave travel time tomography of the Alpine upper mantle using AlpArray seismic network data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13779, https://doi.org/10.5194/egusphere-egu2020-13779, 2020.

EGU2020-9787 | Displays | TS7.6

Negative Velocity Gradients in the uppermost Mantle below the larger Alpine Area

Rainer Kind, Stefan Schmid, Xiaohui Yuan, and Alparray Working Group

In the frame of the Alparray project we analyse teleseismic data from permanent and temporary stations of the greater Alpine area to study the structure of the crust and the uppermost mantle. We use S-to-p and P-to-s converted waves below the seismic stations which are aligned along the arrival times of the generating P and SV signals. The broadband data used are unfiltered, amplitude normalized and sign corrected. Profiles of migrated data are constructed through the entire Alpine area and compared with results of tomographic, controlled-source and receiver function studies. Thereby we provide additional constraints regarding the ongoing controversies regarding the configuration of the various slabs whose existence was postulated by previous authors within the larger Alpine area including the Western Carpathians. Special attention is given to the possibility of a reversal of subduction polarity in the eastern Alps.

How to cite: Kind, R., Schmid, S., Yuan, X., and Working Group, A.: Negative Velocity Gradients in the uppermost Mantle below the larger Alpine Area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9787, https://doi.org/10.5194/egusphere-egu2020-9787, 2020.

EGU2020-18776 | Displays | TS7.6

Upper mantle structure beneath the Dinarides and the Alps from surface wave tomography

Petr Kolínský, Tena Belinić, Josip Stipčević, Irene Bianchi, Florian Fuchs, Götz Bokelmann, and the AlpArray Working Group

The Alpine-Dinarides are a complex orogenic system, with its tectonic evolution controlled by the ongoing convergence between Eurasian and African plates with the Adriatic microplate wedged between them. Our study focuses on the upper mantle of the wider Alpine-Dinarides region, and we present surface-wave tomography of two overlapping subregions, interpreting the seismic velocity features in the context of regional geodynamics.

In the first part, we use records of 151 teleseismic earthquakes (2010-2018) at 98 stations distributed across the wider Dinarides region. Surface-wave phase velocities are measured in the range of 30 – 160 s by the two-station method at pairs of stations aligned along the great circle paths with the epicenters. We apply several data-quality tests before the dispersion curves are measured. We use Rayleigh waves recorded on both radial and vertical components. Only the dispersions measured coherently at both components are used for the tomography. In total, we reach the number of 9000 phase velocity measurements for the period of 50 s. Tomographic results including resolution estimates are provided for various frequencies; the local dispersion curves are inverted for depths from the surface down to 300 km. Results are shown as maps for various depths and as cross-sections along several profiles of shear-wave velocities in the whole region.

The other study focuses on the Alps. The AlpArray seismic network stretches hundreds of kilometers in width and more than thousand kilometers in length. It is distributed over the greater Alpine region (Europe) and consists of around 250 temporary and around 400 permanent broadband stations with interstation distances around 40 km. The earthquakes are selected between years 2016-2019. The methodology differs from the Dinarides case in a sense, that while before we used many earthquakes and less stations pairs (due to sparser station coverage), for the Alps, we use less earthquakes (32) and many more stations pairs (tens of thousands) making use of the dense station coverage of the AlpArray network.

Results of the depth inversion of the local dispersion measurements for the Alps are compared with local surface-wave phase-velocity measurement obtained from the (sub)array approach.

How to cite: Kolínský, P., Belinić, T., Stipčević, J., Bianchi, I., Fuchs, F., Bokelmann, G., and Working Group, T. A.: Upper mantle structure beneath the Dinarides and the Alps from surface wave tomography, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18776, https://doi.org/10.5194/egusphere-egu2020-18776, 2020.

EGU2020-20109 | Displays | TS7.6

Radial anisotropy in Europe from surface waves ambient noise tomography and transdimensional hierarchical inversion

Chloé Alder, Eric Debayle, Thomas Bodin, Anne Paul, Laurent Stehly, Helle Pedersen, and Fabien Dubuffet and the the AlpArray working group

We present a 3D probabilistic model of shear wave velocity and radial anisotropy of the European crust and uppermost mantle mainly focusing on the Alps and the Apennines.

The model is built using continuous seismic noise recorded between 2010 and 2018 at 1521 broadband stations, including the AlpArray network (Hetényi et al., 2018).

We use a large dataset of more than 730 000 couples of stations representing as many virtual source-receiver pairs. For each path, we calculate the cross-correlation of continuous vertical- and transverse-components of the noise records in order to get the Green’s function. From the Green’s function, we then obtain the group velocity dispersion curves of Love and Rayleigh waves in the period range 5 to 149 s.

Our 3D model is built in two steps. First, the dispersion data are used in a linearized least square inversion providing 2D maps of group velocity in Europe at each period. These maps are obtained using the same coverage for Love and Rayleigh waves. Dispersion curves for both Love and Rayleigh waves are then extracted from the maps, at each geographical point. In a second step, these curves are jointly inverted to depth for shear velocity and radial anisotropy. The inversion in done within a Bayesian Monte-Carlo framework integrating some a priori information coming either from PREM (Dziewonski and Anderson 1961) or the recent 3D shear wave model of Lu et al. 2018 performed for the same region.

Therefore, this joint inversion of Rayleigh and Love data allows us to derive a new 3D model of shear velocity and radial anisotropy of the European crust and uppermost mantle. The isotropic part of our model is consistent with the shear velocity model of Lu et al. 2018. The 3D radial anisotropy model of the region adds new constraints on the deformation of the lithosphere in Europe. Here we present and discuss this new radial anisotropy model, with particular emphasis on the Apennines.

How to cite: Alder, C., Debayle, E., Bodin, T., Paul, A., Stehly, L., Pedersen, H., and Dubuffet, F. and the the AlpArray working group: Radial anisotropy in Europe from surface waves ambient noise tomography and transdimensional hierarchical inversion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20109, https://doi.org/10.5194/egusphere-egu2020-20109, 2020.

EGU2020-7728 | Displays | TS7.6

Tomography image of double high-velocity heterogeneity beneath the Eastern Alps from the AlpArray data

Jaroslava Plomerová, Helena Žlebčíková, György Hetényi, Luděk Vecsey, Vladislav Babuška, the AlpArray-EASI Working Group, and the AlpArray Working Group

Convergence between the European and African plates formed the Alps and the neighbouring mountain belts. We present results based on teleseismic body-wave data from the AlpArray-EASI complementary experiment (2014-2015, Hetényi et al., Tectonophysics 2018) and the AlpArray Seismic Network (Hetényi et al., Surv. Geophys. 2018). Tomography of seismic velocities in the upper mantle, as well as seismic anisotropy study along a ca. 200 km broad and 540 km long north-south transect (crossing the Bohemian Massif in the north, the East-Alpine root, and reaching the Adriatic Sea in the south), image the steeply northward dipping East-Alpine root, dominated by the Adriatic plate, steady southward thickening of the lithosphere beneath the Bohemian Massif and distinct regional variations of mantle lithosphere fabrics modelled in 3D. These characteristics imply complex, domain-like architecture of the collisional zone of the European/Adriatic plates beneath the Alps. Thanks to the close spacing of the AlpArray stations and high-quality data, the high-resolution tomography resolved for the first time two neighbouring high-velocity northward-dipping heterogeneities beneath the Eastern Alps, instead of one thick root of the lithosphere. The southern one, which we relate to the Adriatic plate, is more distinct, the northern one is less pronounced, it delaminates at ~100km depth and diminishes in direction toward the Central Alps. It may represent a remnant of an early phase subduction of the European plate with the switched polarity (relative to the polarity in the Western Alps), or a preceding phase of the Adriatic subduction.

How to cite: Plomerová, J., Žlebčíková, H., Hetényi, G., Vecsey, L., Babuška, V., Working Group, T. A.-E., and Working Group, T. A.: Tomography image of double high-velocity heterogeneity beneath the Eastern Alps from the AlpArray data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7728, https://doi.org/10.5194/egusphere-egu2020-7728, 2020.

EGU2020-5024 | Displays | TS7.6

Completed in Spring 2020: AAGRG´s new recompilation of the Alpine gravity field

Hans-Jürgen Götze and the AlpArray Gravity Research Group

The AlpArray gravity research group (AAGRG) focuses on compiling a homogeneous surface-based gravity dataset across the Alpine area, on creating digital data sets for Bouguer-, Free Air- and isostatic anomalies. In 2016/17 all ten countries around the Alps have agreed to contribute with point/gridded gravity data and/or gravity data processing techniques to recompilation of the Alpine gravity in an area from 2° East to 23° East and 50° North to 42° North. For this recompilation, the group was able to rely on existing national data. For the Ivrea zone in the western Alps, newly surveyed data were also integrated into the database.

The AAGRG decided to present the data set of the recalculated gravity fields on a 2 km x 2 km and 4 km x 4 km grid for the public. The final products will also include the calculated values for mass corrections of the measured gravity at each grid point. This allows users to use later customized densities for their own calculations of mass corrections between the physical surface and the ellipsoidal reference. The densities used are 2 670 kg/m3 for landmasses, 1 030 kg/m3 for water masses above and  -1 640 kg/m3 below the ellipsoid. The correction radius was set to the Hayford zone O2 (167 km). In the future, the calculation of long-distance effects of topography/bathymetry and its compensating masses (roots) are planned. The new Bouguer anomaly will be station completed (CBA) and compiled according to the most modern criteria and reference frames (both location and gravity). The concept of ellipsoidal heights implicitly includes the geophysical indirect effect. Atmospheric corrections are also considered. Special emphasis was put on the numerous lakes in the study area. They partly have a considerable effect on the gravity of stations that lie at their edges (for example, the rather deep reservoirs in the Alps). In the Ligurian and the Adriatic seas, ship data of the Bureau Gravimétrique International were used. Although not unproblematic, these data got the preference over satellite data.

 It is the aim of the work of the AAGRG to release a gravity database that can be used for high-resolution modeling, interdisciplinary studies from local to regional to continental scales, as well as for joint inversion with other datasets.

How to cite: Götze, H.-J. and the AlpArray Gravity Research Group: Completed in Spring 2020: AAGRG´s new recompilation of the Alpine gravity field, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5024, https://doi.org/10.5194/egusphere-egu2020-5024, 2020.

EGU2020-8730 | Displays | TS7.6

The thermal field across the Alpine orogen and its forelands and the relation to seismicity

Cameron Spooner, Magdalena Scheck-Wenderoth, Mauro Cacace, Hans-Jürgen Götze, and Elco Luijendijk

The Alpine orogen and its forelands comprise a multitude of crustal blocks from different tectonic providences and different physical properties. This implies that the thermal configuration of the lithosphere would also be expected to vary significantly throughout the region. Temperature is a key controlling factor for rock strength via thermally activated creep and it exerts a first order influence on the depth of the brittle-ductile transition zone, the lower bound to the seismogenic zone and the spatial distribution of seismicity. Here we present new results from INTEGRATE, a project in the DFG priority program Mountain Building in 4 Dimensions, as part of the AlpArray initiative, which aims to gain a better understanding of the structure, temperature and rheology of the crust and the uppermost mantle beneath the Alps and their forelands using multiple 3D modelling techniques. The overall goal is to test different hypotheses on the configuration of the lithosphere and its relation to the distribution of deformation and related seismicity in the Alpine region. We build on previous work of a 3D density differentiated structural model of the region that is consistent with deep seismic data and gravity, to calculate the 3D conductive steady state thermal field of the Alps and their forelands. The model is unique in using different thermal parameters for different tectonic domains and is validated with a dataset of wellbore temperatures from across the region. Comparing recorded seismicity to the calculated thermal field we find a systematic clustering of the deep seismic activity that correlates with different isotherms within individual crustal blocks, reflecting the presence of different dominant lithologies. These inferred lithologies in conjunction with the calculated temperatures and the previous 3D density-structural model of the region, can be used to shed light on the lateral changes in crustal strength within the Alps and their forelands, helping to explain the observed patterns of deformation.  

How to cite: Spooner, C., Scheck-Wenderoth, M., Cacace, M., Götze, H.-J., and Luijendijk, E.: The thermal field across the Alpine orogen and its forelands and the relation to seismicity , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8730, https://doi.org/10.5194/egusphere-egu2020-8730, 2020.

EGU2020-11166 | Displays | TS7.6

New 3D Pg and Sg Velocity Models for High-Resolution Seismotectonic Interpretations in the Central Alps

Tobias Diehl, Edi Kissling, Timothy Lee, Stefan Schmid, and Marco Herwegh

The present-day deformation in the Central Alps is dominated by vertical uplift, at rates up to 1.5 mm/yr as indicated by high-precision levelling and GPS data. Understanding the driving mechanisms of this neotectonic uplift and its link to seismicity in the Central Alps requires accurate locations of current deformation processes within the upper crust. Especially the question if and how deformation in the crystalline basement is coupled with deformation in the overlaying nappe systems is key to understand the neotectonic processes. Seismicity provides important information on deformation in the uppermost crust, however, an accuracy of focal depths in the order of few kilometers and less is required to distinguish sources in the basement from sources in the sedimentary cover.

In this study, we demonstrate how insufficient crustal velocity models and inconsistent seismic phase selection can lead to biased hypocenter solutions, which hamper such high-resolution seismotectonic interpretations. We propose a relocation procedure combining a new high-resolution Pg and Sg 3D crustal model of the Central Alps with a dynamic seismic phase selection to overcome this bias and to improve accuracy of hypocenter solutions. The new tomographic model is based on more than 60,000 Pg and 30,000 quality-checked Sg phases of earthquakes, which occurred in the greater Central Alpine region between 1996 and 2019. In combination with a nonlinear, probabilistic earthquake location algorithm, the model was used to relocate more than 18’000 earthquakes, which occurred in this region over the past 36 years. The derived catalog includes a consistent error and quality assessment, calibrated against ground-truth events like quarry blasts.

The relocated seismicity in the Central Alps is interpreted together with additional information from the tomographic model, focal mechanisms, geophysical, geological and geodetic data. We focus our interpretation on the eastern Aar massif as well as on the Rawil depression, located in-between the outcropping Aar and Aiguilles-Rouge massifs. Both regions were recently affected by remarkable seismic events. The ML4.6 Urnerboden earthquake of 2017 occurred near the eastern termination of the Aar massif, while a sequence of about 350 events occurred in the Rawil earthquake lineament near the Sanetschpass in November 2019. Both sequences provide unique insights into active faults in the Central Alps and we image systems of sub-vertically oriented strike-slip faults of variable strike, which root in the crystalline basement in both regions. Our results document the existence of active strike-slip fault systems in the External Crystalline Massifs of the Central Alps in regions of maximum change in uplift rates. We therefore discuss possible models relating the observed strike-slip kinematics to buoyancy-driven vertical tectonic processes.

How to cite: Diehl, T., Kissling, E., Lee, T., Schmid, S., and Herwegh, M.: New 3D Pg and Sg Velocity Models for High-Resolution Seismotectonic Interpretations in the Central Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11166, https://doi.org/10.5194/egusphere-egu2020-11166, 2020.

EGU2020-7546 | Displays | TS7.6

Seismic deformation in the Western Alps : new insights from high resolution seismotectonic analysis

Marguerite Mathey, Christian Sue, Bertrand Potin, Colin Pagani, Thomas Bodin, Laurent Husson, Estelle Hannouz, Stéphane Baize, and Andrea Walpersdorf

In the Western Alpine arc, GNSS measurements indicate that the far field convergence responsible for the Oligo-Miocene continental collision is now over. However, seismicity and slow deformation are still active. Former collisional tectonic features, such as the Penninic Front, are nowadays reactivated as normal faults. Indeed, geodetic and seismotectonic studies show that the inner part of the chain is undergoing transtensional deformation, although local compression is observed in the foothills at the periphery of the arc. Due to the low to moderate seismicity of the Western Alps, the stress and strain fields remain partly elusive.

The aim of the present study is to quantitatively assess the current seismic stress and strain fields within the Western Alps, from a probabilistic standpoint. We used a new set of more than 30,000 Alpine earthquakes recorded by the dense local Sismalp seismic network since 1989. We first computed well-constrained focal mechanisms (f.m.) for more than 2,000 events with Ml ranging from 0.5 to 4.9 based on first motion (P-wave) polarity. This is the first time that such a huge focal mechanism dataset can be analyzed in the Alps. Corresponding events have been localized using a 3D velocity model (B. Potin, 2016). The global distribution of P and T axes dips confirms a vast majority of dextral transtensive focal mechanisms in the overall Alpine realm. We interpolated these results based on a Bayesian interpolation method, providing a probabilistic 2D map of the styles of seismic deformation in the Western Alps. Compression is robustly retrieved only in the Pô plain where seismicity depth differs from the shallow seismicity of the Western Alps. Extension is localized at the center of the belt. Importantly, extension is clustered instead of continuous along the belt. We then summed seismic moment tensors in homogeneous volumes of crust, to obtain seismic strain rates directly comparable to geodetic ones. Last, we inverted f.m. together in specific areas to obtain principal stress directions. A major outcome is the orientation of the extension, which is surprisingly oblique to the arc, rather than normal, as commonly thought.

These results bring new insights on the geodynamic processes driving the seismotectonic activity of the Western Alps, such as the relative contributions of crustal tectonics and deep processes.

How to cite: Mathey, M., Sue, C., Potin, B., Pagani, C., Bodin, T., Husson, L., Hannouz, E., Baize, S., and Walpersdorf, A.: Seismic deformation in the Western Alps : new insights from high resolution seismotectonic analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7546, https://doi.org/10.5194/egusphere-egu2020-7546, 2020.

EGU2020-2295 | Displays | TS7.6

Stress-field orientation and crustal deformation in the Vienna Basin region (Alpine-Pannonian-Carpathian junction)

Sven Schippkus, Dimitri Zigone, Götz Bokelmann, and AlpArray Working Group

Gaining insight into the regional stress field and deformation in the crust is challenging. As we cannot measure these directly, we rely on proxy measurements and numerical modelling to infer their orientation. For the Alpine-Pannonian-Carpathian junction, only a limited number of studies exist that provide such insights. They are based on either the interpretation of sparse and point-wise measurements of local stress-field orientations or on numerical modelling that aims to satisfy tectonic and geological constraints.

 

We infer seismic azimuthal anisotropy that relates to the orientation of the regional stress-field and crustal deformation from ambient-noise-derived Rayleigh waves in the region. This approach provides a spatially broad and independent measurement that complements previous studies. We use Rayleigh-wave group-velocity residuals after isotropic inversion at 5s and 20s center period, which are sensitive to crustal structure at different depths. They allow us to gain insight into two distinct mechanisms that result in fast orientations. At shallow crustal depths (5s), fast orientations in the region are N/S to NNE/SSW, roughly normal to the Alps. This effect is most likely due to the formation of cracks aligned with the present-day stress field. At greater depths (20s), fast orientations rotate towards NE, almost parallel to the major fault systems that accommodated the lateral extrusion of blocks in the Miocene. This is coherent with the expected direction of aligned crystal grains during crustal deformation occurring along the fault systems and the lateral extrusion of the central part of the Eastern Alps.

How to cite: Schippkus, S., Zigone, D., Bokelmann, G., and Working Group, A.: Stress-field orientation and crustal deformation in the Vienna Basin region (Alpine-Pannonian-Carpathian junction), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2295, https://doi.org/10.5194/egusphere-egu2020-2295, 2020.

EGU2020-7840 | Displays | TS7.6

Neogene kinematics and structural evolution of the Giudicarie Belt and eastern Southern Alpine orogenic front (Northern Italy)

Vincent Verwater, Mark R. Handy, Eline Le Breton, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland

The eastern Southern Alps are part of the deformed leading edge of the Adriatic plate indenting the European plate to the north. Neogene deformation in the eastern Southern Alps is partitioned into three, kinematically linked fold-and-fault systems: (1) The Giudicarie Belt, (2) the Valsugana Thrust System and (3) the external fold-and-thrust systems of the orogenic front, including the strike-slip Schio-Vicenza Fault. We aim to constrain fault kinematics from the Southern Alpine orogenic front to the Northern Giudicarie Fault to better understand deformation of the Adriatic indenter since Miocene time.

The Giudicarie Belt is a sinistral transverse zone characterized by NNE-oriented faults. Some of these faults originated in the Mesozoic as NNE-SSW trending normal faults, which were inverted during Alpine orogeny. Most of the Mesozoic normal faults are oriented oblique to sub-parallel to the main Neogene shortening direction, which led to strain partitioning between thrust and strike-slip faults. This significant strike-slip component complicates kinematic and structural restoration of geological cross-sections in 2-D because rock units moved into and out of the section trace, distorting in-section shortening estimates.

To assess lateral variations in shortening and quantify strain partitioning along and across the strike of the Giudicarie Belt, we constructed and balanced a network of closely spaced cross-sections perpendicular to the main structural trend. Seven 2-D NNW-SSE cross-sections from the Northern Giudicarie Fault to the Southern Alpine orogenic front reveal that the amount of Neogene NNW-SSE shortening varies from 11 km in the vicinity of the Adige embayment to 27 km further NE, with most shortening (20 to 26 km) accommodated within the Valsugana and Giudicarie systems. Shortening differs on either side of the Trento-Cles, Schio-Vicenza (4 km difference) and Ballino-Garda (7 km difference) strike-slip faults. These faults are inherited Mesozoic faults that coincide with significant stratigraphic thickness variations, which we constrained along orogen-parallel cross-sections. The SW-NE variation in shortening is inferred to have been taken up by these sinistral strike-slip faults, but also including the Northern Giudicarie Fault, for which we estimate the minimum amount of slip to be 19 km.

Exposure of Pre-Permian basement in the hanging wall of thrusts indicates a thick-skinned style of deformation. Forward modelling using the MOVE Suite Software indicates that the depth of the detachments within the Pre-Permian basement is no greater than 20 km. A recently located cluster of minor seismic events (2017-2018) within the study area is aligned between 5 and 15 km along the modelled detachments. These earthquake clusters occur within the external fold-and-thrust systems of the orogenic front, suggesting that ongoing shortening is taken up within this system and that the Valsugana and Giudicarie systems are inactive today.

How to cite: Verwater, V., Handy, M. R., Le Breton, E., Picotti, V., Najafabadi, A. J., and Haberland, C.: Neogene kinematics and structural evolution of the Giudicarie Belt and eastern Southern Alpine orogenic front (Northern Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7840, https://doi.org/10.5194/egusphere-egu2020-7840, 2020.

EGU2020-10771 | Displays | TS7.6

Exhumation of HP/UHP rocks by normal ductile shearing on top of the Eocene extruding wedge

Michel Ballèvre and Paola Manzotti

A popular model for the exhumation of HP-UHP rocks is the ‘extruding wedge’ model, where a crustal slice is bounded at its base by a ‘thrust shear-sense’ fault and to the top by a ‘normal shear-sense’ fault. In the Western Alps, the late Eocene Combin Shear Zone (CSZ) allowed extrusion of a wedge made by the Briançonnais-Piemonte-Liguria (‘Penninic’) stack.

Geological mapping has established the geometry and continuity of the CSZ from the frontal part of the Dent Blanche Tectonic System to the western boundary of the Sesia Zone. The CSZ has been cut during the Miocene by the brittle Aosta-Ranzola Fault, with an estimated downthrow of the northern block of c. 2.5 km with respect to the southern block. Consequently, the sections observed north (Monte Rosa) and South (Gran Paradiso) of the Aosta Fault display different structural levels in the Alpine nappe stack. The CSZ has been folded (Vanzone phase) during the final part of its history (i.e. when displacement along the CSZ was no more taking place), due to the indentation of the Adriatic mantle. This offers us the unique opportunity to study the change in deformation mechanisms along the shear zone (for a distance parallel to its displacement of about 50 km).

Salient characteristics of the CSZ are the following. (i) The thickness of the ductile shear zone increases from NW (frontal part of the Dent Blanche) to SE (frontal part of the Sesia Zone), from a few hundred metres to several kilometres. The type of lithologies pervasively reworked by the ductile shear changes along strike (dominantly calcschists from the topmost oceanic units in the Combin Zone, possibly up to the whole of the ‘Gneiss Minuti’ in the frontal Sesia Zone). (ii) The main ductile deformation along the CSZ was taking place at greenschist-facies conditions, overprinting eclogite-facies to greenschist-facies deformations of Cretaceous to Middle Eocene age. The CSZ is cutting and reworking eclogite-facies structures developed in its hangingwall (Sesia) as well as in its footwall (Zermatt). (iii) Ductile displacement along the CSZ is associated with the development in its footwall of south-east-verging, kilometre-scale, folds (Mischabel phase). The sedimentary sequences of the Pancherot-Cime Bianche-Bettaforca Unit may be used to estimate the minimum amount of ‘normal shear sense’ displacement of the order of 15-20 km.

A kinematic model integrating slab roll-back, ‘thrust shear-sense’ at the base and ‘normal shear-sense’ displacement on top of the Eocene eclogite-facies stack will be presented.

How to cite: Ballèvre, M. and Manzotti, P.: Exhumation of HP/UHP rocks by normal ductile shearing on top of the Eocene extruding wedge, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10771, https://doi.org/10.5194/egusphere-egu2020-10771, 2020.

EGU2020-2196 | Displays | TS7.6

Fast cooling of normal-fault footwalls: rapid fault slip or thermal relaxation?

Reinhard Wolff, Ralf Hetzel, István Dunkl, Aneta A. Anczkiewicz, and Hannah Pomella

Rapid rock exhumation in mountain belts is often associated with crustal-scale normal faulting during late-orogenic extension. The process of normal faulting advects hot footwall rocks towards the Earth's surface, which shifts isotherms upwards and increases the geothermal gradient. When faulting stops, this process is reversed and isotherms move downwards during thermal relaxation. Owing to these temporal changes of the geothermal gradient, it is not straightforward to derive the history of faulting from mineral cooling ages (Braun, 2016). Here, we combine thermochronological data with thermokinematic modeling to illustrate the importance of syntectonic heat advection and posttectonic thermal relaxation for a crustal-scale normal fault in the European Alps. The N–S trending Brenner fault defines the western margin of the Tauern Window and caused the exhumation of medium-grade metamorphic rocks during Miocene orogen-parallel extension of the Alps (Rosenberg & Garcia, 2011; Fügenschuh et al., 2012). We analyzed samples from a 2-km-thick crustal section, including a 1000-m-long drillcore. Zircon and apatite (U-Th)/He ages along this transect increase with elevation from ~8 to ~10 Ma and from ~7 to ~9 Ma, respectively, but differ by only ~1 Myr in individual samples. Thermokinematic modeling of the ages indicates that the Brenner fault became active 19±2 Ma ago and caused 35±10 km of crustal extension, which is consistent with independent geological constraints. The model results further suggest that the fault slipped at a total rate of 4.2±0.9 km/Myr and became inactive 8.8±0.4 Ma ago. Our findings demonstrate that both syntectonic heat advection and posttectonic thermal relaxation are responsible for the cooling pattern observed in the footwall of the Brenner normal fault.

References

Braun, J., 2016, Strong imprint of past orogenic events on the thermochronological record: Tectonophysics, v. 683, p. 325–332.

Fügenschuh, B., Mancktelow, N., Schmid, S., 2012, Comment on Rosenberg and Garcia: Estimating displacement along the Brenner Fault and orogen-parallel extension in the Eastern Alps: Int. J. Earth Sci., v. 101, p. 1451–1455.

Rosenberg, C.L., Garcia, S., 2011, Estimating displacement along the Brenner Fault and orogen-parallel extension in the Eastern Alps: Int. J. Earth Sci., v. 100, p. 1129–1145.

Wolff, R., Hetzel, R., Dunkl, I., Anczkiewicz, A.A., Pomella, H. 2020, Fast cooling of normal-fault footwalls: rapid fault slip or thermal relaxation? Geology, v. 48, doi:10.1130/G46940.1.

How to cite: Wolff, R., Hetzel, R., Dunkl, I., Anczkiewicz, A. A., and Pomella, H.: Fast cooling of normal-fault footwalls: rapid fault slip or thermal relaxation?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2196, https://doi.org/10.5194/egusphere-egu2020-2196, 2020.

EGU2020-9714 | Displays | TS7.6

Neogene Exhumation History along TRANSALP: Insights from Low Temperature Thermochronology and Thermo-Kinematic Models

Paul R. Eizenhöfer, Christoph Glotzbach, Lukas Büttner, Jonas Kley, and Todd A. Ehlers

Many convergent orogens such as the eastern European Alps display an asymmetric doubly-vergent wedge geometry. Loci of deepest exhumation are located above the overriding retro-wedge, whereas increased fault activity occurs in the pro-wedge on the subducting plate. The main drainage divide separates steeper from more gently sloping topography on the two wedges of different critical taper. We performed apatite and zircon (U-Th)/He analyses densely spaced along the TRANSALP geophysical transect in combination with thermo-kinematic models based on cross-section balancing. Our new low temperature thermochronology data and thermo-kinematic model results underline (i) deepest levels of exhumation across the Tauern Window until the Pliocene and (ii) higher Late Neogene exhumation rates south of the Periadriatic Fault relative to the north, while seismic activity is focussed across the Southern Alps. Our proposed mantle-to-surface link positions the retro-wedge north of the Periadriatic Fault subsequent to subduction polarity reversal during continental collision. Present-day drainage divide migration trends and imaged locations of mantle-lithospheric slabs beneath TRANSALP suggest ongoing, slow slab reversal since Adriatic indentation in the Eastern Alps. 

How to cite: Eizenhöfer, P. R., Glotzbach, C., Büttner, L., Kley, J., and Ehlers, T. A.: Neogene Exhumation History along TRANSALP: Insights from Low Temperature Thermochronology and Thermo-Kinematic Models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9714, https://doi.org/10.5194/egusphere-egu2020-9714, 2020.

EGU2020-16484 | Displays | TS7.6

Processing steps for the compiling AAGRG gravity maps

Pavol Zahorec, Juraj Papčo, and Roman Pašteka and the AlpArray Gravity Research Group

First unified complete Bouguer anomaly map of AlpArray area compiled from terrestrial gravity data is in preparation. The following steps to calculate the first version of the map were performed: 1. unification of different spatial, height and gravity systems, 2. getting available detailed (mainly LiDAR-based) elevation models and their transformation from physical to ellipsoidal heights, 3. calculation of mass corrections (gravity effect of the topography between the surface and ellipsoid level) with density 2 670 kg/m3, 4. calculation of bathymetric corrections for water masses below the ellipsoid (correction density -1 640 kg/m3), 5. calculation of lake correction for great alpine lakes (correction density -1 670 kg/m3), 6. calculation of the final complete Bouguer anomalies based on normal field (Somigliana formula with GRS80 parameters, free-air correction using Taylor series expansion to the 2nd order) and particular corrections including also the atmospheric correction.

The quality control of input data was performed based on the height differences between the point data and particular elevation models. Several thousand points with height residuals higher than chosen threshold (±50 m) were excluded. The available detailed local elevation models (resolution 10 – 20 m) were compared with global model MERIT (resolution 25 m).

The most significant methodological innovation is the ellipsoidal heights concept using straightforward calculation of mass/bathymetric corrections in respect to the ellipsoid instead of using the geophysical indirect effect computation. Our specially developed program Toposk was used for mass/bathymetric correction calculation (the standard distance of 166.7 km was used for the first version of the map) as well as for the calculation of lake corrections. Mass corrections amount to hundreds of mGal, while the lake corrections reach more than 5 mGal locally. Atmospheric effect taking into account topography was also calculated and compared with standard atmospheric correction.

 

How to cite: Zahorec, P., Papčo, J., and Pašteka, R. and the AlpArray Gravity Research Group: Processing steps for the compiling AAGRG gravity maps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16484, https://doi.org/10.5194/egusphere-egu2020-16484, 2020.

EGU2020-18543 | Displays | TS7.6

The Alpine Deep Structure from Surface Wave Tomography

Thomas Meier, Amr El-Sharkawy, and Sergei Lebedev

Collisional tectonics of the Alps is driven by several slab segments. A detailed imaging of the lithosphere-asthenosphere system beneath the Alps is, however, challenging due to the relatively small size of the slab segments and the highly curved geometry of the Alps. Surface waves, due to their high sensitivity to variations in seismic velocities at lower crustal and upper mantle depth, are well suited to study the Alpine deep structure. New azimuthally anisotropic Rayleigh wave phase velocity maps are calculated from automated inter-station phase velocity measurements in a very broad period range (8 – 350 s). The constructed local dispersion curves are then inverted individually for 1-D shear-wave velocity models using a new implementation of the stochastic Particle Swarm Optimization (PSO) inversion algorithm that enables the calculation of a high-resolution 3-D shear-wave velocity model from the crust down to 300 km beneath the Alps. In the Central Alps, a nearly vertical high velocity anomaly down to depth of 250 km is imaged and interpreted as subducting Eurasian mantle lithosphere. In contrast, low velocities in the Western Alps at depth of approximately 100 km and downwards are supporting the shallow slab break-off model. In the Eastern Alps, the presence of a vertically continuous high-velocity anomaly from 75 km to about 200 km depth beneath the northern Eurasian foreland and the almost continuous extension of a high-velocity anomaly from the Dinarides towards the Eastern Alps hint at a bivergent slab geometry beneath the Eastern Alps caused by subducting mantle lithosphere of both Eurasian and Adriatic origin. There is also evidence for subduction of Adriatic lithosphere to the east beneath the Pannonian Basin and the Dinarides down to a depth of about 150 km. Beneath the northern Apennines, the model indicates an attached Adriatic slab, whereas a slab window is found beneath the central Apennines. The results show that surface wave tomography can contribute to the imaging of complex slab geometries and slab segmentation in the Alpine region.

How to cite: Meier, T., El-Sharkawy, A., and Lebedev, S.: The Alpine Deep Structure from Surface Wave Tomography, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18543, https://doi.org/10.5194/egusphere-egu2020-18543, 2020.

EGU2020-21538 | Displays | TS7.6

Phase and Amplitude Rayleigh Wave Fields Measured by AlpArray

Marcel Tesch and Thomas Meier

Using AlpArray and European networks, it is now possible to resolve the shape and inherent distortion of teleseismic surface waves across the greater alpine area at an as of yet unprecedented resolution. With well over 1500 available broadband stations within a 20° radius around the central Alps we demonstrate our approach for measuring both phase and amplitude distributions of surface wave signals in the space-frequency domain, leading to structural phase velocity information corrected for possible dynamic effects. Knowledge of the amplitude fields is particularly important to understand wave front deformations and to correct dynamic phase velocity measuremnts.

To diminsh the influence of noise, higher modes, coda waves, or adjacent events on our measurement, we analyse correlations with synthetic fundamental mode signals for a spherically symmetric earth model. The resulting wave field parameters are consequently expressed as amplitude and phase perturbations of the synthetic background wave fields. The measurements are explained and examples for phase and amplitude Rayleigh wave fields are shown and discussed.

Examining the wave field properties it becomes apparent that the dynamic contributions to the eikonal phase velocity are indeed significant, caused by both heterogeneities inside and (far) outside the observed region. Smaller local anomalies are for instance frequently observed around Mount Etna and Vesuvius, with the active vulcanism causing noticable reverberations. Surprisingly, large wave field anomalies are often oriented almost parallel to the propagation direction and can potentially span the entire station distribution, manifesting themselves as contiguous stripes of elevated amplitudes from positive interference of off-axis scattered waves.

How to cite: Tesch, M. and Meier, T.: Phase and Amplitude Rayleigh Wave Fields Measured by AlpArray, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21538, https://doi.org/10.5194/egusphere-egu2020-21538, 2020.

Seismic anisotropy is an important tool for studying geodynamic processes in the Earth, and a common way of constraining it is to analyse shear-wave splitting of seismological body-wave phases,
i.p. SKS. Different techniques exist to quantify shear-wave splitting, but they do not always give the same result, raising the question of how stable they are, and whether there are systematic biases. Furthermore, the strength of the splitting ("splitting delay") has generally been more difficult to determine than the other (the "fast orientation").
A robust technique for determining shear-wave splitting can be set up
based on the splitting intensity method. That technique can in particular also constrain the splitting delay well. Ambient noise can however lead to an underestimation of splitting delay, and it needs to be accounted for, e.g. by a least-squares Wiener filter.
We apply that modified splitting intensity method to data from the AlpArray. We have processed 3 years of teleseismic earthquake data for 336 stations of the AlpArray deployment and additional 315 stations of the Italian network to get a potentially broad and more complete image of anisotropic structures in and outside the Alpine region.
The technique makes restrictive assumptions, e.g. assuming single-layer anisotropy. Yet, the new constraints, especially the one of the splitting delay are rather useful for understanding the deformation under the mountain belt and around it.

 

How to cite: Bokelmann, G. and Hein, G.: Extracting robust splitting measurements for the AlpArray using the splitting intensity method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16479, https://doi.org/10.5194/egusphere-egu2020-16479, 2020.

SKS-splitting measurements in the European Alps show an anisotropic fast axes parallel/subparallel relative to the mountain-belt. This indicates a mantle flow with a rotational component according to the orogeny under the assumption that the fast axes directly reflect the flow direction. This might be misleading due to a possible crustal contribution of anisotropy. Therefore, we isolate the crustal anisotropy using an improved receiver function method that accounts for anisotropic and structural properties.

The analysis for the crustal anisotropy is based on the stacking method proposed by Kaviani & Rümpker (2015). We modify their approach by introducing a time-selective splitting analysis of the crustal Ps- and PpPs-phases. The stacking is performed to the phases after correction of the anisotropic effect according to the model parameters H, the crustal thickness,  κ, the P-to S-wave velocity ratio, a, the percentage of anisotropy and φ, the fast axis orientation.

The Alps show a considerable Moho-topography due to its mountain root and its complex tectonic history. This can significantly deflect the crustal phases introducing a dominating appearance in the receiver functions. We therefore analyse for a dipping interface (not accounting for anisotropy) and then use an improved model in our analysis to infer the anisotropic properties of the crust.

Knowing the crustal anisotropic contribution we correct for this effect on the XKS-waveforms to isolate the anisotropy of the mantle. The remaining splitting shows an improved approximation of the flow patterns in the asthenosphere, while complexities might still imply an effect of the lithospheric mantle.

We apply our approach to stations of the AlpArray network resulting in a detailed distribution of the crustal anisotropy in the European Alps and show first results for the isolated mantle anisotropy from the corrected XKS-waveforms and the crustal anisotropy from the receiver-function analysis.

How to cite: Link, F. and Rümpker, G.: The mantle flow below the Alps from isolated mantle anisotropy based on differential Ps – XKS Splitting, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2810, https://doi.org/10.5194/egusphere-egu2020-2810, 2020.

EGU2020-13880 | Displays | TS7.6

Surface and deep deformation of the great Alpine region from GNSS and seismic anisotropy measurements

Simone Salimbeni, Enrico Serpelloni, and Silvia Pondrelli

The comparison of crustal and mantle shear directions can provide insights into the extent of crustal-mantle coupling and the dynamics guiding surface movements and active tectonics in continental deformation zones. Here we present a first attempt of comparing surface deformation from GNSS and deep deformation from seismic anisotropy observations for the Great Alpine Area, mainly through France, Switzerland, Italy, Germany and Slovenia. The developments of the European GNSS infrastructure, integrating public and private GNSS networks, allow now to precisely determining crustal deformation over the Alps. We present a new 3D surface velocity field obtained from a recent re-analysis of 22 years of GPS data obtained from >800 continuous GNSS stations operating across the Alps and its surroundings. Unlike the crust, the orientation of the strain field within the mantle cannot be directly measured and must be inferred from either mantle earthquakes or seismic observations, such as seismic anisotropy observations. We compiled a new map of SKS directions merging data collected during several experiments and available from different databases, deriving a new continuous mantle deformation pattern over the Great Alpine Region. Geodetically determined displacements of the Earth’s surface reflect the response to different processes acting at different spatial scales. In the comparison between crustal and mantle deformation we accounted for the intrinsic multi-scale characteristics of geodetic deformation measurements, estimating the geodetic strain-rate field using a multi-scale spherical wavelet-based method, where the velocity value at a given point of the Earth’s surface is obtained as a superposition of values obtained at different spatial scales. From the geodetic strain-rate tensors we computed the two planes of shear (or no-length-changes) directions, which are compared with the directions of SKS splitting over the study region.

How to cite: Salimbeni, S., Serpelloni, E., and Pondrelli, S.: Surface and deep deformation of the great Alpine region from GNSS and seismic anisotropy measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13880, https://doi.org/10.5194/egusphere-egu2020-13880, 2020.

EGU2020-8039 | Displays | TS7.6

Seismic mantle anisotropy associated with subduction polarity reversal: Insights from numerical models

Jan Philipp Kruse, Harro Schmeling, Frederik Link, and Georg Ruempker

The deep dynamics of continental collision is one of the least understood plate tectonic processes. One interesting process that is believed to be a feature of continental collision is a flip in subduction polarity. A prominent location where such a flip is proposed by different seismic tomography studies (e.g Kissling et al., 2006) are the eastern alps.

The aim of our study is to find a particular signature in the seismic anisotropy of the upper mantle that is the result of a temporal subduction polarity reversal. In our case the seismic anisotropy is produced by the LPO of mantle minerals due non-Newtonian deformation rates.

We use the thermo-mechanical 2D finite-difference code FDCON which has been extended to include a free surface with an erosion/sedimentation mechanism. For the geometrical setup an oceanic plate is placed between two continental plates. Subduction of the oceanic plate beneath the right continent is prescribed. The overriding plate (right) is pushed by constant kinematic boundary conditions. Among other parameters we varied a) the plastic strength of sediments (very weak to strong), b) the ductile rheology of the lower crust (felsic or mafic) and c) the convergence velocity of the two continents (1 - 10 cm/yr). From our results we can identify at least two different mechanisms for a subduction polarity switch.

To estimate the full elastic tensor at the grid points of interest, we use a modified version of DREX (Kaminski et al., 2004) that can handle a time dependent flow field. Using the full elastic tensors, we can calculate, e.g with MSAT (Walker & Wookey, 2012), effective delay times and fast shear wave polarization directions for arbitrary azimuths.

Our first results show significant differences between models with and without a subduction polarity reversal.

How to cite: Kruse, J. P., Schmeling, H., Link, F., and Ruempker, G.: Seismic mantle anisotropy associated with subduction polarity reversal: Insights from numerical models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8039, https://doi.org/10.5194/egusphere-egu2020-8039, 2020.

EGU2020-18008 | Displays | TS7.6

Azimuthally anisotropic ambient-noise tomography using the AlpArray seismic network

Emanuel Kästle, Irene Molinari, Lapo Boschi, and AlpArray Working Group

We make use of the AlpArray Seismic Network to study the properties of the ambient-noise field and create a new 3D shear-velocity model of the Alpine crust. The latter will be used to improve our understanding of the tectonic processes that formed the Alps.

From two years of data, more than 150,000 station-station cross-correlations are extracted and used to evaluate strength and directivity of the noise field and its seasonal variations. Phase-velocity measurements for both Love and Rayleigh waves are obtained and the anisotropic phase-velocity structure is imaged. At mid-crustal levels, the strongest azimuthal anisotropy is found underneath the northern Italian Po plain and in the northern Dinarides, with strengths of 10-20% and a fast axis direction pointing NNE in Italy and NE in the Dinarides. In the western and central Alps we find an approximately NE direction and a strength of 5%; the eastern Alpine fast axis point toward the north with strengths of 2-5%.

We apply a probabilistic inversion to resolve the 3D shear-velocity structure of the crust. The homogeneous and dense station setup results in a shear-velocity model of unprecedented resolution for the uppermost 60 km of the crust underneath the entire orogen. By using data in the period range between 2 and 100s, we are able to better constrain shallow structures, such as the sedimentary basins, and to link surface-geological features to velocity variations observed at depth.

How to cite: Kästle, E., Molinari, I., Boschi, L., and Working Group, A.: Azimuthally anisotropic ambient-noise tomography using the AlpArray seismic network, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18008, https://doi.org/10.5194/egusphere-egu2020-18008, 2020.

EGU2020-21535 | Displays | TS7.6

Constraining the dynamics of the present-day Alps with 3D geodynamic inverse models - model version 0.2

Georg Reuber, Amr El-Sharkawy, Marcel Paffrath, Jörg Ebbing, Wolfgang Friederich, Thomas Meier, and Boris Kaus
The ongoing formation of the alpine mountain belt is a major indicator of the active geological processes in the Mediterranean that for example causes volcanism in Italy as well as considerable hazard. To understand this complex system the European project AlpArray, with the German contribution 4D-MB, was funded in order to investigate the structure, dynamics and geology of the alpine area in more detail and through all scales. We focus on the large scale geodynamic processes that drive this complex system of multiple subduction zones, ranging from the surface to the mantle.
Here, preliminary geodynamic modeling results will be presented, which are based on recent seismic imaging of the AlpArray target area. The model has been extended to a larger depth and the geometries of the slabs have been adopted. Several instantaneous forward simulations will be presented that aim to reproduce the major present day GPS velocity patterns. Additionally, the fit to the data is refined using a steepest descent adjoint gradient based inverse technique. These gradients can also be used to highlight the pointwise sensitivity of the surface velocity to the material parameters at depth. In order to be able to compare the modeling results to additional observations a framework is presented on how seismic anisotropy can be calculated with the geodynamic modeling code LaMEM (Kaus et al., 2016).
 
This abstract is in co-operation with the whole AlpArray working group.

How to cite: Reuber, G., El-Sharkawy, A., Paffrath, M., Ebbing, J., Friederich, W., Meier, T., and Kaus, B.: Constraining the dynamics of the present-day Alps with 3D geodynamic inverse models - model version 0.2, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21535, https://doi.org/10.5194/egusphere-egu2020-21535, 2020.

EGU2020-7791 | Displays | TS7.6

Gravity effect of Alpine slab segments based on geophysical and petrological modelling

Maximilian Lowe, Jörg Ebbing, Amr El-Sharkawy, and Thomas Meier

The direction and location of subducting slab segments in the Alpine area is highly debated.  Here, we use seismic crustal depth estimates and different upper mantle tomographies to define hypotheses for the geometry of the subducting slab segments. Based on a new surface wave tomography of the upper mantle in the Alpine region, we also include a new hypothesis with a long Eurasian slab in the central Alps, a short slab segment in the western Alps, and bivergent subduction in the eastern Alps. In addition, we consider the south-dipping slab segment beneath the northern Apennines.  

Next, we study the possible slab related effects of the various considered slab geometries on the gravity field. Specifically, we calculate the gravity effects at the surface and at satellite altitude. In addition to the vertical gravity effect we also show gravity gradients. Two approaches are compared.  First, we convert seismic velocities directly to density using accepted conversion factors. Such direct conversion results in relatively scattered gravity anomalies. In the second approach, we assign density contrasts to predefined slab geometries. Starting from simple models with a constant slab density, we increase the complexity by considering temperature and pressure related density changes according to mantle composition. For such models, the density contrast of the slabs to the ambient mantle diminishes with depth. These models based on predefined slab geometries allow to analyse contributions by the different slab segments independently in greater detail. Combining the slab models with recent 3D crustal models of the Alps is needed in order to establish realistic density models of the Alpine realm for geodynamic applications.

How to cite: Lowe, M., Ebbing, J., El-Sharkawy, A., and Meier, T.: Gravity effect of Alpine slab segments based on geophysical and petrological modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7791, https://doi.org/10.5194/egusphere-egu2020-7791, 2020.

EGU2020-13785 | Displays | TS7.6

No polarity switch? Continental subduction of European crust below the Eastern Alps imaged by receiver functions

Stefan Mroczek, Frederik Tilmann, Xiaohui Yuan, Jan Pleuger, and Ben Heit

In the Eastern Alps, teleseismic tomography suggests that there is a switch from European subduction in the west to Adriatic subduction in the east. The dense SWATH-D seismic network is located in the central-eastern Alps between around 10°E and 14.5°E where a change in the dip direction was suggested to occur (e.g. Lippitsch et al. 2003; Mitterbauer et al. 2011). The receiver function method is particularly sensitive to velocity contrasts and so is suited to imaging the interfaces associated with subduction. New receiver function migrations from SWATH-D stations (supplemented by the AlpArray Seismic Network and the EASI profile) show no evidence for Adriatic subduction in the Eastern Alps. Instead, a southward dipping interface [or pair of interfaces with opposite polarity] which we interpreted as subducting  European lower crust can be traced below the Eastern Alps to a minimum depth of 120 km along the extent of SWATH-D. This suggests that in the Alps the polarity flip in subduction does not occur or is located east of our study region beyond 14.25°E, much further east than tomography suggests.

How to cite: Mroczek, S., Tilmann, F., Yuan, X., Pleuger, J., and Heit, B.: No polarity switch? Continental subduction of European crust below the Eastern Alps imaged by receiver functions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13785, https://doi.org/10.5194/egusphere-egu2020-13785, 2020.

EGU2020-3334 | Displays | TS7.6

Moho depth determination in the Eastern Alps-Pannonian basin-Carpathian mountains region based on H-K grid search method and CCP migration of receiver functions

Dániel Kalmár, György Hetényi, and István Bondár and the AlpArray Working Group

We perform P-to-S receiver function analysis to determine a detailed map of the crust-mantle boundary in the Eastern Alps–Pannonian basin–Carpathian mountains junction. We use data from the AlpArray Seismic Network, the Carpathian Basin Project and the South Carpathian Project temporary seismic networks, the permanent stations of the Hungarian National Seismological network, stations of a private network in Hungary as well as selected permanent seismological stations in neighbouring countries for the time period between 2004.01.01. and 2019.03.31. Altogether 221 seismological stations are used in the analysis. Owing to the dense station coverage we can achieve so far unprecedented resolution, thus extending our previous work on the region. We applied three-fold quality control, the first two on the observed waveforms and the third on the calculated radial receiver functions, calculated by the iterative time-domain deconvolution approach. The Moho depth was determined by two independent approaches, the common conversion point (CCP) migration with a local velocity model and the H-K grid search. We show cross-sections beneath the entire investigated area, and concentrate on major structural elements such as the AlCaPa and Tisza-Dacia blocks, the Mid-Hungarian Fault Zone and the Balaton Line. Finally, we present the Moho map obtained by the H-K grid search method and pre-stack CCP migration and interpolation over the entire study area, and compare results of two independent methods to prior knowledge.

How to cite: Kalmár, D., Hetényi, G., and Bondár, I. and the AlpArray Working Group: Moho depth determination in the Eastern Alps-Pannonian basin-Carpathian mountains region based on H-K grid search method and CCP migration of receiver functions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3334, https://doi.org/10.5194/egusphere-egu2020-3334, 2020.

EGU2020-10726 | Displays | TS7.6

Lithospheric structure of the Pannonian Basin using Rayleigh wave ambient noise tomography – preliminary results

Máté Timkó, Lars Wiesenberg, Amr El-Sharkawy, Zoltán Wéber, and Thomas Meier and the AlpArray Working Group

We used Rayleigh wave ambient noise tomography to investigate the crust and uppermost mantle structure of the Pannonian Basin. The Pannonian Basin and the surrounding orogens are located within the arcuate Alpine–Carpathian mountain chain in Central Europe. It is a back-arc basin characterized by a thinned lower crust and an updoming mantle. Benath the basin both the crust and the lithosphere have smaller thickness than the continental average. Imaging the velocity structure of the crust and upper mantle may help us to better understand the structure and formation of the Carpathian–Pannonian region.

We used data from the permanent seismological stations of the broader Central European region together with the AlpArray Seismic Network (AASN) and analysed one-year seismic data from 2017. More than 18 thousand vertical component noise cross-correlation functions were calculated and Rayleigh wave inter-station phase velocity curves were determined using an automated measuring algorithm. Anisotropic phase velocity tomographic imaging were carried out for the whole Pannonian Basin between 2 and 40s periods (~5-60 km).

The locations of the retrieved phase-velocity anomalies consistent with the well-known geologic and tectonic structure of the area (deep basins and orogenic belts) and are comparable to recent tomographic models published in the literature.

How to cite: Timkó, M., Wiesenberg, L., El-Sharkawy, A., Wéber, Z., and Meier, T. and the AlpArray Working Group: Lithospheric structure of the Pannonian Basin using Rayleigh wave ambient noise tomography – preliminary results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10726, https://doi.org/10.5194/egusphere-egu2020-10726, 2020.

EGU2020-5374 | Displays | TS7.6

Crust and upper mantle structure of the Ligurian Sea revealed by ambient noise tomography using ocean bottom seismometer data

Felix Noah Wolf, Dietrich Lange, Heidrun Kopp, Anke Dannowski, Ingo Grevemeyer, Wayne Crawford, Nikolaus Froitzheim, Martin Thorwart, and Anne Paul and the AlpArray Working Group

The Liguro-Provencal-basin was formed as a back-arc basin of the retreating Calabrian-Apennines subduction zone during the Oligocene and Miocene. The resulting rotation of the Corsica-Sardinia block at roughly 32–24 Ma is associated with rifting, shaping the Ligurian Sea. It is highly debated though, whether oceanic or atypical oceanic crust was formed or if the crust is continental and experienced extreme thinning during the opening of the basin.

To investigate the velocity structure of the Ligurian Sea a network (LOBSTER) of 29 broadband Ocean Bottom Seismometer (OBS) was installed jointly by GEOMAR (Germany) and ISTerre (France). The LOBSTER array measured continuously for eight months between June 2017 and February 2018 and is part of the AlpArray seismic network. AlpArray is a European initiative to further reveal the geophysical and geological properties of the greater Alpine area.

We contribute to the debate by surveying the type of crust and lithosphere flooring the Ligurian Sea.
Because of additional noise sources in the ocean, causing instrument tilt or seafloor compliance, OBS data are rarely used for ambient noise studies. However, we extensively pre-process the data to improve the signal-to-noise ratio. Then, we calculate daily cross-correlation functions for the LOBSTER array and surrounding land stations. Additionally, we correlate short time windows that include strong events. The cross-correlations of these are dominated by earthquake signals and allow us to derive surface wave group velocities for longer periods than using ambient noise only. Finally, phase velocity maps are obtained by inverting Green’s functions derived from cross-correlation of ambient noise and teleseismic events, respectively. The phase velocity maps show strong heterogeneities for short periods (5-15 s, corresponding to shallow depths). Causes for these include varying sediment thickness, fault zones and magmatism. For longer periods (20-80 s) the velocity structure smoothens and reveals mantle velocities north-northwest of the basin centre. This might hint on an asymmetric opening of the basin. We do not see strong indications for an oceanic spreading centre in the Ligurian basin.

How to cite: Wolf, F. N., Lange, D., Kopp, H., Dannowski, A., Grevemeyer, I., Crawford, W., Froitzheim, N., Thorwart, M., and Paul, A. and the AlpArray Working Group: Crust and upper mantle structure of the Ligurian Sea revealed by ambient noise tomography using ocean bottom seismometer data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5374, https://doi.org/10.5194/egusphere-egu2020-5374, 2020.

EGU2020-10047 | Displays | TS7.6

The active North Ligurian domain: new geophysical insight from the SEFASILS cruise

Jean-Xavier Dessa, Marie-Odile Beslier, Laure Schenini, Serge Sambolian, Albane Canva, Alessandra Ribodetti, Stéphane Operto, Mohamed Bachir Miguil, Nicolas Chamot-Rooke, Nicola Corradi, Matthias Delescluse, Jacques Déverchère, and Christophe Larroque

The first leg of the SEFASILS cruise took place in November 2018 onboard the RV Pourquoi-Pas ? Up-to-date multichannel and wide-angle seismic data were acquired offshore Monaco, from margin to basin, aiming at providing a renewed vision of the complex North Ligurian backarc system. The compressive and extensive tectonic phases that have closely alternated in time and space over the last 45 My have yielded fairly contrasting structures, whose understanding is rendered even more challenging by the strong overprint of the Messinian salt tectonics. There is ample evidence of a compressive reactivation of the North Ligurian margin since 5 Ma at least, especially to the East, along the Gulf of Genoa. Such deformation is associated with some notable seismicity originating from faults and mechanisms that remain poorly apprehended. Yet, this seismicity peaked at one historical Mw ~6.6-6.9 destructive event (1887 Ligurian earthquake). The main objective of the SEAFASILS effort is a better characterization of the crustal structures, and chiefly, of the active crustal faults and their potential interplay with salt tectonics beneath the margin and the northernmost part of the basin, both featuring seismicity. Linking these aspects with broader-scale lithospheric processes within the Southern Alps/Northern Apennines, addressed in the AlpArray initiative, is also of great importance. Here we present preliminary results of these seismic investigations, with time and prestack depth migrated MCS data. Emphasis was put on the construction of some suitable velocity models to get optimal focusing of structures from surface to depth. Some active crustal tomographic velocities derived from the dense OBS deployment providing complementary insight will also be presented.

How to cite: Dessa, J.-X., Beslier, M.-O., Schenini, L., Sambolian, S., Canva, A., Ribodetti, A., Operto, S., Bachir Miguil, M., Chamot-Rooke, N., Corradi, N., Delescluse, M., Déverchère, J., and Larroque, C.: The active North Ligurian domain: new geophysical insight from the SEFASILS cruise, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10047, https://doi.org/10.5194/egusphere-egu2020-10047, 2020.

EGU2020-19205 | Displays | TS7.6

Seismicity cluster below the Moho indicates thrust faulting in the central Ligurian Basin

Martin Thorwart, Anke Dannowski, Heidrun Kopp, Dietrich Lange, Wayne Crawford, Anne Paul, and Felix Noah Wolf

The Alpine orogen and the Apennines system are part of the complex tectonic settings in the Mediterranean Sea caused by the convergence between Africa and Eurasia. Between 30 Ma and 15 Ma, the Calabrian Subduction retreated in southeast direction pulling Corsica and Sardinia away from the Eurasian continent. In this extensional setting, the Ligurian Sea was formed as a back-arc basin. The rifting jumped 15 MA ago to the Tyrrhenian Sea leaving Corsica and Sardinia in a stable position relative to Eurasia as observed by GPS measurements.

Within the framework of the AlpArray research initiative and its German component “4D Mountain building” (SPP2017 4D-MB) a long-term experiment was conducted in the Ligurian sea to investigate the lithosphere structure and the seismicity in the Ligurian basin. The passive seismic network was operated by France and Germany and consisted of 29 broad-band ocean bottom stations. It was in operation between June 2017 and February 2018. At the end of the experiment two active seismic profiles were conducted additionally.

A cluster of 15 events with magnitudes lower than 2.5 occurred in the centre of the Ligurian Basin. The earthquakes are located at a depth of 20 km to 35 km, i.e. 10 - 25 km below the Moho. The cluster was not continuously active but had several active periods which lasted between 2 and 5 days.

A fault plane solution could be determined of the larger events in the cluster. The mechanism is a thrust faulting. Smaller events should have a similar mechanism due to the highly coherent waveforms. A similar mechanism was observed for the Mw=4.9 earthquake on 07.07.2011 which occurred 50 km east of the cluster. Both solutions show a SW-NE striking, northwest dipping fault plane. This indicates a convergence in NW-SE direction between Corsica and Eurasia.

How to cite: Thorwart, M., Dannowski, A., Kopp, H., Lange, D., Crawford, W., Paul, A., and Wolf, F. N.: Seismicity cluster below the Moho indicates thrust faulting in the central Ligurian Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19205, https://doi.org/10.5194/egusphere-egu2020-19205, 2020.

EGU2020-18574 | Displays | TS7.6

Earthquake density along the Western Alpine Arc

Christian Sue, Margot Mathey, Estelle Hannouz, Andrea Walpersdorf, and Stephane Baize

We propose a new analysis of the W-Alpine seismicity based on space and time distributions along the Alpine arc. The overall area bears witness of a relatively important seismic activity localized along the so-call Briançonnais and Piemontais seismic arcs, but also along alignments corresponding to individualized active fault, e.g. in front of the Belledonne massif, and locally in form of important seismic swarms (Ubaye, Maurienne, Mont-Blanc). The regional tectonic regime is well analyzed (see for instance Mathey et al., this session), with detailed mapping of both the stress and strain fields. However, actual available studies do not take into account the time and space distributions. Our study is developed using several available datasets covering various time spans and various strategies (local and regional seismic networks, template matching, historical seismic catalogue). We focus firstly on the space distribution of the activity along the arc, taking into account: (i) the simple occurrence of seismic events to calculate regional density maps, also investigating the B-value mapping; and (ii) the energy density, using the seismic moment fluxes per surface unit as a proxy. On this basis, we secondly analyze the time evolution of the seismicity, which is actually limited by the available dataset’s time span. Our integrated analyze focusses on 3 primary targets: (i) to compare the information arising from the different databases; (ii) to compare the most active zones in terms of earthquake occurrence vs. seismic energy released; (iii) to unravel potential evolutions or establish relative steadiness in alpine seismicity through time. This work will finally allow to better understand and discuss the Alpine seismicity’s mechanisms, in relation with the actual dynamics of this orogen.

How to cite: Sue, C., Mathey, M., Hannouz, E., Walpersdorf, A., and Baize, S.: Earthquake density along the Western Alpine Arc, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18574, https://doi.org/10.5194/egusphere-egu2020-18574, 2020.

EGU2020-5762 | Displays | TS7.6

A consistent and uniform research earthquake catalog for the AlpArray region

Irene Molinari, Matteo Bagagli, Tobias Diehl, Edi Kissling, John Clinton, Luca Scarabello, Domenico Giardini, Stefan Wiemer, and the AlpArray Working Group

We take advantage of the new large seismic data set provided by the AlpArray Seismic Network (AASN) as part of the AlpArray research initiative (www.alparray.ethz.ch), to provide consistent and precise hypocenter locations and uniform magnitude calculations across the greater Alpine region. The AASN is composed of more than 650 broadband seismic stations, 300 of which are temporary. The uniform station coverage provides an unique occasion to study the laterally strongly variable seismicity that is presently monitored and reported by a dozen individual observatories. A homogeneous earthquake catalog in terms of location and magnitude is a prerequisite to improve our understanding of seismo-tectonics and the seismic hazard in the greater Alpine region.

Our catalog covers four years of seismicity with a targeted magnitude of completeness of 2.5 from 2016 to 2019 and results from scanning ∼1000 broadband stations (∼60 TB of data). First, we detect and analyse events in the region using the STA/LTA based detector of the SeisComP3 monitoring system in off-line mode. Later, after an initial location has been obtained, we apply a high-quality semi-automated re-picking approach defining the consistent phase arrival times in combination with timing uncertainties and phase identification assessment. This automatic re-picking framework is implemented with the QUAKE library (Bagagli et al., 2019), an object-oriented Python package that exploit different waveform information both frequency- and energy- related by taking advantage of different well-established picking algorithms. The QUAKE picker has been tuned and tested against a consistent phases reference data set (P-, S- and secondary phases) of ∼2500 phases manually picked for 10 events (M≥ 2.5) homogeneously distributed in the region.

Subsequently, the high-quality automatic picks of selected well-locatable earthquakes are used to calculate a minimum 1D P-wave velocity model for the region with appropriate stations corrections. Finally, all events are relocated with the NonLinLoc algorithm in combination with the updated 1D model and a final estimate of the magnitude is given. We compare our locations and magnitudes with existing regional and local earthquake catalogs (ISC, EMSC, national catalogs) to assess and discuss the completeness and quality of the derived AlpArray research catalog.

How to cite: Molinari, I., Bagagli, M., Diehl, T., Kissling, E., Clinton, J., Scarabello, L., Giardini, D., Wiemer, S., and Working Group, T. A.: A consistent and uniform research earthquake catalog for the AlpArray region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5762, https://doi.org/10.5194/egusphere-egu2020-5762, 2020.

EGU2020-4785 | Displays | TS7.6

Pushing the limits of CMT inversion with large seismic networks: Challenges and results for small to moderate earthquakes in the Alps

Gesa Petersen, Simone Cesca, Sebastian Heimann, Peter Niemz, and Torsten Dahm and the AlpArray working group

The AlpArray seismic network (AASN) was operated from 2016 to 2019 by a European initiative aiming for new insights into the orogenesis of the Alps as well as into past and recent geodynamic and tectonic processes. The network included more than 620 temporary and permanent broadband stations with a spacing of 50 - 60 km. It was accompanied by the even denser Swath-D seismic network in the Eastern Alps (~150 stations with 15 km spacing). While the extensive network provides an excellent station coverage for seismicity studies, the large number of stations (up to 100) poses new challenges to MT inversions. Automated quality control and the choice of appropriate configurations becomes crucial for the inversion process. Weak to moderate magnitude events and the complex heterogeneous tectonic setting in the Alps force us to push the limits of full waveform moment tensor inversions.

We develop semi-automatic, adaptive approaches for a standardized quality assessment of large seismic networks and for the selection of appropriate waveform fitting targets and frequency ranges. The earthquake source optimization framework ‘Grond’ uses a Bayesian bootstrap-based probabilistic inversion scheme with flexible integration of different waveform attributes in time and frequency domain to provide full or deviatoric moment tensor solutions including uncertainties. The entire workflow from station quality control to moment tensor inversion can handle more than 100 stations simultaneously. The large number of stations allows to study the influence of azimuthal gaps. Further, we are able to compare the inversion results of various methods and configurations in time- and frequency domain using different frequency ranges and epicentral distances. We inverted approximately 100 full moment tensor solutions for events down to Mw 3.1 occurring within the operating time of the AASN. For this magnitude range a combination of frequency-domain spectra and time-domain waveform fitting of surface waves (Z, R and T component, 0.02-0.07 Hz) provides most stable results. In case of distorted absolute amplitudes a combination of frequency spectra and maximum cross-correlation fitting proved to be useful. We find that for smaller events (Mw < 3.0) surface waves are not observed and higher frequency body waves are strongly influenced by complex heterogeneities along the travel path. To extend the source analysis to even weaker events the standard MT inversion approach is combined with network similarity cluster analyses, enabling the association of weaker events to larger ones and therefore the reconstruction of the geometry of active faults.

How to cite: Petersen, G., Cesca, S., Heimann, S., Niemz, P., and Dahm, T. and the AlpArray working group: Pushing the limits of CMT inversion with large seismic networks: Challenges and results for small to moderate earthquakes in the Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4785, https://doi.org/10.5194/egusphere-egu2020-4785, 2020.

EGU2020-6833 | Displays | TS7.6

Assessing and improving focal mechanisms in Switzerland: Towards a comprehensive seismotectonic model of the Central Alps and their foreland

Federica Lanza, Tobias Diehl, Nicholas Deichmann, Frederick Massin, John Clinton, Marco Herwegh, and Stefan Wiemer

Seismotectonic models that combine all the relevant seismotectonic data (e.g., hypocenter locations and velocity models, focal mechanisms and moment-tensors, faults, geodetic data, and in-situ/regional stress data) constitute a pre-requisite to better understand the interplay between stress, faulting and seismicity of a region. This study is a contribution to the multiannual project SeismoTeCH funded by the Swiss Geophysical Commission (SGPK) and coordinated by the University of Bern to produce an integrative seismotectonic model for the entire territory of Switzerland. In this context, our aim is to provide an up-to-date, high-quality, and consistent catalog of first-motion focal mechanisms computed by the Swiss Seismological Service (SED) since 1976. For this purpose, we developed a quality classification scheme for existing mechanisms based on a priori independent information (mainly applied to the oldest mechanisms in the catalog) combined with statistical methods such as HASH (Hardebeck and Shearer, 2002) and probabilistic source mechanisms scanner algorithms (Massin and Malcom, 2018) to probe the solution space and translate probability density functions to a discrete quality rating.

Tests on selected problematic mechanisms are also carried out in order to assess the sensitivity of the focal mechanisms to the velocity models used to calculate location and take-off angles. In particular, we compare existing solutions using the standard 3D P-wave model of the SED with solutions based on recently derived high-resolution 3D Pg+Sg models. These tests are functional to understand the benefits of developing an updated full crustal velocity model for first-motion focal mechanisms calculations, in particular in relations to the focal depths and the accuracy of take-off angles.

Finally, to improve the completeness of the existing catalog, we explore new methodologies that would incorporate automated (possibly real-time) and semi-automated techniques for expanding the calculation of first-motion focal mechanisms (and moment tensors) to events of smaller magnitude. The Anzere/Sanetschpass sequence of November 2019 is used to assess and develop these new methods. As a preliminary result of these combined efforts, we present here a high-resolution map of strain-based deformation across Switzerland. This work represents a benchmark for future regional-scale stress inversion and sets the basis for the development of a consistent, fully accessible, and dynamic focal mechanisms database for Switzerland.

How to cite: Lanza, F., Diehl, T., Deichmann, N., Massin, F., Clinton, J., Herwegh, M., and Wiemer, S.: Assessing and improving focal mechanisms in Switzerland: Towards a comprehensive seismotectonic model of the Central Alps and their foreland , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6833, https://doi.org/10.5194/egusphere-egu2020-6833, 2020.

EGU2020-18781 | Displays | TS7.6

Local Seismicity in the Eastern Alps From GPU-Based Template Matching

Rens Hofman, Joern Kummerow, Simone Cesca, Joachim Wassermann, and Thomas Plenefisch and the AlpArray Working Group

The AlpArray programme "Mountain Building Processes in 4D" is an interdisciplinary project aimed to image the structure of the Alps and understand their formation. The goal is to be able to model the entire crust-mantle system in three dimensions, and investigate its evolution through time. Seismicity can reveal spatial and temporal patterns of faulting and thereby help to understand the current tectonic structure and motions in the Earth's crust. The south-eastern Alps are of special interest as they include the current plate boundary between Adria and Eurasia, but their undelying structure is poorly resolved and seismicity seems to be scarce. Being able to detect the smallest earthquakes is therefore of key importance.

Swath-D was an AlpArray complementary experiment in which approximately 150 broadband seismic stations were deployed in the Eastern Alps from late 2017 to late 2019. With a station spacing of around 15 km, it is much denser than the AlpArray Backbone network. In this work, data from these stations, combined with publicly available broadband data from the region, were used to detect, localize, and characterize microseismic events. A combination of energy-based detection and template matching was applied to both discover previously unidentified seismic activity and yield a high number of detections. An efficient GPU-based implementation was of critical importance to handle computationally demanding detection methods and the large data volume. Here, we present our methods and workflow, and a new map of seismicity in the south-eastern Alps.

How to cite: Hofman, R., Kummerow, J., Cesca, S., Wassermann, J., and Plenefisch, T. and the AlpArray Working Group: Local Seismicity in the Eastern Alps From GPU-Based Template Matching, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18781, https://doi.org/10.5194/egusphere-egu2020-18781, 2020.

EGU2020-12066 | Displays | TS7.6

Focal mechanisms for small to intermediate earthquakes in the northern part of the Alps and their seismotectonic interpretation

Thomas Plenefisch and Laura Barth and the AlpArray working group

In the framework of the AlpArray project more than 600 broadband stations have been installed and operated in the Alps and the surroundings. Together with the permanent stations in the area it is one of the most densely spaced seismic networks worldwide. Thereby, it offers an excellent opportunity to investigate the seismicity and seismotectonics of the Alpine chain. Due to the huge number of stations focal mechanisms can be calculated even for small magnitude earthquakes with high accuracy. The focal mechanisms are one important key to reveal the contemporary stress field and thus contribute to a better understanding of the geodynamic processes of the Alps.

In our study we focus on small to intermediate earthquakes in the Northern Alps, namely on four distinct sub-regions. These are from West to East the Lake Constance, the Arlberg region, the area of Garmisch-Partenkirchen and the broader region of Innsbruck. In order to calculate the focal mechanisms, we apply the FOCMEC program (Snoke, 2003), which inverts for a pure double-couple source. P-polarities as well as amplitude ratios of SH to P are used as input parameters for the inversion. Thanks to the dense network a good coverage of the focal sphere is achieved in most cases.

Altogether, we calculated focal mechanisms for 25 earthquakes in the magnitude range between 2.5 and 3.5 from the time period 2016 to 2019. Most of the focal mechanisms represent reverse or strike-slip faulting, normal faulting events are rather rare. The mechanisms are analysed with respect to lateral changes along the Northern Alpine. On one hand we compare the mechanisms with mechanisms of older studies as well as with moment tensors of events of slightly larger magnitudes. Those events are the scope of another subproject in the framework of the AlpArray (Petersen et al., 2019). On the other hand, we compare our mechanisms with geological indicators, namely orientation of faults. Finally, the focal mechanisms are used as input to invert for the stress field.

How to cite: Plenefisch, T. and Barth, L. and the AlpArray working group: Focal mechanisms for small to intermediate earthquakes in the northern part of the Alps and their seismotectonic interpretation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12066, https://doi.org/10.5194/egusphere-egu2020-12066, 2020.

EGU2020-7165 | Displays | TS7.6

The nature of the Albstadt Shear Zone, Germany

Sarah Mader, Klaus Reicherter, Joachim Ritter, and the AlpArray Working Group

The region around the town of Albstadt, SW Germany, is one of the most seismically active regions in Central Europe. In the last century alone three earthquakes with a magnitude greater than five happened and caused major damage. The ruptures occur along the Albstadt Shear Zone (ASZ), an approx. 20-30 km long, N-S striking fault with left-lateral strike slip. As there is no evidence for surface rupture the nature of the Albstadt Shear Zone can only be studied by its seismicity.

To characterize the ASZ we continuously complement the earthquake catalog of the State Earthquake Service of Baden-Württemberg with additional seismic phase onsets. For the latter we use the station network of AlpArray as well as 5 additional, in 2018/2019 installed seismic stations from the KArlsruhe BroadBand Array. We inverted for a new minimum 1D seismic velocity model of the study region. We use this seismic velocity model to relocalize the complemented catalog and to calculate focal mechanisms.

The majority of the seismicity happens between the towns Tübingen and Albstadt at around 9°E in a depth range of about 1.5 to 16 km and aligns north-south. Additionally, we see a clustering of events at the towns Hechingen and Albstadt. The dominating focal mechanism is strike-slip, but we also observe minor components of normal and reverse faulting.
Our results image the ASZ by its mainly micro-seismic activity between 2011 and 2018 confirming the N-S striking character, but also indicating a more complex fault system.

We thank the State Earthquake Service in Freiburg for using their data (Az. 4784//18_3303).

 

How to cite: Mader, S., Reicherter, K., Ritter, J., and Working Group, T. A.: The nature of the Albstadt Shear Zone, Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7165, https://doi.org/10.5194/egusphere-egu2020-7165, 2020.

The objective of this work was to relocate the entire seismicity of the Pannonian Basin with the Bayesloc algorithm, a Markov-Chain Monte Carlo inversion scheme using a Bayesian statistical framework.

In the Hungarian National Seismological Bulletin the magnitudes and event locations are determined with the iLoc location algorithm using the 3D global RSTT velocity model, and we used these locations as initial coordinates. In our work, we have used all of the instrumentally registered seismic events between 1996 and 2019 in the Pannonian Basin.

During data preprocessing we used graph theory to measure data connectivity. Similar to all multiple-event location methods, Bayesloc performs better when events are recorded on a common network.

We used several hundreds of ground truth events (quarry blasts, mine explosions, earthquakes) to tie down the seismicity pattern to known ground truth locations by giving them tighter prior distributions.

Based on the day-time peak on the origin-hour distribution of the bulletin earthquakes we assume that there are anthropogenic events labeled as earthquakes in the catalog, therefore we created a „Suspected explosions (SX)” group to set prior constrains.

The results show that the events around the mines are dramatically better clustered. The prior constraints contributed remarkably to the outcome of the relocation. We show that the results present an improved view of the seismicity of the region.

How to cite: Czecze, B. and Bondár, I.: Relocation of seismicity of the Pannonian Basin using the Bayesloc multiple event location algorithm between 1996 and 2019, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16663, https://doi.org/10.5194/egusphere-egu2020-16663, 2020.

EGU2020-18040 | Displays | TS7.6

Comprehensive analysis of the March 7, 2019 Somogyszob, Hungary earthquake cluster

Zoltán Wéber, Barbara Czecze, Zoltán Gráczer, Bálint Süle, Gyöngyvér Szanyi, István Bondár, and the AlpArray Working Group
A magnitude ML 4.0 earthquake struck southwest Hungary on March 7, 2019. The earthquake was reported to be felt in some 53 localities with maximum intensity V on the EMS scale. The earthquake was preceded by four foreshocks and followed by four aftershocks. The hypoDD solutions using differential travel times from waveform cross-correlation show significant improvements in event location. We were able to determine the moment tensor solutions for the main shock and one of the foreshocks and aftershocks, each representing thrust fault mechanism with a horizontal P-axis pointing towards N-NE. The obtained moment magnitudes range from Mw 1.5 to 3.8 with source radii between 100 and 500 m. The stress drop spans from 12 to 19 bars.
 

How to cite: Wéber, Z., Czecze, B., Gráczer, Z., Süle, B., Szanyi, G., Bondár, I., and Working Group, T. A.: Comprehensive analysis of the March 7, 2019 Somogyszob, Hungary earthquake cluster, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18040, https://doi.org/10.5194/egusphere-egu2020-18040, 2020.

EGU2020-6781 | Displays | TS7.6

Structural thermochronology along geophysical transects through the Alps

Christoph Glotzbach, Paul Eizenhoefer, Jonas Kley, and Todd A. Ehlers

Changes in the deep lithosphere (e.g., slab break-off or a switch in subduction polarity) potentially result in orogen-wide structural reorientations and changes in the pace and location of exhumation and Earth surface processes. In this project we combine bedrock thermochronology and balanced cross sections with thermo-kinematic modelling to reconstruct the cooling and exhumation history along geophysical profiles crossing the Central and Eastern Alps. Available thermochronological data together with new apatite and zircon (U-Th)/He ages taken along the NFP-20E, TRANSALP and EASI profile is used to test and improve existing across-strike, orogen-wide balanced cross sections. This ‘structural thermochronology’ method yields reliable information about the structural and kinematic evolution of the Alps since continental collision. As an example, thermochronological data along TRANSALP can be fitted with a kinematic model suggested by balanced cross sections and both datasets suggest a general shift from pro- to retro-wedge deformation, potentially related to a switch in subduction polarity.

How to cite: Glotzbach, C., Eizenhoefer, P., Kley, J., and Ehlers, T. A.: Structural thermochronology along geophysical transects through the Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6781, https://doi.org/10.5194/egusphere-egu2020-6781, 2020.

EGU2020-10060 | Displays | TS7.6

New paleoelevation constraints on the Mid-Miocene Central Alps

Emilija Krsnik, Katharina Methner, Niklas Löffler, Oliver Kempf, Jens Fiebig, and Andreas Mulch

Reconstructing past elevations of mountain ranges improves our understanding of crustal- and mantle-scale geodynamic processes involved in formation of orogenic belts. Recent studies suggest that slab breakoff beneath the Central Alps occured ~30 Ma ago (e.g. Schlunegger and Castelltort, 2016), while the breakoff reached the Eastern Alps about 10 Ma later (~20 Ma, e.g. Handy et al., 2015). The proposed west-to-east slab tear migration would imply variations in topography. This raises the question of a diachronous surface uplift history for the Central and Eastern Alps. Although being extremely well studied over the last century and serving as a prime exemple for orogenic belt evolution, there are very few investigations addressing the Neogene paleoelevation history of the European Alps. Obtained paleoelevation constraints suffer from inconsistency and range from average elevations of 2300 m (Kocsis et al., 2007) to at least 5000 m (e.g. Sharp et al., 2005).

In order to provide quantitative robust paleoelevation estimates for the Mid-Miocene Central Alps we applied stable isotope paleoaltimetry on authigenic soil carbonates from the Northern Alpine Foreland Basin (NAFB) and contrast these with syntectonic high-Alpine fault zone mica. This δ-δ paleoaltimetry approach benefits from the advantage of comparing a low-elevation site and a high-elevation site of the same age which allows us to circumvent the basic issue of climate bias in paleoaltimetry studies.

We obtained stable isotope (δ18O) records of pedogenic carbonate from the Swiss Molasse Basin and δD values of fault mica from the Simplon Fault Zone, for the Middle Miocene (15.5 – 14.0 Ma). The key element in conducting stable isotope paleoaltimetry is the prevailing temperature during low-elevation proxy material formation. Here we present new Mid-Miocene paleoelevation data for the European Central Alps based on precisely defined clumped isotope (∆47) derived carbonate formation temperatures and new low-elevation stable isotope records. A conservative approach renders Mid-Miocene Central Alps mean elevation of approximately 4000 m, which contrasts modern Alpine topography with average elevations of ca. 2000 m in the Central Alps (Kühni and Pfiffner, 2001).

How to cite: Krsnik, E., Methner, K., Löffler, N., Kempf, O., Fiebig, J., and Mulch, A.: New paleoelevation constraints on the Mid-Miocene Central Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10060, https://doi.org/10.5194/egusphere-egu2020-10060, 2020.

EGU2020-4632 | Displays | TS7.6

Evolution of a low-relief landscape in the Eastern Alps constrained by low-temperature thermochronology and cosmogenic nuclides

Andreas Wölfler, Sebastian Reimers, Andrea Hampel, Christoph Glotzbach, and István Dunkl

The relief history of mountain belts is strongly influenced by the interplay of tectonics and surface processes, which both shape Earth´s landscapes. In this context, the quantification of the rates of long-term and short-term processes is key for understanding landscape evolution and requires the application of methods that integrate over different timescales. In this study, we apply low-temperature thermochronology and cosmogenic nuclides to quantify the geological and geomorphic evolution of an elevated low-relief landscape in the Eastern Alps, the so-called Nock Mountains, which are situated to the east of the Tauern Window. The low-temperature thermochronological data yield zircon fission track and zircon (U-Th)/He cooling ages of 93.4±12.9 and 77.8±7.8 Ma, respectively, which we interpret to reflect late Cretaceous cooling after Eo-Alpine metamorphism. Apatite fission track and (U-Th)/He ages are significant younger and range from 36.8 to 31.3 Ma. Time-temperature history modelling of the cooling ages suggests enhanced cooling in the Eocene followed by thermal stagnation. Thus, the rocks of the study area have been in near surface position (2-3 km) since the Late Eocene. Enhanced cooling in the Eocene is probably related to an increasing relief due to shortening, folding and thrusting in the Eastern Alps triggered by the onset of collision between the European margin and the Adriatic microplate. Under the assumption that rock exhumation occurred solely by erosion, the long-term average erosion rate derived from the thermochronological data is ~50-90 mm/kyr. Catchment-wide erosion rates derived from cosmogenic 10Be in river sediments  range from 83±7 to 205±18 mm/kyr and hence are lower than in other parts of the Alps. As the 10Be-derived erosion rates and the long-term rates derived from thermochronology agree despite the different timescales over which the two methods integrate, our new data suggest that erosion rates did not change significantly over the last ~40 Ma. This is remarkable because within this time span numerous tectonic processes and glacial-interglacial cycles affected the study area. To investigate the deglaciation history after the Last Glacial Maximum in the Nock Mountains, we sampled glacially polished quartz veins for 10Be exposure dating. The first four exposure ages obtained so far cluster between 14.5±1.4 and 16.8±1.6 ka. We interpret these ages as the record the retreat of the ice cover in the study area shortly after the Oldest Dryas stadial.

How to cite: Wölfler, A., Reimers, S., Hampel, A., Glotzbach, C., and Dunkl, I.: Evolution of a low-relief landscape in the Eastern Alps constrained by low-temperature thermochronology and cosmogenic nuclides, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4632, https://doi.org/10.5194/egusphere-egu2020-4632, 2020.

EGU2020-19144 | Displays | TS7.6

A large-scale detachment system in the central Eastern Alps (Upper Austroalpine Unit, Austria)

Manuel Werdenich, Christoph Iglseder, Bernhard Grasemann, Gerd Rantitsch, and Benjamin Huet

Based on new structural field data and Raman micro-spectroscopy on carbonaceous material a major detachment juxtaposing Drauzug-Gurktal Nappe System (DGN) against the transgressive Permo-Mesozoic cover sequence of the Ötztal-Bundschuh Nappe System (BN, Stangalm Mesozoic s. str.) in the area SE of Flattnitz (Carinthia, Austria). An Eo-alpine top-SE kinematic has been identified.

The hanging wall unit comprise lithologies of the DGN phyllites, conglomerates and graphite schists (Stolzalpe nappe), which have experienced only low grade greenschist deformation. Raman constrains 350°C±40°C.

The footwall unit consists of dolomitic ultra-mylonites, calcitic marble mylonites, meta-conglomerates and quarzites (Stangalm Mesozoic and Kuster nappe), which have experienced at least four main deformation phases. The oldest structures (D1) corresponding to Eo-Alpine nappe stacking are overprinted by (D2) isoclinal recumbent folds with E-W oriented shallow dipping fold axis and an axial plane schistosity, dipping shallowly to WSW. Ductile to brittle-ductile top to the E shearing (D3) is indicated by ESE-trending stretching lineation, C-type shear bands, stylolites, crystal- and shape preferred orientations of mineral grains. Late brittle deformation (D4) is recorded in steep joint sets with dip-directions to NW. Raman constrains 480°C±40°C.

The detachment zone comprises a complicate zone of high strain including units from DGN folded together within the Stangalm Mesozoic, which have experienced the same deformation as the BN.

How to cite: Werdenich, M., Iglseder, C., Grasemann, B., Rantitsch, G., and Huet, B.: A large-scale detachment system in the central Eastern Alps (Upper Austroalpine Unit, Austria), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19144, https://doi.org/10.5194/egusphere-egu2020-19144, 2020.

EGU2020-22548 | Displays | TS7.6

Meso- and micro-structural analysis of the Briançonnais Front in the Grand Saint Bernard area (Aosta Valley - Italy, and Valais - Switzerland)
not presented

Daniele Pini, Gloria Arienti, Matteo Pozzi, Bruno Monopoli, and Andrea Bistacchi

We present preliminary results on the meso- and micro-structural evolution of high-strain rocks of the Houillère Zone and Pierre-Avoi Unit outcropping along the Swiss-Italy boundary ridge, to the west of the Grand Saint Bernard Pass.

The stack of Middle and External Pennidic units is folded by polyphasic folds, developed at least partly under low-grade metamorphic conditions. Different generations of folds show isoclinal to open geometries. Fold axes are subhorizontal, trending NE-SW, and the overall fold interference pattern can be generally classified as a type 3 (Ramsay). At the microscale, an important deformation mechanism is pressure solution cleavage, consistent with relatively low-temperature conditions.

Brittle-ductile shear zones, characterized by anastomosing bands of very fine-grained fault rocks, with pressure solution seams and SCC’ shear bands, exploit the weak and strongly anisotropic phyllosilicate-rich layers, particularly in the black schists of the Houillère Zone.

Brittle high-angle faults crosscut ductile and semi-brittle features and show an oblique-normal kinematics. These faults are particularly well developed in the more competent rocks of the Pierre-Avoi Unit (e.g. massive carbonates, metaconglomerates and metasandstones).

A continuous horizon, a few metres thick, with a high density of quartz veins, can be followed in the internal and upper part of the Houillère Zone. This horizon is folded, at least by the younger open folds, and constitutes a major marker to study the large-scale structure of this unit.

How to cite: Pini, D., Arienti, G., Pozzi, M., Monopoli, B., and Bistacchi, A.: Meso- and micro-structural analysis of the Briançonnais Front in the Grand Saint Bernard area (Aosta Valley - Italy, and Valais - Switzerland), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22548, https://doi.org/10.5194/egusphere-egu2020-22548, 2020.

EGU2020-22550 | Displays | TS7.6

Structural and geological mapping of the Gran Sometta-Tournalin ridge (Aosta Valley, Italy)

Matteo Pozzi, Gloria Arienti, Anna Losa, and Andrea Bistacchi

We present a new geological and structural map of the Gran Sometta -Tournalin ridge (Valle d’Aosta). In this area we have Pennidic ophiolitic units of the Combin (Co) and Zermatt-Saas (ZS) zones. In addition, in this area the continental cover sequence of the Pancherot-Cime Bianche-Bettaforca (PCB) unit crops out, close to the base of the Combin zone. The PCB and Co are characterized by Alpine greenschist facies assemblages, while the ZS is characterized by eclogitic assemblages. The greenschist and HP complexes are juxtaposed along the extensional Combin Fault Zone.

Our detailed 1:5000 map allowed reconstructing in 3D, and with a high level of detail, the spatial and crosscutting relationships between metamorphic layering (e.g. calcschists and metabasites in the Co), ductile foliations and shear zones, semi-brittle features (e.g. extensional crenulation cleavage – ECC - along the Combin Fault Zone), and post-metamorphic brittle faults.

The metamorphic layering and foliations are sub-horizontal in this area, and the ECC associated to the Combin Fault results in large components of horizontal stretching. These features are crosscut by two sets of high-angle normal faults, of Oligocene and Miocene age (according to literature), and, thanks to the favourable exposure and numerous structural data, we have been able to reconstruct these structures and their relationships in 3D.

How to cite: Pozzi, M., Arienti, G., Losa, A., and Bistacchi, A.: Structural and geological mapping of the Gran Sometta-Tournalin ridge (Aosta Valley, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22550, https://doi.org/10.5194/egusphere-egu2020-22550, 2020.

TS7.8 – From rifting to orogeny: the case of the Pyrenees and related basins

EGU2020-20105 | Displays | TS7.8

The Pyrenees within the Iberian plate boundary: How much an orogenic lifecycle can be influenced by rift structural inheritances?

Emmanuel Masini, Sylvain Calassou, Isabelle Thinon, Olivier Vidal, Gianreto Manatschal, Sébastien Chevrot, Mary Ford, Laurent Jolivet, Frédéric Mouthereau, The Orogen Project team, Julie Tugend, Júlia Gómez-Romeu, and Maxime Ducoux

The Orogen project is a 5-years geosciences research program resulting from an alliance between the CNRS, the French geological survey (BRGM) and Total R&D. Focusing on the Africa-Europe diffuse plate boundary across Iberia, « Orogen » aims at to better understand orogenic processes and its driving mechanisms. One advantage of the project’s playground is that all of the orogenic maturity stages are today exposed from the incipient subduction of the Bay of Biscay to the post orogenic back-arc extension of the Gulf of Lion. One of the significant outcomes of the project is to reveal the fundamental control of the divergent setting on orogenesis through space and time. Through the reconstructed evolution of the Pyrenees, two main types of structural controls can be documented: 1) the crustal template and the spatial partitioning of rifts. Orogenesis starts by a pre-collision stage that consists in the subduction/underthrusting of an inherited divergent « consumable ». It corresponds to the domains located ahead of crustal necking zones (i.e. hyperextended rifts). An exception to the subduction fate of the « consumable » results from the 3D segmentation of rifts. At this stage, shortening needs to spatially linkup different rift axes by shortcutting relay zone.  It results in by back stepping the “subduction” from one branch of rift to the other. It leads to anomalously sample pieces of the « consumable » on the upper plate of the subduction (e.g. Mauléon hyperextended rift in the Western Pyrenees). Once convergence consumes its « consumable », mature collision occurs when crustal necking zones interact with the "subduction" fault plane. Indeed, underthrusting more buoyant thicker crust requires an increase of tectonic stress. At the plate boundary scale, it forces convergence to reorganize spatially and implies the inversion of neighboring less mature branches of rifts by far field stress transmission rather than rupturing unstretched continental domains. When reaching a critical level of stress, crustal indentation starts and thick-skin nappe-stacking propagates beyond necking zones into thick crustal domains. Crustal thickening accelerates launching foreland basin dynamics while orogenic reliefs increase. The orogenic system tends to reach a new equilibrium between tectonic and body forces, accommodated strain, sustaining reliefs and their surface processes counterpart. Then, two end-member cases of post-orogenic dynamic can be defined. Starting right after early orogeny and forced by lateral mature collision, an orogenic system can enter in a "forced" back-arc dynamic (e.g. Gulf of Lion). To achieve this it requires a mature subduction (i.e. enough for a slab-pull) and a remaining "consumable" to subduct (oceanic domain/hyper-thinned crust). The other post-orogenic path following a collision, may be caused by the decrease of tectonic forces relative to body forces. This breaks the depth-surface equilibrium inherited from collision and lead to post-orogenic extension/collapse.

How to cite: Masini, E., Calassou, S., Thinon, I., Vidal, O., Manatschal, G., Chevrot, S., Ford, M., Jolivet, L., Mouthereau, F., Orogen Project team, T., Tugend, J., Gómez-Romeu, J., and Ducoux, M.: The Pyrenees within the Iberian plate boundary: How much an orogenic lifecycle can be influenced by rift structural inheritances?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20105, https://doi.org/10.5194/egusphere-egu2020-20105, 2020.

EGU2020-20094 | Displays | TS7.8

Thermal record of hyperextended rifted margins: the fossil record of the Pyrenees

Maxime Ducoux, Laurent Jolivet, Romain Augier, Emmanuel Masini, and Sylvain Calassou

The thermal architecture of late rifting to breakup along the deep passive margins is still poorly known. This is mostly because of the limited access to industry drillhole data that, anyway, calibrate topographic highs and rarely the deepest rift domains (and even less the basement). However, unravelling this evolution is a fundamental requirement to define the ultimate exploration potential of these frontier domains. An alternative way to document this thermal evolution is to describe fossil analogues onshore. In this study, we use the fossil hyperextension record of the Pyrenean belt that was sampled by orogenic deformation into the North Pyrenean None and Nappe des Marbres alpine units. Previous studies have shown that the rift came into hyperextension and recorded locally mantle exhumation. These rift domains are associated with a HT-LP metamorphism event that was shown to vary spatially within the rift basin as well as into the basement. In order to restore the late rift thermal architecture of the Pyrenean hyperextended rift, we use a new compilation of Raman Spectroscopy measurements on Carbonaceous Material (RSCM) and Vitrinite Reflectance data. This method allows to record the palaeo-maximum temperatures in the sedimentary basins spatially as well as vertically and can be superposed to geological sections. This method was applied in almost 200 samples collected all along the belt at different stratigraphic level as well as into the Paleozoic basement. When the base of the rift basin is exposed, RSCM Tmax range between 450 and 620°C below a <5km thick sedimentary pile. Western Pyrenees was shown to be an exception as RSCM Tmax are less than 300°C on the outcropping superficial part of the rift basin. However; Vitrinite Reflectance data from wells that are calibrating the deep basin demonstrate that the same thermal intensity was actually reached. These results discard any lateral variation in thermal regime and is pointing out that it is a burial function into a (very)high late rift thermal gradient that largely exceed 100°c/km. Far from being restricted to the Pyrenean case, such a thermal evolution with the same amplitude gradient within the same exhumed mantle domains were documented in the Northern Red Sea example.

How to cite: Ducoux, M., Jolivet, L., Augier, R., Masini, E., and Calassou, S.: Thermal record of hyperextended rifted margins: the fossil record of the Pyrenees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20094, https://doi.org/10.5194/egusphere-egu2020-20094, 2020.

EGU2020-22005 | Displays | TS7.8

Paleogeothermal Gradients across an Inverted Hyperextended Rift System (Mauléon Fossil Rift,Western Pyrenees)

Nicolas Saspiturry, Abdeltif Lahfid, Thierry Baudin, Laurent Guillou-Frottier, Philippe Razin, Benoit Issautier, Benjamin Le Bayon, Olivier Serrano, Yves Lagabrielle, and Benjamin Corre

Examples of fossil and present-day passive margins resulting from mantle exhumation at the ocean–continent transition appear to have developed under conditions of high mantle heat flow. The pattern of geothermal gradients along these hyperextended margins at the time of rifting is of interest for exploration of geothermal and petroleum resources, but is difficult to access. The fossil rift in the North Pyrenean Zone, which underwent high temperature–low pressure metamorphism and alkaline magmatism during Early Cretaceous hyperextension, was studied to explore the geothermal regime at the time of rifting. Data from a set of 155 samples from densely spaced outcrops and boreholes, analyzed using Raman spectroscopy of carbonaceous material, shed light on the distribution of geothermal gradients across the inverted hyperextended Mauléon rift basin during Albian and Cenomanian time, its period of active extension. The estimated paleogeothermal gradient is strongly related to the structural position along the Albian-Cenomanian rift, increasing along a proximal-distal margin transect from ~34°C/km in the European proximal margin to ~37–47°C/km in the two necking zones and 57–60°C/km in the hyperextended domain. This pattern of the paleogeothermal gradient induced a complex competition between brittle and ductile deformation during crustal extension. A numerical modeling approach reproducing the thermal evolution of the North Pyrenees since 120 Ma suggests that mantle heat flow values may have peaked up to 100 mW.m-2 during the rifting event. We demonstrate that the style of reactivation during subsequent convergence influences the thermal structure of the inverted rift system.

How to cite: Saspiturry, N., Lahfid, A., Baudin, T., Guillou-Frottier, L., Razin, P., Issautier, B., Le Bayon, B., Serrano, O., Lagabrielle, Y., and Corre, B.: Paleogeothermal Gradients across an Inverted Hyperextended Rift System (Mauléon Fossil Rift,Western Pyrenees), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22005, https://doi.org/10.5194/egusphere-egu2020-22005, 2020.

EGU2020-3964 | Displays | TS7.8

The architecture and the multi-stage evolution of the North Iberian margin (Bay of Biscay)

Patricia Cadenas, Gianreto Manatschal, and Gabriela Fernández-Viejo

In this work, we address the problem of the formation and reactivation of multi-stage rifting based on the study of the central North Iberian margin, located at the southern Bay of Biscay triangular oceanic domain. This magma-poor rifted margin registered three major Mesozoic rift events and a subsequent Alpine compressional reactivation, representing a unique setting to study the architecture of a multi-stage rift system and its control on subsequent reactivation. Based on a dense dataset of high quality 2D seismic reflection profiles, boreholes and published velocity models, we define, describe and map structural domains, major extensional and compressional structures, and the depth and thickness of syn-rift units. We provide new structural maps showing the geometry and spatial distribution of major rift basins and bounding structures.

The analysis of the tectono-stratigraphic architecture led us to define three rift systems. A diffuse and widespread of Triassic age, with classical fault-bounded half-graben basins, a second, narrow, deep and localised Late Jurassic to Barremian transtensional system, and a third, widely distributed Aptian to Cenomanian hyperextended system, including two distinctive domains. Our results show that each rift system controlled successive rift events, and that the stacking and overlap of the three rift systems resulted in a complex and segmented 3D template that guided subsequent compressional reactivation. Compression affected on a distinctive way the three rift systems, leading to an amplification of the margin segmentation.

This work shows that unravelling the tectono-stratigraphic architecture and evolution of multi-stage rift systems can provide key insights not only to decipher the spatial and temporal evolution of divergent plate boundaries, but also to set up present-day kinematic templates to test dynamic plate deformable models of conjugate rifted margins. It will also be a keystone to constrain early stages of margin reactivation and the architecture of reactivated rifted margins now incorporated in orogenic systems.

How to cite: Cadenas, P., Manatschal, G., and Fernández-Viejo, G.: The architecture and the multi-stage evolution of the North Iberian margin (Bay of Biscay), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3964, https://doi.org/10.5194/egusphere-egu2020-3964, 2020.

EGU2020-9230 | Displays | TS7.8

The Basque-Cantabrian Basin: a natural laboratory to study the reactivation of a hyperextended system

Jordi Miro Padrisa, Patricia Cadenas, Rodolphe Lescoutre, Josep Anton Muñoz, and Gianreto Manatschal

The Basque – Cantabrian Basin (BCB) corresponds to a Mesozoic hyperextended rift basin that was subsequently reactivated from Late Cretaceous to Cenozoic and is at present part of the Pyrenean orogen. Numerous studies have addressed the role of rift inheritance on the formation of orogens, but little consideration has been given to the rift segmentation and the along strike variability. In the BCB, most studies focused on a section at the central part of the basin, despite the amount of geological and geophysical data available on the entire area, which make it a perfect natural laboratory to study the reactivation of a hyperextended basin.

The aim of this study is threefold: (I) reveal the 3D geometry and the along strike variability of the BCB by doing three N-S transversal cross sections from east to west; (II) define the rift domains and their limits; and (III) study the impact of rift inheritance during the compressional reactivation mainly focusing on the former distal rift domains.

Our preliminary results show that the BCB is affected by a multistage and polyphase rift evolution including a first, widespread Permo – Triassic rift phase including Late Triassic salt, a Late Jurassic to Barremian extensional phase and a more prominent Aptian to Middle Cenomanian hyperextension phase.  This complex rift template had a major impact on the subsequent reactivation and can explain some of the along strike variabilities observed within the three regional cross sections. To the east, the BCB was completely reactivated and transported to the south over the Late Triassic salt, which acted as a decoupling level. On the contrary, the westernmost section preserves the rift-related structures only weakly reactivated, providing direct insights on the early stages of reactivation. Our observations show that underthrusting/subduction initiates within the exhumed mantle domain, while during initial collision, the necking domains acted as a buttress. Decollement levels during early stages are located in the former rift distal domains and use serpentinized mantle rocks, while during collision they migrate to more external parts and use intra-basement decoupling levels such as the ductile middle crust and/or salt horizons.

Key words: Rift inheritance, Pyrenees, Basque – Cantabrian Basin, hyperextension.

How to cite: Miro Padrisa, J., Cadenas, P., Lescoutre, R., Muñoz, J. A., and Manatschal, G.: The Basque-Cantabrian Basin: a natural laboratory to study the reactivation of a hyperextended system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9230, https://doi.org/10.5194/egusphere-egu2020-9230, 2020.

EGU2020-13772 | Displays | TS7.8

Assessment of the continuity of the orogenic root beneath the Cantabrian-Pyrenean orogen

Gabriela Fernández-Viejo, Patricia Cadenas, Jorge Acevedo, and Sergio Llana-Funez

Crustal roots are a consequence of the contraction of continental masses during orogenesis identified in collisional chains worldwide. Frequently mirroring the summits of mountain systems, they portray the fundamental topic of isostasy. The northern Iberian Peninsula presents a rugged topography resulting of the collision with the European plate and the partial closure of the Bay of Biscay during the Cenozoic. Three differentiated systems formed along, from east to west:  a continental collisional chain, the Pyrenees, occupying the isthmus between Iberia and Europe; facing the Bay of Biscay, a deep Mesozoic basin inverted during contraction, the Basque-Cantabrian region, and in the west a crustal pop-up of Palaeozoic basement, the Cantabrian Mountains. The last two extend underwater in the form of a shortened platform, and an accretionary wedge fossilized by post orogenic sediments. The identification of a crustal root beneath the Pyrenees in the 80´s and the observation of a similar morphology beneath the Cantabrian range in the 90´s gave place to the interpretation of the thickening as a continuous feature of the Iberian crust. 
However, a reappraisal of vintage refraction profiles and new data from autocorrelations of ambient noise recordings, challenge the alleged continuity. The Pyrenean-Cantabrian orogeny is a three-plate interaction. Beyond the three types of convergent boundaries we may need to introduce the hyperextended-continent destructive boundary, where this is a well-studied example but not the only one. 

How to cite: Fernández-Viejo, G., Cadenas, P., Acevedo, J., and Llana-Funez, S.: Assessment of the continuity of the orogenic root beneath the Cantabrian-Pyrenean orogen, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13772, https://doi.org/10.5194/egusphere-egu2020-13772, 2020.

EGU2020-7183 | Displays | TS7.8

Serial gravity-constrained cross-sections in the Central Pyrenees validating its structural style

Ruth Soto, Pilar Clariana, Conxi Ayala, Antonio M. Casas-Sainz, Teresa Román-Berdiel, Aina Margalef, Belén Oliva-Urcia, Emilio L. Pueyo, Elisabet Beamud, Carmen Rey-Moral, and Félix Rubio

Cenozoic contractional deformation in the Central Pyrenees generated several basement thrust sheets involving Paleozoic rocks and decoupled Mesozoic and Cenozoic cover units detached on the main décollement level, the Triassic evaporites. The overall geometry and structural architecture of the chain have already been established based on numerous geological and geophysical data obtained during several decades. This work aims to validate the overall accepted geometry of the Central part of the chain by the construction of six serial cross-sections constrained by gravity data and 2.5D gravity modelling. The study area comprises the southern half of the Axial Zone between La Maladeta and Andorra-Mont Louis granites and its southern leading edge as well as the northernmost part of the South-Pyrenean Zone.

New gravity data were acquired and combined with previous existing databases to obtain Bouguer anomaly and residual anomaly maps of the study area. Six serial gravity-constrained cross sections have been built using available geological maps, previous published works, new geological and gravity data and 2.5D gravity modelling. Density values for gravity modelling were derived from 231 laboratory measurements of rock samples collected in the field from non-weathered outcrops that include all rock types outcropping in the study area. The residual anomaly map shows a good correlation between basement thrust sheets and gravity highs whereas negative anomalies seem to correspond to (1) Mesozoic basins, (2) Triassic evaporites and (3) Late Variscan igneous bodies. The 2.5D gravity modelling along the six cross sections highlights: (i) strong along-strike variations on the gravity signal due to lateral differences of the surficial and subsurface occurrence of Triassic evaporites, (ii) different geometry at depth of the Late Variscan igneous bodies outcropping in the study area and (iii) geometric lateral variations of the basement thrust sheets and their relationship with the Mesozoic-Cenozoic units.

How to cite: Soto, R., Clariana, P., Ayala, C., Casas-Sainz, A. M., Román-Berdiel, T., Margalef, A., Oliva-Urcia, B., Pueyo, E. L., Beamud, E., Rey-Moral, C., and Rubio, F.: Serial gravity-constrained cross-sections in the Central Pyrenees validating its structural style, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7183, https://doi.org/10.5194/egusphere-egu2020-7183, 2020.

EGU2020-19420 | Displays | TS7.8

Ambient noise tomography of the Central Cantabrian Mountains (NW Spain). New insights from the GEOCANTABRICA-COSTA seismic network.

Jorge Acevedo, Gabriela Fernández-Viejo, Sergio Llana-Fúnez, Carlos López-Fernández, Luis Pando, Diego Pérez-Millán, Jordi Díaz, and Mario Ruiz

The Cantabrian Mountains (NW Spain) are an Alpine chain that was formed as a result of the collision between Iberia and Europe in the Cenozoic. In their central sector, the uplift of the orogen led to the exhumation of a block of Variscan -Paleozoic- basement, the reactivation of Variscan structures and the formation of new E-W oriented fractures. Moreover, the formation of the Cantabrian Mountains involved the development of a crustal root with a thickness of 45-55 km that decreases up to 30-35 km towards the west. The thickening occurs preferentially in the crust that had previously been extended during the two main rifting episodes that affected this area in the Mesozoic. At the surface, the limit between the normal and the thickened crust roughly coincides with the trace of the Ventaniella fault, a subvertical crustal structure that runs for more than 400 km both inland and offshore.

In order to obtain new insights from this complex region, it was installed a network (GEOCANTÁBRICA-COSTA, doi:10.7914/SN/YR_2019) of 13 broadband stations covering an area of 160x80 km (~40 km spacing) for 8 months. The phase cross-correlation (PCC) processing technique was used to cross-correlate daily records of the 78 station pairs. After stacking the cross-correlograms, the empirical Green’s functions and the dispersion curves were obtained. Finally, a Rayleigh wave group velocity tomography was performed, retrieving the seismic signature of the Variscan crust and allowing us to extend to the north our previous seismic ambient noise tomography and complete the tomographic model of the central Cantabrian Mountains. To reveal the structure beneath the seismic stations, we also performed ambient noise auto-correlations, successfully retrieving body-wave reflections from the crust-mantle boundary that provide new information about the limits of the crustal root.

The study area presents a lingering, low-magnitude intraplate seismic activity that increases from east to west and extends into the continental shelf. The Ventaniella fault also acts as a seismic barrier to the propagation of earthquakes towards the east while provides nucleation sites along its trace. Thus, another objective of this study was to detect and relocate the local seismicity of the Cantabrian Mountains and the Cantabrian margin activity in particular. Our preliminary catalogue of events, obtained from the automatic analysis of the real-time seismic data with SeiscompP3, comprises 54 local earthquakes. Seven of them have their epicentres in the Cantabrian margin and, as expected, all were located to the west of the Ventaniella fault.

How to cite: Acevedo, J., Fernández-Viejo, G., Llana-Fúnez, S., López-Fernández, C., Pando, L., Pérez-Millán, D., Díaz, J., and Ruiz, M.: Ambient noise tomography of the Central Cantabrian Mountains (NW Spain). New insights from the GEOCANTABRICA-COSTA seismic network., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19420, https://doi.org/10.5194/egusphere-egu2020-19420, 2020.

EGU2020-5688 | Displays | TS7.8

Constraining the geometry at depth of La Maladeta and Andorra-Mont Louis granites (Central Pyrenees) through gravity modelling

Conxi Ayala, Pilar Clariana, Ruth Soto, Joan Martí, Aina Margalef, Emilio Pueyo, Félix Rubio, Carmen Rey-Moral, Nuria Bach, Stefania Schamuells, and Jordi Cirés

In the Central Pyrenees, where density contrast between the Paleozoic rocks and the intruded granitic bodies is measurable, geological cross-sections constrained with gravity data help to unravel the subsurface geometry of the granites.

With this goal in mind, during 2018 and 2019 several gravimetric surveys were carried out in the Central Pyrenees to improve the existent spatial resolution of the gravity data from the databases of the Spanish and Catalan Geological Surveys, especially in La Maladeta and Andorra Mont-Louis granites’ area. After the gravity reductions, we obtained the Bouguer gravity anomaly from which we calculated the residual gravity anomaly by subtracting a third degree polynomial which represents the regional anomaly in agreement with the geometry of the crust in this region.

The gravimetric response over La Maladeta and Andorra Mont-Louis granites is markedly dissimilar pointing out differences in the composition and geometry at depth of the two granites. La Maladeta granite shows a gravimetric zonation with small variations in its amplitude from one zone to the next, consistent with small lateral changes in its composition, predominantly granodioritic. By contrast, the Andorra Mont-Louis pluton is characterized by a relative minimum suggesting a more granitic composition.

With respect to the inferred geometry at depth, the results obtained from gravity modelling show that the La Maladeta granite displays a laccolithic shape with its basal contact deeping to the North whereas the Andorra Mont-Louis granite has a more batholitic shape. Although the emplacement age of both granites is similar (Late Carboniferous – Early Permian), their different geometry at depth suggests that either (1) their emplacement mechanisms were different or (2) the subsequent Alpine orogeny affected both granites in different ways better preserving the original geometry of the Andorra Mont-Louis granite.

How to cite: Ayala, C., Clariana, P., Soto, R., Martí, J., Margalef, A., Pueyo, E., Rubio, F., Rey-Moral, C., Bach, N., Schamuells, S., and Cirés, J.: Constraining the geometry at depth of La Maladeta and Andorra-Mont Louis granites (Central Pyrenees) through gravity modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5688, https://doi.org/10.5194/egusphere-egu2020-5688, 2020.

EGU2020-13505 | Displays | TS7.8

Mechanical controls on recumbent folding from 2D numerical simulations. Applications to the Eaux-Chaudes fold nappe (west-central Pyrenees)

Marc Guardia, Albert Griera, Boris Kaus, Andrea Piccolo, and Antonio Teixelll

Tectonic nappes are typical structural features in orogenic belts worldwide and include two end members, namely thrust nappes and fold nappes. Although the geometry and kinematics of these are relatively well constrained after more than a century of studies, the mechanics are still incompletely understood.

In recent years, numerical modelling has become a powerful tool to unravel the mechanics of fold nappes. Studies have been carried out particularly with application to the Helvetic nappes of the Alps, highlighting the relevance of the mechanical stratigraphy involved in the deformation. The Helvetic nappes consist of a superposition of thrust nappes over recumbent fold nappes. It was developed due to the closure of half-graben basins and the extrusion of their sedimentary infill under dominantly ductile deformation conditions. Competence contrast between stiff (i.e. limestones) and weak layers (i.e. shales) played a key role in controlling the deformation style.

Recently, a similar structure has been reported in the Pyrenees. The Eaux-Chaudes massif (western Axial Zone, Pyrenees) is a basement-cored recumbent anticline with a kilometric, long reverse limb showing ductile deformation in Mesozoic carbonates, much in style of the Helvetic nappes of the Alps. The reverse limb is in thrust contact over an autochthonous Mesozoic cover with similar stratigraphy, and hence its development cannot be explained by basin infill extrusion. The fold structure shows a strain increase towards the reverse limb and is overlain by the Lakora basement thrust sheet. The general stratigraphic succession consists of Upper Cretaceous limestones and shales lying unconformably over Paleozoic metasediments or Lower Triassic sandstone pods and featuring inliers of Upper Triassic Keuper facies and ophites. The autochthonous succession lies on top of a late Variscan granitic pluton, both showing very low-strain during Alpine deformation.

Here, we employ the thermomechanical staggered finite difference code LaMEM (Kaus et al., 2016) to perform 2D parametric simulations in order to study changes in deformation style between thrust nappes (plastic/brittle-localisation) and recumbent fold nappes (viscous/ductile-distributed). The simulations are performed using a linear viscoelastoplastic rheology with the Drucker-Prager criterion for plasticity. The initial setup consists of two domains separated by a basement perturbation and both overlain by a lower stiff layer, representing the Upper cretaceous limestones. In the right-bottom half domain there is a stiff body representing the Eaux-Chaudes pluton, while in the bottom-left domain there are weak layers representing the shale-rich Paleozoic basement. Over the stiff layer, there is a multilayer of weak and stiff layers mimicking the Lakora thrust sheet, which provides the overburden and confining pressure.

Preliminary results show a strong control of the cohesion and viscosity of the lower stiff layer on the deformation style developed. For simulations with low cohesion values, there is an enhancing of strain localization and thrust nappe development is favoured, whereas high cohesion values tend to spatially distribute the deformation and facilitate the development of fold nappes. Further simulations are in progress to test these preliminary results.

 

Kaus, B., Popov, A., Baumann, T.S., Püsök, A.E., Bauville, A., Fernandez, N and Collignon, M. (2016): In: NIC Symposium, Proceedings, 48.

How to cite: Guardia, M., Griera, A., Kaus, B., Piccolo, A., and Teixelll, A.: Mechanical controls on recumbent folding from 2D numerical simulations. Applications to the Eaux-Chaudes fold nappe (west-central Pyrenees), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13505, https://doi.org/10.5194/egusphere-egu2020-13505, 2020.

Tectono-stratigraphic evidence of salt tectonics during Jurassic extension in the Corbières nappe, Eastern Pyrenees, France

 Antoine Crémades1, Mary Ford1 et Julien Charreau1

1 CRPG, UMR 7358 CNRS, Université de Lorraine, Vandoeuvre‐lès‐Nancy, France

 

In this work, we investigate the tectono-stratigraphic architecture of a major transfer zone in the Mesozoic Pyrenean rift system and its subsequent alpine inversion. The NE-SW to NS-oriented Corbières transfert zone (70km long) lies between the EW-oriented Pyrenean (400km long) and Provençal (300km long) segments of the Pyrenean orogen. This salt-rich rift transfert zone was inverted during the Pyrenean orogenesis (late Santonian - Early Miocene). During the Oligo-Miocene, most of the transfert zone was further reactivated to form the northern margin of the Gulf of  Lion rift. Thus, only the lateral equivalent of the North Pyrenean Zone outcrops along the western French Mediterranean coast. Unlike the the North Pyrenean Zone, which is a narrow fold and thrust belt, this proximal part of the tranfert zone was previously interpreted as a large thrust sheet (the Corbières Nappe, 70km long) corresponding to Mesozoic cover decoupled from Variscan basement along a thick level of Upper Triassic evaporites (Keuper, 0m to 655m) and emplaced onto the Aquitaine retro-foreland basin during the Priabonian, at the end of Pyrenean orogenesis. 

Our detailed study of the tectono-stratigraphic architecture of the Corbières Nappe demonstrates for the first time the existence of major Jurassic extensional structures linked to strong halokinetic activity. These structures were previously interpreted as compressional and Pyrenean in origin: (1) The Treilles Fault is a N110 trending, shallowly S-SW dipping fault at least 12 km long, which roots on Triassic evaporites. This normal fault with 2.8 km of displacement cuts the Corbières Nappe into two distinct structural units. A 3D hangingwall dip fan associated with stratal thickening toward the fault demonstrates that this extensional fault was active during the full Jurassic and maybe during the early Cretaceous. (2) In the footwall of the Treilles Fault, the Valdria NE-SW trending fold pair was previously interpreted as a Pyrenean compressional fold. Detailed mapping of 3D thickness and geometry variations in the Jurassic series around these folds reveals NW verging syn-sedimentary folding during the Jurassic. We propose that this folding is linked to the growth of the Feuilla Keuper diapir that lies immediately to the south. The highlighting of these complex halokinetic and extensional structures of Early Jurassic to Early Cretaceous age have major implications for (1) the Pyrenean and Tethysian Mesozoic extensional systems in the eastern Pyrenees and (2) their impact as a major regional inheritance in later orogenic phases, in particular in the evolution of the Pyrenean Corbières Nappe.

 

How to cite: Crémades, A., Ford, M., and Charreau, J.: Tectono-stratigraphic evidence of salt tectonics during Jurassic extension in the Corbières nappe, Eastern Pyrenees, France, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6716, https://doi.org/10.5194/egusphere-egu2020-6716, 2020.

EGU2020-13764 | Displays | TS7.8

A reconstruction of Iberia accounting for West Tethys/North Atlantic kinematics since the Late Permian-Triassic

Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, and Riccardo Asti

The West European kinematic evolution results from the opening the West Neo-Tethys and the Atlantic oceans since the Late Paleozoic and the Mesozoic, respectively. Geological evidence suggests that the Iberian domain was strongly overprinted by the propagation of these two rift systems and is therefore key to significantly advance our understanding of the regional plate reconstructions. The Late Permian-Triassic tectonic evolution of Iberian rift basins show that they have accommodated a significant component of extension, which remain however difficult to quantify. This tectonic stage is therefore often neglected in most plate kinematic models, leading to the overestimation of the movements between Iberia and Europe during the subsequent Mesozoic (Early Cretaceous) rift phase.

We compile seismic profiles and geological constraints along the North Atlantic margins and over Iberia, as well as existing kinematic and paleogeographic reconstructions to build a coherent, global kinematics model that consider both the Neo-Tethyan and Atlantic evolutions. We use tectonic subsidence analyses from the literature to quantify the apparent extension during the Late Permian to Early Cretaceous extensive phase. We show that an improved knowledge of the distribution in space and time of the deformation between Europe and the Iberian domain can be obtained for the Late Permian-Mid Cretaceous period. Our model differs from standard models that consider left-lateral strike-slip movement localized in the northern Pyrenees. The Europe-Iberia plate boundary rather forms a domain of distributed and oblique extension made of two rift systems, in the Pyrenees and in the Iberian intra-continental basins. This reconstruction emphasizes the need for an Ebro block and the significant strike-slip movement south of the Ebro block that is however minimized by accounting for the previous Late Permian-Triassic extension. We propose that these two rifts accommodated the same order of magnitude of strike-slip movement during the evolution of the Iberia-Europe (diffuse) plate boundary.

Our reconstructions reveal that the Late Permian-Triassic rift and magmatic evolution of the western Europe, at the western tip of the Neo-Tethyan Ocean, controlled the subsequent localization of the Atlantic rift. Our study provides a significant advance that allows reconciling the main geological observations, including the lack of major strike-slip faulting and a large oceanic basin in northern Iberia. The temporal overlap between Late Variscan magmatism and the Neo-Tethyan extension is not directly addressed in this contribution but its impact on the Earth’s surface evolution and topography during initial rifting certainly requires further investigations.

How to cite: Angrand, P., Mouthereau, F., Masini, E., and Asti, R.: A reconstruction of Iberia accounting for West Tethys/North Atlantic kinematics since the Late Permian-Triassic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13764, https://doi.org/10.5194/egusphere-egu2020-13764, 2020.

TS7.9 – Geodynamics of convergent systems: tectonics, metamorphism and rheology

EGU2020-10317 | Displays | TS7.9

Strike-Slip Enables Subduction Initiation Beneath a Failed Rift: New Seismic Constraints from Puysegur Margin, New Zealand

Brandon Shuck, Harm Van Avendonk, Sean Gulick, Michael Gurnis, Rupert Sutherland, Joann Stock, Jiten Patel, Erin Hightower, Steffen Saustrup, and Thomas Hess

Critical ingredients and conditions necessary to initiate a new subduction zone are debated. General agreement is that subduction initiation likely takes advantage of previously weakened lithosphere and may prefer to nucleate along pre-existing plate boundaries. To evaluate how past tectonic regimes and lithospheric structures might facilitate underthrusting and lead to self-sustaining subduction, we present an analysis of the Puysegur Margin, a young subduction zone with a rapidly evolving tectonic history.

 

The Puysegur Margin, south of New Zealand, currently accommodates convergence between the Australian and Pacific plates, exhibits an active seismic Benioff zone, a deep ocean trench, and young adakitic volcanism on the overriding plate. Tectonic plate reconstructions show that the margin experienced a complicated transformation from rifting to seafloor spreading, to strike-slip motion, and most recently to incipient subduction, all in the last ~45 million years. Details of this tectonic record remained incomplete due to the lack of high-quality seismic data throughout much of the margin.

 

Here we present seismic images from the South Island Subduction Initiation Experiment (SISIE) which surveyed the Puysegur region February-March, 2018. SISIE acquired 1252 km of deep-penetrating multichannel seismic (MCS) data on 7 transects, including 2 regional dip lines coincident with Ocean Bottom Seismometers (OBS) deployments which extend (west to east) from the incoming Australian plate, across the Puysegur Trench and Puysegur Ridge, over the Solander Basin and onto the continental Campbell Plateau margin.

 

We integrate pre-stack depth migrated MCS profiles with OBS tomography models to constrain the tectonic development of the Puysegur Margin. Based on our results we propose the following Cenozoic evolution: (1) The entire Solander Basin contains thinned continental crust which formed from orthogonal stretching between the Campbell and Challenger plateaus during the Eocene-Oligocene. This phase of rifting was more pronounced to the south, producing thinner crust with abundant syn-rift volcanism across a wider rift-basin, in contrast to the relatively thicker crust, moderate syn-rift volcanism and narrower rift basin in the north. (2) Strike-slip deformation subsequently developed along Puysegur Ridge, west of the locus of rifting and within relatively unstretched continental lithosphere. This young strike-slip plate boundary translated unstretched crust northward causing an oblique continent-collision zone, which led to a transpressional pattern of distributed left-stepping, right-lateral faults. (3) Subduction initiation was aided by large density contrasts as oceanic lithosphere translated from the south was forcibly underthrust beneath the continent-collision zone. Early development of oblique subduction generated modest and widespread reactivation of faults in the upper plate. (4) Present-day, the Puysegur Trench shows a spatiotemporal transition from nearly mature subduction in the north to a recently initiated stage along the southernmost margin, requiring a southward propagation of subduction through time.

 

Our new seismic images suggest subduction initiation at the Puysegur Margin was assisted by inherited buoyancy contrasts and structural weaknesses that were imprinted into the lithosphere during earlier phases of continental rifting and strike-slip along the developing plate boundary. The Puysegur Margin demonstrates that forced nucleation along a strike-slip boundary is a viable subduction initiation model and should be considered throughout Earth’s history.

How to cite: Shuck, B., Van Avendonk, H., Gulick, S., Gurnis, M., Sutherland, R., Stock, J., Patel, J., Hightower, E., Saustrup, S., and Hess, T.: Strike-Slip Enables Subduction Initiation Beneath a Failed Rift: New Seismic Constraints from Puysegur Margin, New Zealand, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10317, https://doi.org/10.5194/egusphere-egu2020-10317, 2020.

EGU2020-3661 | Displays | TS7.9

Evidence for Slab Rollback, Back-Arc Rifting and Arc Dismemberment During Assembly of Western Laurentia

Eneanwan Ekpo, David Eaton, and Rajeev Nair

The crystalline crust that underlies the Western Canada Sedimentary Basin in northern Alberta is composed of tectonic domains that accreted to the margin of the Archean Rae province of western Laurentia, ca. 2.1-1.9 Ga. Geophysical data indicate that the basement crust in this region hosts a vast, mid-crustal reflection sequence (Winagami Reflection Sequence) interpreted as assemblage of mafic sills and an unusually wide domain of Paleoproterozoic magmatic arcs (Taltson Magmatic Zone). The latter are interpreted to have formed during Paleoproterozoic tectonic assembly through near-synchronous closure of small oceanic basins along subduction systems of opposing polarity. Here, we introduce a new tectonic model, which postulates that the Taltson Magmatic Zone represents collated fragments that formed within a single subduction system. Comparison with modern analogs suggest that observed temporal relationships and present-day configuration of Paleoproterozoic arcs can be explained by plate-margin processes of slab rollback and back-arc rifting. Our model is consistent with re-interpreted basement-drillcore petrology, provides a genetic link for the association between magmatic arcs and the Winagami sill complex, explains an extraordinary fit between aeromagnetically defined “conjugate margins” and provides a tectonic framework for the origin of the enigmatic low-δ18O magmatic zone (Kimiwan anomaly) along the southern Chinchaga domain.

How to cite: Ekpo, E., Eaton, D., and Nair, R.: Evidence for Slab Rollback, Back-Arc Rifting and Arc Dismemberment During Assembly of Western Laurentia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3661, https://doi.org/10.5194/egusphere-egu2020-3661, 2020.

EGU2020-10250 | Displays | TS7.9 | Highlight

How serpentine peridotites can leak through subduction channels

Paola Vannucchi, Jason Morgan, Alina Polonia, and Giancarlo Molli

Serpentinized peridotites are weaker than other mantle rocks, with an internal friction coefficient μi~0.3 vs. ~0.6. Therefore they often promote strain localization. Serpentinite is also considerably lower in density (r=2.5-2.6 g/cm3) than most rocks. In the presence of denser material, its buoyancy can mobilize upwelling masses and aid exhumation. Serpentinized peridotites can therefore influence the evolution of tectonic plate boundaries: their presence enhances shear processes, and serpentinite-hosted faults can evolve into zones of permanent lithospheric weakness that can be reactivated during different tectonic phases. Fault reactivation also provides paths for fluid infiltration and upward remobilization of serpentinized peridotites that can also interact diapirically with overlying rocks.

We have compiled observations that document the near-surface journey of serpentinized peridotites that are exhumed during rifting and continental break-up, reactivated as buoyant material during subduction, and ultimately emplaced as ‘ophiolite-like’ fragments within orogenic belts. This lifecycle is particularly well documented in former Tethys margins that now subduct beneath the Calabrian Arc. Here recent studies describe serpentinized peridotites that diapirically rose from a subducting lithospheric slab to be emplaced into the accretionary prism in front of the continental arc. We show that this newly recognized mode of subduction-linked serpentine diapirism from the downgoing lithospheric slab is consistent with the origin of some exhumed mantle rocks in the Apennines, with these assemblages having been ultimately emplaced into their present locations during Alpine Orogenesis. Transfer of serpentinized peridotites from the mantle lithosphere of the subducting slab to the overriding plate motivates the concept of a potentially “leaky” subduction channel.  In addition to passing vertically through a shallow subduction channel, weak serpentine bodies may also rise into and preferentially migrate within the intraplate shear zone, leading to strong lateral heterogeneities in its composition, mechanical strength and seismic characteristics.

How to cite: Vannucchi, P., Morgan, J., Polonia, A., and Molli, G.: How serpentine peridotites can leak through subduction channels, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10250, https://doi.org/10.5194/egusphere-egu2020-10250, 2020.

EGU2020-12696 | Displays | TS7.9

The rheology of talc at high P-T conditions with implications for subduction-zone dynamics

Yuval Boneh, Matej Pec, and Greg Hirth

Subduction-zone dynamics, kinematics, and seismicity are strongly affected by the rheology of hydrous phyllosilicates. Although there is growing evidence for hydrous minerals in the subducting plate, mantle wedge, and the interface between the plates, we are continuing to learn more about the rheological behavior of phyllosilicates at the relevant pressures. Talc is stable to depths of ≈100 km and has been found in fault rocks and subduction-zones mélanges as the product of metasomatism and/or mineral breakdown (e.g., breakdown of antigorite). The frictional strength of talc under low to intermediate pressures (up to ~400 MPa) was studied and demonstrated some of the mineral’s unique rheology; however, there is a lack of data for pressures of P > 0.5 GPa. Here we present the first rheological and microstructural analysis of experimentally deformed talc under pressure and temperature conditions relevant for the rheology of a subducted slab or mantle wedge.

We analyzed the mechanical and microstructural evolution of 15 samples of natural talc cylinders deformed using a high P-T deformation ‘Griggs’ type apparatus. We used natural samples comprise of >98 % talc and analyzed the post-mortem microstructure and chemistry of the samples using optical microscopy, scanning electron microscopy, and electron microprobe. The experiments were performed at confining pressures from 0.5 to 2 GPa and temperatures of 25 to 700°C; all within the talc stability field. Results show that the strength of talc at 25°C or 400°C is pressure-dependent up to the highest pressure tested (2 GPa). This behavior is attributed to brittle/semi-brittle mechanisms. At higher temperatures (500-700° C) and above a pressure threshold the strength becomes independent of pressure (e.g., when P > 1 GPa at T = 600 ° C), indicating that dilatant cracking is suppressed at these pressures. However, microstructural analysis indicates that fracturing is evident in all samples at all conditions examined. Interestingly, samples deformed at higher temperatures (>600°C) show more localized deformation. A synthesis of results from this study and previously published studies demonstrate that the strength of talc only becomes temperature-dependent at higher pressures. It is suggested that an increasing P-T geotherm of a subducted slab is likely to induce weakening and localization of talc-rich layers with possible implications for the mechanism to induce/hinder regional seismicity and affect the plate-coupling between the subducted and riding plates.   

How to cite: Boneh, Y., Pec, M., and Hirth, G.: The rheology of talc at high P-T conditions with implications for subduction-zone dynamics , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12696, https://doi.org/10.5194/egusphere-egu2020-12696, 2020.

EGU2020-11073 | Displays | TS7.9 | Highlight

Up-scaling eclogitization : from experimental and natural aggregates behaviours to seismological signatures

Loic Labrousse, Incel Sarah, Zertani Sascha, Baisset Marie, Kaatz Lisa, Schubnel Alexandre, John Timm, Andersen Torgeir B., Tilmann Frederik, Gasc Julien, Moulas Evangelos, Schmalholz Stefan, Vrijmoed Johannes C., and Renner Joerg

Eclogite formation in the subducting crust was the first metamorphic transformation to be acknowledged as important in the dynamics of convergent plate boundaries. It is indeed expected to affect the mass distribution via density change, but it also influence the fluid content of crustal and possibly lithospheric wedges; both density and fluids being first order in values measured by passive geophysical imaging such as tomography of receiver functions. Recent high accuracy focal mechanism solutions showing singular signatures in deep orogens actually imply that eclogitization could also have a signature in the seismological source signals, and hence have an impact at much shorter time-scales. This presentation aims at bridging what we know from the field and the lab at smaller time and space scales, to what we observe at larger scales in collision zones. Field-based studies show the ways a pristine rock can evolve from metastable to fully eclogitized from the thin section to the kilometre scale. More than the contrast between eclogitized and non-eclogitized domains, the eclogitization front itself is expected to be detected in the geophysics, especially when driven by strain. Indeed strain-assisted eclogitization develops a characteristic shear zone network pattern with a significant anisotropy. This network itself evolves with the eclogitization progress. The observed progressive widening and increasing connectivity of eclogite-facies shear zones with increasing fluid availability could actually be controlled by the transient properties of the newly formed assemblages, inducing fluid pressure gradients for instance. In this context it appears that the competition between reaction kinetics and strain-rate is a key factor. This is also the case at shorter time scales. Experimental studies show that strain of metastable assemblages in the eclogite facies is more likely to lead to mechanical instabilities for intermediate reaction kinetics, implying again that not the eclogite but the eclogitization rate is the smoking gun. Eclogitization of plagioclase-bearing rocks is the finite result of a large set of reactions involving different chemical subsystem (Na or Ca end-members, with or without fluid available), not reacting at the same pace. Further work is therefore needed on the kinetics of the different reactions and their interactions to distinguish the one(s) that controls the eclogitization front signature, and hence improve the seismological imaging acuity.

How to cite: Labrousse, L., Sarah, I., Sascha, Z., Marie, B., Lisa, K., Alexandre, S., Timm, J., Torgeir B., A., Frederik, T., Julien, G., Evangelos, M., Stefan, S., Johannes C., V., and Joerg, R.: Up-scaling eclogitization : from experimental and natural aggregates behaviours to seismological signatures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11073, https://doi.org/10.5194/egusphere-egu2020-11073, 2020.

The origin of earthquakes in the lower crust at depth of 20-40 km, where dominantly ductile deformation is expected, is highly debated. Exhumed networks of lower crustal coeval pseudotachylytes (quenched frictional melt produced during seismic slip) and mylonites (produced during the post- and interseismic viscous creep) provide a snapshot of the earthquake cycle at anomalously deep conditions in the crust. Such natural laboratories offer the opportunity to investigate the origin and the tectonic setting of lower crustal earthquakes.

The Nusfjord East shear zone network (Lofoten, northern Norway) represents an exhumed lower crustal earthquake source, where mutually overprinting mylonites and pseudotachylytes record the interplay between coseismic slip and viscous creep (Menegon et al., 2017; Campbell and Menegon, 2019). The network is well exposed over an area of 4 km2 and consists of three main intersecting sets of ductile shear zones ranging in width from 1 cm to 1 m, which commonly nucleate on former pseudotachylyte veins. Mutual crosscutting relationships indicate that the three sets were active at the same time. Amphibole-plagioclase geothermobarometry yields consistent P-T estimates in all three sets (700-750 °C, 0.7-0.8 GPa). The shear zones separate relatively undeformed blocks of anorthosite that contain pristine pseudotachylyte fault veins. These pseudotachylytes link adjacent or intersecting shear zones, and are interpreted as fossil seismogenic faults representing earthquake nucleation as a transient consequence of ongoing, localised aseismic creep along the shear zones (Campbell et al., under review).

The coeval activity of the three shear zone sets is consistent with a local extensional setting, with a bulk vertical shortening and a horizontal NNW-SSE extension. This extension direction is subparallel to the convergence direction between Baltica and Laurentia during the Caledonian Orogeny, and with the dominant direction of nappe thrusting in the Scandinavian Caledonides. 40Ar‐39Ar dating of localized upper amphibolite facies shear zones in the Nusfjord area with similar orientation to the Nusfjord East network yielded an age range of 433–413 Ma (Fournier et al., 2014; Steltenpohl et al., 2003), which indicates an origin during the collisional (Scandian) stage of the Caledonian Orogeny.

We propose that the Nusfjord East brittle-viscous extensional shear zone network represents the rheological response of the lower crust to the bending of the lower plate during continental collision. (Micro)seismicity in the lower crust in collisional orogens is commonly localized in the lower plate and has extensional focal mechanisms. This has been tentatively correlated with slab rollback and bending of the lower plate (Singer et al., 2014). We interpret the Nusfjord East shear zone network as the geological record of this type of lower crustal seismicity.

How to cite: Menegon, L., Campbell, L., Fagereng, Å., and Pennacchioni, G.: The Nusfjord exhumed earthquake source (Lofoten, Norway): deep crustal seismicity driven by bending of the lower plate during continental collision, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7129, https://doi.org/10.5194/egusphere-egu2020-7129, 2020.

Shortening of Archaean and Paleoproterozoic continental lithospheres: large strains, but no orogeny

 

 

Denis Gapais1, Jonathan Poh1, Philippe Yamato1, Thibault Duretz1, Florence Cagnard2

 

  • (1) Géosciences Rennes, UMR CNRS 6118, Université de Rennes 1, 35042 Rennes cedex, France

 

  • (2) Bureau de Recherche Géologique et minière, 3 avenue Claude-Guillemin, BP 36009 45060 Orléans Cedex 2, France

 

 

Denis.gapais@univ-rennes1.fr, jonathanpoh87@gmail.com, philippe.yamato@gmail.com, thibault.duretz@univ-rennes1.fr, f.cagnard@brgm.fr

 

 

In many ancient deformation belts of Archaean and Paleoproterozoic age (e.g. Terre Adélie in East Antarctica, Finnish Svecofennides in Southern Finland, Murchison Belt in South Africa, Thompson Nickel Belt in Manitoba, Dharwar Craton in western India, Abitibi sub-Province in Québec, Trans-Hudson belt of Canada, Trans-Amazonian belt of Suriname), latest recorded deformations are compressive or transpressive. In these belts that involved hot and weak continental crusts, deformations are distributed with basically vertical tectonics and important crustal thickening. On the other hand, there is no evidence of syn-orogenic extension or late-orogenic collapse, as classically observed in modern orogens where extensional detachments are widespread.

Analogue and numerical models emphasize that shortening of weak and hot lithospheres basically favour downward motions, which result in limited topographies. Field evidence further point to metamorphic isogrades rather parallel to the Earth surface at belt scale. Hence, metamorphic conditions are rather monotonous at the scale of individual belts, with limited metamorphic jumps and typical P-T paths with no significant adiabatic retrograde segments. Consistently, localized deep detrital sedimentary basins like foreland or intra-mountain basins, are not documented. Sedimentary records rather suggest distributed sedimentation processes. In addition, several lines of evidence tend to point out that cooling of ancient hot deformation belts was rather slow, which is consistent with distributed topographies and long-lasting erosion-driven exhumation processes.

 On these bases, we propose that gravity-driven collapse had no reason to occur in ancient hot deformation belts because important topographic gradients and orogeny could not develop as observed in modern mountain chains.

How to cite: Gapais, D.: Shortening of Archaean and Paleoproterozoic continental lithospheres: large strains, but no orogeny, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1496, https://doi.org/10.5194/egusphere-egu2020-1496, 2020.

Knowledge on the thermal state of orogens and subduction zones is crucial in trying to understand the processes that take place in these zones, since temperature controls, e.g., rock strength, metamorphic reactions and fluid flow. These are all critical parameters for the dynamics of orogens and subduction zones and conversely, these parameters feed back on the thermal state in various ways. We investigated an example of a former subduction zone, exposed in the central Tauern Window (Eastern Alps), with the aim of reconstructing its three-dimensional temperature variations.

Structural and petrological observations in the central Tauern Window reveal a tens-of-kilometre-scale sheath fold that formed under high-pressure (HP) conditions (ca. 2 GPa). The fold is a composite structure that isoclinally folded the thrust of an oceanic nappe derived from Alpine Tethys onto a unit of the distal European continental margin, also affected by HP conditions. This structural assemblage is preserved between two younger domes at either end of the Tauern Window. The domes are associated with temperature-dominated Barrow-type metamorphism that overprints the HP-metamorphism partly preserved in the sheath fold.

Using Raman spectroscopy on carbonaceous material (RSCM) on 100 samples from this area, we were able to distinguish domains with the original, subduction-related peak temperature conditions from domains that were overprinted during later temperature-dominated (Barrovian) metamorphism. The distribution of RSCM-temperatures in the Barrovian domains indicates a decrease of peak temperature with increasing distance from the centres of the thermal domes, both in map view and cross section. This represents a geotherm where paleo-temperature increases downward, in line with previous studies using, e.g., oxygen isotope fractionation and calcite-dolomite equilibria. However, we observe the opposite temperature trend in the lower limb of the sheath fold, viz., tendentially an upward increase in paleo-temperature. We interpret this inverted temperature domain as the relic of a subduction-related temperature field. Towards the central part of the sheath fold’s upper limb, measured temperatures increase to a maximum of ca. 520°C. Further upsection in the hanging wall of the sheath fold, temperatures decrease to where they are indistinguishable from the peak temperatures of the overprinting Barrovian metamorphism. Isograds (i.e. contours of equal peak-temperature) are oriented roughly parallel to the nappe contacts and lithological layering, which results in an eye-shaped concentric isograd pattern in cross-section. This reflects a sheath-like three-dimensional geometry of the isograds. We propose the following hypothesis to explain the subduction-related peak-temperature pattern: The pattern reflects sheath folding of a subduction-related temperature field. Possibly, sheath folding occurred during exhumation, after the equilibration at peak pressure and temperature conditions. The preservation of the pattern implies fast exhumation and cooling of the rocks.

How to cite: Groß, P., Pleuger, J., Handy, M. R., and John, T.: Three-dimensional temperature variations in a fossil subduction zone resolved by RSCM thermometry (Tauern Window, Eastern Alps), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8054, https://doi.org/10.5194/egusphere-egu2020-8054, 2020.

EGU2020-8378 | Displays | TS7.9 | Highlight

Deep subduction and exhumation of continental crust in the Alps

Nikolaus Froitzheim

The Adula Nappe in the Central Alps and the Pohorje Nappe in the Eastern Alps are among the highest-pressure metamorphic complexes in the Alps. In both cases, Variscan continental crust containing post-Variscan intrusions was subducted, during the Cenomanian-Turonian in the case of Pohorje and during the Eocene in the case of Adula.

The Pohorje Nappe is exceptional in that ultrahigh pressures of 3.0 to 4.0 GPa are recorded by different rocks contrasting in rheology: competent lenses of kyanite eclogite and garnet peridotite as well as the surrounding incompetent matrix of diamond-bearing paragneiss. If pressure had been strongly non-lithostatic, rheologically different rock types would be expected to record different pressures. This is not the case, which rather suggests near-lithostatic pressure and, consequently, subduction to >100 km depth. Lu-Hf ages for UHP metamorphism in eclogite and garnet peridotite are similar (c. 96–92 Ma). Paragneiss yielded Permian to Triassic zircon cores and Cretaceous (c. 92 Ma) rims grown during UHP metamorphism. Hence, the rocks were subducted and exhumed together as a coherent, although strongly deformed unit.

The Adula Nappe originated from the southern passive continental margin of Europe. It was buried in and exhumed from a south-dipping subduction zone after Europe-Adria continent collision. Previous interpretations as a tectonic mélange were based on the mixture of gneiss with eclogite and garnet peridotite lenses. However, the eclogites also record an older (Variscan) metamorphism and thus do not represent Mesozoic oceanic crust but pre-Alpine continental basement, just like the gneisses. The Alpine subduction culminated around 37 Ma. Alpine metamorphic pressures show a strong gradient from c. 1.2 GPa at the front of the nappe in the North to >3 GPa in garnet peridotite and eclogite in the southernmost part (e.g. Alpe Arami), over a north-south distance of only c. 40 km. In contrast to Pohorje, indications of UHP metamorphism have not yet been found in the gneissic matrix surrounding eclogite and peridotite. During exhumation, the nappe was intensely sheared and folded but stayed coherent and did not mix with the surrounding units.  The exhumation of the Adula from deep in the subduction zone is recorded by mylonitic shearing in the gneissic matrix. Structures, strain, and textures indicate strongly three-dimensional, non-plane-strain flow. Differential loading, not buoyancy, is proposed to have caused the exhumation.

The main results from these two case studies are: (1) Subduction of continental crust to mantle depth is real and not a misinterpretation of non-lithostatic pressure; (2) not all subducted units are mélanges but some stay coherent during subduction and exhumation.

How to cite: Froitzheim, N.: Deep subduction and exhumation of continental crust in the Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8378, https://doi.org/10.5194/egusphere-egu2020-8378, 2020.

EGU2020-21985 | Displays | TS7.9

The Cycladic subduction zone from birth to death: Insights into the subduction cooling rate conundrum

Thomas Lamont, Michael Searle, Richard White, Nick Roberts, Phillip Gopon, Jon Wade, and David Waters

The Attic-Cycladic Massif (ACM) preserves the entire evolution of a NE dipping subduction zone.  This includes the intra-oceanic subduction initiation associated with ophiolite obduction and formation of a metamorphic sole, to subduction-termination associated with burial and exhumation of the Cycladic continental margin to eclogite-blueschist facies conditions. The Tsiknias Ophiolite represents a piece of ca. 162 Ma Tethyan oceanic lower crust and mantle that was thrust towards the SW onto the ACM during a subduction initiation/ophiolite obduction event during the initial stages of oceanic closure. Beneath the Tsiknias Ophiolite lies a ~250 m thick sequence of amphibolites which represent the lower plate. These record an inverted metamorphic gradient at ca. 8.5 kbar reaching > 750°C at the top (associated with small-scale partial melting) and 600°C at the base and formed during high-grade metamorphism of ca. 190 Ma oceanic crust along the subduction zone interface beneath a major thrust fault (Tsiknias Thrust) under geothermal gradients of 30°C/km. U-Pb zircon dating of leucodioritic melt veins constrains the timing of metamorphism to ca. 74 Ma, which may correlate with the switch in the motion of the Nubian plate from transcurrent to convergent with respect to Eurasia. Highly deformed greenschist facies pelagic metasediments underlie the amphibolites suggesting an inverted lithological sequence. This can be explained by the zone of active thrusting propagating down structural level with ongoing subduction, such that underplated material became accreted to the base of the ophiolite. A Miocene aged greenschist-facies shear zone truncates the metamorphic sole rocks and metasediments, placing them directly against the Cycladic Blueschist Unit (CBU) associated with burial of the Cycladic continental margin down the same NE-dipping subduction zone some 25 Myr later. Lawsonite bearing eclogite and blueschist-facies rocks crop-out < 1 km structurally beneath the metamorphic sole and record P-T conditions of 23 kbar and 550°C at ca. 53-46 Ma. These rocks experienced variable retrogression through blueschist and then greenschist facies conditions. This retrogression was largely due to differential growth of lawsonite depending on bulk rock composition during prograde and peak metamorphic conditions causing some rocks to hold large quantities of water at peak conditions. Subsequent exhumation caused lawsonite to break down, hydrating the adjacent rocks and facilitating growth of secondary amphibole and epidote. These P-T-t conditions imply the CBU experienced geotherms of 6-7°C/km during peak metamorphism, which suggests the subduction zone cooled at an average rate of ca. 1.5°C/km/Myr between ca. 74 and ca. 53-46 Ma. This decrease in cooling rate raises two questions:  (1) is this cooling rate a result of thermal conduction due to the burial of cold old oceanic lithosphere following subduction initiation?, or (2) are the hot apparent geothermal gradients recorded in the metamorphic sole due to processes other than conduction from the overriding lithospheric mantle?. Our thermometry data from the Tsiknias metamorphic sole suggest that: (1) the maximum temperatures increase structurally upwards towards the Tsiknias Thrust, (2) peak metamorphic temperatures are superimposed on the structure, and (3) the length scale of heating is inconsistent with thermal conduction alone.

How to cite: Lamont, T., Searle, M., White, R., Roberts, N., Gopon, P., Wade, J., and Waters, D.: The Cycladic subduction zone from birth to death: Insights into the subduction cooling rate conundrum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21985, https://doi.org/10.5194/egusphere-egu2020-21985, 2020.

Rocks of the Easton Metamorphic Suite and San Juan Islands preserve an inverted metamorphic sequence with ultramafic rocks underlain by amphibolite and high-temperature blueschist juxtaposed above low-temperature blueschists. The sequence is interpreted as a metamorphic sole and younger accreted rocks that formed during and after the initiation of Farallon plate subduction beneath North America in Jurassic time. Thermobarometry, Ar/Ar dating, and structural observations constrain a relatively continuous deformation history and the rheology of rocks during subduction.  The data suggest HT metamorphism and accretion of oceanic crust at the initiation of subduction was followed by rapid cooling, underplating, exhumation, and later underplating and HP/LT metamorphism that persisted for >30 m.y. at a thermal steady state.

The earliest deformation event in the metamorphic sole at ~10 kbar, 760 °C formed S1A in amphibolite followed by cooling through hornblende closure temperature by 167 Ma. Strain was variable, with high strain in amphibolite interlayered with quartzite and quartz-mica schist and weaker S1A fabric in homogeneous blocks of amphibolite. Metasomatism due to contact with hot hangingwall rocks may have occurred before, during, and after S1A, as locally preserved blackwall assemblages occur at the contact of relatively undeformed amphibolite and ultramafic rocks, but metasomatic assemblages also overprint hornblende-dominated fabrics. Recrystallization during isoclinal folding of amphibolite formed a second fabric (S2A) at 590°C, >165 Ma.  S2A is mylonitic where amphibolite blocks are in contact with quartzite, quartz-mica schist, and tremolite schist; foliation in the schists is discordant to and wraps blocks.  The S2A event overlaps with the earliest metamorphism and strong deformation (S1N) of high-grade Na-amphibole schist at ~530°C, 10 kbar, which cooled below 400°C by 165 Ma. We interpret the Na-amphibole schist to have been underplated as a lower metamorphic sole during this event. Retrograde metamorphism, cooling, and partial uplift to ~350°C, 7 kbar by 157 Ma is evidenced by a crenulation cleavage in the Na-amphibole schist (S2N) during brittle deformation in the amphibolite and metasomatic schist evidenced by glaucophane-filled fractures in hornblende. 

Younger accretion and exhumation events occurred as HP/LT conditions persisted, including underplating of regional phyllite at ~7 kbar, ~320°C from ~154-142 Ma and metavolcanic greenschist-blueschist at ~7 kbar, 360°C at ~140 Ma.  Exhumation to ~5 kbar, ≤300˚C occurred between ~140-125 Ma during later deformation of greenschist-blueschist and underplating of structurally lower metagraywacke and greenstone.  Low-T fabrics are characterized by early pressure solution cleavage followed by tight to isoclinal folding and local shearing with weak to strong recrystallization in the second cleavage.  Strain partitioning at this stage was high, with non-coaxial strain focused in phyllite and flattening fabric dominant in metagraywacke.  No deformation is evident in the high grade rocks at this time, showing the locus of strain had stepped to lower structural levels.  Meso-scale and microstructures throughout the deformation history are consistent with initial high-T deformation and limited rheological differences between lithologies, rapidly followed by weakening of metasomatized rocks and lower-T ductile and ductile-brittle deformation where strong strength contrasts favored strain partitioning into weaker units.

How to cite: Schermer, E., Cordova, J., and Mulcahy, S.: Thermal and structural history of underplated rocks from subduction initiation to thermal steady state: Easton Metamorphic Suite and related units, WA, USA , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10164, https://doi.org/10.5194/egusphere-egu2020-10164, 2020.

EGU2020-4218 | Displays | TS7.9

Eventlike exhumation of high-grade blocks in the young Franciscan subduction zone

Daniel Rutte, Joshua Garber, Andrew Kylander-Clark, and Paul Renne

The metamorphic history of exhumed high-grade rocks provides invaluable insight into the thermomechanical processes of subduction zones. While subduction in most orogens has been terminated by continent collision entailing variably strong overprint of related units, the Franciscan Complex of California allows studying a >150 Myr long subduction history that started at ~175 Ma and ended by transformation into a transform plate boundary (San Andreas fault) without significant metamorphic overprint. The highest grade metamorphic rocks of the Franciscan Complex of California are found as blocks in serpentinite and shale matrix mélanges. They include amphibolites, eclogites, blueschists, and blueschist facies metasediments. These Franciscan mélanges inspired the subduction channel return-flow model, but other processes e.g., buoyancy-driven serpentinite diapirism have been argued to be concordant with our current understanding of their metamorphic history, too.

We investigate a suite of metabasite blocks from serpentinite and shale matrix mélanges of the Califonia Coast Ranges. Our new dataset consists of U-Pb dates of metamorphic zircon and 40Ar/39Ar dates of calcic amphibole and white mica. Combined with published geochronology, particularly prograde Lu-Hf garnet ages from the same blocks, we can reconstruct the timing and time scales of prograde and retrograde metamorphism of individual blocks. We find: (i) Exhumation from the eclogite-amphibolite facies occurred only in a short episode at 165­–160 Ma with an apparent southward younging trend. (ii) Exhumation of the blocks was uniform and fast in the eclogite-amphibolite facies with rates of 2–8 km/Myr. In the blueschist facies exhumation of the blocks was less uniform and slowed by an order of magnitude. (iii) The age of amphibole in a metasomatic reaction zone indicates that at least one amphibolite was enclosed in a serpentinite matrix by ~155 Ma. Considering the entire subduction zone system, the high-grade exhumation temporally correlates with a significant pulse of magmatism in the respective magmatic arc (Sierra Nevada) and termination of forearc spreading (Coast Range Ophiolite).

Our findings do not support a steady-state process that is continuously exhuming high-grade rocks. Instead the subduction zone system changed with an eventlike character resulting in exhumation of high-grade rocks enclosed in serpentinite.

How to cite: Rutte, D., Garber, J., Kylander-Clark, A., and Renne, P.: Eventlike exhumation of high-grade blocks in the young Franciscan subduction zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4218, https://doi.org/10.5194/egusphere-egu2020-4218, 2020.

EGU2020-12636 | Displays | TS7.9

Long-lived zircon growth in trapped eclogite

Martin Hand, Renee Tamblyn, Diana Zivak, and Tom Raimondo

The residence time of rocks within subduction channels provides a narrative on the physical processes that reflect the interplay between subduction rate and angle, coupling between the lower and upper plate and hydration of the mantle wedge.  In oceanic subduction systems, it is now recognised that rocks can reside within subduction channels for 10’s of millions of years.   These apparently long-lived durations of entrainment in the subduction channel probably require circulatory motions that recover material from terminal subduction and simple one-cycle exhumation.  In turn, these residence times can plausibly be used to deduce geodynamic variables that control the subduction system.

Establishing the duration a rock has been stored within a subduction environment typically requires application of multi-mineral geochronology coupled with considerations of closure systematics.  However because subduction environments are commonly fluid-rich, a mineral with great potential to reveal durations rocks can reside within subduction channels is zircon.  In subduction environments, several studies have documented apparently long-lived records of zircon growth, but seemingly have not recognised the potential for zircon to extract information on the duration a rock experienced subduction channel metamorphism.

Lawsonite-bearing eclogite in eastern Australia has a remarkable microstructural record of zircon growth.  Thin section-scale 1-3 micron resolution synchrotron mapping by X-ray Fluorescence (XFM) reveals the presence of 1000’s of micron-sized zircons which occasionally range up to 15 microns in size.  Zircon: (1) defines inclusion trails in garnets, (2) is a foliation defining matrix mineral and (3) occurs in retrograde chlorite-bearing veins that formed during post-eclogite blueschist paragenesis.   In-situ U-Pb geochronology shows that zircon growth occurred over the interval c. 520-400 Ma.  The zircons have hydrothermal characteristics with elevated LREE and simple tetragonal morphologies.  The apparently long duration of zircon growth is generally consistent with other geochronology from the eclogite: garnet Sm-Nd and Lu-Hf ages between 530-490 Ma, matrix foliation titanite U-Pb c. 450 Ma, and matrix foliation phengite Ar-Ar and Rb-Sr ages of 460-450 Ma.   

The small size of the zircons means they cannot be readily extracted using bulk rock methods.  Instead, fast, high-resolution imaging methods such as synchrotron XFM mapping coupled with spatially precise U-Pb-trace element analysis reveal a long history of HFSE element mobility resulting in microstructurally organised zircon growth that allows rock residence time in a subduction channel to be determined.

If lawsonite eclogite from eastern Australia records more than 100 Ma of zircon growth at eclogite-blueschist facies conditions, the single eclogite sample reflects around 5000-7000 km of consumption of the palaeo-pacific plate under the east Gondwana margin while remaining trapped in the subduction channel.

How to cite: Hand, M., Tamblyn, R., Zivak, D., and Raimondo, T.: Long-lived zircon growth in trapped eclogite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12636, https://doi.org/10.5194/egusphere-egu2020-12636, 2020.

EGU2020-2412 | Displays | TS7.9

Nd, Sr and stable isotope signatures of ancient methane-seep carbonates (Eocene, Washington, USA) as a record of incipient subduction at the Cascadia convergent margin

Michał Jakubowicz, Steffen Kiel, James Goedert, Jolanta Dopieralska, and Zdzislaw Belka

Stratigraphic and structural context of the early evolution of the Cascadia convergent margin, following major subduction reconfiguration associated with accretion of the igneous Siletzia terrane at 50−45 Ma, remains insufficiently understood. Here, we have applied a novel approach that uses combined Nd, Sr and stable isotope analyses of ancient methane-seep carbonates to constrain the early hydrogeological regime of the Cascadia margin. Analyses included the oldest-known seep deposits of Cascadia, formed during mid-Eocene time (42.5−40.5 Ma). A combination of exceptionally high εNd and low 87Sr/86Sr signatures observed in these carbonates consistently point to former interactions between the seeping fluids and mafic, igneous constituents of the forearc basement. Moderately negative δ13Ccarbonate values imply thermogenic origin of hydrocarbons at three out of four studied seeps, with likely contribution of biogenic methane at a single, landward-most site. When combined with structural constraints, the recorded signals point to discharges of fluids originating from deep portions of the young subduction wedge, and their channeled ascent through the Siletzia terrane. The results document the presence of a fluid expulsion system indicative of active convergence prior to maturation of typical arc magmatism in the Cascades at 40 Ma. The exceptionally pronounced role of exotic, 143Nd-enriched, 87Sr- and 18O-depleted fluids recorded for early Cascadia reflects its distinctive structural architecture, including the relatively thin sedimentary cover of the young forearc, its extensional tectonics, and the near-trench position of the volcanic terrane that the descending plate-derived fluids must have migrated through prior to reaching the seafloor.

How to cite: Jakubowicz, M., Kiel, S., Goedert, J., Dopieralska, J., and Belka, Z.: Nd, Sr and stable isotope signatures of ancient methane-seep carbonates (Eocene, Washington, USA) as a record of incipient subduction at the Cascadia convergent margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2412, https://doi.org/10.5194/egusphere-egu2020-2412, 2020.

EGU2020-22312 | Displays | TS7.9

Metamorphic P-T-t paths of high-pressure felsic and pelitic granulites from the Qianlishan Complex and tectonic implications for the Khondalite Belt in the North China Craton

Shangjing Wu, Changqing Yin, Donald W. Davis, Jian Zhang, Jiahui Qian, Hengzhong Qiao, Yanfei Xia, and Jingna Liu

The Khondalite Belt is an east-west-trending Paleoproterozoic continental-continental collisional belt, separating the Western Block of the North China Craton into the Yinshan Block and the Ordos Block from north to south. In the past years, extensive metamorphic and geochronological investigations for pelitic granulites have been carried out in the Khondalite Belt. However, felsic granulites attract just a little attention although they are widely exposed in the field and potentially preserve key high-pressure information, thus hindering better understanding of the tectonic processes and settings of this critical area. In this study, a link between ‘inter-layered’ felsic and pelitic granulites from the Qianlishan Complex of the Khondalite Belt was established based on comprehensive metamorphic analysis. Three distinct metamorphic stages including peak pressure (M1), post-peak decompression (M2) and late retrograde cooling (M3) stages have been identified in the felsic and pelitic granulites. Felsic granulites experienced high-pressure metamorphism up to ~12 kbar, while estimated peak pressure for pelitic granulites is 11-15 kbar. The decompression stage (M2) is represented by cordierite + sillimanite symplectite and/or cordierite coronae with conditions of 5.7-6.5 kbar/800-835 °C in pelitic granulites, and by garnet-sillimanite assemblages formed at conditions of >6.5 kbar/810-865 °C in felsic granulites. The later cooling stage (M3) is indicated by sub-solidus biotite-quartz-plagioclase symplectite and later melt crystallization. Clockwise P-T paths involving near-isothermal decompression and near-isobaric cooling were defined by these mineral assemblages and approximate P-T conditions, which suggest a continent-continent collisional event. SIMS zircon U-Pb dating yields a consistent metamorphic age of ~1.95 Ga from felsic granulites, interpreted as the timing of peak metamorphism. The results, combined with previously reported data, suggest that the Khondalite Belt formed by collision between the Yinshan and Ordos blocks at ~1.95 Ga.

How to cite: Wu, S., Yin, C., Davis, D. W., Zhang, J., Qian, J., Qiao, H., Xia, Y., and Liu, J.: Metamorphic P-T-t paths of high-pressure felsic and pelitic granulites from the Qianlishan Complex and tectonic implications for the Khondalite Belt in the North China Craton , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22312, https://doi.org/10.5194/egusphere-egu2020-22312, 2020.

NE China recorded the key tectonic evolution history of the Eurasian Plate from the Paleozoic-Mesozoic
collisional formation of the Central Asian Orogenic Belt to the Mesozoic subduction of the Paleo-Pacific Ocean.
To better understand this tectonic transition, it is crucial to constrain the time and pattern of the initial subduc-
tion of the Paleo-Pacific Ocean. Recently, someresearchers proposed that theMudanjiang Ocean existed between
the Songnen and Jiamusi blockswas part of the Paleo-Pacific Ocean. Here, through geochemical and geochrono-
logical studies on the widespread granitoids in the Lesser Xing'an-Zhangguangcai Range in the eastern Songnen
Block, we verify that these magmatic rocks show volcanic arc affinity with increased mantle contribution from
east to thewest of the range, likely related to a flattening subduction of theMudanjiang Ocean. In addition, a uni-
versal westward younging trend for over 70 Myr can be observed for the granitoids throughout the Lesser
Xing'an-ZhangguangcaiRange, indicating a long-lastingsubductionof theMudanjiangOcean.More interestingly,
the oldest ages of the granitoids in the east display a northward younging trend from275Ma to 218Ma, suggest-
ing that the subduction of the Mudanjiang Ocean had been initiated at latest by 275 Ma in the south and then
progressively expanded to the north. Based on these observations, we proposed a new tectonic evolution
model for theMudanjiang Ocean, i.e., a Triassic-Jurassicwestward scissor-like subduction and closure, to contrib-
ute to the understanding of the early subduction of the Paleo-PacificOcean

How to cite: Ge, M., Zhang, J., Li, L., and Liu, K.: A Triassic-Jurassic westward scissor-like subduction history of the Mudanjiang Ocean and amalgamation of the Jiamusi Block in NE China: Constraints from whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes of the Zhangguangcai Range granitoids, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-606, https://doi.org/10.5194/egusphere-egu2020-606, 2020.

EGU2020-3195 | Displays | TS7.9

Polyphase tectonothermal events recorded in metamorphic basement rocks from the northern Altyn Tagh, southeastern Tarim Craton

Zhongmei Wang, Chunming Han, Wenjiao Xiao, and Patrick Asamoah Sakyi

  Paleoproterozoic is a pivotal time for understanding the geochronological framework of the Tarim Craton. Located on the southeastern margin of the Tarim Craton, the northern Altyn Tagh is the main exposed region for Paleoproterozoic magmatic-metamorphic rocks. These rocks are diverse, diachronous and modified by multiple magmatic and/or metamorphic events. In this study, we performed systematic analyses on the amphibolite, felsic gneisses, and metasedimentary rocks in the Aketashitage area, southeastern Tarim Craton, including petrography, mineral chemistry, and whole-rock geochemistry, as well as in-situ zircon U-Pb ages and Hf isotopes, to examine the Paleoproterozoic magmatic-metamorphic events in the northern Altyn Tagh. Geochemically, the amphibolite and felsic gneisses in the Aketashitage area seemingly represent the typical bimodal associations of mafic and acidic volcanic rocks. In addition, the felsic gneisses are characterized by high Sr and low Y contents, with high Sr/Y and LaN/YbN ratios, and indistinctive Eu anomalies, closely resembling high-SiO2 adakites derived from subducted basaltic slab-melt. The palimpsest textures and geochemical features of the Aketashitage metasedimentary rocks suggest that their protoliths are argillaceous rocks. The amphibolite has a metamorphic age of 1.96 Ga, and the felsic gneisses yield crystallization ages of 2.54-2.52 Ga. For the metasedimentary rocks, the major age peaks of 2.72 Ga, 2.05 Ga and 1.97 Ga are consistent with the magmatic and/or metamorphic events in the study area. The minimum age peak suggests that the depositional age is no earlier than 1.97 Ga. The geochemical and geochronological evidences documented by the exposed rock associations in the Aketashitage area suggest a subduction-related tectonic setting in the Paleoproterozoic. Our new data combined with the previous studies indicate that the Paleoproterozoic magmatism and metamorphism in the northern Altyn Tagh area are nearly synchronous, and both are likely related to oceanic subduction.

How to cite: Wang, Z., Han, C., Xiao, W., and Sakyi, P. A.: Polyphase tectonothermal events recorded in metamorphic basement rocks from the northern Altyn Tagh, southeastern Tarim Craton, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3195, https://doi.org/10.5194/egusphere-egu2020-3195, 2020.

Despite significant progress in our understanding of the thermal history of ultra-high pressure (UHP) metamorphosed oceanic eclogite, the mechanisms of detachment and exhumation of these rocks in the subduction channel are still debatable. Opinions vary from their exhumation as detached blocks due to circulation in a weak and loose serpentinite mélange to coherent bodies in large-scale imbricated slices. In this study, we integrate published metamorphic P-T path and peak P-T data with new metamorphic reconstruction of oceanic eclogites from two locations in the Nagaland Ophiolite Complex (NOC), NE India to establish its UHP signature and complicated  multistage exhumation history. Previous studies reveal the NOC to be the largest exposed remnant of an array of HP/LT metamorphic rocks within the eastern Neo-Tethys with the subduction burial-exhumation cycle of eclogites being bracketed between ca. 205 and 172 Ma. In both the locations near Thewati and Mokie villages, the eclogites occur as ~5 to ~50 m long and ~2-5 m wide tectonic lenses within a lawsonite blueschist facies metamorphosed package of oceanic basalt-limestone-radiolarian chert (peak P-T at ~11.5 kbar, ~340oC).  The Thewati eclogite records a clockwise (CW) P-T path of evolution with an epidote blueschist facies prograde burial at ~18.8 kbar, 555°C, peak epidote eclogite  facies metamorphism at ~25–28 kbar, ~650°C and a two stage exhumation: an early one along a steep dP/dT gradient in amphibole-eclogite facies at ~18.3 kbar, 630°C and a later one along a gentler dP/dT gradient through epidote blueschist facies to the transitional lawsonite blueschist and greenschist facies metamorphic conditions at ~6 kbar, 300°C. In the Mokie locality, thin discontinuous stringers of highly magnesian (Mg# = 73) and eclogite facies altered basaltic crust (peak P-T at ~23.8 kbar and ~555°C) separate the eclogitic core (Mg# = 44) from the blueschist host. The Mokie eclogite core records an epidote blueschist facies prograde burial at ~12.5 kbar, ~510°C, peak UHP epidote eclogite facies metamorphism at ~32.0 kbar, ~700°C, an initial, eclogite facies exhumation at ~17.3 kbar, 560oC that retraces the prograde burial path, but at a higher temperature, a subsequent phase of eclogite facies prograde heating and the final exhumation and cooling at metamorphic conditions transitional between lawsonite blueschist and prehnite-pumpellyite facies. We interpret the P-T history of the Nagaland blueschists and eclogites in terms of a Jurassic-aged ultra-cool (thermobaric ratio at metamorphic peak between ~220oC/GPa and ~300oC/GPa) intra-oceanic subduction system within the Neo-Tethys, subduction burial of the Mokie eclogite core to ~100 kms of depth, putting it in the select category of rare global UHP oceanic eclogite facies metamorphism during the cold mature stage of subduction and a change in its exhumation style from an initial buoyancy-driven material transport in a rheologically weak and fluidised subduction channel, often involving prograde heating of partially exhumed rocks to later thrust stacking and tectonic mixing of the eclogites from different crustal levels with the cooler, prograde blueschists at shallower crustal levels (P~5-6 kbar). This stage two exhumation led to the assembly of the Nagaland Accretionary Complex.

How to cite: Bhowmik, S. K. and Rajkakati, M.: Multistage Exhumation History of Ultra-cool Oceanic (U)HP eclogites: New evidence from the Nagaland Ophiolite Complex (NOC), NE India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9583, https://doi.org/10.5194/egusphere-egu2020-9583, 2020.

EGU2020-540 | Displays | TS7.9

Yuli Belt in the eastern Taiwan orogen: a part of suture zone separating Eurasian and Philippine Sea plates

Yiqiong Zhang, Chin-Ho Tsai, Nikolaus Froitzheim, and Kamil Ustaszewski

The Taiwan orogen formed as a consequence of the oblique subduction of the Eurasian continental margin below the Luzon volcanic arc of the Philippine Sea Plate since the late Miocene. The Yuli Belt of the eastern Taiwan Central Range, exposed in the retro-wedge of the fold-and-thrust belt, hosts slivers of a heterogeneous unit of blueschist-facies rocks that are among the youngest blueschist units worldwide. However, the palaeogeographic provenance of this unit is still debated. This is due to the fact that numerous structural aspects, including the kinematics of the Yuli Belt’s tectonic contacts with adjacent units, are improperly understood.

Our studies form part of an ongoing reinvestigation of the tectonic evolution of the Yuli Belt. A revised geological map of the Yuli Belt was generated, incorporating own structural data from several river transects. Fieldwork and microstructural analyses suggest that the Yuli Belt was polyphasely deformed. Based on newly constructed cross sections we suspect that the blueschist-facies units were tectonically emplaced along thrusts on top of a mostly greenschist-facies metasedimentary unit that locally exhibits characteristics of a mélange. Later, both blueschist-facies and metasedimentary units were tightly folded, likely during the emplacement of the Yuli Belt onto the westerly adjacent Eurasia-derived Tailuko Belt along the so-called Shoufeng Fault. Lithological and fabric transitions across this fault are gradual, suggesting that the juxtaposition of Yuli and Tailuko Belts occurred during an early W-directed transport direction before becoming refolded during later E-vergent backfolding. Peak metamorphic temperatures in the greenschist-facies metasediments, estimated by Raman spectroscopic analyses of carbonaceous material (RSCM), reveal systematic spatial variations across the Yuli belt, supporting the idea of an allochthonous nature of the blueschist units on top of the lower grade metasedimentary unit.

The incorporation of published geochronological and whole-rock geochemical data and their combination with own paleogeographic reconstructions led us to fundamentally reinterpret the structural position of the Yuli Belt. We suggest that the blueschist-facies unit most likely represents a mid-Miocene fragment of oceanic crust and mantle issued in the South China Sea before having been subducted, exhumed and ‘sandwiched’ between the (Eurasia-derived) Tailuko Belt and the easterly adjacent Coastal Ranges derived from the Philippine Sea plate. The Yuli Belt should hence be considered to contain the suture between the Eurasian and the Philippine Sea plates.

How to cite: Zhang, Y., Tsai, C.-H., Froitzheim, N., and Ustaszewski, K.: Yuli Belt in the eastern Taiwan orogen: a part of suture zone separating Eurasian and Philippine Sea plates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-540, https://doi.org/10.5194/egusphere-egu2020-540, 2020.

Based on field investigations, microscopic observations, and available geophysical, geochemical and geochronological data, this study intends to better understand the structural characteristics of the Eurasian continental margin (e.g., the eastern Central Range in Taiwan) during subduction and exhumation while the Philippine Sea plate has been approaching in the vicinity of Taiwan since the Miocene time.  The eastern Central Range is composed of two major geological units: 1) the Tailuko belt, the Mesozoic metamorphic subduction complex, retro-metamorphosed in green schist facies and exhumed since late Miocene, and 2) the Yuli belt, continental margin rocks that contain high-pressure minerals (omphacite, glaucophane, garnet) with Miocene-Pliocene ages suggesting rapid exhumation from mantle depths of 40-50 km.

We conducted detailed field surveys around the Shoufeng fault which represents the boundary between the Tailuko belt and the Yuli belt. We found a mylonite zone of several kilometers wide in the boundary of these two belts. Based on the meso- and microscopic scale observations we define the boundary as ultra-mylonite, mylonite, and proto-mylonite zones. Within the ultra-mylonite and mylonite zones, rocks from two belts are intercalated each other in varied widths. The main dominant schistosity/cleavage in the mylonite zones (Sm/S3) remains the same orientation of striking in NE/NNE and dipping to the west. Also, the main composition layers, which we tentatively called S2 for the sake of field investigations, were more intensively deformed (i.e., crenulated, folded, etc.) from outside toward the core of the mylonite zones. As a result, the Sm/S3 becomes less persistent outside of the mylonite zones in the Yuli belt.

The mylonite zones exhibit left-lateral Sm/S3-related shearing without significant down-dip component. We also observed a general S2/S3-related top-to-west sense of shear across the two belts. As a consequence, we tend to interpret that the Yuli belt and the Tailuko belt have been mylonitically sheared (Sm/S3) in a left-lateral movement at the depth and that they exhumed coevally up to the surface level. The schistosity of the main composition layers S2 probably occurred before the mylonization during the transition from subduction to exhumation. The shallow dipping and less dominant S3 outside the mylonite zone might imply an upward unroofing process during the rapid exhumation of the eastern Central Range of Taiwan.

How to cite: Lee, J.-C., Ho, G.-R., Lee, Y.-H., Yeh, E.-C., Byrne, T., and Chu, H.-T.: Left-lateral shearing before coeval exhumation between the high pressure Yuli belt and the underlying Mesozoic Tailuko belt? Insights from the Shoufeng fault in eastern Taiwan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3989, https://doi.org/10.5194/egusphere-egu2020-3989, 2020.

EGU2020-6414 | Displays | TS7.9

Thermal regime around the Chile Triple Junction based on JAMSTEC MR18-06 cruise 'EPIC'

Masataka Kinoshita, Ryo Anma, Yuka Yokoyama, Kosuke Ohta, Yusuke Yokoyama, Tomoaki Nishikawa, Natsue Abe, Hikaru Iwamori, and Lucia Villar

The Chile triple junction (CTJ) is a unique place where a spreading center of mid-ocean ridge is subducting near the Taitao peninsula. Around CTJ, presence of high heat flow on the continental slope and near-trench young granitic rocks on the Taitao peninsula suggests the thermal and petrological impact of subducting ridge on the continental side. The tectonic history of the southeast Pacific since early Cenozoic to the present suggests that ridge subduction continuously occurred along the Chile trench, which migrated northward.

In January 2019, the MR18-06 cruise Leg 2 was conducted at CTJ, as a part of 'EPIC' expedition by using R.V Mirai of JAMSTEC. During the leg, we completed 4 SCS lines, 6 piston coring with heat flow measurements, 2 dredges, and underway geophysics observations, as well as deployment of 13 OBSs. Coring/heatflow sites were located across the ridge axis, HP5 on the seaward plateau of axial graben, HP1/HP2/HP6 on the axis, and HP3/HP7 on the forearc slope near the trench axis. The primary object of heat flow measurement at CTJ is to better constrain the thermal regime around CTJ by adding new data right above CTJ. The key question is whether CTJ is thermally dominated by ridge activity (magmatic, tectonic, and/or hydrothermal) or by subduction initiation (tectonic thickening, accretion, and/or erosion). The ultimate goal is to model the temperature at the plate interface from the heat flow and other data, and to infer how the thermal regime at CTJ contributes the seismogenic behavior at the M~9 megathrust zone.

Onboard and post-cruise measurements include; bulk density, porosity, Vp, resistivity, CT imags, iTracks element scan, age dating, etc. Core saples seaward of ridge axis (HP5) has few turbidites with higher density (~2 g/cc) and low sedimentation rate (SR; 0.2 m/ky), whereas cores on the axis the density are turbidite dominant with lower (1.6~1.8 g/cc) and very high SR (1~3 m/ky). The accretionary prism (landward of trench) cores have the density of 1.6~1.7 g/cc and SR=0.5~1 m/ky. They suggest that the turbidite covers only the axial graben.

Heat flow in the axial graben range 140-210 mW/m^2, which is lower than on the seaward plateau (370 mW/m^2). This apparent controversy may be due to lower magmatic activity and/or high sedimentation rate on the axis. The lower spreading rate (2.6 cm/yr one side) and the rapid convergent rate at the trench (7.2 cm/yr) may suppress sufficient magma supply or hydrothermal circulation. Heat flow on the accretionary prism (230 mW/m^2) is higher than borehole or BSR-derived heat flow (~<100 mW/m^2). It is suggestive of fluid upwelling along the decollement as proposed in the previous study. Some numerical thermal models will be presented to show the effect of ridge subduction.

How to cite: Kinoshita, M., Anma, R., Yokoyama, Y., Ohta, K., Yokoyama, Y., Nishikawa, T., Abe, N., Iwamori, H., and Villar, L.: Thermal regime around the Chile Triple Junction based on JAMSTEC MR18-06 cruise 'EPIC', EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6414, https://doi.org/10.5194/egusphere-egu2020-6414, 2020.

The Banda Arc system is sited in a junction of convergence between the Eurasian, Indo-Australian, Philippine and Pacific plates. It has a remarkable 180° curve in the Benioff zone. Two fundamental ideas have been invoked to explain this significant subduction-arc orientation change: (1) bent subduction zone around the Banda Sea (Hamilton, 1979; Spakman and Hall, 2010; Hall, 2012), or (2) oppositely dipping subduction zones (Cardwell and Isacks, 1978; McCaffrey, 1989), but no general agreement exists as to the cause of this curvature. However, a WNW-trending strike-slip fault, i.e. Seram-Kumawa fault, is observed at the north-eastern end of the Arc, cutting through the Seram accretionary wedge, prism and trench and seems to continue on the subducting plate (Hall et al., 2017). This fault is either inactive or locked temporarily at the present day, because there are very few strike-slip events along its trend while there are many thrust earthquakes on its north and northwest side. A few essential questions remain unanswered about this fault in relation to the evolution of the Banda Arc. For instance, what is the origin of this fault, what role does it play in the tectonic processes and large earthquakes along the Banda Arc. Could this fault eventually break-up the Banda Arc? What is its tectonic implication on the evolution of other highly curved subduction-arc systems? To address these questions, we will carry out a comprehensive investigation into active tectonics and seismicity occurrence along the northeast Banda Arc using high-resolution bathymetry, 2D marine seismic profiles and earthquake data.

Reference:

Cardwell, R.K. and Isacks, B.L., 1978. Geometry of the subducted lithosphere beneath the Banda Sea in eastern Indonesia from seismicity and fault plane solutions. Journal of Geophysical Research: Solid Earth, 83(B6): 2825-2838.

Hall, R., 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570: 1-41.

Hall, R., Patria, A., Adhitama, R., Pownall, J.M. and White, L.T., 2017. Seram, the Seram Trough, the Aru Trough, the Tanimbar Trough and the Weber Deep: A new look at major structures in the eastern Banda Arc.

Hamilton, W.B., 1979. Tectonics of the Indonesian region. US Govt. Print. Off.

McCaffrey, R., 1989. Seismological constraints and speculations on Banda Arc tectonics. Netherlands Journal of Sea Research, 24(2-3): 141-152.

Spakman, W. and Hall, R., 2010. Surface deformation and slab–mantle interaction during Banda arc subduction rollback. Nature Geoscience, 3(8): 562.

 

How to cite: Yang, X., Singh, S. C., and Deighton, I.: The role of the remarkable Seram-Kumawa strike-slip fault in the tectonic process of the northern Banda Arc system , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7300, https://doi.org/10.5194/egusphere-egu2020-7300, 2020.

EGU2020-7338 | Displays | TS7.9

Syros, blocks and matrix structure: evolution of a mélange along the subduction interface

Thomas Gyomlai, Philippe Agard, and Laurent Jolivet

The nature and processes occurring at the subduction plate interface remain poorly constrained. In particular, the behavior of fluids and its impact on the rheology and the chemistry of the plate interface are mostly unknown. Based on detailed fieldwork, petrographic, geochemical analyses and thermodynamic modelling, the present study documents an example of a reacted “mélange” and metasomatism along the subduction interface: the Lia mélange zone on Syros island. Syros island is located in the Cycladic Archipelago in the centre of the Aegean domain which corresponds to the deepest exhumed parts of the Hellenides–Taurides belt. We show that this particular mélange zone is a disrupted yet still relatively coherent fragment of transitional lithosphere (i.e., OCT type from the Pindos Ocean), which has undergone dominant exhumation-related deformation with top to the east shearing. A large part of the “mélange” structure is inherited from the initial lithostratigraphic setting. Through detailed mapping and a statistical study of the nature of blocks and matrix we show that, as a first approximation, metasomatism occurs in contact between metavolcanite layers and serpentinite, with diffusion of Ca from the metavolcanites to the matrix and diffusion of Mg from matrix to metavolcanite. Most of the metavolcanite layers and blocks (mafic and carbonate) are mostly only partly digested but the ultramafic matrix has been largely metasomatised forming a tremolite-chlorite-talc schist, a “hybrid” rock, with an intermediate chemical composition. Geochemical data suggest that exhumation-related metasomatism is probably triggered and/or enhanced by the arrival of fluids from the dehydrating slab underneath. The Lia mélange zone shows that hybrid rocks can be formed by metasomatism along the subduction interface. Due to the absence of major tectonic mixing and of evidence of prograde reactions, this metasomatism may not be representative of deeper hybridization (as a potential source of arc volcanism). However, by changing the mineralogy of the matrix, the metasomatism changes the rheological properties of the mélange and thus could impact that of the subduction interface and the exhumation processes. This study highlights the significance of rock hybridization through metasomatism, largely in the context of a syn-convergent exhumation, along the slab interface and emphasizes its potential chemical and rheological impacts.

How to cite: Gyomlai, T., Agard, P., and Jolivet, L.: Syros, blocks and matrix structure: evolution of a mélange along the subduction interface, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7338, https://doi.org/10.5194/egusphere-egu2020-7338, 2020.

EGU2020-16975 | Displays | TS7.9

Composition of fluids released along a subduction interface with increasing depth: insights from fluid inclusions analysis on the Schistes Lustrés - Monviso transect (Western Alps)

Clément Herviou, Anne Verlaguet, Philippe Agard, Hugues Raimbourg, Michele Locatelli, and Alexis Plunder

Important amounts of fluids are released in subduction zones by successive dehydration reactions occurring both in the previously hydrated oceanic crust (and mantle) and overlying sedimentary cover. The release and circulation of such fluids in rocks have major consequences on both their mechanical and chemical behavior. Indeed, the presence of a free fluid phase strongly modifies the rock rheology, fracturing properties, and could be implicated in both intermediate-depth earthquake and slow slip events nucleation. Moreover, the scale of mass transfer, associated chemical changes in infiltrated rocks and element recycling in subduction zones are controlled by both the rock permeability and the amount and composition of such fluids. Thus, there is a crucial need to identify the major fluid sources, amounts and pathways to better constrain their impact on subduction dynamics.

Metamorphic veins, as well as mineralized fractures and shear zones in exhumed fossil subduction zones are the best witnesses of fluid-rock interactions and fluid circulation pathways. However, their interpretation in terms of fluid sources, residence time, scale of circulation requires a good knowledge of the composition of potential fluid sources. In order to determine the composition of the fluid released by both oceanic crust and sediments at various depth along their subduction, we analyzed the composition of fluid inclusions contained in vein minerals formed at peak P-T conditions, in rock units buried at various depths in the Alpine subduction zone.

The Schistes Lustrés complex is a slice-stack representing the deep, underplated part of the former Alpine accretionary wedge. These Alpine Tethys rocks are mainly composed of oceanic calcschists with fewer mafic and ultramafic rocks, buried to various depths before exhumation. From West to East, the juxtaposed Schistes Lustrés units show increasing peak P-T conditions from blueschist (300-350°C - 1.2-1.3 GPa) to eclogite facies (580°C - 2.8 GPa). This study focuses on the Schistes Lustrés - Monviso transect, which shows an almost continuous increase in metamorphic grade.

In the Schistes Lustrés blueschist-facies sediments, fluid inclusions were analyzed in quartz from high-pressure veins, i.e. quartz that co-crystallized with prograde to peak metamorphic minerals such as lawsonite and Fe-Mg carpholite. In the metamorphosed mafic rocks, we analyzed fluid inclusions from the peak metamorphic assemblages, i.e. glaucophane +/- omphacite in blueschist facies rocks, omphacite in eclogite-facies slices. Raman spectroscopy data on these fluid inclusions suggest that fluids released during dehydration of calcschists in blueschist-facies conditions are aqueous fluids with low-salinity and small amounts of CO2 and CH4. In contrast, eclogitic fluids released from metagabbros are highly saline brines with low N2 content. These results, which will be associated with LA-ICP-MS analysis of fluid inclusions in metasedimentary quartz veins, will contribute to better constrain the evolution of composition of the fluids liberated by dehydration reactions with depth and protolith composition along the subduction interface.

How to cite: Herviou, C., Verlaguet, A., Agard, P., Raimbourg, H., Locatelli, M., and Plunder, A.: Composition of fluids released along a subduction interface with increasing depth: insights from fluid inclusions analysis on the Schistes Lustrés - Monviso transect (Western Alps), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16975, https://doi.org/10.5194/egusphere-egu2020-16975, 2020.

EGU2020-21122 | Displays | TS7.9

Accretionary processes and stratigraphic reconstruction of Neoproterozoic oceanic crust in North Wales, UK

Niall Groome, David Buchs, Åke Fagereng, Margaret Wood, Stewart Campbell, and Jana Horák

Extending across Anglesey and Llŷn Peninsula in North Wales, UK, the Mona Complex is a collection of Neoproterozoic-Cambrian units formed through the collision of the Iapetus oceanic plate with the Avalonian microcontinent [1].  One of these units, the Gwna Complex, represents accreted ocean floor material that is largely characterised as a regional-scale tectonic mélange.  Detrital zircon ages in terrigenous sediments suggest that subduction occurred around 600-540 Ma [2].  Accreted sequences of volcanics, pelagic sea floor sediments and turbidites can be used to reconstruct the history, stratigraphy and origin of the ancient ocean floor, whilst the presence of these different lithologies also have major influences on structural controls of accretion.

In Newborough, Anglesey, sub-greenschist (T < 300°C) Gwna Complex material has been accreted in the form of imbricated semi-coherent lenticular slices 5 – 200 m thick with a subvertical orientation.  Large volumes of terrigenous sediment (turbidite-derived muds and fine sands) are present elsewhere in the Gwna Complex, acting as the mélange matrix, incorporating blocks of stronger, more brittle surrounding units.  In Newborough, however, the Gwna Complex has experienced comparatively little terrigenous input, localising mélange formation to metre-scale layers towards the upper unit interfaces.  This leads to the semi-coherent preservation of ocean floor stratigraphy.  Highly foliated hyaloclastite layers within thick volcanic sequences were exploited as weak horizons during accretion, allowing relatively thick, coherent volcanic sequences to be preserved.  Hyaloclastites typically make up to basal unit of lenticular slices.

Lenticular units record a stratigraphy consisting of relatively undeformed pillow basalts with intermittent hyaloclastite horizons, grading upwards into peperites and then carbonates as sea floor sedimentation becomes more prominent. Overlying layers of pelagic cherts and terrigenous turbiditic sediment are typically more dismembered and mélange formation is localised within turbiditic sediment, and rarely within clast-poor hyaloclastites.  The geochemistry of pillow basalts and associated volcanics from throughout the Gwna Complex is similar, albeit not identical, to typical modern MORB.  This suggests that the volcanics originated from a mid-ocean ridge source, with overlying sediments accumulating on the sea floor representing different stages in the life cycle of the oceanic crust leading up to subduction and accretion.  A small series of accreted sills and related amygdalar hyaloclastites that occur in Newborough show a distinct OIB signature and are likely related to a later episode of minor intraplate magmatism.

References:

[1] Horák J et al. (1996) J Geol Soc London 153: 91-99

[2] Asanuma H et al. (2017) Tectonophysics 706-707: 164-195

How to cite: Groome, N., Buchs, D., Fagereng, Å., Wood, M., Campbell, S., and Horák, J.: Accretionary processes and stratigraphic reconstruction of Neoproterozoic oceanic crust in North Wales, UK, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21122, https://doi.org/10.5194/egusphere-egu2020-21122, 2020.

The Coastal Terrane of the Kaoko Belt in Namibia was originally defined as a Neoproterozoic arc terrane that originated outboard of the attenuated Congo Craton margin. Early (~650–630 Ma) igneous activity and high-grade metamorphism were interpreted as connected with subduction of the Adamastor Ocean and related arc magmatism. Protoliths of metasedimentary lithologies were interpreted as juvenile clastic sediments originating from the arc erosion. Later deformation (~580 Ma) was associated with lower amphibolite-facies conditions during thrusting over the Congo Craton margin.

Our research, however, suggests different evolutionary scenario.  The structurally lowermost part of the metasedimentary complex contains amphibolites and orthogneisses with U–Pb zircon ages between ~820–785 Ma, interpreted as metamorphosed syn-sedimentary bimodal volcanics. Detrital zircon ages from associated metamorphosed clastic sediments show identical patterns as observed in the metasedimentary cover of the underlying Congo Craton. Towards the structural hanging wall, the metasediments are devoid of metavolcanic rocks, and their detrital zircon age spectra are comparable with those from flysch sediments in the eastern, less metamorphosed parts of the Kaoko Belt.

The structurally lowermost part of the Coastal Terrane shows signs of partial melting broadly coeval with intrusion of ~650 Ma (U–Pb zircon) granitic–dioritic/gabbroic rocks. The temperature and depth of this migmatization event remains unconstrained, because the original mineral assemblages were overprinted during thrusting over the Congo Craton margin.

The thrusting period is characterized by solid-state reworking and partial retrogression of the migmatites in the lower part, and by pervasive metamorphism in the upper part, of the metasedimentary complex. Lu–Hf age (583 ± 2 Ma) of garnet from reworked migmatite shows that the garnet-bearing mineral assemblage represents conditions of thrusting, which were determined at ~660–670°C and 5.5–6 kbar. The ~580 Ma (and beyond) period of deformation started with development of flat-lying metamorphic fabric, later overprinted by folds with step axial planes, steep cleavage and isolated shear zones with general N–S to NNW–SSE trend. The associated intrusions show steep magmatic fabric, which transits into solid-state deformation in bodies close to the base of the Coastal Terrane.

Rather than an arc, the Coastal Terrane probably represents the inner part of an early Neoproterozoic rift. This interpretation is supported by the zircon provenance data and the presence and age of the bimodal volcanic rocks. The early, ~650–630 Ma magmatic activity and migmatitization coincides with the early period of rift inversion that took place along the western edge of the rift system in the Dom Feliciano Belt (Brazil and Uruguay). At this period, the former rift centre was established as the high-grade hinterland system of the developing Kaoko–Dom Feliciano–Gariep orogen. Inversion of the eastern rift edge started at ~580 Ma, as recorded in the Coastal Terrane, and continued up to ~550 Ma, which is the timing of the metamorphic peak in the Kaoko Belt foreland.

Financial support of the Czech Science Foundation (GACR 18-24281S) is appreciated.

How to cite: Konopásek, J., Jeřábek, P., Anczkiewicz, R., and Sláma, J.: Evolution of the south-eastern hinterland in the South Atlantic Neoproterozoic Orogenic System – the Coastal Terrane of the Kaoko Belt (NW Namibia) revisited, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13351, https://doi.org/10.5194/egusphere-egu2020-13351, 2020.

Nappes of the Scandinavian Caledonides are the repository of information on both Caledonian orogenic evolution and pre-Caledonian geologic evolution of the Baltica and Laurentia margins and the Iapetus ocean. We report geological mapping, zircon U–Pb geochronological data on 33 samples, and mica 40Ar/39Ar data on 4 samples, along five profiles in the southernmost Caledonides in the Stavanger-Ryfylke region (Stavanger, Suldal, Nedstrand, Randøy, Røldal). 
In Stavanger, the lowermost phyllite nappe –Buadalen nappe– is overlain by the Madla and Sola nappes (former Jæren Nappe). The Madla nappe comprises c. 1510–1495 Ma orthogneiss with Sveconorwegian metamorphism (c. 1025 Ma). The overlying Sola nappe comprises a sequence of mica schist, metasandstone, marble, amphibolite and felsic metavolcanic rocks. The metavolcanic rocks – Snøda metadacite-rhyolite – are fine-grained, frequently porphyritic, mica gneisses, with calc-alkaline, peraluminous, composition and negative Nb-Ta anomaly. Their extrusion ages of c. 941 and 934 Ma date deposition of the whole sequence. Detrital zircons in a metasandstone sample (n=138) yield main age modes at c. 1050 and 1150 Ma, significant Proterozoic and Archaean modes, and a maximum deposition age of c.990 Ma. The Sola nappe was affected by Taconian metamorphism peaking in eclogite-facies conditions at c.470 Ma (Smit et al., 2010), followed by regional cooling between c.446 Ma (white-mica) and 438 Ma (biotite). Trondhjemite dykes intruded at c.429 Ma, cutting the pre-Scandian fabric. 
At regional scale, the lower nappes correlate over long distances. The lowest phyllite nappes –Buadalen, Holmasjø, Lower Finse and Synnfjell– represent the Cambro-Ordovician sediment cover of the Baltic margin, containing thin tectonic slivers of the underlying c. 1521 to 1225 Ma orthogneiss. The overlying nappes –Madla, Storheia, Dyrskard, Hallingskarvet, Espedalen– consist of felsic metavolcanic or metaplutonic rocks with a consistent age between c. 1525 and 1493 Ma with c. 1040 Ma intrusive, corresponding to the Telemarkian crystalline basement in S Norway. The Kvitenut nappe hosts metaplutonic rocks ranging from c. 1625 to 1039 Ma and metasedimentary rocks. It requires additional characterization. The overlying far-travelled nappes do not correlate well. The metasedimentary Revseggi nappe in Røldal is affected by a Taconian metamorphism (470–450 Ma) and hosts c. 434–428 Ma felsic intrusives (Roffeis & Corfu, 2014). Detrital zircons (n=33) in a kyanite-mica-gneiss sample constrain deposition of the sequence after c. 890 Ma. The Revseggi nappe may correlate with the Sola nappe. In Nedstrand, a c. 932 Ma augen gneiss is overlain by amphibolite and mica schist, tentatively attributed to the Boknafjord nappe. Detrital zircon data (n=11) imply an Ordovician (<459 Ma) deposition, therefore refuting a correlation of this transect with the Sola nappe.
The Sola nappe exposes a far-travelled Tonian marine volcanic-sedimentary sequence. The Taconian metamorphism suggests an evolution in the Iapetus ocenic realm. The Sola sequence may represent the microcontinent onto which the Karmøy ophiolite complex (c. 493–470 Ma) was obducted. By analogy to several other Tonian sequences preserved in far-travelled allochthons in the Scandinavian and Greenland Caledonides, the Sola sequence may originate from the active Neoproterozoic Renlandian margin of Laurentia and Rodinia before opening of Iapetus.

How to cite: Bingen, B., Torgersen, E., Ganerød, M., and Roberts, N. M. W.: Southernmost nappes in the Scandinavian Caledonides: correlations, evidence for a Tonian marine volcanic-sedimentary terrane and paleogeographic implications, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18891, https://doi.org/10.5194/egusphere-egu2020-18891, 2020.

EGU2020-6323 | Displays | TS7.9

Deep fluid release beneath arcs from delayed breaching of the slab lower crust

Matthijs Smit and Philip Pogge von Strandmann

Slabs in subduction zones with geotherms of 7 K km-1 or higher are expected to dehydrate effectively in the forearc. Nevertheless, large amounts of water are released from these slabs at and beyond subarc depth, indicating that H2O remains slab-bound to much greater depth than expected. It is possible that this reflects a transient sealing effect exerted by the subducting lower crust—a section of the lithosphere that typically undergoes delayed recation and is effectively impermeable until then. To test this concept, we investigated gabbros that were partially transformed to hydrous eclogite along shear zones during subduction. The rocks were subjected to a textural, petrological and Li-chronometric analysis. The observations characterize the progressive stages of transformation, and provide detailed insight into the governing feedbacks among fluid flow, deformation, and reaction. Lithium chronometry indicates that it took only a few weeks for the shear zone network to develop and for the externally derived fluids to traverse this network and drive eclogitization; the switch in these rocks—going from strong to weak and from impermeable to sustaining long-range fluid flow—thus was essentially instanteneous on subduction time scales. The re-equilibration of the rocks occurred well beyond equilibrium at c. 90 km depth, which is where large fluid-filled channel system typically emanate from warm slabs. Our data suggest that the fluids that are produced in the slab mantle throughout the forearc accumulate beneath the Moho until the lower crust is breached by dynamic fluid vents and commences its delayed transformation. The subducting lower crust may thus be a exert a strong control on H2O and element budgets, and the rheology of slabs in warm subduction zones.

How to cite: Smit, M. and Pogge von Strandmann, P.: Deep fluid release beneath arcs from delayed breaching of the slab lower crust, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6323, https://doi.org/10.5194/egusphere-egu2020-6323, 2020.

EGU2020-11835 | Displays | TS7.9

Intra-oceanic subduction initiation recorded by the metamorphic sole of the New Caledonia ophiolite: petrological, structural and age constraints

Bénédicte Cenki-Tok, Derya Gürer, Vasileios Chatzaras, Julien Collot, Fernando Corfu, and Pierre Maurizot

Subduction initiation is commonly identified as a major enigma in plate tectonics. Attention to subduction initiation is growing in the community, as is our understanding of the sequences of geologic events that precede and postdate this critical stage of the Wilson cycle. Nevertheless, the direct triggers of subduction initiation and their regional to global consequences remain uncertain. The New Caledonia ophiolite has formed in a supra-subduction zone setting in the vicinity of an active spreading centre. The metamorphic sole, which represents the ancient subduction interface, is locally preserved beneath the ophiolite. Unravelling its tectono-metamorphic record is essential in order to determine the timing of subduction initiation and the tectonic processes operating at the plate interface during the early stages of subduction.  We have sampled and studied amphibole-bearing rocks of the metamorphic sole that crop out in three newly found and three previously known localities that are scattered across the island (160 km * 50 km in size). The amphibolites form laterally discontinuous meter-size lenses that crop out within or beneath the serpentinite sole at the base of the ophiolite nappe.  Preliminary U-Pb zircon ID-TIMS geochronology yields a crystallization age of 56±1 Ma in agreement, but with a narrower timespan compared to previously published data (Cluzel et al., 2012).  We use whole-rock geochemistry, mineral chemistry and thermodynamic modelling to constrain the Pressure-Temperature-time history of the amphibolites.  Microstructural data such as dominant deformation mechanisms, crystallographic preferred orientations, grain size distributions determined by EBSD allow to constrain the deformation processes and rheological behavior of the amphibolites during subduction infancy.

 

Cluzel, D., Jourdan, F., Meffre, S., Maurizot, P., and Lesimple, S., 2012. The metamorphic sole of New Caledonia ophiolite: 40Ar/39Ar, U-Pb, and geochemical evidence for subduction inception at a spreading ridge. Tectonics, VOL. 31, TC3016, doi:10.1029/2011TC003085.

How to cite: Cenki-Tok, B., Gürer, D., Chatzaras, V., Collot, J., Corfu, F., and Maurizot, P.: Intra-oceanic subduction initiation recorded by the metamorphic sole of the New Caledonia ophiolite: petrological, structural and age constraints, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11835, https://doi.org/10.5194/egusphere-egu2020-11835, 2020.

EGU2020-20130 | Displays | TS7.9

Slow subduction initiation forces fast ophiolite formation

Mathieu Soret, Guillaume Bonnet, Philippe Agard, Kyle Larson, John Cottle, Benoit Dubacq, and Mark Button

Metamorphic soles are m to ~500 m thick tectonic slices welded beneath most large- scale ophiolites (usually ~20 km thick). They typically show a steep inverted metamorphic structure where the pressure and temperature (T) conditions of crystallization increase upward, from the base of the sole (500 ± 100°C at 0.5 ± 0.2 GPa) to the contact with the overlying peridotite (800 ± 100°C at 1.0 ± 0.2 GPa). The inverted  T gradient was historically interpreted as a result of heat transfer from the incipient mantle wedge toward the nascent slab synchronously with the overlying ophiolite formation (within only 1-2 Myrs). Their mineralogical assemblage and deformation pattern provide major constraints on the nature and the timing of the processes controlling the dynamics of the plate interface during early subduction.

Soret et al. (2017, 2019) recently reappraised the tectonic–petrological model for the formation of metamorphic soles below ophiolites, showing that the present-day structure of the sole results from the successive stacking of several homogeneous oceanic crustal slivers (without internal T gradient). This stacking marks the evolution of rheological properties of slab material and peridotites of the upper plate as the plate interface progressively cools (Agard et al., 2016). These findings outline the thermal and mechanical complexity of early subduction dynamics, and highlight the need for refined numerical modelling studies.

Lu-Hf geochronology on garnet from the Oman metamorphic sole has recently shown that the earliest accreted subunit, found directly against the upper plate mantle, was initially buried ≥ 8 Ma earlier than previously estimated (Guilmette et al., 2017). These results imply initiation ≥ 8 Ma before the formation of the ophiolite, which underscores the common belief that ophiolite-sole couples record spontaneous subduction initiation and rather indicates far-field forcing long before upper plate extension and mantle upwelling.

We herein present new U-Pb titanite and monazite petrochronology across the different sub-units of the Oman metamorphic sole. Our results confirm the time lag of several million years between subduction initiation and the ophiolite formation, therefore supporting the recently proposed model of far-field forced subduction initiation. They also reveal a significant time lag between the underplating and exhumation of each sub-unit of the sole.

How to cite: Soret, M., Bonnet, G., Agard, P., Larson, K., Cottle, J., Dubacq, B., and Button, M.: Slow subduction initiation forces fast ophiolite formation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20130, https://doi.org/10.5194/egusphere-egu2020-20130, 2020.

EGU2020-22476 | Displays | TS7.9

The syn- and post-obduction history of the offshore north Oman margin

Dia Ninkabou, Philippe Agard, Charlotte Nielsen, Jeroen Smit, Bilal Haq, Mathieu Rodriguez, and Christian Gorini

The offshore north Oman margin, located north of the Hajar Mountains in the Gulf of Oman,
remains a key area for understanding the evolution of the obduction Emails Ophiolite. With the
help of a grid of 2D-multichannel seismic lines linked to well data, we present a new view of
the obduction and post-obduction history of the Oman margin. Offshore deposits, overlying on
what we interpret as being the offshore extension of the ophiolites, can be divided into two
mega-sequences. The older one is comprised of late Cretaceous to Paleogene deposits mainly
located in the Sohar basin and offshore of the Abat trough. In the Sohar basin, the latest stages
of obduction are recorded by the deposition of the erosional products of the Autochthonous
Arabian sediments and the ophiolite, in a flexural basin induced by a volcanic high. Offshore
of the Abat trough, a Maastrichtian-Paleocene basin develops above a detachment fault
system linked to the extension phase associated to the exhumation/expulsion of the subducted
continental margin. Both sectors are divided by a structured high located offshore of the Semail
Gap transfer fault. We propose that this transfer fault, likely a major Pan-African structure,
impacted both the architecture of the passive margin following the rifting of the Neotethys and
later ophiolite emplacement, during (continental) subduction and obduction.

How to cite: Ninkabou, D., Agard, P., Nielsen, C., Smit, J., Haq, B., Rodriguez, M., and Gorini, C.: The syn- and post-obduction history of the offshore north Oman margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22476, https://doi.org/10.5194/egusphere-egu2020-22476, 2020.

Terrane accretion and tectonothermal activity associated with the Penokean and Yavapai Orogenies are recorded in various geologic elements of the Lake Superior region, USA, including: (1) mafic–ultramafic terranes comprising tholeiitic basalts and gabbros, boninites and calc-alkaline volcanics and intrusives (e.g., the Pembine–Wausau Terrane), and (2) multiple and distinct, short-length-scale (5–15 km) chlorite–biotite–garnet–staurolite–(kyanite–)sillimanite regional metamorphic isograd sequences. These geologic associations reflect development of a suprasubduction zone system (subduction initiation?) within a Paleoproterozoic ocean in the Orosirian Period, followed by episodes of short-duration (limited-length-scale) tectonometamorphism during accretionary orogenesis in the Statherian Period.

The geologic processes recorded in the Paleoproterozoic terranes of the Lake Superior region are very common in the Phanerozoic. We suggest that Paleoproterozoic tectonism in the Lake Superior region may reflect a West Pacific-type setting, involving distinct, short-lived tectonothermal events marking periods of subduction rollback and lithospheric extension, punctuated by episodes of arc/microcontinent collision, terrane accretion and lithospheric shortening.

The apparent operation of modern-like plate tectonics—accretionary tectonics involving rapid switching between lithospheric extension and shortening—in the Paleoproterozoic requires that a scenario of temporally-varying buoyancy forces at the subduction zone (spatially-varying density of the subducting slab?) be reconciled with the thicker (slower-densifying) oceanic lithosphere expected for a hotter Earth. Such a scenario may be explained by: (1) an anomalously cool mantle (producing anomalously thin oceanic crust) beneath the ocean basin whose closure led to the accretionary orogenesis recorded in the Lake Superior region, or (2) an incredibly long-lived (>> 100 Myr) ocean basin that allowed widespread development of critically-overdense lithosphere prior to subduction initiation and onset of accretionary orogenesis associated with the Penokean and Yavapai Orogenies.

We are currently investigating geologic associations in the Lake Superior region and their potential tectonic origins, using whole-rock geochemistry to test for the tectonic origins of the Pembine–Wausau Terrane, and 40Ar/39Ar geochronology/geospeedometry to constrain time scales for the tectonometamorphism that produced the metamorphic isograd sequence in the region of Republic, Michigan. Results will provide new insights into accretionary tectonics during the Paleoproterozoic, and processes controlling the emergence and evolution of plate tectonics on Earth.

How to cite: Viete, D. R. and Holder, R. M.: Accretionary orogenesis in the Lake Superior region, USA: modern-like tectonics during the Paleoproterozoic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21104, https://doi.org/10.5194/egusphere-egu2020-21104, 2020.

EGU2020-13417 | Displays | TS7.9

Shanderman eclogite (Iran): A supercontinent killer subduction.

Daniel Pastor-Galán, Tatsuki Tsujimori, Alicia López-Carmona, and Keewook Yi

During the amalgamation, tenure and break up of Pangea several oceans played a major tectonic role. Remnants of them now occur mostly along the margins of the Atlantic, Mediterranean, Black and Caspian seas, as well as in the Alpine-Himalayan and adjacent orogens. Of those oceans, three (Iapetus, Tornsquist and Rheic) were closed during the amalgamation of Pangea and another (Neo-Tethys) is the main witness of its break-up.

The Paleotethys is the enigmatic ocean that shared an internal position during most of Pangea’s tenure. There is no consensus about its origin, some suggest that opened during the latest stages of Pangea’s amalgamation (Devonian-Carboniferous) whereas others considert it a remnant of the mostly subducted Rheic ocean after Gondwana-Laurussia collision. The Shanderman eclogites, in NW Iran are a potential candidate to represent the Paleotethys ocean. They are metamorphosed oceanic rocks (protolith oceanic tholeiitic basalt with MORB composition). Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation.

In this contribution I will show the new petrological, geochemical and geochronological results from this eclogites to shed light on the Paleotethyan problem. The piece of oceanic crust preserved at Shanderman area (Iran) crystallized some time in the mid-Carboniferous (~330 Ma) showing the paleotethys kept expanding during the Gondwana-Laurussia collisions that amalgamated Pangea. Metamorphic ages, suggest that subdution initiated in this segment of the Paleotethys between 310 and 290Ma. We integrate this results into a tectonic reconstruction that shows a major plate reorganization within Pangea during the late Carboniferous and early Permian (320-270 Ma) that questions its role as a supercontinent.

How to cite: Pastor-Galán, D., Tsujimori, T., López-Carmona, A., and Yi, K.: Shanderman eclogite (Iran): A supercontinent killer subduction., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13417, https://doi.org/10.5194/egusphere-egu2020-13417, 2020.

EGU2020-12395 | Displays | TS7.9

Metamorphic evolution of Raspas complex (Ecuador) and its relation with a J-K belt of melanges in NW of the South American plate.

Mayda Arrieta-Prieto, Carlos Zuluaga-Castrillón, Oscar Castellanos-Alarcón, and Carlos Ríos-Reyes

High-pressure complexes along the Earth's surface provide evidence of the processes involved in both the crystallization of rocks in the subduction channel and its exhumation. Such processes are key to understand the dynamics and evolution of subduction zones and to try to reconstruct P-T trajectories for these complexes.

Previous studies on the Raspas complex (southern Ecuador) agree to state that it is composed of metamorphic rocks, mainly blueschists and eclogites, containing the mineral assemblage: glaucophane + garnet + epidote + omphacite + white mica + rutile ± quartz ± apatite ± pyrite ± calcite; which stabilized in metamorphic conditions of high pressure and low temperature. Additionally, the Raspas Complex has been genetically related to accretion and subduction processes of seamounts, which occurred in South America during the Late Jurassic - Early Cretaceous interval; and the exhumation of the complex was related to subduction channels. However, the evidence presented in the existing literature makes little emphasis on the reconstruction of thermobarometric models for the rocks of this complex.

By combining petrographic observations, whole-rock chemistry, and mineral chemistry in this work; it was possible to determine that pressure values of 10 ± 3 Kbar and temperature values of 630 ± 30 ° C, (obtained by simulations with THERMOCALC®) correspond to an event of retrograde metamorphism, suffered by the complex during its exhumation. This theory is complemented by the specific textures (that suggest this retrograde process) observed during petrographic analysis, such as amphibole replacing pyroxene, garnet chloritization, plagioclase crystallization and rutile replacement by titanite.

The results obtained, together with the thermobarometry data published for the Arquía complex in Colombia, allow us to establish a P-T trajectory, that may suggest a genetic relationship between these two complexes as a result of the tectonic processes associated with an active subduction margin that affected the NW margin of the South American plate at the end of the Jurassic.

 

How to cite: Arrieta-Prieto, M., Zuluaga-Castrillón, C., Castellanos-Alarcón, O., and Ríos-Reyes, C.: Metamorphic evolution of Raspas complex (Ecuador) and its relation with a J-K belt of melanges in NW of the South American plate., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12395, https://doi.org/10.5194/egusphere-egu2020-12395, 2020.

The Andes Mountains are formed at a destructive plate margin, where dense oceanic crust descends beneath relatively buoyant continental crust. In this geological setting, we typically would not expect to see such a high and wide mountain belt forming. Numerical modelling shows that if slabs roll back, continents are stretched, causing tension and potentially back-arc extension. The formation of the Andes has been hypothesized to be due to anchoring of the slab in the lower mantle, subduction of buoyant features in the Nazca plate, or compression driven by large-scale convection cells underneath South America.

Previous research suggests a clear correlation between slab age and overriding plate crustal thickness, globally, but in particular for South America. In this project, we hypothesize that this age variation plays a significant role in the formation of the Andes. As subducting slabs descend into the mantle, their properties differ in conjunction with their age affecting their buoyancy and strength, thereby generating different dynamics, surface tectonics, and slab morphologies. Using numerical modelling code ASPECT, we examined the role of slab properties and related dynamics on the state of stress in the overriding plate.

We quantify how much compression occurs in the overriding plate to use as a proxy for topographic growth. Typically, older slabs anchor more readily, causing more rollback and therefore extension. Our models however, predict that a stronger pull force acting on the overriding plate from older slabs causes stronger coupling than their younger counterparts, due to these buoyancy controls and increased density, resulting in greater compression. But, in doing so mantle convection contributes to corner flow in the static mantle wedge, increasing compression further. An increase in overriding plate thickness from 50 to 100km increases the amount of compression in the overriding plate by 10 Mpa , while an increase in slab age from 40 to 80 Myrs generates a similar increase in compression. Finally, slab morphology effects the geometry and vigour of convection cells beneath the overriding plate, which also affects the compressional state of the plate. This is in qualitative agreement with previous work.

How to cite: Withers, C., van Hunen, J., and Allen, M.: Modelling slab age and crustal thickness: numerical approaches to drivers of compression in the overriding plate in Andean style subduction zone systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18333, https://doi.org/10.5194/egusphere-egu2020-18333, 2020.

The Northandean plate margin underwent a fundamental change in its structural configuration during a Cretaceous subduction cycle, as evidenced by the formation and accretion of a province of basic igneous arc rocks that gave rise to the basement of an Northandean Western Cordillera. Further north, this igneous terrane links to the Caribbean Large Igneous Province and has been associated, with respect to its origin, to an actively spreading ridge of the Farallon plate, implying a far-travelled origin with respect to Southamerica and calling for the existence of giant strike-slip faults. We challenge this allochthonous scenario by an alternative option of a forearc origin, invoking the possibility of a forearc opening by the forcing of a toroidal mantle flow at the northern end of the Andean trench, which would have introduced mantle material from the Pacific into the Andean realm through a Central American gap. Support for such an opening mode of a forearc basin comes from extensional tectonics, that accompanied the emplacement of the basic arc units and a concomitant subduction of the extrusive basic units at the inner border of this postulated forearc basin. This intraplate subduction comprises a distinct three-partite evolution: (I) Convergence first became manifest by the reactivation of a normal fault located within the supposed forearc basin and inboard of an inherited Triassic-Jurassic suture, but still failed at a crustal level. (II) A succeeding contractional stage involved the reactivation of the inherited Triassic-Jurassic suture and the tectonic erosion of a frontal compartment of the continental margin. After an incipient underplating, slivers of this continental compartment returned within a time span of about 20 Ma. (III) A final Late Cretaceous subduction stage evolved under the conditions of an oblique SW-NE oriented plate convergence and is characterized by extensional pulses, as may be concluded from the structural setting of the giant Antioquia batholith. In the Campanian subduction definitely locked, as evidenced by the regional buckling of the forearc realm and a rebound of the upper continental plate. Both onset and shutoff of this subduction cycle may be linked to deformation phases and are dated by syntectonic, fault-guided intrusions. This scenario of a forearc origin of the basic igneous province calls for the existence of two paired subduction zones: on its outer margin the subducting Farallon slab imposed a trench-parallel mantle flow and constrained an expansion of the forarc basin by slab rollback. On its inner margin, a secondary subduction compensated a surplus expansion of the actively forming forearc basin.

How to cite: Kammer, A. and Avila, M.: Structural framework and regional significance of the Northandean Cretaceous subduction cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18206, https://doi.org/10.5194/egusphere-egu2020-18206, 2020.

TS7.10 – Orogenic plateaus and plateau margins

EGU2020-1626 | Displays | TS7.10

Cordilleran-type orogens and plateaus: new views from a quantitative re-evaluation of mountain-building in the western Central Andes.

Martine Simoes, Magali Riesner, Tania Habel, Robin Lacassin, Daniel Carrizo, and Rolando Armijo

The processes driving Andean mountain-building and crustal thickening have been largely questioned since the ~1970's but have remained relatively unclear. However, the discovery of an active fold-and-thrust belt along its western flank at the latitude of Santiago (Chili, ~33.5 °S) has launched a recent vigorous debate on the relative contribution of these structures to Andean mountain-building. Based on an original approach for structural mapping, we have quantitatively investigated the structure of this fold-and-thrust belt, as well as that of the other structural units of the range at this latitude. By combining these data to published structural geometries of the eastern mountain flank, together with constraints on the timing of faulting and exhumation, we were able to revise the overall structure of the range and to quantify the kinematics of Andean orogenic growth at ~33°S-33.5°S. We find that crustal shortening has first primarily been sustained along the western mountain flank by west-vergent structures, synthetic to the subduction zone, with the subsequent increasing contribution of out-of-sequence thrusting, followed by late east-vergent thrusting along the eastern mountain flank. This pattern seems not to be specific to the Andes at this latitude, as similar observations can be made to the first-order by ~20°S, ie ~1300 km further north. There, the kinematics of the fold-and-thrust belt forming the western flank of the Andes cannot be as precisely documented because most structures are hidden beneath the later Cenozoic Atacama gravels. However, first-order quantitative results indicate similar kinematics, where Andean mountain building initiated on west-vergent structures synthetic to the subduction zone and where the later significant cumulated take-over by east-vergent structures towards the South American continent has led to the building of the Altiplano-Puna Plateau.

We propose that such kinematics - ie deformation initially on west-vergent structures along the western mountain flank, with significant later back-arc antithetic deformation - are first-order characteristics of Andean mountain-building, and result from the limited mechanical flexure of the underthrusting forearc, eventually locally modulated by climate-driven erosion.

How to cite: Simoes, M., Riesner, M., Habel, T., Lacassin, R., Carrizo, D., and Armijo, R.: Cordilleran-type orogens and plateaus: new views from a quantitative re-evaluation of mountain-building in the western Central Andes., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1626, https://doi.org/10.5194/egusphere-egu2020-1626, 2020.

EGU2020-3012 | Displays | TS7.10

Unraveling the contribution of the western margin of the Altiplano plateau in North Chile (20°S) to Andean mountain-building

Tania Habel, Robin Lacassin, Martine Simoes, and Daniel Carrizo

The Andes are the case example of an active Cordilleran-type orogen. It is generally admitted that, in the Central Andes (~20°S), mountain-building started ~50-60 Myr ago, close to the subduction margin, and then propagated eastward. Though suggested by some early geological cross-sections, the structures sustaining the uplift of the western flank of the Altiplano have been largely dismissed, and the most common view theorizes that the Andes grow only by east-vergent deformation along its eastern margin. However, recent studies emphasize the significant contribution of the West Andean front to mountain-building and crustal thickening, in particular at the latitude of Santiago de Chile (~33.5°S). The contribution of similar structures elsewhere along the Andes to the kinematics of the orogen is still poorly solved, because not yet well synthesized nor quantified. Here, we focus on the western margin of the Altiplano at 20°S, in the Atacama desert of northern Chile. We focus our work on two sites where structures are well exposed.
Our results confirm two main structures: (1) a major west-vergent thrust placing Andean Paleozoic basement over Mesozoic strata, and (2) a west-vergent fold-and-thrust-belt involving Mesozoic units. Once restored, we calculate a minimum of ~4 km of shortening across the sole ~10 km-wide outcropping fold-and-thrust-belt. Further west, structures of this fold-and-thrust-belt are unconformably buried under slightly deformed Cenozoic units, as revealed from seismic profiles. By comparing the scale of these buried structures to those investigated previously, we propose that the whole fold-and-thrust-belt has most probably absorbed ~15-20 km of shortening, sometime between ~68 Ma (youngest folded Mesozoic layers) and ~29 Ma (oldest unconformable Cenozoic layer). Preliminary (U-Th)/He thermochronological data suggest that basement exhumation by thrusting happened at the beginning of this ~40 Ma time span. Minor shortening affecting the mid-late Cenozoic deposits indicates that deformation continued after 29 Ma along the western Andean fold-and-thrust-belt, but remained limited compared to the more intense deformation during the Paleogene. Altogether, the data presented here will provide a quantitative evaluation of the contribution of the western margin of the Altiplano plateau to mountain-building at this latitude.

How to cite: Habel, T., Lacassin, R., Simoes, M., and Carrizo, D.: Unraveling the contribution of the western margin of the Altiplano plateau in North Chile (20°S) to Andean mountain-building, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3012, https://doi.org/10.5194/egusphere-egu2020-3012, 2020.

EGU2020-3346 | Displays | TS7.10

Early exhumation of the Frontal Cordillera (southern Central Andes at ~33.5°S) and implications for Andean mountain-building

Robin Lacassin, Magali Riesner, Martine Simoes, Tania Habel, Audrey Margirier, and Daniel Carrizo

The Andes are the modern active example of a Cordilleran-type orogen, with mountain-building
 and crustal thickening within the upper plate of a subduction zone. Despite numerous studies of
 this emblematic mountain range, several primary traits of this orogeny remain unresolved or poorly documented. The timing of uplift and deformation of the Frontal Cordillera basement culmination of
 the Southern Central Andes is such an example, even though this structural unit appears as a first-order topographic and geological feature. Constraining this timing and in particular the onset of uplift is a key point in the ongoing debate about the initial vergence of the crustal-scale thrusts at the start of the Cenozoic Andean orogeny. To solve for this, new apatite and zircon (U-Th)/He ages from granitoids of the Frontal Cordillera at ~33.5°S are provided here. These data, interpreted as an age-elevation thermochronological profile, imply continuous exhumation initiating well before ~12–14 Ma, and at most by ~22 Ma when considering the youngest zircon grain from the lowermost sample (Riesner et al. 2019). The inverse modeling of the thermochronological data using QTQt software confirms these conclusions and point to a continuous cooling rate since onset of cooling. The minimum age of exhumation onset is then refined to ~20 Ma by combining these results with data on sedimentary provenance from the nearby basins. Such continuous exhumation since ~20 Ma needs to have been sustained by tectonic uplift on an underlying crustal-scale thrust ramp. Such early exhumation and associated uplift of the Frontal Cordillera question the classically proposed east-vergent models of the Andes at this latitude. Additionally, this study provides further support to recent views on Andean mountain-building proposing that the Andes-Altiplano orogenic system grew firstly over west-vergent basement structures before shifting to dominantly east-vergent thrusts. 
Riesner M. et al. 2019, Scientific Reports, DOI: 10.1038/s41598-019-44320-1

How to cite: Lacassin, R., Riesner, M., Simoes, M., Habel, T., Margirier, A., and Carrizo, D.: Early exhumation of the Frontal Cordillera (southern Central Andes at ~33.5°S) and implications for Andean mountain-building, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3346, https://doi.org/10.5194/egusphere-egu2020-3346, 2020.

EGU2020-13209 | Displays | TS7.10

Active surface deformation in the south-central Andes revealed by multiple-sensor InSAR, GNSS and field observations

Bodo Bookhagen, Manfred R. Strecker, Jonathan R. Weiss, and Ricardo N. Alonso

With an average elevation of about 3.7 km the semi-arid to arid Central Andean Plateau (Altiplano-Puna) constitutes the world’s second largest orogenic plateau. The internally drained region is characterized by compressional basin-and-range topography. Many of the basins in the Argentine sector of the plateau (Puna) are presently evaporitic salt pans, but during the Pleistocene the basins have repeatedly experienced high lake-level phases during pluvial periods. Due to protracted sedimentary infilling and sustained internal drainage conditions the basins have thick sedimentary sequences that have partially coalesced. The basins are bordered by reverse-fault bounded ranges, reaching 5 to 6 km elevation, but the history and extent of tectonic deformation in this region is not very well known. Global Navigation Satellite System (GNSS) data have been used to estimate decadal-scale tectonic shortening rates but the spatiotemporal pattern of surface deformation is complex and includes the compounding effects of subduction zone megathrust earthquake transients.

Here, we use a combination of field observations, cosmogenic nuclide dating of deformed alluvial-fan surfaces, Interferometric Synthetic Aperture Radar (InSAR), and GNSS data time series to quantify Quaternary to decadal-scale tectonic deformation. The arid mountain ranges provide ideal conditions to observe deformation from multiple sensors, including TerraSAR-X, Sentinel-1, ALOS2, and ENVISAT. Furthermore, we rely on 12 m TanDEM-X topographic data to characterize 103-106 yr surface deformation using cosmogenic nuclide exposure dating and digital elevation model analysis.

The Puna has been previously characterized as a region with little tectonic activity including very low levels of seismicity despite evidence for strike-slip and extensional faulting accompanied by mafic volcanism. The eastern plateau margins in particular record this type of kinematic regime, while the adjacent foreland is characterized by a higher level of seismicity and ongoing contraction. Here, we present evidence of ongoing contraction during the past two decades compatible with tectono-geomorphic phenomena that support the notion of tectonic shortening in the central Puna Plateau. For example, tilted shorelines associated with former lake-highstands along the flanks of an anticline and Neogene-Pleistocene growth strata associated with this structure indicate that shortening in this region has been sustained since the Neogene. InSAR and GNSS time series analysis permit the identification and characterization of previously unrecognized tectonic activity in adjacent sectors of the intermontane basins, thus helping to improve our understanding of crustal dynamics in the Central Andes.

How to cite: Bookhagen, B., Strecker, M. R., Weiss, J. R., and Alonso, R. N.: Active surface deformation in the south-central Andes revealed by multiple-sensor InSAR, GNSS and field observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13209, https://doi.org/10.5194/egusphere-egu2020-13209, 2020.

EGU2020-9900 | Displays | TS7.10

Interactions between tectonics and Earth surface processes of the Central Anatolian Plateau and its southern margin during Mio-Pliocene surface uplift

Maud J.M. Meijers, Gilles Y. Brocard, Ferhat Kaya, Cesur Pehlevan, Okşan Başoğlu, Michael A. Cosca, Shan Huang, Susanne A. Fritz, Christian Teyssier, Cor G. Langereis, Donna L. Whitney, and Andreas Mulch

Quantifying the interactions between tectonics and Earth surface processes on orogenic plateaus requires the acquisition of a multitude of field observations and geological proxies. Here, we reconstruct the topographic development of the Central Anatolian Plateau (Turkey), identify the geodynamic drivers of plateau formation, and constrain the climatic boundary conditions that shaped the fluvio-lacustrine basins, drainage integration, and vegetation and biodiversity dynamics.

Our comprehensive dataset includes sedimentological and field observations, 40Ar/39Ar ages, magnetostratigraphy, lacustrine carbonate δ18O and δ13C data (n=665) from thirteen sections in upper Oligocene to Pliocene continental basins of the CAP interior, and 10Be erosion rates. We also analyze existing fossil faunal (mammal) and floral databases to assess biodiversity dynamics through time and we model isostatic rebound to understand drainage integration.

The CAP and its steep, southern Tauride margin emerged from the Mediterranean Sea ~12-11 Ma and ~8-7 Ma ago, respectively. Contemporaneously to surface uplift, a fluvio-lacustrine system covered extensive parts of the rising CAP. Today, the semi-arid CAP interior − except for the Konya Closed Catchment (KCC) − drains towards the Black Sea, Mediterranean Sea and Persian Gulf.

Our stable isotope paleoaltimetry data show similar-to-present elevations (~2 km) of the southern CAP margin by 5 Ma. Surface uplift affected the diversity of plants and large mammals, and was coeval with ignimbritic magmatism, forearc shortening and distributed compression. We suggest that removal of lithospheric mantle below Anatolia led to surface uplift of the CAP interior, followed by surface uplift of the southern CAP margin as a result of subduction-related crustal thickening. Persistently (>1 Myr) stable paleoenvironmental and hydrological conditions recorded by the former fluvio-lacustrine Anatolian depocenters suggest that a low-relief environment characterized the CAP during plateau uplift. Throughout the late Miocene, various open and closed lakes of the southern CAP drained into closed, terminal lakes within the plateau interior. Sedimentation east of the Tuz Gölü Fault ceased rapidly during the early Pliocene (from 5.3-3.6 Ma), when river incision led to a connection with marine base level. Analysis of incision patterns reveals that drainage integration was not driven by capture of the interior drainage by aggressive rivers draining the plateau margin, but rather by top-down avulsion or overflow due to the establishment of a more positive water balance in some of the closed catchments of the plateau interior. Drainage integration occurred shortly after the switch from regional compression to extension and the onset of escape tectonics of the new Anatolian microplate, when fault partitioning of the existing low-relief plateau interior may have led to drainage integration.

In a next step to reconstruct the paleoenvironmental conditions of the CAP, we obtain δ18O and δ13C values from fossil mammal tooth enamel, which allows for the reconstruction of mammalian diet, and in turn reflects paleovegetation, as well as seasonality for the Mio-Pliocene climate.

References

Meijers et al., 2018a: Palaeo3, doi: 10.1016/j.palaeo.2018.03.001

Meijers et al., 2018b: EPSL, doi: 10.1016/j.epsl.2018.05.040

Huang, Meijers et al., 2019: J of Biogeography, doi: 10.1111/jbi.13622

Meijers et al., 2020: Geosphere, doi: 10.1130/GES02135.1

How to cite: Meijers, M. J. M., Brocard, G. Y., Kaya, F., Pehlevan, C., Başoğlu, O., Cosca, M. A., Huang, S., Fritz, S. A., Teyssier, C., Langereis, C. G., Whitney, D. L., and Mulch, A.: Interactions between tectonics and Earth surface processes of the Central Anatolian Plateau and its southern margin during Mio-Pliocene surface uplift, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9900, https://doi.org/10.5194/egusphere-egu2020-9900, 2020.

EGU2020-13280 | Displays | TS7.10

Constraints on the Timing of Surface Uplift of the Iranian Plateau (Arabia-Eurasian Collision Zone) from Clumped Isotope Thermometry on Pedogenic Carbonates

Paolo Ballato, Alexis Licht, Katharine Huntington, Andrew Schauer, Andreas Mulch, Ghasem Heidarzadeh, Mohammad Paknia, Jamshid Hassanzadeh, Massimo Mattei, Mohammad Ghassemi, and Manfred Strecker

Orogenic plateaus are extensive, elevated, arid, generally internally drained, morphotectonic provinces of low internal topographic relief that represent a striking and enigmatic feature of Earth’s continental landscapes. They are located along convergent plate boundaries and have a profound impact on regional and global climate, erosional processes, local- to far-field deformation mechanisms and the long-term distribution of biomes and biodiversity. Although the paramount role of large orogenic plateaus in shaping our planet is widely appreciated, the question of why, where, and how some orogenic systems develop large plateaus remains a first-order problem in our understanding of lithospheric evolution and orogenic processes.

Here, we present a clumped isotope paleoaltimetry study to document the elevation history of the Iranian Plateau, with the goal of understanding the rates and mechanisms of orogenic plateau rise. This plateau is in the Arabia-Eurasia collision zone, has a mean elevation of ~ 1.8 km, steep margins with mountain peaks higher than 4 km, and experienced surface uplift sometime after the middle Miocene as documented by the occurrence of ca. 17-My-old marine deposits in the plateau interior.

Preliminary results from Early Miocene to Quaternary pedogenic carbonates on the plateau interior and the adjacent, less elevated, intermontane Tarom basin suggest that surface uplift must have occurred sometime between 12-11 and 8 Ma. The lack of significant crustal shortening and thickening during this time interval and the occurrence of a renewed phase of adakitic volcanism by ca. 11 Ma suggests that surface uplift may have been driven by deep-seated processes associated with asthenospheric flow.

How to cite: Ballato, P., Licht, A., Huntington, K., Schauer, A., Mulch, A., Heidarzadeh, G., Paknia, M., Hassanzadeh, J., Mattei, M., Ghassemi, M., and Strecker, M.: Constraints on the Timing of Surface Uplift of the Iranian Plateau (Arabia-Eurasian Collision Zone) from Clumped Isotope Thermometry on Pedogenic Carbonates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13280, https://doi.org/10.5194/egusphere-egu2020-13280, 2020.

The Qilian Shan, located in the northeastern margin of the Tibetan Plateau, is characterized by intensive Cenozoic structural deformation with rapid lateral growth due to the continuous Indo-Asian continental collision. Both low-temperature thermochronological dating and geological mapping suggest that the major emergence of Cenozoic Qilian Shan occurred in the Miocene. The central and northern Qilian Shan uplift successively, and deformation has passed away from the adjacent Hexi Corridor Basin into the Gobi-Alashan. The regional landform shows a low-relief surface in the Qilian Shan hinterland and high steep relief in the northern range front.

The rivers rising in the hinterland of the Qilian Shan, i.e., the Shule River (SL), Beda River (BD), and Hei River (HE), are flowing across the northern range front. It is noteworthy that the development of these rivers is within the context of the in-sequence fault propagation pattern with the lifespan of ~3 Ma. When combined with the differential topographies between hinterland and range front, this kind of river drainage pattern inevitably has abundant geodynamical significances, mainly in terms of the long-term coupling between tectonic and surficial processes. To date, the dynamic conditions in shaping the aforementioned tectonic landscape features remain unknown and are critical in revealing the lateral growth of the NE Tibetan Plateau. A series of landscape evolution models are conducted based on thick-skinned Qilian Shan structural wedge. The wavelength of mountains is constrained by the critical wedge theory.

Our results show that the in-sequence fault propagation together with the arid climate since the Miocene contributes to the low-relief topography in the hinterland of Qilian Shan. The front regions with rapid uplifting rates cut off rivers. Thus, sediments from the hinterlands cannot be directly carried out by rivers. The intermountain areas receive sediments from the adjacent uplift regions, resulting in an increased elevation. Because of the long-term average arid climate, the river incision is limited. For most areas, it is difficult to form transversal rivers immediately that cut through mountains and carry sediment out of the plateau. With the northeastward in-sequence fault propagation, the transversal rivers finally formed with headwaters within the hinterland of Qilian Shan, such as the SL, BD and HE. The broad consistency of landforms, in turn, strongly favors the geological conclusion that faults in the central and northern Qilian Shan were activated sequentially. The rapid uplift rate in the active range front is tested in the range of 0.6-1.0 mm/a. It is found that this rate is insensitivity to the drainage and landscape evolution pattern. However, the background uplift rate has a great influence on the elevation of the plateau and is positively correlated. The current topography of >4000 m in the hinterland of Qilian Shan is controlled by a background uplift rate of ~0.2mm /a.

How to cite: Li, Y., Zhang, H., and Zhang, Z.: The interaction between uplift and landscape evolution in central and northern Qilian Shan: Insights from numerical modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12130, https://doi.org/10.5194/egusphere-egu2020-12130, 2020.

EGU2020-22396 | Displays | TS7.10

A Late Miocene terrestrial temperature history for the northeastern Tibetan Plateau’s period of tectonic expansion

Yan Bai, Chihao Chen, Xiaomin Fang, Haichao Guo, Qaingquan Meng, and Weilin Zhang

During the Late Miocene, the climate patterns and ecosystems of continental land masses experienced crucial transitions, but whether the principal driver was regional tectonic forcing or a decline in CO2 concentrations remains debated. Terrestrial paleotemperature records from tectonically active regions can conserve both paleoaltitudinal and global temperature changes which have occurred as a result of fluctuations in the levels of CO2. However, high-quality quantitative data remain scarce, due to the lack of terrestrial paleotemperature reconstruction tools and well-dated continuous stratigraphic sequences. Based on a continuous sedimentary sequence with high precision dating from ~54-4.8 Ma in Xining Basin, northeastern Tibetan Plateau established, and evaluation of the potentiality of the branched glycerol dialkyl glycerol tetraethers (brGDGTs) in paleotemperature/paleoelevation reconstruction in Tibetan Plateau by our group, we present a terrestrial paleotemperature record spanning ~12.7-5.2 Ma based on tetraether lipids extracted from the northeastern Tibetan Plateau. Our results reveal a sharp cooling (~8°C) during ~10.5-8 Ma, asynchronous with minor fluctuations in global sea temperatures, suggesting a rapid tectonic uplift of ~1 km in extent. This event appears consistent with the simultaneous aridification and transitions of ecosystems experienced in adjacent regions. Moreover, the amplitude of the cooling over land is less than that which occurred over the ocean during the CO2-dominated Late Miocene cooling event (~7-5.4 Ma). We therefore concluded that tectonic forcing, rather than a decline in CO2 levels, most likely dominated continental climate patterns and ecosystem transitions during the Late Miocene.

How to cite: Bai, Y., Chen, C., Fang, X., Guo, H., Meng, Q., and Zhang, W.: A Late Miocene terrestrial temperature history for the northeastern Tibetan Plateau’s period of tectonic expansion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22396, https://doi.org/10.5194/egusphere-egu2020-22396, 2020.

EGU2020-9479 | Displays | TS7.10

Late Miocene hinterland crustal shortening in the Longmen Shan thrust belt, the eastern margin of the Tibetan Plateau

Xiaoming Shen, Yuntao Tian, Shimin Zhang, Andrew Carter, Barry Kohn, Pieter Vermeesch, Rui Liu, and Wei Li

Long‐term (million year time scale) fault‐slip history is crucial for understanding the processes and mechanisms of mountain building in active orogens. Such information remains elusive in the Longmen Shan, the eastern Tibetan Plateau margin affected by the devastating 2008 Wenchuan earthquake. While this event drew attention to fault deformation on the foreland side (the Yingxiu‐Beichuan fault), little is known about the deformation history of the hinterland Wenchuan‐Maoxian fault. To address this gap, thermochronological data were obtained from two vertical transects from the Xuelongbao massif, located in the hanging wall of the Wenchuan‐Maoxian fault. The data record late Miocene rapid cooling and rock exhumation at a rate of 0.9–1.2 km/m.y. from ~13 Ma to present. The exhumation rate is significantly higher than that in the footwall (~0.3–0.5 km/m.y.), indicating a differential exhumation of ~0.6 km/m.y. across the fault. This differential exhumation provides the first and minimum constraint on the long‐term throw rate (~0.6 km/m.y) of the Wenchuan‐Maoxian fault since the late Miocene. This new result implies continuous crustal shortening along the hinterland fault of Longmen Shan, even though it has not been ruptured by major historic earthquakes. Our study lends support to geodynamic models that highlight crustal shortening as dominating deformation along the eastern Tibetan Plateau.

How to cite: Shen, X., Tian, Y., Zhang, S., Carter, A., Kohn, B., Vermeesch, P., Liu, R., and Li, W.: Late Miocene hinterland crustal shortening in the Longmen Shan thrust belt, the eastern margin of the Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9479, https://doi.org/10.5194/egusphere-egu2020-9479, 2020.

Geophysical studies have shown that middle-lower crustal flow started from central Tibetan Plateau may exist in the eastern margin of the Tibetan Plateau, which controls the mountain building, crustal thickening and deformation (Schoenbohm et al., 2006; Bai et al., 2010; Bao et al., 2015; Zhu et al., 2017). However, no geological and petrological evidence have been presented. We carried out detailed studies on the geochemical and isotopic compositions of the Mesozoic-Cenozoic Zheduo-Gongga granitic intrusive complex on the eastern margin of the Tibet Plateau. Geochronology studies show that these granitoid rocks are formed during Mesozoic to Cenozoic, including ~220-200 Ma Gongga granodiorite to biotite granite with mafic enclaves, ~40 Ma Zheduo gneissic granite, ~28 Ma Zheduo monzogranite, and ~20-4 Ma Zheduo biotite granite and monzogranite. Two groups of geochemical features are obtained: Group 1 (gnessic granite, granodiorite, monzogranite, and leucogranite) has relatively low K2O, Th/La, La/Yb and Rb/Sr ratios, but high Sr/Y ratio with no Eu negative anomalies; Group 2 (biotite granite) has relatively high K2O, Th/La, La/Yb and Rb/Sr ratios, but low Sr/Y with strong negative Eu anomalies. The Sr-Nd-Hf-O isotopic studies on plagioclase, apatite and zircon show that their sources are primarily the basement of the western margin of Yangtze Craton and Songpan-Ganzi sediments. These features indicate that they have different petrogenesis processes. Group 1 is mainly derived from partial melting of mafic rocks in the lower crust, whereas the Group 2 is primarily derived from partial melting of metasedimentary rocks experiencing fractionation of plagioclase. Magma derived from different sources mixing with each other are observed as well. Therefore, from geochemical aspects, no exotic materials are involved in the formation of granitoid rocks during Mesozoic to present. The flow of crustal material in the middle-lower crust may be not existed. The low velocity and high conductivity layer in the middle-lower crust may represent a regional partial melting zone, which could be related to the upwelling of asthenosphere. Both crustal deformation and upwelling of asthenosphere may contribute to the crustal thicknening and uplift.

How to cite: Hu, F., Wu, F., Ducea, M., and Chapman, J.: Geochemical and isotopic data of Zheduo-Gongga granitic intrusive complex, eastern margin of the Tibetan Plateau: no evidence for middle-lower crustal flow, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1918, https://doi.org/10.5194/egusphere-egu2020-1918, 2020.

EGU2020-19241 | Displays | TS7.10

Middle Miocene rise of the High Himalaya and the disruption of transverse drainage due to basal accretion

Dirk Scherler, Rasmus Thiede, and Christoph Glotzbach

The Himalaya is the highest and steepest mountain range on Earth and an efficient north-south barrier for moisture-bearing winds. The close coupling of changes in topography, erosion rates, and uplift has previously been interpreted as an expression of a climatic control on tectonic deformation. Here, we present 17 new zircon U/Th-He (ZHe) bedrock-cooling ages from the Sutlej Valley that – together with >100 previously published mica 40Ar/39Ar, zircon and apatite fission track ages – allow us to constrain the crustal cooling and exhumation history over the last ~20 Myr. Using 1D-thermal modeling, we observe a rapid decrease in exhumation rates from >1 km/Myr to <0.4 km/Myr that initiated at 15-13 Ma across the entire Greater Himalaya and the north-Himalayan Leo Pargil gneiss dome, both in the hanging and footwall of major Miocene shear zones, suggesting that cooling is associated to surface erosion and not due to tectonic unroofing. We explain the middle Miocene deceleration of exhumation by the onset of the growth of the Lesser Himalayan duplex, which resulted in accelerated uplift of the Greater Himalaya above a mid-crustal ramp and the establishment of an efficient orographic barrier. The period of slow exhumation in the upper Sutlej Valley coincides with a period of internal drainage in the south-Tibetan Zada Basin farther upstream, which we interpret to be a consequence of tectonic damming of the upper Sutlej River. External drainage of the Zada Basin was re-established at ~1 Ma, when we observe exhumation rates in the upper Sutlej Valley to accelerate again.

How to cite: Scherler, D., Thiede, R., and Glotzbach, C.: Middle Miocene rise of the High Himalaya and the disruption of transverse drainage due to basal accretion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19241, https://doi.org/10.5194/egusphere-egu2020-19241, 2020.

EGU2020-11177 | Displays | TS7.10

Divide mobility controls knickpoint migration on the Roan Plateau

Wolfgang Schwanghart and Dirk Scherler

Knickpoints in longitudinal river profiles provide proxies for the climatic and tectonic history of active mountains. The analysis of river profiles commonly relies on the assumption that drainage network configurations are stable. Here we show that this assumption must made cautiously if changes in contributing area are fast relative to knickpoint migration rates. We study the Parachute Creek basin in the Roan Plateau, Colorado, United States. Low spatial variations in climate and erosional efficiency permit us to reveal and quantify drainage-area loss that occurred in one of the subbasins where observed knickpoint locations are farther upstream than predicted by a model that takes present-day drainage areas into account. We developed a Lagrangian model of knickpoint migration which enables us to study the kinematic links between drainage area loss and knickpoint migration and that provides us with constraints on the temporal aspects of area loss. Modelled onset and amount of area loss are consistent with cliff retreat rates along the margin of the Roan Plateau inferred from the incisional history of the upper Colorado River.

How to cite: Schwanghart, W. and Scherler, D.: Divide mobility controls knickpoint migration on the Roan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11177, https://doi.org/10.5194/egusphere-egu2020-11177, 2020.

EGU2020-17481 | Displays | TS7.10

Feedbacks between internal fluvial drainage and high-plateau tectonic growth. A mechanistic perspective.

Daniel Garcia-Castellanos, Weiming Liu, Zhongping Lai, Ivone Jiménez-Munt, Lucía Struth, Laura Rodríguez-Rodríguez, Gang Hu, Ping Wang, and Gema Llorens

High-plateaus are relatively flat areas at high elevations. The stream-power river-incision law predicts that surface water incises the landscape proportionally to local river slope, and therefore the margins of high-plateaus are prone to a river erosion that should terminate the low relief of the highlands that characterizes the plateau. This means that long-lived high-plateaus need an additional mechanism to compete with river incision.

In absence of tectonic deformation, river networks propagate into the plateau via a retrogressive wave of river incision. A well-constrained non-tectonic scenario is provided by the Neogene Duero and Ebro sedimentary basins in N Iberia, where ongoing incision rates presently range from .02 (Duero) to .5 m/kyr (Ebro) and have propagated upstream at similar rates of up to 0.2 km/kyr, based on cosmogenic dating studies combined with numerical modeling. These rates started with the transition from internal (endorheic) to external (exorheic) drainage of both basins sometime between 8 and 12 million years ago. Interestingly, while the pre-exorheic Ebro Basin sedimentary plateau has been mostly obliterated by erosion, the Duero Basin still preserves large areas of low relief, in spite of the very similar geological setting. The causes will be discussed using landscape evolution numerical modeling.

In contrast, tectonically active regions can counteract river incision and preserve high plateaus by longer time periods. Recent studies based on sedimentary stratigraphy of endorheic basins suggest that large areas of the Tibetan high plateau remain internally drained since ca 35 Ma. In the Altiplano/Puna plateau region internal drainage dates to ~15 Ma and the majority of the topographic uplift has taken place after 10 Ma. Computer models have shown that tectonic deformation is sensitive to internal drainage, because endorheism implies a nearly perfect sediment trap that effectively reduces the output of orogenic erosion to zero. The cancellation of orogen-scale erosion can severely modify tectonic deformation patterns, increase topography and propagate deformation further into the undeformed forelands of the orogenic system. Symmetrically, internal drainage is also promoted by the orographic rain shadow due to the growth of topography in the early stages of tectonism.

Numerical models coupling the aforementioned mechanisms have shown that, as sediment transport and accumulation within the endorheic region progresses, the propagation of deformation to areas more distal to the tectonic plate boundary can lead to a lower‐relief landscape. A recent reassessment of the ages of the Tibetan plateau sedimentary record in the Lunpola Basin seems consistent with an early onset of low relief and internal drainage. Finally, as topography and crustal thickness increase, lower crust flow is facilitated by the lower viscosity implied by higher pressure, favoring a further reduction of local relief within the highlands.

How to cite: Garcia-Castellanos, D., Liu, W., Lai, Z., Jiménez-Munt, I., Struth, L., Rodríguez-Rodríguez, L., Hu, G., Wang, P., and Llorens, G.: Feedbacks between internal fluvial drainage and high-plateau tectonic growth. A mechanistic perspective. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17481, https://doi.org/10.5194/egusphere-egu2020-17481, 2020.

EGU2020-19532 | Displays | TS7.10

The origin of elevated plateaus along passive continental margins

Johan M. Bonow, Peter Japsen, Paul F. Green, and James A. Chalmers

Many passive continental margins around the world are characterised by elevated plateaus at 1 to 2 km or more above sea level cut by deeply incised valleys and commonly separated from an adjacent coastal plain by one or more escarpments. Mesozoic–Cenozoic rift systems parallel to the coast are commonly present offshore with a transition from continental to oceanic crust further offshore. These landscapes occur in arctic, temperate and tropical climate and in different geological settings independent of the time span since break-up (e.g. along the Atlantic from south to north).

The plateaux are typically more than 100 km wide, much larger in some cases, and extend hundreds of kilometres along the margin, cutting across bedrock of different ages and resistances. The key to understanding the formation of regional, low-relief erosion surfaces is the base-level, as this is the level to which fluvial systems grade the landscape. The most likely base level is sea level, particularly for locations along continental margins during the post-rift development of passive margins.

It is commonly assumed that the characteristic, large-scale morphology of elevated, passive continental margins with  high-level plateaux and deeply incised valleys persisted since rifting and crustal separation Further, it is assumed that the absence of post-rift sediments is evidence of non-deposition, despite continental-stretching theory predicting deposition of a thick post-rift sequence overlying both the rift and its margins.

However, our studies of the passive continental margins of West and East Greenland, Norway, NE Brazil and southern Africa provide evidence of km-scale, post-rift subsidence and that the plateau surfaces were graded to sea level long after break-up and subsequently lifted to their present elevations. In some of these cases, the presence of post-rift marine sediments at high elevation provide direct proof of this interpretation. Since elevated plateaux cut by deeply incised valleys are a characteristic feature of these and other margins, this similarity suggests that such topography elsewhere in the world may also be unrelated to the processes of rifting and continental separation. We present a wide range of evidence from passive margins around the world in support of this hypothesis,

 

Bonow et al. 2014: High-level landscapes along the margin of East Greenland – a record of tectonic uplift and incision after breakup in the NE Atlantic. Global and Planetary Change.

Green et al. 2018: Post-breakup burial and exhumation of passive continental margins: Seven propositions to inform geodynamic models. Gondwana Research.

Japsen et al. 2019: Elevated passive continental margins: Numerical modeling vs observations. A comment on Braun (2018). Gondwana Research.

How to cite: Bonow, J. M., Japsen, P., Green, P. F., and Chalmers, J. A.: The origin of elevated plateaus along passive continental margins, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19532, https://doi.org/10.5194/egusphere-egu2020-19532, 2020.

EGU2020-6798 | Displays | TS7.10

Orogenic plateau margin and the coexistence of HP and HT metamorphic rocks

Christian Teyssier, Donna L Whitney, Patrice F Rey, and Françoise Roger

Mature orogenic plateaux grow in response to the lateral redistribution of plateau material, driven by gravitational potential energy, from the thick plateau crust toward the thinner foreland crust. Folding and thrusting in the shallow crust as well as flow of weak deep crust toward the foreland result in plateau growth. The balance between plateau growth processes, including gravitational collapse of the orogenic crust, and the resistance to plateau propagation controls the position of plateau margins. Toward the end of orogenic plateau development, plateau margins are the loci of steep topographic gradients, where erosional processes can be aggressive. The margins also represent the transition between thick crust and thin/weak lithosphere beneath the plateau, and thinner crust and strong/thick lithosphere below the foreland.

The juxtaposition of thick and thin lithosphere favors strain localization along plateau margins, where thick lithosphere may partially subduct, or where strike-slip systems, such as the Altyn Tagh region of northern Tibet, develop. In either case, it is likely that the deep, flowing, partially molten crust will sample and entrain high-P (HP) metamorphic rocks such as granulite and eclogite. In the case of lithospheric strike-slip systems, crustal thickening in transpressional domains may lead to HP metamorphism, and crustal thinning in transtensional domains may lead to rapid exhumation of the deep crust, particularly where pull-apart structures in the shallow-crust allow the upward flow and emplacement of migmatite domes. For example, the Montagne Noire dome (French Massif Central) formed at the southern margin of the Variscan orogen in the late Carboniferous (315-295 Ma). This dome is filled with Variscan migmatite containing eclogite fragments that were sampled near Moho depths and entrained in the flowing partially molten crust; eclogitization and early crystallization of melt were coeval. In this example, the redistribution of mass and heat across the plateau margin, including the exhumation of near-Moho rocks, stabilized the crust and marked the end of orogeny.

How to cite: Teyssier, C., Whitney, D. L., Rey, P. F., and Roger, F.: Orogenic plateau margin and the coexistence of HP and HT metamorphic rocks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6798, https://doi.org/10.5194/egusphere-egu2020-6798, 2020.

TS8.2 – The spectrum of obliquity: A multidisciplinary approach from orthogonal rifts to transform tectonics in continental and oceanic settings

EGU2020-19719 | Displays | TS8.2

Transform/oblique rift system : what have we learned from numerical modelling and what's next ?

Laetitia Le Pourhiet and Anthony Jourdon

For very long time, transform margins have been treated and described  based on oceanic transform fault concepts. Their was no change in kinematics nor structures with time and thermally speaking, it was hypothesed that the margin was reheated as the mid-oceanic ridge translated passively along the margin.  In the last 10 years, 3D numerical modelling has been made available and numbers of studies have challenged this view. It is time to review the concepts that have emerge. Interrestingly, many modelling contributions have tackled the obliquity at very different scales, with initial conditions varying from simple flat layered homogeneous lithosphere to subduction of opposite vergence. Moreover some contributions have focus on rheological aspect and other on inheritance at different scale and different physical coupling have been used. Some models were targeting at reproducing the oceanic transform concepts, other at exploring how large scale structure can emerge.  I will therefore try to review  the state of art in numerical modelling of transform margin and oblique extensional system based on my own work and literature review. I will try to emphize the important differences and similarities used in the different modelling. Using different models with different boundary conditions and scale I will try to introduce a new conceptual model of transform margin which captures important characteristics like the delay in continental break-up highlighted by the tracing of sediments and water-depth as well as the obliquity between syn-rift and post-rift subsidence.  Some models of oblique extension have also been producing new type of strike slip ocean continent transition which somehow could be interpreted as steep transform margins but appears to be mainly strike slip and have no conjugate margins. To conclude, all these 3D numerical modelling  allow us today to present a very different view of transform margins than 10 years ago. Some of the new concepts that have emerged  mendate to re assess our interpretation of exisiting datasets.

How to cite: Le Pourhiet, L. and Jourdon, A.: Transform/oblique rift system : what have we learned from numerical modelling and what's next ? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19719, https://doi.org/10.5194/egusphere-egu2020-19719, 2020.

The Dead Sea Transform is an active left lateral, strike-slip plate boundary. The Gulf of Aqaba corresponds to its southern segment, where the largest amount of opening is observed. The gulf itself is deformed by a set of en echelon faults which are bounded by normal faults. These en echelon faults show structural styles of Riedel shears which are typically observed in strike-slip tectonics. However, their orientation is the opposite to the one observed in well described models or natural cases. In this study, we compare a compiled dataset to analogue models which simulate the displacement in various strike-slip systems. This comparison to a sandbox model highlights the importance of the tectonic load in a strike-slip fault system. The model is composed of two base plates with only one straight velocity discontinuity. X-Ray Computed Tomography is used as a technique to carry out a 4D analysis of internal fault structures of the model. The 10°-transtensional model generates a set of Riedel shear faults, which merge during the later stages of deformation. The 30°-transtensional tectonic load shows two major steep bounding faults with a dip-slip component and a set of en echelon faults - opposite Riedel shears in between them. A higher amount of transtension rotates the classic Riedel shear faults to the opposite position. This fault pattern is very similar to the one observed in the Gulf of Aqaba, where the internal fault system is composed of opposite Riedel shears bounded by normal faults. These observations can increase the understanding of the structural styles seen in the Gulf of Aqaba. Moreover, our study describes a new strike-slip fault system.

How to cite: Fedorik, J. and Afifi, A.: New structural model of strike-slip tectonics of the Gulf of Aqaba, southern Dead Sea Transform, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13345, https://doi.org/10.5194/egusphere-egu2020-13345, 2020.

EGU2020-12551 | Displays | TS8.2

Transpressional deformation in the mantle below the North Anatolian fault system, Turkey

Basil Tikoff, Vasili Chatzaras, Timothy Chapman, Naomi Barshi, Ercan Aldanmaz, and Maggie Kiesow

The North Anatolian Fault Zone (NAFZ) is a 1200-km-long, dextral intracontinental transform fault zone, and initiated ca. 13–11 Ma ago.  The NAFZ formed in response to the N-S convergence of the Eurasian and Arabian plates, accommodated by the westward motion of the Anatolia plate relative to Eurasia plate.  Mantle xenoliths were sampled in late Miocene (11.68±0.25 to 6.47±0.47 Ma) alkali basalts and basanites, immediately N of the trace of the North Anatolian fault, and were previously interpreted to sample the mantle portion of the North Anatolian fault/shear zone at depth.  The studied xenoliths are mainly spinel lherzolites and harzburgites.  Equilibration temperatures estimated from two-pyroxene geothermometers range from 775 to 975 °C, while pressures estimated from the Cr in clinopyroxene geobarometer and pseudosection modelling range from 12 to 22 kbar, which correspond to depths of 40–80 km.  We used high‐resolution X-ray computed tomography to quantify the xenolith fabric defined by the 3D shape preferred orientation of spinel grains.  Spinel displays dominantly oblate fabric ellispoids, consistent with flattening strain.  Olivine has two main crystallographic preferred orientation patterns, the axial-[010] and the A-type, determined with electron backscatter diffraction.  The axial-[010] pattern is consistent with the spinel fabric and other microstructures that show flattening strains.  To further constrain the strain path, we analyze the crystallographic vorticity axes in olivine, which show a complex pattern.  Our results are consistent with an interpretation of transpressional deformation in the upper mantle below the NAFZ, during the early stages of the development of the transform system.  Transpressional deformation is consistent with collision-induced, strike-slip extrusion of Anatolia.

How to cite: Tikoff, B., Chatzaras, V., Chapman, T., Barshi, N., Aldanmaz, E., and Kiesow, M.: Transpressional deformation in the mantle below the North Anatolian fault system, Turkey, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12551, https://doi.org/10.5194/egusphere-egu2020-12551, 2020.

EGU2020-528 | Displays | TS8.2

New insights into the kinematics and timing of superimposed rifting events through integration of offshore data, onshore fieldwork and U-Pb geochronology: Inner Moray Firth Basin, Scotland

Alexandra Tamas, Robert Holdsworth, John Underhill, Kenneth McCaffrey, Eddie Dempsey, David Selby, and Dave McCarthy

Keywords: inherited structures, fault reactivation, U-Pb geochronology

The E-W striking Inner Moray Firth Basin (IMFB) lies in the western part of the North Sea trilete rift system formed mainly in the Upper Jurassic. The IMFB has experienced a long history of superimposed rifting with plenty of uplift and fault reactivation during Cenozoic. The basin is overlying the Caledonian basement, the pre-existing Devonian-Carboniferous (Orcadian Basin) and a regionally developed Permo-Triassic basin. The potential influence of older structures related to the Orcadian Basin on the kinematics of later basin opening has received little attention, partly due to the poor resolution of seismic reflection data at depth or sparse well data.

By integrating onshore fieldwork with the interpretation of 2D and 3D seismic data and U-Pb geochronology of syndeformationally grown calcite we provide new insights into the kinematic opening of the basin as well as the role of pre-existing Devonian-Carboniferous (Orcadian) basin structures.

The Jurassic opening of the rift basin is known to be associated with major NE-SW trending faults. New detailed mapping of offshore 3D seismic data revealed that at a smaller scale en-echelon E-W to NE-SW trending faults, en-echelon N-S to NNE-SSW and NW-SE fault arrays coexist. This suggests an oblique-sinistral component associated with the major NE-SW rift basin trends. This correlates with onshore findings, which suggest that the inherited Orcadian fault systems (mainly N-S to NE-SW) have been dextrally reactivated. Sinistral WNW-SSE to NW-SE striking faults and associated transtensional folds are also present in the Devonian rocks. This later deformation is consistently associated with calcite mineralization (e.g. slickenfibers, calcite tensile veins or Riedel shear fractures). New U-Pb dating of the calcite mineralization, related to the reactivated faults, shows that the age of fault reactivation is 153 ± 0.68 Ma (Upper Jurassic).

The integration of fieldwork with subsurface interpretations and absolute dating techniques has provided better constraints on superimposed basin development, as well as explaining complexities that have hitherto been ignored. This can reduce subsurface uncertainties regarding the structural evolution of the basin and unlock the full potential of the area and significantly enhance future exploration programs.

How to cite: Tamas, A., Holdsworth, R., Underhill, J., McCaffrey, K., Dempsey, E., Selby, D., and McCarthy, D.: New insights into the kinematics and timing of superimposed rifting events through integration of offshore data, onshore fieldwork and U-Pb geochronology: Inner Moray Firth Basin, Scotland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-528, https://doi.org/10.5194/egusphere-egu2020-528, 2020.

The Beibuwan basin is located along the western margin of the Ailao Shan Red River Shear Zone (ASRRSZ), and also in the north margin of the South China Sea (SCS). This study utilizes 2-D seismic data to investigate the evolution of this basin and discuss its broad tectonic settings. Several stages of rifting and inversion occurred in the Beibuwan basin during Cenozoic: (1) During Paleocene initial rifting (66-56 Ma), the ocean-ward gradual retreat of the Paleo-pacific subduction zone created an extensional tectonic setting in the SCS region. The overall extensional tectonic setting of the northern passive margin of the SCS generated a series of Paleogene NE-striking rift basins, including the Beibuwan basin, the Qingdongnan basin and the Pear River Mouth Basin. (2) During Eocene rifting stage (56-37.8 Ma), the Pacific plate still subducted under the Eurasian plate, and soft collision started to occur between the greater India plate and the Eurasian plate. Subsequently, the NW-SE-direction extension gradually changed to N-S-direction extension, therefore, the NE-striking faults active intensively during this stage, and a small group of EW-striking faults formed in the study area. (3) During the Oligocene rifting stage (37.8-23 Ma), the India-Eurasian collision went into hard collision stage, induced the large-scale left-lateral strike-slip of the ASRRSZ. Furthermore, the subduction of the Pacific plate strengthens the left-lateral shearing of the ASRRSZ. The left-lateral strike-slip of ASRRSZ resulted in the formation of large amount of EW-striking faults in the Beibuwan and Yinggehai basins, and the opening of the South China Sea. (4) After Paleogene, several stage of inversions occurred in the study area, including the end-Oilgocene, end-Miocene and end-Plioence inversions. The regional end-Oligocene inversion is supposed related to the change from major left-lateral transtensional rifting to left-lateral transpression of ASRRSZ. The end-Miocene and end-Pliocene inversions are localized inversions, which also related to the left-lateral transpression of ASRRSZ.

How to cite: Cheng, Y. and Wu, Z.: Cenozoic rifting and inversion in Beibuwan Basin and its relationship with strike-slip motion on the Ailao Shan-Red River Shear Zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4522, https://doi.org/10.5194/egusphere-egu2020-4522, 2020.

Plate tectonic history of northeast Indian subcontinent can be viewed as a window to the
evolution of Southeast Asia. One such important tectonic feature is the northern most part of
Indo-Burmese Ranges where this research work has been carried out. Here we propose an
evolutionary model that shows northward moving ‘horse-tail’ feature of the Hukawng Block
from the Burma basin, pushed this region towards the rigid Mishmi Block and Upper Assam
shelf, that caused the hyperoblique pattern of the ranges. It is the juxtaposition of the three
continental blocks: India-Asia-Burma, where there are tectonic and geomorphic influences in
the Block from both the Himalayan and Indo-Burmese orogeny. Stress distribution among
north-easterly moving Indian plate and comparatively stiff Eurasian and Burma plates, within
the India specific reference frame, is resulting in further changes. The study area mainly falls
under Changlang district of Arunachal Pradesh, India; and the regional study has been done in
the quadrangle from 26° to 28°N in latitudes and 95° to 97°E in longitudes. Morphotectonic
study, lineament analysis, fault system characterisation, focal plane mechanism along with
dynamic topography, seismic tomography and gravity anomaly have been incorporated in the
field evidences. Morphotectonic study for Noa-Dihing River basin has resulted in a value of
56.59 for Asymmetric Factor, which shows similar asymmetry result like in the Chi (χ)
analysis. This SW-ward tilted basin is moderately asymmetrical with Transverse Topographic
Symmetric Factor value of 0.42. This indicates that the major river basin along with other subbasins
are under the influence of active oblique rotational component. The regional lineaments
are showing mean orientations of N11°E-S11°W, N70°W-S70°E and EW whereas some local
trends of minor lineaments, in some places have mean orientations of N40°W-S40°E, N82°WS82°
E and N42°E-S42°W. In Mishmi block the major regional trends are N35°W-S35°E and
N40°E-S40°W comprising of probable cross-faults. In Hukawng Block, the lineament
orientation changes from N50°W-S50°E in the west to N30°W-S30°E, N-S and N15°E-S15°W
in the central valley region (north of Jade mines) and then to N50°E-S50°W in the eastern side.
Major fault systems are mostly thrust, with some showing very low angle slip component,
along with some oblique slip faults (e.g. Noa-Dihing River). The dynamic topography and
seismic tomographic studies indicate presence of a high seismic velocity zone beneath Mishmi
block indicating the crystalline rock materials. The block is still actively exhuming. Moreover,
Changlang and Hukawng blocks have undergone uplift and then phases of subsidence during
the last 20Ma. This indicates that the Low Velocity materials that are present underneath were
subjected to some crustal deformations. This tectonic process has also resulted in gravity
anomalies. The role of massive and rigid Mishmi block, comprising older crystalline rocks and,
later forming Burma basins formed the oblique rotation of the Changlang block which is
observed from all stated methods. Hukawng Block, which is controlled by the motion of
Sagaing Fault, have influenced the Changlang Block by its varied strike-slip stress components.
Moreover, Indo-Burmese Ranges also has an influence on this block and vice-versa.

How to cite: Zaman, F., Goswami, U., and Bezbaruah, D.: Hyperobliquity of Changlang Block of eastern Arunachal Pradesh, India and the role of Mishmi Block, India and Hukawng Block, Myanmar in its development, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-185, https://doi.org/10.5194/egusphere-egu2020-185, 2020.

Large-offset transform faults (TFs) in the Atlantic juxtapose hot spreading segments against older, colder oceanic lithosphere, leave permanent traces as fracture zones in ageing oceanic crust and represent a significant proportion of the plate boundary along the Mid-Atlantic Ridge (MAR). The manifestation of the thermal contrast and the structure and composition of TFs however, are not well understood. The Romanche TF, situated in the Equatorial Atlantic, offsets the MAR by ~950 km, has a slip of ~1.7 cm/yr, and divides the northern MAR from its equatorial and southern spreading systems. Close to the eastern ridge-transform intersection (RTI), shallowing of the seafloor from north to south across the TF reflects the change from old, cold African lithosphere to the warmer and younger South American plate close to the MAR axis, however the bathymetry and structures across the fault itself are complex. Over 100 km distance, a large northern transverse ridge reaches depths of <1000 m and contains a fossil transform trace, before steeply descending into a 45‑km wide transform valley containing ~7000 m‑deep basins, which is bounded to the south by a further shallow structure reaching ~2500 m‑depth. Previous studies using seafloor sampling, seismic reflection and bathymetry data have suggested these features comprise a mix of uplifted magmatic crustal blocks and serpentinized mantle peridotites. However, these studies cannot effectively determine the sub‑seafloor structure.

The ILAB-SPARC experiment in 2018 obtained an active-source wide-angle refraction profile across the eastern Romanche TF, consisting of twenty-eight ocean-bottom seismometers spaced at ~14 km. We present a P-wave velocity model produced by the inversion of seismic travel time picks which reveals variations in crustal structure from ~40 My lithosphere to the north to ~7 My lithosphere to the south. Within the TF, a ~15 km-wide low-velocity anomaly extends from the top basement through to >10 km below basement. A lack of Moho reflections suggests no abrupt crust/mantle boundary exists beneath the TF, likely indicating the presence of a deep column of fractured and sheared basalts, breccias and peridotites. Low mantle velocities suggest faulting and water penetration to depths of ~16 km, causing widespread and extensive serpentinization. The crust to the south of Romanche is relatively thin (~5 km‑thick) compared to north of Romanche (~6 km‑thick), and contains areas of high velocity indicative of a predominantly gabbroic crust. This may be attributed to the irregularity of the MAR segment as it approaches the RTI, as it jumps to the west in several non-transform discontinuities and exhibits seafloor fabric indicative of magma-starved, tectonic spreading with exhumation along detachment faults.

These results suggest the shearing and transtensional/transpressional forces present at large-offset transform faults result in mantle exhumation and form deep conduits for fluid circulation. At Romanche, these tectonic forces combined with the thermal contrast and magma-starved ridge axis, stretch and deform magmatic oceanic crust within the TF such that it is thin and patchy. This may suggest that crustal structure within transforms is linked to the fault offset, valley width, and the magma supply at the closest ridge segment.

How to cite: Gregory, E., Marjanović, M., Wang, Z., and Singh, S.: Structure and composition of large-offset Atlantic transform faults: an extreme example at the Romanche transform from wide-angle refraction data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10151, https://doi.org/10.5194/egusphere-egu2020-10151, 2020.

EGU2020-10167 | Displays | TS8.2

The Camarat granite (Maures Massif, SE France): a tectonic marker of the late orogenic evolution of the South European Variscan Belt

Olivier Bolle, Michel Corsini, Hervé Diot, Oscar Laurent, and Raphaël Melis

A significant portion of the Maures-Tanneron Massif (SE branch of the European Variscan Belt) is occupied by late orogenic, anatectic crustal granitoids that were emplaced at ca. 325-300 Ma (Upper Carboniferous)1,2. The Camarat granite3 is one of the smallest representatives of these granitoids (~2.5 km2). It is a composite intrusion exposed in migmatitic gneisses of the Maures Massif, along the southern shore of the Saint-Tropez Peninsula. From west to east, it consists of an E-W strip of Ms-Bt-Crd leucogranite where coarse- and fine-grained facies are found in similar amounts, and two bodies of Bt-Ms leucogranite, dominantly coarse-grained.

Zircon and monazite from two samples of the Camarat granite have been analyzed by LA-ICP-MS for U-Pb dating. Sixteen monazite analyses from the fine-grained facies of the E-W granite strip give a Concordia age of 303.5 ± 1.8 Ma (2 S.E., MSWD = 0.9). Sixteen zircons from the coarse-grained facies of the easternmost intrusion provide a Concordia age of 304.6 ± 2.1 Ma (2 S.E., MSWD = 1.2). The two dates are identical within uncertainty and are considered to constrain crystallization of the Camarat granite at ~304 Ma (Kasimovian–Gzhelian limit).

Twenty-one measurements of the anisotropy of magnetic susceptibility (AMS) and direct textural quantifications through image analysis (IA) of 10 samples give agreeing results that reveal the fabric orientation in the Camarat granite. The foliation has a variable orientation, with a weighted average of N65°E/26°NNW for the AMS data and N77°E/17°NNW for the IA data (D = 10°). The lineation pattern is more homogeneous, displaying a consistent northerly shallow plunge (mean of N12°E/22°NNE vs. N22°E/20°NNE; D = 10°). The Camarat granite lineations are parallel to lineations in the gneissic country rocks. These were produced during the last Variscan tectonic event evidenced in the area, a partitioned transpression phase, localized along ca. N-S sinistral strike-slip shear zones4. It is proposed that the ascent of the Camarat granite was favoured by such strike-slip structures and that pull-aparts represent the sites of emplacement, as best exemplified by the E-W granite strip.

In the Corso-Sardinian Block, another portion of the SE Variscides formerly juxtaposed to the Maures-Tanneron Massif5, a model of progressive transition from late orogenic, Upper Carboniferous transpression to post orogenic, Permian extension has been recently proposed6. A similar model may be extended to other areas of the SE Variscan Belt, in particular to the Maures-Tanneron Massif which is cut and bordered by Permian grabens7, the ca. E-W orientation of these grabens implying that a ca. N-S direction of stretching, as recorded by the 304 Ma Camarat granite, was still prevailing in Permian times.

 

  1. Duchesne et al., Lithos 162-163, 195-220 (2013). 2. Schneider et al., Geol. Soc. Spec. Pub. 405, 313-331 (2014). 3. Amenzou & Pupin, C. R. Acad. Sc. Paris (Série II) 303, 697-700 (1986). 4. Corsini & Rolland, C. R. Geoscience 341, 214-223 (2009). 5. Edel et al., Geol. Soc. Spec. Pub. 405, 333-361 (2014). 6. Casini et al., Tectonophysics 646, 65-78 (2015). 7. Toutin-Morin, Ann. Soc. géol. Nord 106, 183-187 (1987).

How to cite: Bolle, O., Corsini, M., Diot, H., Laurent, O., and Melis, R.: The Camarat granite (Maures Massif, SE France): a tectonic marker of the late orogenic evolution of the South European Variscan Belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10167, https://doi.org/10.5194/egusphere-egu2020-10167, 2020.

EGU2020-9240 | Displays | TS8.2

The structural evolution of the Falkland Plateau

Roxana Mihaela Stanca, Douglas Paton, Estelle Mortimer, David Hodgson, and Dave McCarthy

The palaeogeographic reconstruction of the Falkland Plateau transform margin in a Gondwana pre-break-up configuration has been the subject of debate for years. This is mainly due to the uncertainty in the position of the Falkland Islands microplate. The islands were an extension of the south-east coast of South Africa, being either i) part of a rigid Falkland Plateau fixed to the South American plate or ii) undergoing a vertical-axis clockwise rotation of between 80° to 120° along the transform faults generated during the initial stages of fragmentation of south-western Gondwana. The absence of documented evidence of this rotation within the sedimentary infill of the basins surrounding the Falkland Islands represents an ongoing issue. Furthermore, a structural framework of the eastern continental shelf of the islands that takes into account the most recent seismic reflection surveys has not been published yet.

This study presents an updated description of the structural configuration of the Falkland Plateau Basin, focusing on the Volunteer and Fitzroy sub-basins. This structural framework, based on extensive 2D and 3D seismic reflection data and aided by seismic attribute mapping, provides new insights into the evolution of the Falkland Islands microplate and the Falkland Plateau Basin.

Three main structural trends were identified across this section of the Falkland Plateau. WNW-ESE trending half-grabens were mapped north-west of the Volunteer sub-basin; these correlate laterally with linear gravity anomalies following the same trend north of the Falkland Islands. NNE-SSW to N-S normal faults are predominant west of the Volunteer sub-basin and are believed to control the western margin of the Falkland Plateau Basin. Locally, the NNE-SSW trend is subdued by NNW-SSE striking en-échelon normal faults suggestive of left-lateral movement along a NNE-SSW direction. A similar trend is interpreted in the southern part of the Fitzroy sub-basin, supporting sinistral wrenching along the western margin of the Falkland Plateau Basin.

These results suggest intra-plate deformation that is consistent with a clockwise rotation of the Falkland Islands microplate along the transform faults that accommodated the initial fragmentation of Gondwana. The interpreted fault network allows us to understand the temporal variation in the orientation of the minimum horizontal stress across the Falkland Islands microplate. By comparing this variation with the regional stress regime in south-western Gondwana, the timing and mechanism of the rotation of the islands can be better constrained.

How to cite: Stanca, R. M., Paton, D., Mortimer, E., Hodgson, D., and McCarthy, D.: The structural evolution of the Falkland Plateau , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9240, https://doi.org/10.5194/egusphere-egu2020-9240, 2020.

EGU2020-8839 | Displays | TS8.2

Structural Characteristics and Evolution Process of the Western Slope of Xihu Sag

Yining Dai, Zhiping Wu, Yanjun Cheng, and Bin Xu

The western slope is the most promising area for hydrocarbon accumulation in Xihu Sag. Since Cenozoic, the western slope has undergone multiple stages of evolutions, which resulted in the complex structure of the slope and complicated the hydrocarbon exploration in the study area. Based on the fine seismic interpretation, fault activation rate calculation and balanced cross section restoration, this paper analyzes the structural characteristics and evolution process of the western slope, in order to provide supports to the hydrocarbon exploration. The results show that the western slope is controlled by NNE-striking and NW-striking faults. Seperated by NW-striking faults, the western slope can be divided into sub-Hangzhou slope, sub-Pinghu north slope, sub-Pinghu south slope and sub-Tiantai slope from north to south. (1) The sub-Hangzhou slope is a faulted-step gentle slope. In faulting episode I (Cretaceous-Paleocene), the slope was controlled by step faults. In faulting episode II (Early Eocene), the slope changed from fault-controlled slope to gentle strata slope. In depressional period (Late Eocene-Middle Miocene), the slope was a gentle strata slope. (2) The sub-Pinghu north slope is a graben-horst slope. In faulting episode I (Cretaceous-Paleocene), the slope was controlled by two sets of step faults with opposite tendencies. In faulting episode II (Eocene), the slope changed from fault-controlled slope to gentle strata slope. In depressional period (Oligocene-Middle Miocene), the slope was a gentle strata slope. (3) The sub-Pinghu south slope is a faulted-step steep slope. In faulted period (Cretaceous-Paleocene), the slope was controlled by Pinghu fault and secondary step faults. In depressional period (Oligocene-Middle Miocene), the activation of Pinghu fault became weak, but this fault still divided the strata. (4) The sub-Tiantai slope is a single-fault steep slope. In faulted period (Cretaceous-Paleocene), the slope was controlled by Baoshi fault. In depressional period (Oligocene-Middle Miocene), the activation of Baoshi fault became weak, but this fault still divided the strata. Differences of structural characteristics and evolution process influence the hydrocarbon accumulation in different sub-slopes.

How to cite: Dai, Y., Wu, Z., Cheng, Y., and Xu, B.: Structural Characteristics and Evolution Process of the Western Slope of Xihu Sag, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8839, https://doi.org/10.5194/egusphere-egu2020-8839, 2020.

EGU2020-2882 | Displays | TS8.2

Combination of Earth Observation and Seismic Reflection Data Analysis for The Definition of Strike Slip Fault Zones in Central Crete

Emmanuel Vassilakis, John Alexopoulos, and Georgios-Pavlos Farangitakis

The general understanding of the major tectonic structures that are traced on Crete Island is of great importance to decipher the geodynamic regime of the leading edge of the overriding Aegean microplate and consequently Eurasia’s southernmost active margin. The aim of this multi-disciplinary methodology is to provide useful information for more reliable mapping of buried structures, which in turn supplement the dynamic and kinematic model of this key area of high interest.

Several indicators for the existence of oblique fault block displacement were identified with the use of earth observation data, as strike slip faulting expressions on the surface are more efficiently identified by vertical observations. Tectonic structures which are usually created along lateral displacements require different working scales. Hence, earth observation data (satellite images, aerial photographs) with various spatial characteristics need to be included.

Therefore, the methodology presented in this paper involves high spatial resolution digital elevation models and several remote sensing multispectral datasets, in many cases merged with higher spatial resolution panchromatic aerial photographs. The co-registration and ortho-rectification of all datasets proved to be a very significant part of this work in order to produce high resolution coloured 3D scenes at selected sites in central Crete, where the observed N-S trending strike slip fault zones crosscut arc parallel low angle normal faults and higher angle fault scarps.

Additionally, deep seismic reflection datasets along the major geomorphic structure of Messara basin were combined and highlighted the strike slip mechanism, since the continuation of the sub-vertical structures in depth has become clearer after the exact positioning of the sections and further interpretation.

How to cite: Vassilakis, E., Alexopoulos, J., and Farangitakis, G.-P.: Combination of Earth Observation and Seismic Reflection Data Analysis for The Definition of Strike Slip Fault Zones in Central Crete, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2882, https://doi.org/10.5194/egusphere-egu2020-2882, 2020.

EGU2020-5146 | Displays | TS8.2

The characteristics and evolution of accommodation zone in Xihu Sag, East China Sea Shelf Basin

Bin Xu, Zhiping Wu, Yanjun Cheng, and Yining Dai

Accommodation zone is an important deformation structure in sedimentary basin, which is significant to understanding the basin structure. The formation and evolution of the Xihu Sag is controlled by the NNE-striking faults, whereas the NNE-striking deformation is offset by the NW-striking accommodation zone. However, the structure and evolution of the accommodation zone are poorly known. Based on the dips and activation rates of related NNE-striking faults on two sides of the NW-striking accommodation zone, 8 styles of NW-striking accommodation zones are divided in this sag, including the synthetic approaching style, synthetic broken line style, synthetic overlapping style, reverse approaching style, reverse broken line style, composite approaching style, composite broken line style, composite overlapping style. The relative accommodation ratio of the accommodation zone can be reflected by the difference-value of the faults activation rate of the NNE-striking faults. The results show that: (1) the most of the NW-striking accommodation zones formed at Early Cretaceous with low relative accommodation ratio, and reached its peak at Eocene, and disappeared at Late Oligocene. (2) The temporal and spatial differences of the NW-striking accommodation zones are very common in the Xihu Sag. Spatially, the accommodation zones are mainly developed in the western slope of Xihu Sag, and rarely developed in the middle and eastern of the Xihu Sag. Temporally, the accommodation zones developed in the northern area of the western slope of the Xihu Sag during the early stage, whereas, these zones migrated to the southern area of the western slope of the Xihu Sag during the late stage. This study on the tectonic evolution of the accommodation zone provides significant support to the study on the tectonic evolution of the Xihu sag.

How to cite: Xu, B., Wu, Z., Cheng, Y., and Dai, Y.: The characteristics and evolution of accommodation zone in Xihu Sag, East China Sea Shelf Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5146, https://doi.org/10.5194/egusphere-egu2020-5146, 2020.

EGU2020-5378 | Displays | TS8.2

The structural evolution of pull-apart basins in response to relative plate rotations; A physical analogue modelling case study from the Northern Gulf of California.

Georgios-Pavlos Farangitakis, Kenneth J.W. McCaffrey, Ernst Willingshofer, Lara M. Kalnins, Jeroen van Hunen, Patricia Persaud, and Dimitrios Sokoutis

Pull-apart basins are structural features closely linked to the interactions between strike-slip and extensional tectonics. Their morphology and structural evolution are determined by factors such as extension rate, width/length ratio, or changes in the extension direction. In this work, we focus on changes in extension direction during the formation of a pull-apart basin as a basis to further understand the evolution of the northern Gulf of California through a series of physical analogue modelling experiments.

We investigate the effect of a variation in the basin extension direction, using a two-layer ductile-brittle configuration to simulate continental crust rheology. Pull-apart basin development is accomplished by displacing a plastic sheet at the bottom of the experiment, with pre-cut geometry resembling interconnected rift and strike-slip segments, orthogonal to the evolving rift axes. Subsequently, we change the relative motion of the base plate by 7o in accordance with the reconstructed plate vector from the Gulf of California. Oblique extension continues on this new plate motion vector to the end of the experiment.

To analyse the results, we inserted the model cross-sections in a seismic interpretation software generating 3D interpretations for faulting and sedimentary thickness. Preliminary results show that the shift in the direction of plate motion produces sigmoidal oblique slip faults that become normal when deformation adjusts to the new plate motion vector. Furthermore, it appears that sediment distribution is controlled heavily by the relative plate rotation.

Finally, we compare our observations with seismic reflection images, sedimentary package thicknesses and fault interpretations from the pull-apart structure in the Northern Gulf of California transtensional margin, where we find good agreement between model and nature.

How to cite: Farangitakis, G.-P., McCaffrey, K. J. W., Willingshofer, E., Kalnins, L. M., van Hunen, J., Persaud, P., and Sokoutis, D.: The structural evolution of pull-apart basins in response to relative plate rotations; A physical analogue modelling case study from the Northern Gulf of California., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5378, https://doi.org/10.5194/egusphere-egu2020-5378, 2020.

EGU2020-7974 | Displays | TS8.2

Imaging the past and present Owen transform fault: preliminary results from the VARUNA seismic cruise

Alexandre Janin, Mathieu Rodriguez, Nicolas Chamot-Rooke, Alain Rabaute, Matthias Delescluse, Jérôme Dyment, Marc Fournier, Philippe Huchon, Jean-Arthur Olive, and Christophe Vigny

The Owen transform fault in the northwest Indian Ocean is a >300 km-long active structure that constitutes the active plate boundary between Somalia and India. The first-order fault geometry was reached in the Early Miocene when the Carlsberg Ridge propagated westward into the African plate to open the Gulf of Aden. Presently, it accommodates ~23 mm/yr of left-lateral strike-slip motion between the Sheba and Carlsberg spreading centers.  The fault was recently surveyed in the Spring of 2019 during the VARUNA and CARLMAG cruises on BHO Beautemps-Beaupré, an oceanographic ship operated by the French Navy. Along with geophysical measurements (multibeam bathymetry, gravity and magnetic fields) a set of high-resolution seismic lines (> 5000 km) was acquired across both the active and fossil traces of the fault between 9°N and 15°N. The area is largely buried under the distal Indus turbiditic sediments and therefore offers a fairly unique continuous high-resolution stratigraphic record of past regional tectonic events. Here we present the first multibeam map of the Owen Transform system. A remarkable transpressive ridge borders the active trace of the fault along most of its length. At the intersection with the Carlsberg Ridge, the Owen Transform marks an 11° bend characterized by ~1200 m of seafloor uplift.  Our preliminary interpretation of the seismic lines brings to light the key unconformities related to Global Plate Reorganization Events. Off the main fault, new data reveal the magmatic nature of the Varuna Bank and similar partially buried highs. These have likely grown in the very early stage of formation of the oceanic crust carrying them, although tectonic emplacement cannot be completely ruled out. Some of the highs show internal structure, which can be interpreted either as carbonate caps or layered volcanic formations. This dataset, combined with previous cruises, offers unprecedented coverage of a 1500 km-long transform corridor along the Arabia-India and India-Somalia plate boundaries.

How to cite: Janin, A., Rodriguez, M., Chamot-Rooke, N., Rabaute, A., Delescluse, M., Dyment, J., Fournier, M., Huchon, P., Olive, J.-A., and Vigny, C.: Imaging the past and present Owen transform fault: preliminary results from the VARUNA seismic cruise, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7974, https://doi.org/10.5194/egusphere-egu2020-7974, 2020.

EGU2020-12637 | Displays | TS8.2

Structural inheritance and evolving rift kinematics in transform and oblique rift systems: A comparison of global examples

Alexander L. Peace, Patricia Cadenas Martínez, Georgios-Pavlos Farangitakis, Jordan J. J. Phethean, and Louise Watremez

A spectrum of rift types from orthogonal, through oblique to pure transform-type systems have been documented. In addition, it is well-established that during rift evolution transition between these kinematic regimes may occur. The effects of obliquity are extensive, often leading to distinctive structural settings dominated by transtensional and transpressional processes. The complexity of these settings, as well as their global prevalence, emphasises the need for better understanding, so that the role of oblique rifts and transforms in larger-scale plate tectonics can be fully appreciated.

The development of oblique rifts and transforms is influenced by a number of interrelated factors including: 1) oblique crustal and mantle inheritance, 2) a reduced force required for plastic yielding, 3) changes in far-field forces, 4) asthenospheric dynamics, and 4) grain size changes in the lower crust and mantle. However, although their development is controlled by this array of processes, it is known that the influence of oblique crustal and mantle inheritance, as well as changes in far-field forces is substantial. Yet, the relative importance, and prevalence, of these two factors amongst rift systems globally is insufficient. As such, the aim of this study is to determine to what extent these two processes prevail.

Structural inheritance refers to heterogeneities produced by previous geological processes that proceed to influence subsequent geological events. This process plays a substantial role in oblique rift and transform development at both the crustal and mantle scale. Specifically, large-scale mantle structures may localise crustal deformation, whilst reactivation of discrete structures in the pre-rift crystalline basement can influence the geometry and kinematics of rift basins and margins. On the other hand, changes in the orientation and magnitude of far-field forces mean that as a rift proceeds from inception to possible breakup, the kinematic regime may evolve such that the orientation of extension with respect to the rift boundary is spatiotemporally variable. Such changes in rift kinematics allow structures established under one kinematic regime to be subsequently reactivated, overprinting multiple rift episodes, whilst variable extension magnitude may introduce further complexities.

To better understand these processes we systematically compare the structural and tectonic evolution of several oblique rifts and transform margins, which were chosen to represent a diversity of rift types. Specifically, we compare: 1) the Davis Strait, 2) the Bay of Biscay 3) the Gulf of California, 4) the Red Sea, and 5) the East African margin. This is achieved by extracting rift velocity and extension directions from published plate tectonic models using GPlates, which are then compared with model results, as well as geological and geophysical observations. Preliminary results indicate that most oblique rifts and transforms express a strong influence of structural inheritance and a substantial change in kinematics during their evolution, emphasising the importance of these factors in oblique rift development.

How to cite: Peace, A. L., Cadenas Martínez, P., Farangitakis, G.-P., Phethean, J. J. J., and Watremez, L.: Structural inheritance and evolving rift kinematics in transform and oblique rift systems: A comparison of global examples , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12637, https://doi.org/10.5194/egusphere-egu2020-12637, 2020.

EGU2020-9390 | Displays | TS8.2

Effect of the interplay between ultra-slow spreading ridge and transform faults on seafloor morphology

Stéphane J. Beaussier, Andreia Plaza Faverola, Taras Gerya, and stefan Buenz

Slow and ultra-slow spreading systems gives way to complexes seafloor morphologies characteristic of different modes of tectono-magmatic activity at the ridge: crust accretion by episodic magma supply, low-angle brittle/ductile normal faulting and high-angle normal faults leading to the formation of oceanic core complexes (OCC). Previous studies have established that the magma supply exert a first order control on the tectono-magmatic activity at ultra-slow ridges (Howell et al., 2019; Lavier et al., 2000). However, other parameters are likely to play a significant role in the mode of spreading and therefore the seafloor morphology. For instant, transform faults are ubiquitous in slow spreading systems and are therefore likely to impact the mode of spreading by redistributing the stress field in the oceanic lithosphere. This seems to be supported by the observation that OCC are typically occurring in the inside corners of intersections between the ridge axis and major transform faults (Tremblay et al., 2009). Yet, little work has been done to investigate this question, leaving a significant gap in the understanding of slow and ultra-slow spreading systems.

This contribution investigates the interaction between ultra-slow spreading ridge and transform faults within the framework of a case study of the Fram Strait using high-resolution 3D numerical modelling. This study rely on the latest advances in geodynamics, namely the grain-damage rheology (Bercovici and Ricard, 2012) – which allows for internally consistent modelling of long-lived transformed faults. Numerical experiments are compared to the tectonic history of the Fram Strait over the last 10 Ma. A significant amount of geophysical and geological data available in the region allows us to asses how well the models reproduce observable structures in near-surface. Results show that ridge obliquity and ridge-transform interplay strongly affect the ridge spreading mode. Oblique ridge favour the formation of OCC over low-angle detachment fault and are systematically formed in the vicinity of major transform faults. Overall, results are in accordance with the highly complex seafloor morphology of the Fram Strait, in particular in the vicinity of the Molloy ridge. This study opens the way for a better understanding of complex ridge and abyssal hills structures in ultra-slow and slow spreading systems.

 

Bibliography

Bercovici, D., Ricard, Y., 2012. Mechanisms for the generation of plate tectonics by two-phase grain-damage and pinning. Phys. Earth Planet. Inter. 202–203, 27–55. doi:10.1016/j.pepi.2012.05.003

Howell, S.M., Olive, J.-A., Ito, G., Behn, M.D., Escartín, J., Kaus, B., 2019. Seafloor expression of oceanic detachment faulting reflects gradients in mid-ocean ridge magma supply. Earth Planet. Sci. Lett. 516, 176–189. doi:10.1016/J.EPSL.2019.04.001

Lavier, L.L., Buck, W.R., Poliakov, A.N.B., 2000. Factors controlling normal fault offset in an ideal brittle layer. J. Geophys. Res. Solid Earth 105, 23431–23442. doi:10.1029/2000JB900108

Tremblay, A., Meshi, A., Bédard, J.H., 2009. Oceanic core complexes and ancient oceanic lithosphere: Insights from Iapetan and Tethyan ophiolites (Canada and Albania). Tectonophysics 473, 36–52. doi:10.1016/J.TECTO.2008.08.003

How to cite: Beaussier, S. J., Plaza Faverola, A., Gerya, T., and Buenz, S.: Effect of the interplay between ultra-slow spreading ridge and transform faults on seafloor morphology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9390, https://doi.org/10.5194/egusphere-egu2020-9390, 2020.

EGU2020-19421 | Displays | TS8.2

Crustal structures across the young and oblique North-eastern Gulf of Aden margin

Louise Watremez, Sylvie Leroy, Elia d'Acremont, and Stéphane Rouzo

The Gulf of Aden is a young and active oceanic basin, which separates the south-eastern margin of the Arabian Plate from the Somali Plate. The rifting leading to the formation of the north-eastern Gulf of Aden passive margin started ca. 34 Ma ago when the oceanic spreading in this area initiated at least 17.6 Ma ago. The opening direction (N26°E) is oblique to the mean orientation of the Gulf (N75°E), leading to a strong structural segmentation.

The Encens cruise (2006) allowed for the acquisition of a large seismic refraction dataset with profiles across (6 lines) and along (3 lines) the margin, between the Alula-Fartak and Socotra-Hadbeen fracture zones, which define a first order segment of the Gulf. P-wave velocity modelling already allowed us to image the crustal thinning and the structures, from continental to oceanic domains, along some of the profiles. A lower crustal intermediate body is observed in the Ashawq-Salalah segment, at the base of the transitional and oceanic crusts. The nature of this intermediate body is most probably mafic, linked to a post-rift thermal anomaly. The thin (1-2 km) sediment layer in the study area allows for a clear conversion of P-waves to S-waves at the top basement. Thus, most seismic refraction records show very clear S-wave arrivals.

In this study, we use both P-wave and S-wave arrivals to delineate the crustal structures and segmentation along and across the margin and add insight into the nature of the rocks below the acoustic basement. P-wave velocity modelling allows for the delineation of the structure variations across and along the margin. The velocity models are used as a base for the S-wave modelling, through the definition of Poisson’s ratios in the different areas of the models. Picking and modelling of S-wave arrivals allow us to identify two families of converted waves: (1) seismic waves converted at the basement interface on the way up, just before arriving to the OBS and (2) seismic waves converted at the basement on the way down, which travelled into the deep structures as S-waves. The first set of arrivals allows for the estimation the S-wave velocities (Poisson’s ratio) in the sediments, showing that the sediments in this area are unconsolidated and water saturated. The second set of arrivals gives us constraints on the S-wave velocities below the acoustic basement. This allows for an improved mapping of the transitional and oceanic domains and the confirmation of the mafic nature of the lower crustal intermediate body.

How to cite: Watremez, L., Leroy, S., d'Acremont, E., and Rouzo, S.: Crustal structures across the young and oblique North-eastern Gulf of Aden margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19421, https://doi.org/10.5194/egusphere-egu2020-19421, 2020.

A strong edge effect is predicted at the intersections between long-offset transforms and mid ocean ridge segments. The Equatorial Atlantic hosts several megatransforms, where the connections of potentially low mantle temperatures due to the large lithospheric age contrast with melt production are poorly understood. The SMARTIES cruise focused on the Romanche transform that offsets the Mid Atlantic Ridge (MAR) laterally by 900 km with an age offset of 55 Ma. The eastern Ridge-Transform Intersection (RTI) markedly shows the effects of the lateral cooling of the ridge segment. To better understand the thermal regime at these complex domains, we acquired surface geophysical data and bathymetry of the area, and geological observations and sampling during 25 HOV Nautile dives. The integrated study of rock characteristics and of geophysical surveys allows tackling the connections between magmatism and tectonics. A network of 19 OBS was also deployed to study the seismic activity during the cruise in collaboration with the ILAB project.

There is a striking change in deformation patterns along the ridge axis moving away from the transform southwards. The bathymetry is extremely complex, with several structural directions, partly resulting from transtension. A low melt supply is focused at the ridge axis resulting in a long oblique axial domain, that forms a relay zone between the roughly north-south ridge axis in the south and the area close to the transform fault, while the transform fault domain is highly complex. Trends oblique to both the main spreading axis direction and the transform fault direction are widespread. A clear Principal Transform Displacement Zone (PTDZ) can be followed as a long, near continuous alignment, on the seafloor of the wide Romanche valley. However, the valley morphology suggests a migration of the PTDZ and intense deformation within the transform domain. The RTI is complex and the position of the spreading axis clearly evolved with time, through at least two and possibly three eastward ridge jumps.

Six Nautile dives explored the northern wall of the Romanche, the damaged zone of the transform fault, and the exceptionally deep nodal basin. The north wall exposes a very thick basalt unit covered with a thick layer of sediments. Eight dives explored the southern flank of the Romanche identifying fragments of old Oceanic Core Complexes (OCCs) formed by highly deformed peridotites, and a large OCC located at the RTI that exposes mylonitized peridotites and is dissected by several normal faults. The magmatic zones of the axial domain (nine dives) are formed by volcanic ridges affected by important tectonic activity. The dives show pillow and tube volcanic flows with intersecting faults. An oblique elongated faulted and sedimented ridge (2 dives) parallel to the oblique relay zone was shown to be of peridotitic nature Recent faults have been observed, as well as traces of high-T hydrothermal activity consistent with black-smoker type venting, recently overprinted by low temperature diffuse venting related to active faulting.

How to cite: Maia, M. and Brunelli, D. and the SMARTIES Cruise Scientific Party: The Eastern Romanche ridge-transform intersection (Equatorial Atlantic): slow spreading under extreme low mantle temperatures. Preliminary results of the SMARTIES cruise., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10314, https://doi.org/10.5194/egusphere-egu2020-10314, 2020.

EGU2020-10508 | Displays | TS8.2

Magma-rich transform margins: example from the Limpopo transform fault zone between Mozambique and Antarctica

Sylvie Leroy, Vincent Roche, François Guillocheau, Pierre Dietrich, Sidonie Revillon, Louise Watremez, Cécile Robin, Frank Despinois, and William Vetel

Transform continental margins known across the Earth represent 31% of passive margins. Resulting from first-order plate tectonic processes, transform margins record a diachronous evolution mainly defined by three successive stages, including intra-continental transform faulting, active and passive transform margin. Due to their high complexity and a lack of large hydrocarbon discoveries (i.e. not a target for oil industry), they have only been sparsely studied, especially when compared with other margin types (i.e. divergent or convergent).

                  We present the structure and evolution of the NS-trending Limpopo Transform Fault Zone (LTFZ), corresponding to the main fracture zone from western part of the Africa-Antarctica Corridor (AAC). Here, we combine published and unpublished dataset (seismic reflection profiles, wells, multibeam bathymetry, gravity, magnetic data) in order to propose an interpretation of the LTFZ structure and adjoining segments and their evolution through time, from rifting to spreading.

The LTFZ is composed of two main segments: the East Limpopo segment and the Astrid conjugate one and the North and South Natal segment including the Dana-Galathea Plateau (Mozambique side) and the Maud rise/east of Grunehogna craton (Antarctica margin). The LTFZ offsets the segments of divergent conjugate margins (Southern Natal-off Grunehogna craton in the west and Beira High Angoche-Riiser Larsen Sea in the east) since 155 Ma (chron M25). We focus on the evolution of the transform fault zone from its initiation at chron M25 up to chron M0 (~126 Ma, Barremian). Oceanic spreading onset at chron M25 in the south of Beira High segment and Dana-Galathea Plateau triggered the uplift and erosion of the proximal parts of the margin and the formation of several seaward dipping reflectors wedges. Plate kinematic implies an NNW-SSE opening of the LTFZ. The oblique component of opening promotes the setting up of several volcanic wedges. These wedges rejuvenate southward trough time, which is consistent with the sliding of Antarctica with respect to Africa and thus confirm the diachronous evolution of the transform fault zone.

How to cite: Leroy, S., Roche, V., Guillocheau, F., Dietrich, P., Revillon, S., Watremez, L., Robin, C., Despinois, F., and Vetel, W.: Magma-rich transform margins: example from the Limpopo transform fault zone between Mozambique and Antarctica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10508, https://doi.org/10.5194/egusphere-egu2020-10508, 2020.

EGU2020-6006 | Displays | TS8.2

Microseismicity constrains on the lithospheric structure at the ridge-transform intersection at the Romanche Transform Fault and Mid-Atlantic Ridge

Zhiteng Yu, Satish C. Singh, Emma Gregory, Wayne Crawford, Marcia Maia, and Daniele Brunelli

The Romanche Transform Fault (TF) in the equatorial Atlantic Ocean is the largest oceanic transform fault on Earth, offsetting the slow-spreading (2 cm/ yr) Mid-Atlantic Ridge (MAR) by 900-km and producing a maximum age contrast at the Ridge-Transform Intersection (RTI) of 45 Myr. This offset could cause a large thermal variation in the lithosphere around the RTI, but it is not known how this thermal variation would manifest itself. Here we present a ~21-day-long micro-earthquake study using a temporary deployment of 19 ocean-bottom seismometers (OBSs) during the 2019 SMARTIES cruise. 1363 earthquakes were detected on at least three OBSs and 622 could be located, of which 351 have high location accuracy (mean semi-major-axis of 3.9 km).

Linear (HYPOSAT) and non-linear (NonLinLoc) location algorithms reveal a similar earthquake distribution. Two event groups cluster at depths of 1) 0 km to ~18 km and 2) ~20 km to 30 km. Along the Romanche TF, micro-earthquakes are located beneath the southern border of the 30 km wide transform valley; no events are observed beneath the central or northern sections of the valley. These events' depths increase rapidly and linearly from a few km at the RTI to 30 km at 40 km along the transform fault, indicating a rapid increase in the thickness of the seismogenic zone (and lithosphere) along the transform fault. The presence of earthquakes on the southern border of the transform fault, which is younger and hence warmer, suggests that these events, and hence the seismogenic zone, follow an isotherm separating the brittle-ductile boundary. The absence of seismicity beneath the centre and northern boundary of the transform fault could be due to a much colder lithosphere and hence deeper ductile-brittle boundary.  

An aseismic gap exists beneath the pull-apart basin observed on bathymetry data. Beneath the RTI, earthquakes mainly occur in the 0-18 km depth range. Eight well-constrained focal mechanisms, derived from P-wave polarities, suggest that strike-slip faulting dominates along the transform fault. Normal faults are also observed, which may be attributed to an active detachment fault or pull-apart basin formation.

From the RTI to the tip of the southern MAR segment, micro-earthquakes show an undulating focal depth distribution from north to south. They can be summarized into three clustering groups: the RTI, the 16.6°W group, and the 16.2°W group. Micro-earthquakes beneath the MAR are mainly located in the axial valley. Events in the 16.6°W group mainly occur in the mantle at depths of 12-20 km, whereas those in the 16.2°W group are located at shallow depths of 2-12 km, which is similar to that observed along other slow-spreading Mid-Ocean Ridges. This evidence indicates that there are significant variations in the along-axis thermal structure of the lithosphere along the rift axis.

ZY acknowledges the China Postdoctoral Science Foundation (2019M652041, BX20180080); DB acknowledges funding PRIN2017KY5ZX8.

How to cite: Yu, Z., C. Singh, S., Gregory, E., Crawford, W., Maia, M., and Brunelli, D.: Microseismicity constrains on the lithospheric structure at the ridge-transform intersection at the Romanche Transform Fault and Mid-Atlantic Ridge, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6006, https://doi.org/10.5194/egusphere-egu2020-6006, 2020.

EGU2020-8034 | Displays | TS8.2

Quest for Fluid Flow along the Gloria Fault – First results of R/V Meteor expedition 162

Christian Hensen, Pedro Terrinha, Joāo Duarte, Norbert Kaul, Mark Schmidt, Christopher Schmidt, Luis Batista, Vitor Magalhāes, Volker Liebetrau, Rolf Kipfer, Christian Hübscher, and Mark Lever

Vast areas of the deep ocean floor are still insufficiently explored with respect to tectonic processes, exchange processes between the lithosphere and the ocean, and potential deep chemosynthetic energy sources for life. Transform faults and fracture zones, which are dominant seafloor morphological features in the abyssal ocean, deserve specific attention in this regard as they provide potential pathways for fluid recycling. One of them is the Gloria Fault, a unique feature in the Central North Atlantic. It has been the source of large magnitude earthquakes (namely the 1941, M8.4, the second largest instrumental earthquake on a fracture zone) and is a special case of a plate boundary, corresponding to the transform reactivation of an old oceanic fracture zone. Seismic refraction has shown an anomalous layer between normal lower crust and uppermost mantle, possibly a 4 km thick layer of hydrated mantle. We present first results of RV Meteor cruise M162 (March-April 2020) dedicated to the groundtruthing of potential fluid emanation sites.

How to cite: Hensen, C., Terrinha, P., Duarte, J., Kaul, N., Schmidt, M., Schmidt, C., Batista, L., Magalhāes, V., Liebetrau, V., Kipfer, R., Hübscher, C., and Lever, M.: Quest for Fluid Flow along the Gloria Fault – First results of R/V Meteor expedition 162, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8034, https://doi.org/10.5194/egusphere-egu2020-8034, 2020.

EGU2020-11437 | Displays | TS8.2

Characterization of Active Faults Through the Gulf of Guayaquil, Ecuador: implication for the southern boundary of the North Andean Sliver

Marc Regnier, Gabriela Ponce, Marianne Saillard, Laurence Audin, Sandro Vaca, Alexandra Alvarado, and Mario Ruiz

Along the Ecuadorian margin, the North Andean Sliver is moving in the northeastward direction due to the oblique subduction of the Nazca plate. The opening of the gulf of Guayaquil is a consequence of this motion. Two principal models compete to explain the opening. One proposes an opening achieved essentially with strike-slip motion along a single major fault through the gulf, the other with a combination of strike-slip and normal faulting on both sides of the gulf. The consequences in term of seismic hazard are very different. A single strike-slip fault model could imply a long fault segment capable of generating large magnitude events. In contrast, a multi-segments composite fault system will give conditions for producing small to medium size earthquakes. The southern Ecuador subduction zone is characterized by the absence of large historical earthquake. Data from the historical and instrumental seismicity for magnitude above 4 show the forearc has a high level of moderate seismic activity within and around the gulf that connects to the crustal seismic activity of the volcanic arc. In contrast, the forearc elsewhere shows very little or no seismic activity between the marine forearc zone and the volcanic arc. Regional and global CMTS data show a large number of mechanisms within the gulf that do not line up on a simple straight fault system. We present new earthquake data from the recently upgraded national seismic network of Ecuador. They provide the first image of SW-NE trending crustal faults stretching in the central part of the gulf and running eastward south of the Puna island. The main seismic belt appears to be discontinuous, made of short length segments with variable trends. The variety of focal solutions also indicates complex faulting. As the shape of this seismic belt is in good agreement with the orientation of the GPS velocity vectors, this new fault zone is readily interpreted as the southernmost segment of the actual NAS boundary. Others seismic clusters are observed parallel to the northern coast of the gulf, indicating active structures eventually accommodating the North-South opening of the gulf through normal faulting. b-value analysis of the main seismic belt seismicity shows high b value (>1) indicating either highly fractured or heterogeneous medium, or/and low stress level within the gulf of Guayaquil. This is again in agreement with a multi-segmented faulting system and also with the lack of large magnitude event in the historical seismic data. A cross-section for the entire seismic belt shows a depth extend of the crustal seismic activity down to 30 km which confirms the seismic belt to be a sliver boundary.

How to cite: Regnier, M., Ponce, G., Saillard, M., Audin, L., Vaca, S., Alvarado, A., and Ruiz, M.: Characterization of Active Faults Through the Gulf of Guayaquil, Ecuador: implication for the southern boundary of the North Andean Sliver, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11437, https://doi.org/10.5194/egusphere-egu2020-11437, 2020.

TS9.1 – Signal Propagation in Sediment Routing Systems: a general session for structuring the future of European Source-to-Sink research and training

EGU2020-3798 | Displays | TS9.1

The Bengal Fan sediment archive: a record of Himalayan tectonics, climate, and/or drainage routing change between source and sink?

Yani Najman, Mike Blum, Jamie Gleason, Kimberly Rogers, Devon Orme, Chris Mark, Dan Barfod, Andy Carter, Randy Parrish, Dave Chew, and Lorenzo Gemignani

The Bengal Fan IODP Exp 354 core provides a Neogene re­cord of eastern and central Himalayan exhu­mation. U-Pb analyses of detrital zircons from this sediment archive shows that from ~ 4 Ma, there was a major increase in grains aged <300 Ma, indicating a major increase in contribution from the Trans-Himalaya (Blum et al., Nature SR, 2018). Detrital rutile U-Pb and detrital zircon fission track data from the same archive (Najman et al, GSAB 2019) indicates an approximately coeval increase in exhumation rate from the Eastern Himalayan Syntaxis. Thus an attractive explanation to explain the increase in Transhimalayan input may be that it was caused by initiation of exhumation of the syntaxis from beneath its Transhimalayan cover. However, a similar dataset obtained from the proximal foreland basin Siwalik deposits (Govin et al., in review) indicates an earlier onset to syntaxial exhumation, compared to that recorded in the distal sediment archive. We consider therefore whether climate change may be responsible for the increased Transhimalayan input: onset of Northern Hemisphere glaciation may have increased the proportion of erosion in the higher, glaciated, regions of the Transhimalaya, compared to that part of the orogen south of the suture zone. Analyses of Hf isotopic composition of detrital zircons to assess the possibility that drainage basin changes may explain the increase in material at 4 Ma, are ongoing. The difference in timing of the syntaxial exhumational signal between the proximal and distal archives may be the result of downstream dilution, or may result from sequestration of material on the shelf, with release to the deep ocean during sea level low stands.

How to cite: Najman, Y., Blum, M., Gleason, J., Rogers, K., Orme, D., Mark, C., Barfod, D., Carter, A., Parrish, R., Chew, D., and Gemignani, L.: The Bengal Fan sediment archive: a record of Himalayan tectonics, climate, and/or drainage routing change between source and sink?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3798, https://doi.org/10.5194/egusphere-egu2020-3798, 2020.

Products of onshore passive continental margin erosion are preserved in offshore sedimentary basins. Therefore, these basins potentially hold a recoverable record of onshore erosion. We present a suite of apatite fission track (AFT) data for 13 borehole samples from the southern Walvis basin, offshore Namibia. All of the samples show AFT central ages older or similar to their respective stratigraphic ages, and many single grain ages are older. These data show that none of the samples has been totally annealed post-deposition. Furthermore, the large dispersion in single grains ages in some samples suggests multiple age components. A lack of obvious correlation to compositional proxies implies this dispersion is related to different source regions. Using Bayesian mixture modelling we classify single grain ages from a given sample to particular age components to create ‘subsamples’. Subsequently, we jointly invert the entire dataset of subsamples to obtain a consistent thermal history for the well location. For each sample, the post-depositional thermal history is required to be the same for all age components, but each component has an independent pre-depositional thermal history. With this approach we can resolve pre- and post-depositional thermal events and identify potential changes in sediment provenance over time. In the example we present from offshore Namibia, we constrain the erosional evolution of the continental margin over a longer timescale than has been possible using onshore AFT thermochronological data and or offshore sediment volumes.

 

How to cite: Gallagher, K. and Wildman, M.: From sink to source: extracting onshore erosion signals preserved in offshore thermochronometric data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6696, https://doi.org/10.5194/egusphere-egu2020-6696, 2020.

EGU2020-14703 | Displays | TS9.1

The Equatorial Atlantic Laboratory: sediment routing systems and lithosphere deformation

Delphine Rouby, Dominique Chardon, Jing Ye, Flora Bajolet, Artiom Loparev, and Massimo Dall'Asta

We summarize the results of a 7 years study of the sediment routing systems of the West African Craton transporting its erosional products to the Central and Equatorial Atlantic passive margins at geological time scale. We used paleogeograhic maps to define the geodynamics framework of this routing system with in particular the propagation of the Equatorial Atlantic oblique rift separating the West African and Amazonian Cratons. We used sub-surface data to evaluate the evolution of lithosphere necking distribution along the conjugated African and South American margins of the rift system. We estimated the long-term denudation pattern at continental scale from low temperature thermochronology measures of samples from 3 transects perpendicular to the Atlantic margin. We used the exceptional preservation of geomorphologic markers to reconstruct the drainage system of the craton since 45 Ma, and estimate the associated denudation and exports of terrigeneous sediments to the Atlantic margin. Finally, we estimated the accumulation history in the passive margin basins and compare them with the estimated denudation histories from thermal histories and geomorphologic markers. We show that the modes of preservation of sedimentary export in the passive margin basins are highly variable in time (immediate post roft versus late post-rift) and space (transform/oblique versus divergent margin segments). We show that the present day drainage of the West African Craton as been stable since 30 Ma when it underwent a major reorganization driven by the growth of the relief associated with the Hoggar mantle plume. We show that accumulation in the passive margin basins fall within the same order of magnitude than denudation on the craton at the scale of the Meso-Cenozoic. This allows us to argue to the relevance of using the stratigraphic architecture of passive margin basins to estimate the denudation history of their continental domains.

How to cite: Rouby, D., Chardon, D., Ye, J., Bajolet, F., Loparev, A., and Dall'Asta, M.: The Equatorial Atlantic Laboratory: sediment routing systems and lithosphere deformation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14703, https://doi.org/10.5194/egusphere-egu2020-14703, 2020.

EGU2020-19537 | Displays | TS9.1

Origin and propagation of sedimentary sequences throughout the Escanilla fluvial routing system (South Pyrenean foreland basin)

Luis Valero, Elisabet Beamud, Miguel Garcés, Andreu Vinyoles, Nikhil Sharma, Stephen E. Watkins, Maxime Tremblin, Cai Puigdefàbregas, François Guillocheau, Alex C. Whitakker, Miguel López-Blanco, Pau Arbués, and Sébastien Castelltort

During middle Eocene, the Escanilla fluvial system transported and deposited material from East to West in the southern Pyrenees foreland basin. The paleogeography and sedimentology of the source to sink system is well established. The temporal framework is made of scattered low resolution magnetostratigraphies, and a robust temporal framework in the most distal (Olson) and most proximal (Sis) parts of the system. We built a new high resolution magnetostratigraphy from the middle part of the system, the Lascuarre section. The correlation of Lascuarre with the high resolution magnetostratigraphies and the integration of these data with other available chronological constraints results into a robust complete temporal framework from source to sink.

Sedimentological analyses of the Lascuarre section allow recognizing a set of sedimentary sequences throughout the record. Here we present the result of the analyses, and discuss the relative weight of the different forcing. Particularly, we elucidate the role of tectonics in relation to subsidence distribution patterns, and also the distinct expression of climate. Eventually, we identify and explore the signal propagation mechanisms of climate aberrations and of quasi-regular orbital variations along the routing system.

How to cite: Valero, L., Beamud, E., Garcés, M., Vinyoles, A., Sharma, N., Watkins, S. E., Tremblin, M., Puigdefàbregas, C., Guillocheau, F., Whitakker, A. C., López-Blanco, M., Arbués, P., and Castelltort, S.: Origin and propagation of sedimentary sequences throughout the Escanilla fluvial routing system (South Pyrenean foreland basin), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19537, https://doi.org/10.5194/egusphere-egu2020-19537, 2020.

EGU2020-1004 | Displays | TS9.1

Upstream versus downstream changes in a natural sediment routing system from source to sink

Nikhil Sharma, Jean Vérité, Stephen Watkins, Luis Valero, Alex Whittaker, Miguel Garcès, Cai Puigdefabregas, François Guillocheau, Thierry Adatte, and Sébastien Castelltort

The Middle Eocene Climatic Optimum (MECO) represents an episode of widespread warming occurring ~40 million years ago. It is characterized by gradual warming over a period of 500,000 years, leading to a rise in ocean temperatures of about 5° C in the mid and high-latitudes (Sluijs et al., 2013). Contrary to the traditional understanding and consensus that accommodation space or downstream factors control stratigraphic architecture in fluvial successions, we test the hypothesis that upstream factors, rather than downstream factors, control fluvial architecture through changes in the median grain size, sediment supply and water discharge with paleoslope being a measurable proxy to quantify these changes. We test our hypothesis utilizing the natural system of the Escanilla sediment routing system, encompassing the Middle Eocene Climatic Optimum. The Escanilla system is an overall prograding system, consisting of 1000 m thick alluvial and fluvial deposits at the southern-margin of the Tremp-Graus Basin in the south/central Pyrenees, Spain. Multiple lateral measurements for grain size distributions and cross-set measurements, flow direction and channel geometry are taken close to the source (Coll de Vent), at an intermediate location (Lascuarre), and at a distal part (Olson) of the system for paleohydraulic reconstructions. Drone flight missions are also undertaken to capture aerial photographs of the field area, which are required for the construction of 3D photogrammetric models. At Olson, alternating sequences of laterally continuous amalgamated channel bodies and several small sequences of vertically stacked isolated channel bodies have been identified. Preliminary results show distinct values of median grain size, dune height, flow depth and paleoslope for the amalgamated and vertically stacked isolated channel sequences across the MECO; the addition of our 3D models provide further insight into the lateral connectivity of the amalgamated units. Our results suggest different paleohydraulic conditions during the deposition of amalgamated and nonamalgamated units. This data will also be supported by numerical simulations carried out to better understand the response of fluvial systems to changes in upstream factors.

How to cite: Sharma, N., Vérité, J., Watkins, S., Valero, L., Whittaker, A., Garcès, M., Puigdefabregas, C., Guillocheau, F., Adatte, T., and Castelltort, S.: Upstream versus downstream changes in a natural sediment routing system from source to sink, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1004, https://doi.org/10.5194/egusphere-egu2020-1004, 2020.

EGU2020-8224 | Displays | TS9.1

Geometries and source-to-sink analysis of a retro-foreland basin during its late to post-orogenic evolution: the case example of the Pyrenees / Aquitaine Basin / Bay of Biscay from 38 to 0 Ma

Alexandre Ortiz, François Guillocheau, Eric Lasseur, Cécile Robin, Justine Briais, and Charlotte Fillon

The purpose of this study is to understand the "source-to-sink" evolution of the Pyrenees system and its retro-foreland basin, the Aquitaine basin and its deep equivalent, the Bay of Biscay during the Cenozoic. This work required (1) a biostratigraphic re-evaluation, (2) an analysis in terms of seismic stratigraphy and quantification of preserved sediment volumes, (3) a quantification of eroded volumes from the Massif Central, (4) a quantification of the eroded volumes from the Pyrenees, (5) a synthesis of all these data.

In the Aquitaine basin, the transition from the orogenic to the post-orogenic phase occurs between 27.1 and 25.2 Ma. The orogenic period is divided into two phases, (1) up to 43.5 Ma (Lutetian), is characterized by a strong subsidence at the front of the North-Pyrenean-Thrust, (2) from 43.5 to 27.1 Ma, is characterized by the subsidence migration toward the basin, in sub-basins controlled by the thrusts and the inverted structures activity. The post-orogenic is identified by the succession of three erosional surfaces that fossilize the entire compressive structures period. This period is divided into two phases, (1) from 25.2 to 16 Ma approximately, corresponds to the establishment of the isostatic rebound in the Aquitaine basin, (2) between 16 and 10.6 Ma, corresponds to an uplift of the whole system. This latter phase corresponds to a West European event undoubtedly linked to a mantle activity.

The total quantity of rocks preserved in the Aquitaine basin and the Bay of Biscay is 92 200 km3. The distribution of sediments preserved over time evolves in favour of the Aquitaine basin between 66.0 and 33.9 Ma and in favour of the Bay of Biscay between 5.3 and 0 Ma. This balance is due to the different stages of evolution of the subsidence / uplift in the Aquitaine basin. The sedimentation rates show two periods of increase in sedimentary fluxes, the first at the Eocene-Oligocene limit in the two basins, which we relate to both the period of Pyrenean paroxysmal exhumation and to contemporary global cooling. The second, at 5.3 Ma exclusively in the Bay of Biscay, seems to correspond to the global increase of fluxes, whose climatic origin is favoured by the authors.

From the inversion of the extensive thermochronological dataset in the Pyrenees and the geomorphological analysis of the planation surfaces of the French Massif Central, we obtained the total amount of eroded rock which is 34 335 km3. The difference observed between the sedimented volumes and the eroded volumes can be explained by the contribution of sediments resulting from the currents from the Pliocene, the not taking into account the volumes coming from the Cantabrian massifs, an underestimation of the eroded volumes and of the terrigenous carbonate fraction in the two basins.

How to cite: Ortiz, A., Guillocheau, F., Lasseur, E., Robin, C., Briais, J., and Fillon, C.: Geometries and source-to-sink analysis of a retro-foreland basin during its late to post-orogenic evolution: the case example of the Pyrenees / Aquitaine Basin / Bay of Biscay from 38 to 0 Ma, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8224, https://doi.org/10.5194/egusphere-egu2020-8224, 2020.

EGU2020-8811 | Displays | TS9.1 | Highlight

Why do shelf-incising submarine canyons form? - Insights from global topographic analyses and regression trees

Anne Bernhardt and Wolfgang Schwanghart

The efficiency of environmental signal propagation from terrestrial sources to marine sinks highly depends on the connectivity of the sediment-routing system. Submarine canyons that couple river outlets with marine depocenters are particularly crucial links in the routing network as they convey terrestrial sediment, associated pollutants and organic carbon to the deep ocean. However, why and where submarine canyons incise into shelves is still poorly understood. Several factors were proposed, including narrow shelves along active continental margins, onshore sediment flux, more proximal sediment supply during sea-level lowstands, mass wasting along high-gradient continental slopes, and the occurrence of durable bedrock in adjacent catchments. In this study, we test whether we can predict shelf incision of submarine canyons from onshore and offshore parameters.

We used maps of global elevation and bathymetry and analyzed them together with a global compilation of 5900 submarine canyon heads. The analysis relies on bagged regression trees that predict the distance of each canyon head from the shelf edge as a function of numerous candidate predictor variables. These variables describe spatial relations of river mouths and canyons, shelf geometry, continental slope gradient, as well as numerous terrestrial catchment properties. Moreover, we added 120 m to the elevation of the present-day topography to simulate a coastal landscape during the Last Glacial Maximum (LGM) and recalculated the topographic terrestrial parameters and the shelf width.

The trained model explains 66% (R2) of the variance within the data set with a root mean square error (RMSE) of 31 km and a mean absolute error (MAE, less sensitive to outliers) of 17 km. The highest predictor importance is consistently reported for the weighted distance from canyon heads to the adjacent river mouths during the LGM and the present-day catchment gradient. We find no significant influence of shelf width, continental slope gradient and sediment load, and the moderate fit of the model indicates that we are still missing one or more important controls on the spatial location of canyon heads. Our predictions may be refined by including a more detailed assessment of catchment lithologies, locations of submarine groundwater discharge, locations of tectonic faults, and longshore current directions. Notwithstanding, we conclude that our model identifies important controls on the spatial occurrence and shelf incision of submarine canyons and sorts out much debated but seemingly unimportant variables.  

How to cite: Bernhardt, A. and Schwanghart, W.: Why do shelf-incising submarine canyons form? - Insights from global topographic analyses and regression trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8811, https://doi.org/10.5194/egusphere-egu2020-8811, 2020.

EGU2020-5839 | Displays | TS9.1

A predictive and invertible model of fluvial sediment geochemistry

Gareth Roberts, Alex Lipp, Alexander Whittaker, Charles Gowing, and Victoria Fernandes

The composition of sediments in large rivers and the rocks they form in sedimentary basins record provenance, weathering and surface processes. We predict the geochemical evolution of the Earth’s eroding surface from source regions through fluvial systems, and into the sedimentary record using a simple deterministic model. Using a stream power formulation of fluvial erosion we predict the incision rate at any point in an eroding landscape. Combining these predictions with information about the geochemistry of the eroding substrate we predict the composition of the eroded sediment as it is routed through the landscape. This simple approach is tested in a case study of Scottish rivers by comparing predictions with fine-grained sediment composition measurements. The high-density GBASE stream sediment geochemical survey was utilised to predict fine-grained sediment geochemistry along major regional rivers (Spey, Dee, Don, Tay, Deveron). Sediment samples were gathered from river heads to mouths and their bulk geochemical composition was determined by ICP-MS following mixed acid digestion. Predicted geochemistry of major rivers was tested using the new independent geochemical dataset. Using this data we discuss down-system trends in fluvial sediment geochemsitry, and evaluate the success of our model. Finally, we discuss how bulk geochemical data from river sediments can be formally inverted to reconstruct the geochemistry of their source regions.

How to cite: Roberts, G., Lipp, A., Whittaker, A., Gowing, C., and Fernandes, V.: A predictive and invertible model of fluvial sediment geochemistry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5839, https://doi.org/10.5194/egusphere-egu2020-5839, 2020.

Upper Cretaceous and Paleocene sandstone strata represent promising reservoirs along the NE Atlantic margins, including new discoveries in recent years that has spurred increased activity in the area. Exploration and seismic imaging is complicated by massive Paleocene magmatism related to late rifting and early breakup, forming voluminous sill and dyke complexes hosted in the sedimentary succession and extrusive complexes, such as volcanic edifices and lava flows along the margin. Such igneous activity may have played an important role in the thermal and chemical history of reservoir zones. Their diagenetic properties as well as their physical appearance is expected to have been altered by the intrusions, breaking predictive trends otherwise common for deep-marine sedimentary strata. A new understanding of the nature and implication of igneous processes and deposition of sediments, combined with new understanding of sand source-to-sink systems in the region, is thus important to better evaluate the prospectivity of the southern Møre Basin. The focus of this project will therefore be to asses sand provenance and depositional systems in basins in this area by incorporating on shore field work with integrated borehole and seismic studies. The main goal is to develop a new understanding of deposition of sand fairways during the Late Cretaceous and Paleogene to better understand this part of the break-up history of the NE Atlantic.

How to cite: Kjøll, H. J., Midtkandal, I., and Planke, S.: Late Cretaceous to Paleogene sand provenance, deposition and tectonomagmatic development in the southern Møre Basin, Norway, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8117, https://doi.org/10.5194/egusphere-egu2020-8117, 2020.

Gaoping Canyon (GPC) is a river-connected canyon that delivers a vast amount of sediments from the Taiwan mountain belt to the Manila trench of the South China Sea. The canyon course traverses through the actively uplifting accretionary wedge, thus structural activities exert strong controls on the deposition/erosion of the canyon system. In this study, we use an array of data, including multi-beam bathymetry, reflection seismic profiles, sub-bottom profiles, and sediment cores to discuss the interactions among bathymetry, sediment transportation and deposition, and tectonic activity along the GPC.

The bathymetry shows that the GPC can be divided into three segments of upper reach, middle reach, and lower reach, respectively, according to literature. The upper-reach is an erosive meandering channel incising into the Gaoping shelf and upper slope with a thalweg depth (relief) in the range of 200-500 m, and a longitudinal gradient of -1.78 %. The canyon thalweg is mostly erosive with sediments accumulated in a few depressions along the thalweg. Piles of hyperpycnites were found on the thalweg of the canyon head, immediately off the Gaoping river mouth. Sediment cores show that the turbidity currents are mostly confined within the incised valley. The middle reach of GPC is nearly straight and develops along the footwall of the NNW-trending splay fault that separates the upper and lower slope of the accretionary wedge. The thalweg depth is in the range of 500-800 m, featuring the deepest of the canyon thalweg for the GPC, and a longitudinal gradient of -1.52 %. The canyon thalweg is mostly erosive with gravel lags. Sediment cores show that the turbidity currents are mostly confined in the incised valley.

The lower reach can be subdivided into proximal and distal segments. The proximal lower reach features large-radius lateral migrating meanders and abundant landslide scars along the banks/levees of the channel. The thalweg depth is in the range of 130-400 m, and a longitudinal gradient of -0.64 %. The relatively shallow thalweg depth leads to overspilling of the turbidity currents, forming a slope fan on the deforming accretionary wedge. The distal lower reach develops among and cutting through a series of uplifting submarine ridges, leading to small meanders and erosive and by-pass channels.

How to cite: Chang, L. and Lin, A. T.-S.: Morpho-sedimentary features of the Gaoping Canyon System in the accretionary wedge off SW Taiwan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10004, https://doi.org/10.5194/egusphere-egu2020-10004, 2020.

EGU2020-10184 | Displays | TS9.1

Denudation history of the French Massif Central: new insights from thermochronology, basement-basin cross-sections and semi-automated planation surfaces mapping

Thomas François, Guillaume Baby, Paul Bessin, Julien Baptiste, Jocelyn Barbarand, François Guillocheau, Éric Lasseur, Justine Briais, and Cécile Robin

Documenting surface uplift of basement areas is challenging, usually due to large gaps in the sedimentary record. In order to address this issue for the French Massif Central, we here investigate its denudation history through an integrated study that involves planation surface mapping, Apatite Fission-Track (AFT) Analysis and basement to basin cross-sections.

First, Planation surfaces were identified using a semi-automated fuzzy classification of pixels based on relationships between DEM derivatives (slope, curvature, ruggedness and incision) and field-recognized training samples.  Then, their different generations and age ranges were discriminated from hypsometry, fault partitioning and relationships with dated sedimentary and/or volcanic remnants, providing constraints on basement exhumation. Afterwards, integrating the previous planation surface analysis, geological cross-sections were produced from the Massif Central basement to the surrounding basins (Aquitaine Basin and Paris Basin). These sections provide local thicknesses estimates of the missing sedimentary cover over basement domains. Theses local thicknesses and exhumation phases were finally used as constraints to produce a thermal history modelling and a denudation map of different areas of the French Massif Central estimated from AFT inversion.

Our results show different burial and exhumation patterns with i) a main burial of its western parts (Limousin, Rouergue) during Jurassic times followed by an important regional denudation (1 to 2 km of missing cover and crystallized basement) during the early Cretaceous and ii) an Upper Cretaceous burial of its northeastern parts (Morvan, Forez) followed by an uppermost Cretaceous to Paleogene exhumation (<1 km of missing cover and crystallized basement). This further illustrates the different behavior of each units of the Massif Central during the Mesozoic to Cenozoic times. These results will ultimately be discussed and placed back into the western European deformation framework.

 

(This work is founded and carried out in the framework of the BRGM-TOTAL project Source-to-Sink)

How to cite: François, T., Baby, G., Bessin, P., Baptiste, J., Barbarand, J., Guillocheau, F., Lasseur, É., Briais, J., and Robin, C.: Denudation history of the French Massif Central: new insights from thermochronology, basement-basin cross-sections and semi-automated planation surfaces mapping, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10184, https://doi.org/10.5194/egusphere-egu2020-10184, 2020.

The consideration of entire “Source to Sink" systems is one of the most recent and challenging advances in earth surface dynamics and sedimentary geology. To understand S2S systems it is necessary to enhance sharing of knowledge and concepts between (1) geomorphology, which focuses on the understanding of erosion processes driving landform evolution and sediment fluxes, (2) stratigraphy/sedimentology, which focuses on the nature of sedimentary deposits and their distribution in time and space, and (3) tectonics and structural geology, which set the dimensions, geometry and dynamics of source/transfer areas and sedimentary basins (the sink). Understanding S2S systems also involves other Geosciences disciplines such as paleoclimatology and geochemistry, because they allow quantifying the factors controlling S2S systems dynamics (climatic controls on erosion, solid vs. solute fluxes, etc.).

The main challenges are (1) to get all the above mentioned disciplines working together on geological or numerical approaches of the whole S2S system, in different tectonic and climatic settings and (2) to convince some industries of the merits of this approach, e.g. industries dealing with geothermy or granulates.

We here present one example of academia – industry transfer of knowledge for granulates: the low accommodation alluvial system of the Armorican Massif of Messinian to Pliocene age, major source of granulates for the development of the Brittany Province (western France). The understanding of the base level fluctuations sensuWheeler (1964), joined to an knowledge of the uplift history, the climate variations, and the source of sediments (Eocene laterite profiles) gave tools for a better prediction on the location and quality of the granulates.

How to cite: Guillocheau, F. and Robin, C.: Signal propagation in sediment routing systems: an application for granulates prediction (location, grain-size), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12866, https://doi.org/10.5194/egusphere-egu2020-12866, 2020.

EGU2020-13087 | Displays | TS9.1

Source-to-Sink (S2S) analysis of a lacustrine system across the K-T boundary: the Yacoraite Formation, Salta rift basin, Argentina

Sébastien Rohais, Youri Hamon, Rémy Deschamps, Valérie Beaumont, Marta Gasparrini, Daniel Pillot, and Maria Fernanda Romero-Sarmiento

In this contribution, we present a source-to-sink (S2S) analysis of the Late Cretaceous to Early Cenozoic Yacoraite Formation, a typical lacustrine source rock from the Salta rift Basin (NW Argentina). The Yacoraite Formation corresponds to a mixed carbonate-siliciclastic lacustrine sedimentary system, deposited during the sag phase (post-rift) and also records the K-T boundary. An integrated S2S approach was applied using sedimentary, geochronology, geochemical and isotopic datasets at basin scale (ca. 200 x 200 km), to better understand the complex interactions between production, destruction, and dilution processes that characterize the dynamic of organic-rich sediments. These data are used here to discuss the high-resolution (time step ca. 0.05-1 Myr) patterns of organic carbon enrichment in a lacustrine system across the K-T boundary.

Results show that the Yacoraite Formation recorded major climate changes that can be documented in terms of catchment dynamic, erosion processes, carbonate accumulation trends, lacustrine dynamic and source rock quality. The background organic matter corresponds to a Type I kerogen dominated by algal growth (mean HI 600-800 mgHC/gTOC, TOC0 1-2 wt.%). The K-T boundary was the climax of a climate change initiated ca. 0.3 Myr before that induced a major change in the catchment weathering processes, which temporally corresponds to the accumulation of poor quality source rock intervals (TOC0 ≤ 0.2 wt.% and HI < 50 mgHC/gTOC) in these series. The location of the K-T boundary is highlighted by a main negative anomaly in δ13C of the carbonate deposits in the Yacoraite Formation, as also supported by absolute U-Pb dating of inter-fingered volcanic ashes. It was followed by a major pulse in paleo-productivity, in turn followed by a major pulse in TOC0 (10-15 wt.%) under anoxic conditions. In ca. 0.2 Myr the lacustrine dynamic and the related organic-carbon enrichment resumed to their initial setting, just prior to the preluding K-T boundary climate change. The obtained results suggest that the Yacoraite Formation can be considered as a world-class example to illustrate how the K-T boundary is recorded in lacustrine sediments. In particular, it could be used as reference to address key questions related to cross-scale interactions, feedback loops and temporal dynamics in the sedimentary record.

How to cite: Rohais, S., Hamon, Y., Deschamps, R., Beaumont, V., Gasparrini, M., Pillot, D., and Romero-Sarmiento, M. F.: Source-to-Sink (S2S) analysis of a lacustrine system across the K-T boundary: the Yacoraite Formation, Salta rift basin, Argentina, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13087, https://doi.org/10.5194/egusphere-egu2020-13087, 2020.

EGU2020-14027 | Displays | TS9.1

Quartz grain shape using S.E.M in source-to-sink studies (production and transfer): the case exemple of the Cenozoic of the Paris Basin

Nicolas Marie, François Guillocheau, Justine Briais, Cécile Robin, and Eric Lasseur

Understanding the source-to-sink system in sedimentary basins supposes the characterization of two key parameters: the source and the mode of sediment production (physical vs. chemical erosion), as well as the distance of the transfer zone. The shape of the quartz grains may record (1) the chemical vs. physical production of the grain, (2) the processes (eolian vs. fluvial) of sediment transfers, and (3) possible post-deposition emersion and weathering.

The criteria to distinguish chemical erosion are microstructures linked to dissolution (oriented etch pits, solution pits, solution crevasses and scaling) or precipitation (crystalline overgrowths and silica globules, flowers and pellicle). The difference between eolian and fluvial processes is mainly based on the roundness and the type of impact (conchoidal breakage, percussion marks and grooves).

This approach was successfully applied to the Cenozoic of the Paris Basin, a low accommodation sedimentary system (maximum 200 m in 35 Ma) encompassing numerous hiatuses. The source was mainly subjected to chemical erosion, since etching microstructures are often observed overcut by eolian or fluvial transport criteria. This chemical weathering is thought to has been particularly pronounced during Paleocene and Early Eocene times. Eolian transport occurred preferentially during Danian, Lutetian and Bartonian times whereas fluvial transport appears dominant in Danian, Thanetian and Ypresian times. Major emersion marked by in situ laterites growing occurred during Late Paleogene times, Ypresian and Bartonian, with minor ones during Thanetian. This is testified by the superimposition of chemical weathering features on grains smoothed by fluvial and/or eolian transport.

How to cite: Marie, N., Guillocheau, F., Briais, J., Robin, C., and Lasseur, E.: Quartz grain shape using S.E.M in source-to-sink studies (production and transfer): the case exemple of the Cenozoic of the Paris Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14027, https://doi.org/10.5194/egusphere-egu2020-14027, 2020.

EGU2020-15932 | Displays | TS9.1

How do river channels aggrade? An investigation into the importance of upstream drivers (water discharge and sediment supply) on sediment aggradation using analogue modelling

Stephen E. Watkins, Nikhil Sharma, Luis Valero, Maxime Tremblin, Abdallah S. Zaki, Frédéric Arlaud, Guy Simpson, and Sébastien Castelltort

Stratigraphic architecture of fluvial deposits is often interpreted as a record of changes in accommodation created by absolute sea-level change, subsidence, or a combination of both (downstream drivers). An increase or decrease in accommodation causes the fluvial system to respond by either aggrading or degrading to a new equilibrium slope. However, in recent years the role of upstream drivers, such as water discharge and sediment supply (volume and grain-size distribution), in controlling equilibrium slopes has gained more importance, however we still lack significant understanding of these upstream processes. It is important to be able to differentiate between stratigraphy influenced by upstream and downstream drivers in the field because fluvial deposits represent an important archive of environmental changes.  Traditionally, downstream drivers are often invoked to explain past accommodation changes, but in actuality there are rarely robust constraints on the cause of these space changes. At present there is still no well-documented examples of upstream versus downstream driven stratigraphic architecture. One way to address this issue is by undertaking analogue modelling (i.e. flume experiments) as this permits the isolation of individual parameters, such as water discharge, and allows us to investigate their role on the fluvial system in a controlled environment.

 

In the first part of the project that we present here, we investigate how sediment aggradation within a channel develops through time by using a quasi-2D flume.  We have designed and manufactured a narrow (0.05 m), long (2.4 m) flume with an initial gradient of zero.  We aim to (i) investigate how aggradation occurs through time using a series of different water discharges, sediment supplies and sediment concentrations and observe the resulting equilibrium slopes; (ii) perturb the system once equilibrium is reached to observe the readjustment of the system to new conditions; (iii) carry out a series of experiments varying downstream drivers (i.e. sea-level) which theoretically produce the same amount of aggradation as the upstream parameters we have used do, we will then be able to compare any similarities or differences in stratigraphy.  Ultimately we will use these results to scale up to a fully three-dimensional analogue model (i.e. a wide flume, approximately 1 m) that produces channels and floodplains.  We can then investigate how the upstream and downstream changes seen in the narrow flume are translated into the wider flume.

How to cite: Watkins, S. E., Sharma, N., Valero, L., Tremblin, M., Zaki, A. S., Arlaud, F., Simpson, G., and Castelltort, S.: How do river channels aggrade? An investigation into the importance of upstream drivers (water discharge and sediment supply) on sediment aggradation using analogue modelling , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15932, https://doi.org/10.5194/egusphere-egu2020-15932, 2020.

EGU2020-10814 | Displays | TS9.1

Recognising tectonic and climatic signals in the Paleogene stratigraphy offshore Norway

Tor O. Sømme, Jakob Skogseid, Patricia Embry, and Helge Løseth

Landscapes and their sediment routing systems can be exposed to various tectonic and climatic perturbations that affect sediment production, transport and delivery to nearby sedimentary basins. Here we investigate a Paleogene depositional system offshore western Norway that was subjected to long-term (~10 Myr) tectonic perturbation and significant hinterland erosion. Superimposed on this long-term uplift, the system was also subjected to a short-lived climatic perturbation during the Paleocene-Eocene Thermal Maximum (PETM), which lasted ~200 kyr. Regional 3D seismic reflection data is integrated with high resolution well data to map the stratigraphic response to these different scales of perturbations on the depositional system. The initiation of the tectonic perturbation is marked by an angular unconformity in seismic data. A rapid increase in sediment flux followed, causing initial progradation of a shelf-slope wedge. Sediment supply estimates indicate that the tectonic uplift caused an order of magnitude increase in sediment flux to the basin, which peaked in the latest Paleocene. This period coincided with the PETM, which is documented by biostratigraphic data as a discrete event within the overall regressive system. Although the PETM often is characterised by increased continental runoff, no increase in sediment supply is evident from seismic data. This work shows that the system response to tectonic and climatic perturbations may vary along strike, depending on the size of the routing systems and the antecedent topography prior to hinterland uplift. A low supply system may produce a tectonically-linked shelf-slope wedge that is of similar thickness as a climatically-linked wedge in a high supply system. This study documents how the same routing system responded to perturbations operating at different spatial and temporal scales and may help recognise similar process-response relationships in other areas.

How to cite: Sømme, T. O., Skogseid, J., Embry, P., and Løseth, H.: Recognising tectonic and climatic signals in the Paleogene stratigraphy offshore Norway , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10814, https://doi.org/10.5194/egusphere-egu2020-10814, 2020.

EGU2020-10853 | Displays | TS9.1

Reconstructing the Early Eocene Sediment Routing System of the south-eastern Pyrenees

Miguel Garcés, Miguel López-Blanco, Elisabet Beamud, Josep Anton Muñoz, Pau Arbués, Luis Valero, and Andreu Vinyoles

The Early Eocene was the period of most intense plate collision during the building of the Pyrenean orogen. Tectonic loading of the overriding European plate caused flexure of the subducting Iberian plate and formation of an elongated foredeep connected westward with the Atlantic Ocean. The uneven distribution of the Triassic evaporites caused the formation of a thrust salient in the central Pyrenees related to tectonic inversion of the pre-existing Mesozoic rift basins. This process ultimately resulted in the partitioning of the foreland basin and the isolation of the Ripoll Basin in the East from the Tremp-Graus and Ainsa-Jaca basins in central and western south-Pyrenees. The precise timing and the surface processes related to this reorganization of the sediment routing system remains not fully understood. Early tectono-stratigraphic reconstructions envisaged a scenario of isolation of the eastern Pyrenean Foreland basin in the early Eocene, while other recent studies on detrital zircon geochronometry suggest that the sedimentary transfer system in the Tremp-Graus basin connected upstream to the Ripoll basin until middle Lutetian times. In this contribution we discuss constraints on the early Eocene paleogeography of the south-eastern Pyrenees in the light of a revised chronostratigraphic scheme. We put forward a scenario that tries reconciling all available structural, stratigraphic, petrologic, geochronologic, and sedimentologic datasets.

How to cite: Garcés, M., López-Blanco, M., Beamud, E., Muñoz, J. A., Arbués, P., Valero, L., and Vinyoles, A.: Reconstructing the Early Eocene Sediment Routing System of the south-eastern Pyrenees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10853, https://doi.org/10.5194/egusphere-egu2020-10853, 2020.

EGU2020-11284 | Displays | TS9.1

Stratigraphy and sediment signal transmission in a flexural foreland basin dynamically linked to an uplifting range

Laure Guerit, Delphine Rouby, Cécile Robin, François Guillocheau, Brendan Simon, and Jean Braun

Foreland basins that develop at the foot of collisional mountain belts accumulate sediments eroded from the ranges. They thus represent valuable archives of the evolution of orogenic systems through time. A few numerical models have investigated the infilling of foreland basins during the growth of an orogenic range and they provide conceptual frameworks for foreland stratigraphy. However, surface processes (erosion, sediment transport and deposition) are often quite basic in these models, and in the last decade, progress has been made in the description of surface processes and its implementation in numerical models. Recently, we developed a landscape evolution model able to describe the evolution of an eroding source coupled to a flexural sedimentary basin (Yuan et al, 2019, JGR; Guerit et al, 2019, Geology). This model takes into account erosion and deposition at the same time, and it thus allows a full dynamical coupling of the range and its foreland. We take advantage of this efficient numerical model to take another look at the stratigraphic evolution of a foreland basin and at the transmission of sediment signal from source to sink. 
We use the model to simulate the evolution of a flexural retro-foreland basin coupled to an uplifting range and subjected to temporal variations in uplift and precipitation rates. Such variations affect the topography of the range: a lower uplift rate or an higher precipitation lead to a lower range. As a result, because the accommodation space available in the foreland is purely flexural, a decrease in uplift rate or an increase in precipitation rate will be marked by an erosional surface in the foreland basin. On the contrary, an increase in uplift rate or a decrease in precipitation rate will be preserved in the stratigraphy. Interestingly, although the two scenarios induce a different sediment signal from the sources, they are both recorded in the foreland basin as a transient increase in accumulation rate. Such a signal alone can therefore not be used to decipher the type of perturbation that affected the source.
Finally, we discuss the evolution of a natural range and coupled foreland basin, the Pyrenees and the Aquitaine Basin. We show that the spatial pattern of sediment deposition in the Aquitaine Basin is very consistent with the topographic evolution of the Pyrenees. However, this topographic evolution is not consistent with the climatic and tectonic reconstruction in the area since the Eocene, opening discussions among others about local vs regional effects. This work is part of the COLORS project, funded by Total.

How to cite: Guerit, L., Rouby, D., Robin, C., Guillocheau, F., Simon, B., and Braun, J.: Stratigraphy and sediment signal transmission in a flexural foreland basin dynamically linked to an uplifting range, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11284, https://doi.org/10.5194/egusphere-egu2020-11284, 2020.

In frontier settings where data are limited or nonexistent, exploration often relies on predictive models to define uncertainty and derisk decisions. However, helping predict the spatial and temporal extent of geological elements in ancient systems is often challenging and requires a combined multidisciplinary methodology and mindset. The benefits of following a holistic Earth system science approach to the global-scale prediction of petroleum system elements are discussed.

Building on spatial and temporal frameworks provided by plate tectonic and sequence stratigraphic modelling, palinspastic gross depositional environment maps can be integrated with numerous data sets to generate useful paleo-digital elevation models (PDEM) for discrete time slices of the Earth’s history. With a reliable depiction of ancient landscapes and bathymetry, these global PDEMs are instrumental in identifying sediment source areas, which facilitates modelling of paleodrainage pathways. These PDEMs form an essential input to run global paleoclimate and paleotidal simulations, which, in turn, provide a wide range of useful parameters. In combination, paleodrainage and paleoclimate outputs allow for a predictive source-to-sink approach, which provides useful insights away from data constraints.

To highlight the predictive capabilities of this approach, the focus is on the Cretaceous paleo-margin from Guyana in northeast South America to Morocco in northwest Africa. The generation, quality, and distribution of clastic and carbonate systems related to the changing geomorphological and climatic evolution of the central Atlantic domain are discussed.

Within this prospective region, climatic trends are demonstrated (i.e., an intensification of precipitation along the equatorial margin and a progressive aridification in northern Africa) and their implications are discussed. For a range of Cretaceous time-slices, predictions of sediment flux, submarine fan dimensions, and hinterland composition, which provide useful insight into potential reservoir extent and quality along this margin, are demonstrated. By integrating climate, sediment flux, and sediment composition predictions, a margin-wide screening for clastic reservoir potential highlighting areas where existing plays could be extended (MSGBC) and where climatic controls add significant potential risk to reservoir presence and quality (Morocco) are presented.

How to cite: Nicoll, G., Smith, J., and Gréselle, B.: Source-to-Sink Systems in the Central Atlantic: Cretaceous Climate Transitions and the Consequences for Reservoir Distribution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18902, https://doi.org/10.5194/egusphere-egu2020-18902, 2020.

EGU2020-18895 | Displays | TS9.1

Passive-margin delta stratigraphy from source-to-sink numerical models: parametric studies and comparison with natural systems

Brendan Simon, Cécile Robin, Delphine Rouby, Xiaoping Yuan, Laure Guerit, Jean Braun, and François Guillocheau

One major and under-appreciated aspect of coupled erosion-deposition numerical modeling is the ranges of input parameter values used to simulate natural source to sink systems without considering their meaning in term of erosion, transport and deposition processes. Most of the time, numerical models are used as a semi-inversion tool based on a “best-fit” approach, especially in its marine part where it aims to reproduce well-constrained sedimentary architectures which are great recorders of landscape evolution through time.

In this study, we performed several simulations using a new numerical landscape evolution model that accounts for both erosion and deposition onshore, as well as sediment deposition in the marine domain (Yuan et al., 2019; COLORS project, funded by Total). In the marine domain, sediment dynamic is described by a diffusion equation and the diffusion or transport coefficient has been calibrated from natural delta geometries. This model is highly efficient and allows the separation of the different processes involved and exploration of various setups and parameters values in order to address a large variety of questions. Its efficiency also allows inverse simulations that are powerful to determine the best possible scenarios in terms of climatic or tectonic reconstructions, or to determine the evolution of several key parameters.

In order to evaluate the model reliability to reproduce realistic sedimentary geometries, we explore the impact of perturbations in climatic, eustatic or tectonic parameters of the model on the stratigraphic architecture of passive margins shelf-edge deltas and discuss its feedbacks with the erosion dynamic of the onshore domain. This sensitivity analysis also allowed us to define the most relevant geometrical parameters of observed or theoretical stratigraphic architectures that have to be include in the misfit function of the inversions and optimization scheme.

This study is part of the COLORS project, funded by Total.

How to cite: Simon, B., Robin, C., Rouby, D., Yuan, X., Guerit, L., Braun, J., and Guillocheau, F.: Passive-margin delta stratigraphy from source-to-sink numerical models: parametric studies and comparison with natural systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18895, https://doi.org/10.5194/egusphere-egu2020-18895, 2020.

TS9.3 – Studying active tectonics and volcano-tectonic processes using aerial (UAVs) and field-based Structure from Motion techniques

The surface traces of historical earthquakes on the optical images are easily obscured by dense vegetation. Fortunately, the vegetation can be filtered and removed mostly or completely from LiDAR-derived cloud point data. We incorporate tectono-geomorphic interpretations of optical image, digital elevation model (DEM)-derived hillshades, contour maps, and field observations of tectono-geomorphic features and trenches to identify surface traces created by a historical earthquake. Based on DEM data, we used LaDiCaoz_v2_1 and 3D_Fault_Offsets to quantify offsets of tectonically displaced geomorphic markers. These approaches help us to recover an Mw7.5 historical earthquake at the southeast margin of the Tibetan Plateau, but the seismogenic fault had been considered as a weakly active fault and the magnitude of this earthquake was cited as M6.8 in the catalog of Chinese historic strong earthquakes from BC 2300 to AD 1911.

How to cite: Han, Z., Dong, S., and Guo, P.: Identification of the surface traces of historical earthquakes: one example from the southeast margin of the Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3792, https://doi.org/10.5194/egusphere-egu2020-3792, 2020.

The Wuhai Basin is in the northwestern corner of the Ordos Block. Analyzing the geometry, and kinematic and dynamic characteristics of the boundary fault, the Zhuozishan West Piedmont Fault (ZWPF), will elucidate the regional tectonic environment and guide earthquake prevention and disaster reduction projects. Six presentative sites were selected for topographic measurements, from northern, middle and southern parts. Displacements of the ZWPF were calculated by measuring the top surface elevation of a widely distributed lacustrine layer in the footwall from outcrops at the sites (using UAV), and in the hanging wall from boreholes. The vertical slip rate of the ZWPF was then calculated based on the displacement and age of the lacustrine layer. Three to four normal fault-controlled terraces have developed on the footwall of the ZWPF, and the top surface of the lacustrine layer is at 1092–1132 m elevation. Data from boreholes showed that the top surface of the lacustrine layer is at an elevation of 1042–1063 m in the hanging wall. Vertical slip rates since 70 ka were estimated as 0.5±0.2 to 1.0±0.2 mm/a. The highest rate of vertical slip was observed at Fenghuang Ridge, in the central part of the fault system, and the vertical slip rate reduced to the south. In the northern Wuhai Basin, normal faulting still controls the piedmont landscape. However, NW-SE trending reverse faults and secondary folding have resulted from dextral strike-slip movement of the fault. The Wuhai Basin developed as a dextral-tensional negative flower structure. This study indicated that stress conditions of the northwestern margin of the Ordos Block include NE–SW compression and NW–SE extension, and an S-shaped rift zone has dominated the scale, structure, and evolution of the Yinchuan, Wuhai and Hetao Basins, and the active mode of faulting in these basins.

How to cite: Liang, K., Ma, B., and Tian, Q.: Using UAV and drilling to detect Quaternary activity of the Zhuozishan West Piedmont Fault, provides insight into the structural development of the Wuhai Basin and Northwestern Ordos Block, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12617, https://doi.org/10.5194/egusphere-egu2020-12617, 2020.

Due to its position at the boundary between American and European plates, Iceland represents an ideal natural laboratory to study active rifting processes, where rifting mechanisms are complicated by the superimposition of tectonic and magmatic stresses. In order to contribute to the study of such processes, we focused our attention on the southern sector of the Theistareykir Fissure Swarm (ThFS), an active volcanic rift belonging to the Northern Volcanic Zone of Iceland, affected by both volcanic and seismic hazard.

We studied an area which is about 22 km2-large, situated 12 km south of the intersection of the ThFS with the Husavik Flatey Fault (HFF), a dextral strike-slip lineament belonging to the Tjornes Fracture Zone (TFZ). The area is characterized by the presence of normal faults and a dense swarm of extension fractures, affecting prevalently post-glacial, Holocene lavas, dated 8-10 and 11-12 ka. Only in the western sector of the area a Late Quaternary interglacial lava crops out, while the northeastern sector is covered by a Weichselian subglacial hyaloclastite. The southern sector of the area has been investigated with classical field survey, whereas in the northern part a 3.87 km2-large area has been reconstructed using the Structure from Motion (SfM) techniques, combined with an Unmanned Aerial Vehicle (UAV), obtaining orthomosaics, DSMs and 3D models with a centimetric resolution through 4189 UAV photos, collected in 7 different missions during summer 2018.

In the whole area, we recognized and mapped a total of 624 structures (comprising 583 extension fractures and 41 normal faults), and we took various measurements at 626 structural stations along extension fractures, and 132 along normal faults. Regarding extension fractures, we collected the strike and, in 441 cases where it was possible, the opening direction and the amount of opening; along normal faults we measured the strike, dip and vertical offset.

Our approach allowed to calculate stretch values across the rift comprised between 1.002 and 1.013, and an average opening direction value of 104.4°N, normal to the average extension fracture strike measured at the structural stations (14°N), suggesting a pure extensional opening in the studied area. Actually, in 281 cases out of our 441 stations along extension fractures we noticed a lateral component > 5°. Furthermore, 49% of data is not consistent with tectonics, neither with regard to the extensional fracture strike, nor with regard to opening directions. This suggests that stresses linked to regional tectonics are not the only cause of deformation, which could have been affected by different processes like dyke intrusion, deglaciation, and inflation/deflation of the Theistareykir volcano magma chamber.

How to cite: Corti, N. and Tibaldi, A.: Structural analysis of the Theistareykir Fissure Swarm (NE Iceland) using field survey integrated with UAV-based - Structure from Motion techniques, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1621, https://doi.org/10.5194/egusphere-egu2020-1621, 2020.

EGU2020-19168 | Displays | TS9.3

Structural mapping and analysis of rifting events using UAVs in the North Volcanic Zone (Iceland)

Elisabetta Panza, Joël Ruch, and François Martin

Volcano-tectonic events in extensional environments release over days or weeks tectonic strain deficit accumulated over several decades or hundreds of years.

Thanks to its position, on top of both an extensional plate boundary and a mantle plume, several volcano-tectonic events occur in Iceland, and they have relatively accurately reported since the first settlements in ~ 870 AD. The eruptions and graben formation observed during these events are related to magma transport in the crust, which also causes the reactivation of pre-existing structures.

However, the Earth’s upper crust is classically modelled as homogeneous and fully elastic and not as a pre-fractured medium. This study aims to analyse the role of pre-existing crustal structures on the propagation of magma in extensional environments.

The 13 main Icelandic volcano-tectonic events, mostly concentrated in the North, East, and West Volcanic Zones, show a return period in the order of 200 years on average. The suggested cyclic nature of strain deficit loading and subsequent release is consistent with the stepwise nature of strain release at divergent plate boundaries: the crustal opening associated with dike emplacement during volcano-tectonic events is of the same order of magnitude of the strain deficit accumulated since the previous event in the same area.

On this basis, we identified structurally relevant and logistically accessible fieldwork areas in the North Volcanic Zone to perform detailed structural mapping based on UAV-drone imagery. In August 2019 we carried out a UAV survey in Fjallagjá, a graben ~15-20 m deep and ~1 km wide that extends parallel to Sveinagjá graben for ~18 km, in the Askja volcanic system. During the volcano-tectonic event in 1875 in Askja volcanic system, Sveinagjá graben was activated and it subsided 3 to 6 m.

The UAV is a fixed-wing with a ground resolution down to 1 cm·px-1 (flying at 100 m above ground), with an on-board PPK antenna. We installed a GNSS base, wich, in combination with the PPK correction, allows a centimetre-accuracy of the georeferencing of the drone images, with no need for aerial targets as GCPs. With this setup we managed to perform 21 flights, covering an area of ~15 km2.

The processing of the drone images resulted in DEMs and orthorectified mosaics of the fieldwork area, allowing to perform a detailed morphological and structural analysis, looking at fracures, topography effects, and potential kinematic indicators. Specific attention is paid to obliquity between sets of structures. The aim is to reconstruct the paleostress history of this area of the plate boundary.

The use of UAV high-resolution mapping paves the way to an efficient broadening of the fieldwork area and makes available a near-field structural analysis dataset much wider than previously possible.

How to cite: Panza, E., Ruch, J., and Martin, F.: Structural mapping and analysis of rifting events using UAVs in the North Volcanic Zone (Iceland), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19168, https://doi.org/10.5194/egusphere-egu2020-19168, 2020.

EGU2020-12116 | Displays | TS9.3

Field analysis Vs boat-based photogrammetry derived data in volcanotectonics: an example from the Santorini dyke swarm

Kyriaki Drymoni, Fabio Luca Bonali, John Browning, Agust Gudmundsson, Luca Fallati, Varvara Antoniou, and Paraskevi Nomikou

Field studies are vital for mapping and understanding active geological processes on Earth. Such studies commonly inform analogue and numerical modelling setups and provide insights over a variety of scales. However, geological field studies have several limitations as they are sensitive both to field-based conditions (e.g. weather conditions, geomorphology, weathering, erosion and access) and the experience of the researchers conducting the work. All of these limitations can add significant error or uncertainty to geological measurements. At the same time, new geological measurement techniques (e.g. photogrammetry) are easy to access, fast and friendly to use, but also often depend on ground truthing parameters.

In this study, we compared two different methods for mapping and surveying volcanotectonic processes related to dyking events: classical field analysis and boat-based photogrammetry. We tested the two approaches on dykes located within a section of a steep cliff face that makes up part of the Santorini caldera. The caldera wall is accessible by land only in the upper most parts and so most measurements require access by boat or by abseiling down the cliff faces. The latter is very dangerous and not recommended.

The core of the work is to carefully compare field data with the equivalents collected on photogrammetry-derived 3D model, focusing on the sea level area in order to compare reliable dataset. Data comparison is focused on dyke attitudes, thicknesses, petrological descriptions, along the 4-km length profile of the northern caldera wall of Santorini volcano.

We collected a series of high-resolution images, around 800 pictures in total, aimed at 3D modelling the dyke swarm using photogrammetry methods. They have been collected using a 20 MPX hand-held camera equipped with commercial GPS from a boat, moving parallel and to a constant distance from to the caldera wall.

Comparison of both datasets allowed insights into 1) the completeness and, 2) the limitations of each technique. Here we assess the various advantages to design a novel multidimensional methodology that allows fast, accurate and low-cost data generation in difficult working conditions, such as at steep cliff faces and flooded terrains.

How to cite: Drymoni, K., Bonali, F. L., Browning, J., Gudmundsson, A., Fallati, L., Antoniou, V., and Nomikou, P.: Field analysis Vs boat-based photogrammetry derived data in volcanotectonics: an example from the Santorini dyke swarm, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12116, https://doi.org/10.5194/egusphere-egu2020-12116, 2020.

EGU2020-13651 | Displays | TS9.3

Drones, dykes and too much data: mapping the Taburiente dyke swarm

Sam Thiele, Alexander Cruden, and Steven Micklethwaite

Sheet-intrusions are the most common means of magma transport in basaltic volcanoes, so knowledge of their propagation paths is critical for volcanic hazard analyses. Recent advances in unmanned aerial vehicle (UAV) technology and modern photogrammetric techniques such as structure from motion have made it possible to capture and analyse exposed intrusions in unprecedented detail. Using these methods we have captured digital outcrop models of the spectacularly exposed basaltic dyke-swarm that formed the plumbing system of Volcán Taburiente on La Palma (Canary Islands, Spain), and mapped 500 dykes over a total exposed length of > 50 km. We then applied a semi-automatic method implemented in CloudCompare to extract dyke orientation and thickness measurements, as well as associated uncertainty, every ~10 cm along ~60 % of the dyke margins, resulting in more than ten million individual estimates. These highlight a broadly radial dyke swarm with a focal point in the southern section of Caldera Taburiente. The near-continuous exposure also allowed us to estimate the vertical and circumferential strain induced by the dyke swarm and show that although the dykes are radial, N-S orientations are more frequent and probably gave Volcán Taburiente an elongate geometry. A simple Maxwell visco-elastic model can account for the observed strain without requiring a basal detachment or gravitational spreading, and also replicate the observed dyke-aperture distribution.

How to cite: Thiele, S., Cruden, A., and Micklethwaite, S.: Drones, dykes and too much data: mapping the Taburiente dyke swarm, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13651, https://doi.org/10.5194/egusphere-egu2020-13651, 2020.

This presentation describes a workflow to enhance the 3D model of a geological outcrop cut across by a regional strike-slip fault located in the Venezuelan Andes.

This fault (Boconó Fault) has been active since the Early Holocene time and has affected the landscape by displacing the rivers course and the geometry of ancient glacial moraines.

One of these moraines (Los Zerpa) was studied in detail in 1983 by geologist C. Schubert, who described its evolution with a series of hand drawn panels.

In 2015 the same area was acquired by the author with a drone survey and rendered as a digital 3D model. More recently the same model has been improved by adding also the interpretation made in the 80’s, adapted to 3D in the form of geometrical elements (lineaments and surfaces) and animations showing the different stages of evolution.

The fault model can now be publicly accessed over the internet and the users can observe and animate its evolution in 3D and understand the geological processes more intuitively (https://riccardorocca.github.io/home/Los_Zerpa.html).

This result has been achieved by editing the original model with free software which is more typically used for computer games, namely "Blender" (a 3D editor) and "Sketchfab" (a publishing platform for 3D models). Furthermore, the “Sketchfab” display can be programmed in Javascript, adding widgets that allow the users to interact with the scene by hiding/showing/moving specific elements of the model.

This workflow is proposed as an example that can be applied to other 3D models of geological faults and other geological features, so that the geological concepts can be represented more intuitively and made accessible to a large audience. With these improvements the models would be a more valuable support to, for instance, published papers and virtual field-trips.

How to cite: Rocca, R.: Representing fault evolution by animating a drone 3D model with computer game software (Boconó Fault, Venezuelan Andes)., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11426, https://doi.org/10.5194/egusphere-egu2020-11426, 2020.

EGU2020-19715 | Displays | TS9.3

UAV surveys illuminate the morpho-structural and volume changes from the 2019 paroxysmal eruptions of Stromboli volcano (Italy)

Emanuela De Beni, Daniele Andronico, Massimo Cantarero, Riccardo Civico, Elisabetta Del Bello, Federico Di Traglia, Malte Eggersglüß, Thor Hansteen, Kaj Hoernle, Jeffrey Johnson, Tom Kwasnitschka, Luca Pizzimenti, Tullio Ricci, Piergiorgio Scarlato, Karen Strehlow, and Jacopo Taddeucci

Stromboli Volcano was very active in the summer of 2019:  Two paroxysms dramatically changed the summit craters of the volcano on July 3 and August 28. The first intense paroxysmal eruptive sequence involved both the North and the Central-South (C-S) crater areas and has generated an eruptive plume rising 4 km above the summit (924 m a.s.l.) while the incandescent material set fire to vegetation on the flanks of the volcano. Volcanic products from the laterally directed explosions and from the collapse of the external crater terrace generated two pyroclastic flows that travelled down the Sciara del Fuoco (SdF) and for several hundred of meters out to sea. Between July 3 and August 28, the activity was characterised by lava flows in the Southern sector of the SdF and by very intense Strombolian activity at a set of small scoria cones that grew around the vents, particularly in the N crater area. The second paroxysmal eruption occurred on August 28 again involving the two crater areas and producing an eruptive column that rose 4 km above the summit. Material from the eruption and from the collapse of the rim of the C-S area contributed to the generation of a pyroclastic flow that travelled down the SdF and out to sea. Important morphological variations to the crater terrace were evident after the two paroxysms.

We used UAVs to monitor morpho-structural changes of the Stromboli volcano following the paroxysmal eruptions; in particular, five high-resolution UAV survey campaigns have been performed since May 2019. The aerial images were acquired using two different UAVs, a DJI Mavic 2 Pro and a Wingcopter. Using Structure-from-Motion (SfM) techniques we generated DEMs (Digital Elevation Model) and orthoimages with a resolution ranging between 0.2 and 0.5 m. An additional 1 m-resolution DEM was extracted from available tri-stereo Pleiades satellite imagery and chosen as pre-paroxysm surface. Using the orthoimages it was possible to map the distribution of eruption products and determine the morpho-structural changes. Furthermore, the topographic approach (subtraction between two different surfaces DEMs) with a cut-and-fill procedure was chosen to calculate the volume gain (in the southern sector of the SdF) and loss (in the crater areas).

This work demonstrates the usefulness of the combined use of UAVs and SfM techniques to map volcanic products, to highlight morphological changes and perform volume estimations. The data collected during these field efforts and the temporal comparisons of the DEMs represent a fundamental contribution to both volcanic hazard assessment and risk mitigation, and can be used to support civil protection operations.

How to cite: De Beni, E., Andronico, D., Cantarero, M., Civico, R., Del Bello, E., Di Traglia, F., Eggersglüß, M., Hansteen, T., Hoernle, K., Johnson, J., Kwasnitschka, T., Pizzimenti, L., Ricci, T., Scarlato, P., Strehlow, K., and Taddeucci, J.: UAV surveys illuminate the morpho-structural and volume changes from the 2019 paroxysmal eruptions of Stromboli volcano (Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19715, https://doi.org/10.5194/egusphere-egu2020-19715, 2020.

UAV- and SfM-related techniques applied to volcano-tectonics for virtual outcrops construction and geoscience communication. Examples from the North Volcanic Zone, Iceland

 Authors: Federico Pasquaré Mariotto1, Alessandro Tibaldi2,3

 

1Insubria University, Department of Human and Innovation Sciences                     2University of Milan-Bicocca, Department of Earth and Environmental Science, Milan, Italy 3CRUST- Interuniversity Center for 3D Seismotectonics with Territorial Applications, Italy

 

Iceland offers an unparalleled chance to observe the most powerful natural phenomena related to the combination of tectonic and magmatic forces, such as active rifting, volcanic eruptions, sub-volcanic intrusions. We have focused on a number of geosites which are found in the Northern Volcanic Zone (NVZ) of Iceland; here, the following volcano-tectonic features can be observed: i) the Theystareykir  Fissure Swarm (ThFS), an active rift system with a central volcano, several major faults and numerous eruptive fissures; ii) the Krafla Fissure Swarm (KFS), another major rift system marked by the presence of monogenetic cones, dip-slip faults, eruptive fissures, extension fractures and the active Krafla volcano.

In order to showcase a few, outstanding examples of the above, we have made use of UAVs integrated by the Structure-from-Motion (SfM) Photogrammetry. As is well known, the combination of UAV-digital image collection and SfM techniques has been increasingly applied to geological and environmental research. We have applied this approach to the collection of high-definition images and with the purpose of constructing 3-D models, which may be considered “Virtual Outcrops (VO)”.

We highlight that such 3-D models can be navigated in immersive Virtual Reality mode, and hence can be a key tool not only for research purposes: in fact, this is a novel, cutting-edge approach which is suitable for improving geosite popularization and geoscience communication, allowing for the engagement of a wider audience, including potential end-users from the younger generation.

 

 

How to cite: Pasquaré Mariotto, F. and Tibaldi, A.: UAV- and SfM-related techniques applied to volcano-tectonics for virtual outcrops construction and geoscience communication. Examples from the North Volcanic Zone, Iceland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4210, https://doi.org/10.5194/egusphere-egu2020-4210, 2020.

EGU2020-3948 | Displays | TS9.3 | Highlight

Using “Selfie drones” for 3D mapping of volcano-tectonic features in Santorini, Greece

Varvara Antoniou, Paraskevi Nomikou, and Othonas Vlasopoulos

Generally, key geological outcrops are inaccessible for classical mapping due to the hard-logistic conditions of their location in remote or dangerous areas like active volcanoes or fault zones. The UAV-based photogrammetry is a helpful technique to overcome such difficulties in site investigation. It allows a very high-detailed 3D model reconstruction of relevant outcrops, providing also the possibility to cover wider areas.

In this study, we tested the use of a “Selfie drone” aimed at outcrops reconstruction for 3D mapping of volcano-tectonic features. Two different sites in Santorini volcanic complex with different characteristics have been chosen: i) the Vlychada Beach, located in the southern part of the island, characterized by vertical cliffs that offer great exposure of the pumice layers from the well-known Late Bronze Age (LBA) (Minoan) eruption and ii) a historical volcanic crater located in the northern part of Nea Kameni island, related to the 1570 A.D. eruption, with a diameter of about 85 m, which is mostly inaccessible within its internal part and cannot be studied by classical field methods. 

The “Selfie drone” which was used for the photo collection, is a 0.300-kg quadcopter equipped with a 12 Megapixel camera, EXIF information (Exchangeable Image File Format) and GPS coordinates. This drone has a flight time of approximately 16 minutes. A total of about 1900 photos has been collected, considering both sites, that have been reconstructed using photogrammetry techniques.

The resulting 3D models are characterized by a sub-centimetric texture resolution, allowing detailed mapping of the Minoan pumice layers, fractures, crater geometry, and related volcanic deposits, proving the usefulness of “Selfie drones” for geological – tectonic mapping.

How to cite: Antoniou, V., Nomikou, P., and Vlasopoulos, O.: Using “Selfie drones” for 3D mapping of volcano-tectonic features in Santorini, Greece, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3948, https://doi.org/10.5194/egusphere-egu2020-3948, 2020.

EGU2020-5325 | Displays | TS9.3

Analysis of surface rupture complexity sheds light on coseismic slip during the last earthquakes along the Bulnay-Tsetserleg fault zone (Mongolia)

Yacine Benjelloun, Yann Klinger, Solène Antoine, Ganbold Baatarsuren, Laurent Bollinger, Yungbeom Cheon, Jin-Hyuck Choi, and Ganzorig Davaasuren

In 1905, two M ~ 8 continental strike-slip earthquakes occurred along the Bulnay fault system, in the northwestern part of Mongolia. After a first earthquake that ruptured the Tsetserleg oblique fault strand, the second event ruptured the main Bulnay fault 14 days later. With a total rupture of 676 km, these two earthquakes constitute the largest continental strike-slip earthquake sequence ever documented. Hence, the Mongolian earthquake ruptures offer a unique opportunity to document large-magnitude earthquake continental ruptures. Indeed, due to dry climatic conditions, limited erosion and anthropization, the surface ruptures have been preserved almost unaltered. This allows for accurate documentation of the rupture trace and coseismic slip distribution along the Bulnay fault, based on field observation and satellite imagery.

Along the Tsetserleg rupture, the available coseismic offset measurement data coming from high-resolution satellite imagery show a significant variability, ranging between 1.5 and 4 m for the horizontal component. It is presently difficult to assess the most representative value for the 1905 slip, which in turn impacts the magnitude estimation for this event. Another factor to take into account is the possibility of a vertical slip component, which is only poorly constrained.

In order to have a better estimate of the 3D coseismic slip, drone images were acquired on selected sites along the Bulnay 1905 rupture, near the junction with Tsetserleg fault, and along the Tsetserleg rupture. We favored sites showing structural complexities and significant surface fracture development (succession of cracks and ridges, stepovers, branching zones…).

High-resolution DEMs and orthophotomosaics were produced using the MicMac software. The geometrical characteristics of the complexities and their fracture network were then measured in order to compute the volumetric changes associated to the 1905 earthquake. These data were finally converted to 3D surface slip estimates. On certain sites, we also discussed the presence of features inherited from previous ruptures, overprinted by the 1905 earthquake.

How to cite: Benjelloun, Y., Klinger, Y., Antoine, S., Baatarsuren, G., Bollinger, L., Cheon, Y., Choi, J.-H., and Davaasuren, G.: Analysis of surface rupture complexity sheds light on coseismic slip during the last earthquakes along the Bulnay-Tsetserleg fault zone (Mongolia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5325, https://doi.org/10.5194/egusphere-egu2020-5325, 2020.

EGU2020-10636 | Displays | TS9.3

Roughness evaluation on a splay of the active fault system responsible of the massive 2016 seismic sequence of Central Apennines (Italy)

Amerigo Corradetti, Stefano Tavani, Miller Zambrano, Emanuele Tondi, and Thomas Seers

Fault roughness is a general term used to indicate dimension and distribution of fault asperities. Due to the role that fault asperities play on slip dynamics and frictional behavior during the seismic cycle, fault roughness constitutes a key element to understand earthquakes nucleation. Since it is not possible to recover fault roughness from seismogenic sources, faults at surface are generally used as analogues. However, those faults are in most cases subject to weathering and their roughness can lose seismogenic representativeness. Active faults episodically expose “fresh” fault zones constituting the best targets for seismogenic roughness evaluations.

Here we present the study conducted on a splay of the Mt. Vettore fault system in the Central Apennines (Italy), along a vertical transect that includes both a weathered and a freshly exposed portion of the fault. The latter was exposed after the dramatic Mw 6.5 shock that hit the area on the 30th of October 2016. We produced a high detailed model of a part of the fault by means of structure from motion-multiview stereo (SfM-MVS) photogrammetry to assess its roughness parameters and to determine how these are affected by weathering. 

Our results show that weathering increases the value of the fractal parameters. Accordingly, we conclude that using high resolution point clouds it is possible to recognize patches of fault having similar exposition time to weathering. 

How to cite: Corradetti, A., Tavani, S., Zambrano, M., Tondi, E., and Seers, T.: Roughness evaluation on a splay of the active fault system responsible of the massive 2016 seismic sequence of Central Apennines (Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10636, https://doi.org/10.5194/egusphere-egu2020-10636, 2020.

This study attempted to use unmanned aerial vehicle (UAV) photogrammetry for structural mapping at limited exposure outcrops in the west coast area of Buan, South Korea. The west coast area of Buan has a large tidal range, and there are restrictions for traditional structure mapping. High spatial resolution (about 4.5 cm per pixel) UAV images were obtained at low tide from a selected study site. The UAV survey identified 50 brittle structures (fractures and faults that were divided into three groups) and changes in the bedding trace. The bedding trace demonstrates various directional verging of the fold geometry that indicates slump-fault structures. While more research is still necessary, this study demonstrated that UAV mapping techniques are very useful for geological structural analysis in coastal areas.

How to cite: Lee, H.-J. and Ko, K.: Detecting geological structures in coastal area of Buan, South Korea using unmanned aerial vehicle images, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6257, https://doi.org/10.5194/egusphere-egu2020-6257, 2020.

EGU2020-2604 | Displays | TS9.3

Holocene dyke-induced surface deformation at Krafla (Iceland) revealed by UAV-based high resolution 3D models

Alessandro Tibaldi, Elena Russo, and Luca Fallati

We analysed at very high detail the surface deformation along a volcanotectonic structure in the Krafla Fissure Swarm, located in the North Iceland Rift. The structure affects the Pleistocene Hituholar volcano and 12 ka old lava flows. The work has been carried out through the Structure from Motion technique (SfM) applied to UAV surveys, integrated with a lithostratigraphic and structural field survey. The resulting Orthomosaic and Digital Surface Model (DSM) have a resolution of 2.6 and 10 cm, respectively. The zone of deformation is characterised by topographic bulging, parallel extension fractures, and narrow grabens with locally floor uplift, which can be explained as the effect of shallow propagation of a dyke northward from the Krafla magma chamber. In fact, the study area has been interested by northward dyke propagation from the central Krafla volcano during several rifting events, among which the recentmost occurred in 1975-1984 (Krafla fire). The analysis of the very wide area covered by our UAV surveys indicates that changes in the pattern of surface deformation occur in correspondence of contacts between deposits with different rheological properties: the transition from very stiff lavas to soft hyaloclastites produces a change from extension fracturing to normal faulting. Moreover, we detected a series of extension fractures with NE-SW strike and left-lateral slip component, and NNW-SSE strike and right-lateral component, which are rotated clockwise and anticlockwise respect to the main NNE-SSW graben trend, and extend outward to the sides of the main deformation zone up to 17 m. We interpret these structures as originated in front of the dyke tip during its propagation and being successively bypassed by the dyke advancement. In case of an active volcanic zone, the comprehension of the surface deformation and of the significance of strike-slip faulting occurrence can help to determine how and where magma is propagating. Thus, these evidences may help to decipher geophysical data and surface structural data during volcano monitoring.

How to cite: Tibaldi, A., Russo, E., and Fallati, L.: Holocene dyke-induced surface deformation at Krafla (Iceland) revealed by UAV-based high resolution 3D models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2604, https://doi.org/10.5194/egusphere-egu2020-2604, 2020.

EGU2020-5788 | Displays | TS9.3

A unique ~12 ka subaerial record of rift-transform triple-junction tectonics, NE Iceland

Derek Rust and Malcolm Whitworth

In northern Iceland the European-North American plate boundary is broad and complex but includes a remarkable subaerial triple-junction intersection between the Husavik-Flatey Fault (HFF) dextral transform and rifting in the Northern Volcanic Zone. Fortuitously, the triple junction occurs in a sheet of ~12 ka pahoehoe lavas; a tabula rasa recording innumerable fault features displayed in exquisite detail. High-resolution drone imagery, coupled with 120 field measurements of fault slip directions and opening amounts, made possible the mapping and analysis of this detail and, importantly, enabled recognition and exclusion of potentially misleading primary deformation features associated with emplacement of the lavas. Rift-transform interactions in this natural laboratory have remained spatially stable throughout post-glacial time, although with transform-affinity faults reactivated to accommodate rift extension and transform ‘encroachment’ into the rift domain. First-order en-echelon Riedel fault complexes are recognised, linked by transpressional faulting and compressional strike-slip relay ramps, as well as second-order R shears, R’ and P shears, and previously undescribed R’ Riedel-in- Riedel relationships. A pahoehoe flow front offset along a first-order Riedel fault complex records slip at ~3.8 mm a−1, which may be consistent with the published GPS-based current slip-rate estimate of ~6.8 mm a−1 across the HFF as a whole.

How to cite: Rust, D. and Whitworth, M.: A unique ~12 ka subaerial record of rift-transform triple-junction tectonics, NE Iceland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5788, https://doi.org/10.5194/egusphere-egu2020-5788, 2020.

EGU2020-6640 | Displays | TS9.3

Holocene deformation within the Húsavík-Flatey Fault zone in north Iceland from drone imagery and field investigations

Rémi Matrau, Daniele Trippanera, and Sigurjón Jónsson

Drone imaging can be effective in determining earthquake fault offsets and landslide motion in areas where higher image resolution is needed than available in satellite data. Here we use drone mapping to study the Holocene tectonic activity along the Húsavík-Flatey Fault (HFF) in northern Iceland as well as a coastal landslide in the vicinity of the fault, which poses a tsunami threat. Together with the subparallel Grímsey Oblique Rift, the partially offshore HFF accommodates ~18 mm/yr transfer motion between two parts of the Mid-Atlantic Ridge. However, it remains unclear how much of that transfer motion has occurred on the HFF during Holocene. This is important to determine for seismic hazard assessments of North Iceland, as the HFF is located much closer to several coastal communities than the offshore Grímsey Oblique Rift.

We used a DJI Phantom 4 drone to survey 5.8 km of faults onshore in 5 separate areas that together cover 2.9 km2. We processed ~6000 drone images using the photogrammetry software Agisoft PhotoScan to compute high resolution 3D Digital Surface Models (DSMs) and high resolution 2D ortho-mosaics. We placed 5 to 10 Ground Control Points (GCPs) in each survey area to reduce distortions and to apply corrections for the ortho-rectification. While errors on absolute horizontal positions (without the GCP corrections) are not large (sub-meter to a meter), errors on the absolute vertical positions can be substantial (several tens of meters). The GCP locations were determined using differential GPS and the open source package RTKLIB, and then later added in the 3D model reconstruction. Depending on the flight parameters (altitude, speed, camera rate…) and the reconstruction process, we obtained DSMs and ortho-mosaics with resolutions ranging from 2.5 to 10 cm. We used these high-resolution DSMs and ortho-mosaics to map postglacial morphologies and tectonic features along the HFF, and to measure offset structures along the fault segments, which we used to assess the Holocene slip rate of the HFF. We measured more than 30 offsets ranging from a few meters up to 80 m, which yields a minimum Holocene slip rate of 7.0 - 7.5 mm/yr, compatible with rates derived from modeling of present-day GPS observations.

In addition, we surveyed a coastal landslide that is 280 m x 130 m in size and located about 10 km south of the fault. A sudden movement of the landslide, e.g. triggered by earthquake shaking, would cause a tsunami and could threaten neighboring coastal areas, including the town of Húsavík. We aim at characterizing the volumetric and topographic evolution of the landslide to understand if the landslide is actively creeping and if it could be destabilized by an earthquake. To do this, we compare our drone-image DSM with a DSM computed from older aerial images and will use this first drone survey as a benchmark to monitor the evolution of the landslide.

How to cite: Matrau, R., Trippanera, D., and Jónsson, S.: Holocene deformation within the Húsavík-Flatey Fault zone in north Iceland from drone imagery and field investigations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6640, https://doi.org/10.5194/egusphere-egu2020-6640, 2020.

TS9.4 – The Arabian Plate and its surroundings – past and present

The Masirah nappes are represented by allochthonous Late Jurassic to Cretaceous volcanic rocks and ophiolites well as Permian to Maastrichtian marine sediments, obducted onto the Oman continental margin at the cretaceous/Tertiary boundary (Schreurs and Immenhauser, 1999). The Masirah ophiolite forms a straight NNE-SSW trending strip 40 km wide, extending 450 km from Ras Madrakah to the Batain coast. The ophiolite is truncated by the ophiolitic mélange (known as Masirah Mélange) which makes a high angle with the sheeted dike trend and has been interpreted as a transform fault zone (Moseley and Abbotts 1979). The Masirah Mélange shows all the features characteristic of a tectonic mélange, in particular indefinite, non-stratigraphic, contacts and scanty matrix, indicating that it is not a diapiric mélange (Shackletonet and Ries.1990). The blocks within the mélange range in size from several kilometers to a few meters and are composed of blocks of all the rock types of the ophiolite beside metamorphic rocks. Metamorphic rocks from RasMedraka Mélange are mainly composed amphibolite, two mica gneiss, and schist. The amphibolite consists of hornblende, plagioclase, clinopyroxene, sphene, chlorite, epidote, calcite, quartz, biotite, prehnite, magnetite, and ilmenite. Geochemical data shows amphibolites have similar MORBgeochemical characteristics. The Masirah ophiolite and mélange preserve a very long (80 Ma) history of igneous and sedimentary activity prior to emplacement onto the Arabian continental crust. However, dating of the mélange is so far proving difficult. It clearly post-dates the main ophiolite and pre-dates the early Tertiary (Shackletonet al. 1990).

This study is focused on providing age constraints for the amphibolite and greenschist facies metamorphic rocks of the Masirah Mélange in Ras Madraka by 40Ar ⁄ 39Ar dating. All 40Ar ⁄ 39Ar results were obtained in the ALF Argonlab, Freiberg University, Germany.  Most of the samples show large degrees of Ar-loss or, in some cases, the presence of an excess Ar component, reflected by disturbed age spectra. In general, however, the large number of temperature steps measured in one hornblende sample allows the determination of well-constrained inverse isochron ages that generally provide a more robust error estimate than plateau ages. Laser stepwise heating of these hornblende samples yielded flat age spectra with plateau ages of 83.8+0.96 Ma.

The Indian Ocean was characterized by stepwise breakup of east and west Gondwana at 157 Ma, breakup of east Gondwana at 130 Ma, Madagascar and India/Seychelles at 95–84 Ma, India and Seychelles at 65 Ma, and, finally at40 Ma, rifting between Africa and Arabia Peters, 2000; Nasir 2016). The range from 160 Ma to 80 Ma suggests that magmatic activity in the Masirah ophiolite was more or less continuous over a period of ~80 Ma, and correlates with large-scale tectonic events recorded in the early Indian Ocean at 80-160 Ma. The 40Ar ⁄ 39Ar ages indicate that hornblende formed before 84 Ma and this age can be interpreted as cooling ages dating approximately the formation of the plastic deformation and abduction. We attribute the Masirah Mélange to the Madagascar and India/Seychelles breaking event at 95–84.

How to cite: Nasir, S.: Petrogenesis of the Masirah ophiolite Me'lange at Ras Madraka, Oman, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1393, https://doi.org/10.5194/egusphere-egu2020-1393, 2020.

EGU2020-7803 | Displays | TS9.4

Structural Evolution of Lorestan salient in North Zagros Mountain Belt, Iran

Jun Wei Pang and Jyr-Ching Hu

Zagros foreland basin is the most important oil-gas foreland basin in the world. At least 60 oil and gas fields have been found. Therefore, research in this area will enrich the petroleum geological information of the foreland basin as an important basis for oil and gas exploration. First, we conduct 2D restoration of Lorestan salient in North Zagros Mountain Belt with 2DMove to test the rationality of the equilibrium profile and understand the structural evolution of the Lorestan salient. Base on the 2D restoration, faults evolved in the ways of in-sequence and out-of-sequence, many faults have breached the cover layer from basement then produced anticline, in the earlier stage of deformation. Anaran anticline and Kabir Kuh anticline caused by the thrusts that displacement along the thrust are 5769 m and 11496 m, respectively. The Vardalan, Dareh Baneh and Naft Anticline also produced by the basement thrust later, this result suggest that surface topography and anticline are highly associated with basement thrust. Second, using the Move2017-Surface to establish the 3D structural model to observe the lateral variation of the strata, some strata have lateral variation, the Mishan formation is absent in the NW but gradually appear to the SE and the Triassic carbonates thickness decreases from almost 1000 m in the southwest to 200 m in the northeast. This reduction in thickness may associated with late Triassic normal faulting and erosion. Third, we project the earthquake on the cross section to understanding the relation between earthquake distribution and tectonic patterns. Based on the analysis of seismicity and geological profiles, earthquake focal mechanisms are mostly reverse faulting with NW–SE strikes and the distribution is over whole horizontal Zagros belt but concentrated in depth of 5~16 km. In addition, larger magnitude earthquakes mainly distribute in southwest Lorestan, it implies that it is the main regime of active tectonics.

How to cite: Pang, J. W. and Hu, J.-C.: Structural Evolution of Lorestan salient in North Zagros Mountain Belt, Iran, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7803, https://doi.org/10.5194/egusphere-egu2020-7803, 2020.

The Barzaman Formation is 150-200 m thick and subdivided into five lithostratigraphic/facies intervals recording syndepositional thrusting and changes from shallow marine to terrestrial environments and from arid/semiarid to more humid conditions.

(1) The basal lower conglomerate and sandstone unit is >36 m thick, marked by beige and gray/greenish colors, thick-bedded pebbly, calciclastic litharenites which may display parallel lamination and thick-bedded matrix-supported pebble to cobble conglomerates with subrounded clasts of chert, basalt, gabbro, quartzite and carbonates. Pores may be lined by isopachous, microcrystalline calcite cement. The depositional environment is shallow marine with one coarse-grained fill of a high-energy tidal inlet.

(2) The light-colored carbonate facies unit is 1-15 m thick, consisting of thick-bedded coral limestone, a very thick limestone coral and algae debrite and some minor beds of conglomerate and sandstone. The corals may be partly silicified by brown-stained silica. This unit was deposited in a warm, shallow marine, nearshore environment with clear water which may indicate an arid climate.

(3) The varicolored thick sandstone and conglomerate facies unit is 14-28.5 m thick. These clastic deposits are similar to those of unit 1, but more colorful, slightly coarser grained (presence of boulders) and include also thin and medium beds. The sandstones may exhibit cross-bedding. The depositional environment is shallow marine as indicated by coral debris.

(4) The claystone and conglomerate facies unit is 19 m thick. The clastic sediments are similar to those of unit 1, but pebbly sandstones are comparatively rare, and claystone beds are present, including a 20-cm-thick cellular claystone (palygorskite, vermiculite with some calcite) as well as light gray, medium-bedded claystone beds, consisting mainly of palygorskite with some saponite and/or clinochlore, associated with minute, euhedral dolomite or ankerite crystals. All claystone beds are evaporitic, lacustrine deposits of ephemeral ponds and pools on wadi floors whereas the coarser beds represent wadi conglomerates. Some beds are imbricated slide units. The paleoclimate was hot, semiarid or arid.

(5) The dolomitic conglomerate facies unit may measure >61 m in thickness. The respective pebble conglomerates consist of clasts that seem to “float” in cement. The cements of the basal >10 m are brown-stained silica and some white dolomite. The silica content gradually decreases upward. The upper part is dominated by white dolomite and some calcite. The dolomite cement may have formed under phreatic conditions (groundwater) during the Late Miocene to Pliocene when the arid/semiarid Miocene climate became more humid.    

Close to the base of unit 4, the upper part of an east-dipping syndepositional thrust is exposed (Mattern et al., 2018). Faulting approximately coincides with the change from marine to terrestrial conditions. In addition, the syndepostional tectonic activity may explain aspects of slope instability: debrite in unit 2, slide units in unit 4.

 

References

Mattern, F., Scharf, A., Al-Amri, S.H.K., 2018. East-west directed Cenozoic compression in the Muscat area (NE Oman): timing and causes. Gulf Seismic Forum, 19-22 March 2018, Muscat, Oman, Book of Abstracts, p. 4-7.

How to cite: Mattern, F., Al-Amri, S., and Scharf, A.: Lithostratigraphy, facies, mineralogy and diagenesis of the retrograding, syntectonic Neogene Barzaman Formation (Al-Khod, Sultanate of Oman), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9679, https://doi.org/10.5194/egusphere-egu2020-9679, 2020.

EGU2020-12361 | Displays | TS9.4

Deformation timing and strain in Neoproterozoic strata, Jebel Akhdar, northern Oman

Christopher Bailey and Claire Rae

Neoproterozoic rocks exposed in the Jebel Akhdar massif of northern Oman preserve glaciogenic deposits associated with multiple Cryogenian glaciations. Although the depositional history of these rocks is well understood, the significance of post-depositional deformation is poorly constrained. In this study, we examine low-grade metasedimentary rocks exposed in the Ghubrah Bowl, an erosional window in the Jebel Akhdar massif, in order to quantify the 3D finite strain, understand deformation kinematics, and determine the timing of deformation/metamorphism.

In the Jebel Akhdar massif, the older Ghubrah (Sturtian glaciation) and younger Fiq (Marinoan glaciation) formations comprise a >1 km thick sequence of diamictite interbedded with sandstone, siltstone, conglomerate, volcanic rock, and minor carbonate. Diamictites contain abundant clasts of siltstone and sandstone, with lesser amounts of granite and metavolcanic rock in a fine-grained quartz + sericite ± chlorite matrix. Clasts range from granules to boulders. Harder clasts tend to be subangular and poorly aligned with low aspect ratios, whereas fine-grained rock clasts are well-aligned with large aspect ratios. Bedding generally dips to the NW, but is gently folded in accord with the overall structure of the Jebel Akhdar massif. A penetrative foliation strikes E-W and dips to the S. At some locations, a prominent elongation lineation/pencil structure occurs and plunges gently to moderately to the S.

Rf/phi strain analysis in the diamictites reveals a range of 3D strain geometries (apparent flattening to apparent constriction) with strain ratios up to 2.8 in XZ sections. Strain is strongly partitioned, as clasts of igneous rock have low aspect ratios and are only weakly aligned. Penetrative strain in clast-supported sandstones is negligible (XZ ratios of <1.2). Outsized clasts of granite and sandstone are mantled by distinctive symmetric pressure shadows (double-duckbill structures) that include more recrystallized minerals than elsewhere in the diamictite. 40Ar/39Ar geochronology of sericite in pressure shadows yields ages as young as 90 Ma, which are interpreted as mixed ages containing an older detrital component and a younger fraction formed during growth. Deformation is associated with southward emplacement and loading by the Oman ophiolite & Hawasina Group sediments over the autochthonous sequence in the late Cretaceous.

How to cite: Bailey, C. and Rae, C.: Deformation timing and strain in Neoproterozoic strata, Jebel Akhdar, northern Oman, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12361, https://doi.org/10.5194/egusphere-egu2020-12361, 2020.

The main Meso-Cenozoic tectonic event that affected northern Oman was the obduction of allochthonous Hawasina Basin-derived sedimentary and volcanic rocks as well as the Semail Ophiolite during the Late Cretaceous. The allochthonous units were thrust onto the passive Arabian margin and platform. Obduction was followed by immediate uplift (doming) of the Saih Hatat Dome in the Southeastern Oman Mountains. The present work relates to the postobductional tectonic development of the Semail Ophiolite in the Ibra region southwest of the Saih Hatat Dome. The main aim of this work is to develop a regional brittle deformation model using structural field data comparing with borehole wireline log structural data from the Oman Drilling Project (ODP) wells sites, drilled in the same area for the investigation of active serpentinization in the peridotite aquifers.

The study area of ~100 km2 contains a brittle fault zone of ~3 km kilometers in width and ~30 km in length herein called the “Issmaiya Fault Zone (IFZ)”. Along the IFZ, a structural field analysis and eleven structural survey stations using the 1-D scanline method for the kinematics elements were realized. In particular, the structural stations were chosen close to the ODP wells sites location, in order to compare the field survey with the borehole logging data.

The IFZ is characterized by sub-vertical faults within the mantle part of the Semail Ophiolite which also partially affected latest Cretaceous to Paleocene/early Eocene sedimentary rocks. The latter are also mapped within a structural basin, 25 km NE of Ibra (the so called “Ibra Basin”). Our field work and satellite imagery interpretations demonstrate that most faults are within the Semail Ophiolite and few affecting the postobductional sedimentary rocks. This indicates that the ILS was mostly active immediately after the Late Cretaceous emplacement of the Semail Ophiolite.

The IFZ strikes NW and forms an acute angle of ~30° with the southwestern margin of the Saih Hatat Dome which strikes WNW-ESE. The LFZ is a transtensional fault zone as indicated by the coexistence of sub-vertical fault planes, with mainly sinistral strike-slip kinematic indicators, and from medium to high angle fault planes with dip-slip movement. The IFZ seems to end towards the NW at the tectonic contact with the Mesozoic sedimentary rocks of the Arabian Plate (Hajar Supergroup). The southwestern margin of the Saih Hatat Dome is marked by a major sinistral transtensional fault (Wadi Mansah Fault Zone; Scharf et al., 2019). This shear zone was active during the Eocene to Miocene and postdates the IFZ.

This work provides key insights on the effect of the fault zone to the hydrogeology of the ODP multi-borehole site, in terms of anomalies in the hydrogeochemical log and intervals of high transmissivity.

How to cite: Callegari, I., Braathen, A., Scharf, A., Mattern, F., Holzbecher, E., Al Kharosi, A., and Al Hajri, A.: Evidence of postobductional, brittle and transtensional deformation: the lineamentary Issmaiya Fault Zone – insights from kinematic analyses and remote sensing data interpretation (Semail Ophiolite near Ibra, Oman Mts., Sultanante of Oman), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12472, https://doi.org/10.5194/egusphere-egu2020-12472, 2020.

Listwaenite (fully serpentinized and carbonatized/silicified ultramafic rock) is common within the Oman Mountains near Fanja. The Oman Mountains formed during the late Cretaceous obduction of the Semail Ophiolite. Eventually, major exhumation and associated extensional shearing formed the Saih Hatat Dome during the latest Cretaceous to Paleocene. This dome displays rocks of the Arabian platform, framed by the Hawasina Allochthonous and the Semail Ophiolite. Postobductional rapid exhumation/cooling of the Saih Hatat Dome is reflected by a major extensional shear zone at the northern margin of the dome (Frontal Range Fault, FRF; Mattern and Scharf, 2018). Shearing along the FRF with a throw of few to several kilometers, occurred within two intervals. The major first event occurred during the latest Cretaceous to Paleocene while the minor second event lasted probably from the late Eocene to Oligocene (Mattern et al., 2019). Along and within the FRF, major tabular listwaenite bodies occur displaying a lateral extend from few meters to hundreds of meters and a thickness of up to a few to tens of meters. According to Scharf et al. (2020), the listwaenite dates as latest Cretaceous to Paleocene.

Most of the numerous SiO2-rich listwaenite bodies near Fanja preserve a brittle deformation pattern, indicating that the temperature during and after formation was less than 250°C. As an exception, we found one unusually well-developed, intensely foliated and wide strike-slip ductile-brittle shear zone at the surface, exhibiting a width of 5m and a length of a few tens of meters within a large listwaenite body near the community of Sunub. The foliation of the shear zone dips to the SW with about 50-80°. The shear zone intersects at a high angle with the FRF (strike SW-NE) and the listwaenite unit it contains. The shear movement is unrelated to that of the FRF. Approximately 6km WNW of the sheared listwaenite, a mafic dike of Lutetian age (42.7±0.5Ma; Mattern et al., 2019) intruded Cenozoic limestone. Intrusion is associated with the second shearing interval of the FRF. Because listwaenite bodies usually display brittle deformation, we tentatively conclude that the ductile-brittle shear zone formed during the late Eocene because of mafic intrusions. We assume that another mafic body is located near the shear zone and provided the heat for the ductile-brittle deformation conditions.

 

References:

Mattern, F., Scharf, A., 2018. Postobductional extension along and within the Frontal Range of the Eastern Oman Mountains. Journal of Asian Earth Sciences 154, 369-385, doi: 10.1016/j.jseaes.2017.12.031.

Mattern, F., Sudo, M., Callegari, I., Pracejus, B., Bauer, W., Scharf, A., 2019. Late Lutetian 40Ar/39Ar Age Dating of a Mafic Intrusion into the Jafnayn Formation and its Tectonic Implications (Muscat, Oman). AAPG Event, 2nd Edition, Structural styles of the Middle East, 9th-11th December 2019, Muscat, Oman.

Scharf, A., Mattern, F., Bolhar, R., Bailey, C.M., Ring, U., 2020. U-Pb dating of postobductional carbonate veins in listwaenite of the Oman Mountains near Fanja. International Conference on Ophiolites and the Oceanic Lithosphere: Results of the Oman Drilling Project and Related Research, 12-14th January, 2020, Sultan Qaboos University, Muscat, Sultanate of Oman.

How to cite: Scharf, A., Mattern, F., and Mattern, P.: Ductile-brittle shear zone in a listwaenite body, within the Frontal Range Fault of the Oman Mountains (Sultanate of Oman), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12672, https://doi.org/10.5194/egusphere-egu2020-12672, 2020.

Exploration work has indicated reservoir potential and targets within the Pre-Cambrian Basement and associated sedimentary succession in the Saudi Arabia  and surrounding areas in the Arabian Plate. Understanding of fracture, characteristics, and distribution in petroleum basins are essential to improve exploration and production. Fractures are usually the main source for porosity and permeability within basement rocks and it controls the fluid flow. Usage of field outcrop analog studies, are very valuable for estimating the fractures distribution in the subsurface. We conducted an integrated outcrop-based study of the fracture pattern at Midyan Region, NW Saudi Arabia for the aim of identifying the fracture types, pattern and distribution on the Pre-Cambrian Basement rocks and associated Cenozoic sedimentary rocks in the region. The approach and methods used included integrated Landsat analysis and interpretation supported by outcrop based high-resolution observation, mapping and measurements of the fracture within the Basements and the Red Sea Cenozoic sedimentary succession. The Midyan Region has evolved through complex tectonic, structural history where four rifting phases have been reported that associated with several distinctive silici-clastic and carbonate facies and paleoenvironments. The Landsat and outcrop data measurements and analysis of fractures revealed characteristic pattern that generally show NW, NE, NS and EW trends. Some of these trends show similarity to fracture patterns associated with the Najid fault system and the also those associated with the Red Sea tectonic in Midyan region. Moreover, the fracture types within the Cenozoic outcropping rocks tend to correlate with those within the Pre-Cambrian Basement rocks. Fracture distribution was observed also cutting through reservoirs/ seals outcrop equivalents to the subsurface in Midyan region. Integration of outcropping results obtained in this study with subsurface geological and geophysical data and faults and fracture pattern data might provide guide for comparison and enhances prediction for identifying fractured reservoir potential targets, hydrocarbon migration pathways, trapping mechanisms, fracture distribution and modeling.

How to cite: Abdullatif, O. and Osman, M.: Characteristics and Fracture Pattern within the Basement and Cenozoic Rocks and Implication to Reservoir Potential, Red Sea, Midyan Region, NW Saudi Arabia., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13641, https://doi.org/10.5194/egusphere-egu2020-13641, 2020.

EGU2020-17800 | Displays | TS9.4

A 3-D crustal model of the eastern Arabian plate margin below the Oman Ophiolite

Christian Weidle, Lars Wiesenberg, Amr El-Sharkawy, Thomas Meier, Frank Krüger, Philippe Agard, and Andreas Scharf

The Oman ophiolite is one of the best preserved and studied ophiolites, where oceanic lithosphere was obducted on top of a continent. It covers an area of about 700 x 140 km² but its 3D geometry, as well as the properties of the underlying continental lithosphere are largely unknown. We operated a temporary broadband seismic network with 40 instruments for continuous, passive seismic registration for 27 months, complemented by 18 permanent stations in the study region. Ambient noise cross-correlation functions are calculated for vertical and transverse components for all station pairs. We derive azimuthally anisotropic phase velocity maps for Rayleigh- and Love waves in the period range 2 – 40s which show velocity anomalies that are very consistent with geological features at the shortest periods (<10s). At longer periods (>15s) the velocity pattern subdivides the study region into a faster eastern and slower northwestern part below the Oman Mountains. 

We then invert local dispersion curves to shear wave velocity profiles using a novel implementation of a radially anisotropic, probabilistic inversion. Combination of the obtained 1D models to a 3D model provides the first three-dimensional view of shear wave velocity variations along the Eastern Arabian Plate margin. The model highlights at shallow levels strong lateral velocity contrasts between unconsolidated young sediments south of the Oman Mountains (slow) and areas covered by ophiolite and where autochtonous shelf sediments are exposed (fast).

At middle to lower crustal levels, we image linearly northeast trending velocity contrasts that we attribute to assembly of the Arabian plate in late Proterozoic. These features are overprinted by obduction-related convergence in late Cretaceous with thickening of the middle to lower crust below the Oman mountains. Moho depth is around 40-45km northwest of Semail Gap but shallows significantly east of it to 20km at the eastern coast. This is largely in consistency with independent estimates from Receiver Functions calculated with the same data.

How to cite: Weidle, C., Wiesenberg, L., El-Sharkawy, A., Meier, T., Krüger, F., Agard, P., and Scharf, A.: A 3-D crustal model of the eastern Arabian plate margin below the Oman Ophiolite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17800, https://doi.org/10.5194/egusphere-egu2020-17800, 2020.

EGU2020-18275 | Displays | TS9.4 | Highlight

Linking deep-Earth processes, basin stratigraphy, and topographic build-up during the Neogene Zagors orogeny in the Kurdistan region of Iraq

Renas Koshnaw, Jonas Kley, Fritz Schlunegger, Klaus Wemmer, Hilmar Eynatten, and Matthias Willbold

Plate tectonics can lead to construction of mountain belts, whereas surface processes destruct the orogenic masses and redistribute the surface load. These processes can be modulated by climate through variation in air temperature and the magnitude-frequency distribution of precipitation. In the northwestern Zagros orogenic belt the driving force for hinterland uplift has been baffling. The key concern is whether uplift is due to upper crustal shortening and related crustal thickening (local uplift) or to deep lithospheric processes (regional dynamic uplift) such as slab breakoff and/or to lithospheric mantle delamination. The stratigraphic record is sensitive to geodynamic processes, yet distinguishing the tectonic signatures from the climate-induced signatures is necessary. The goal of this research is to test these competing mechanisms of orogenesis through field-based evaluations of shifts in foreland basin stratigraphy, provenance, detrital geochemistry, and climate change through time as well as flexural modeling for the northwestern Zagros orogenic belt. In the Kurdistan region of Iraq, the northwestern Zagros orogenic belt is characterized by a well preserved ~4 km thick stratigraphic column of the Neogene synorogenic predominantly clastic continental deposits that coarsen and thicken upwards: The Fatha (middle Miocene), Injana (late Miocene), Mukdadiya (latest Miocene), and the Bai-Hasan (Pleistocene) Formations. These units, in addition to sandstone beds, include thick poorly consolidated mudstone packages that in some places reach ~100 m. Preliminary results show that the frequency and thickness of sandstone-filled channels increases upsection, leading to an amalgamation of sandstone packages towards the top. This thickening-upward trend was additionally associated with an increase in the grain size. These patterns of stratigraphy dynamics hint to a progradation of the depositional systems, driven either by an increase in the sediment flux relative to the subsidence rate, or by a propagation of the orogen front towards the foreland basin. Sm-Nd analysis on the fine material packages revealed a crustal origin (εNd-) comparable to the Arabian shield, with an older crustal age upsection. Weathering proxy data such as chemical index alteration (CIA) and K2O/Al2O3 ratio yield evidence for a weathering intensity that increases upsection. X-Ray diffraction data from the clay-size materials (<2-μm) show contents of smectite, illite, kaolinite and Fe-rich chlorite, with an increasing abundance of smectite minerals upsection. These mineral assemblages demonstrate a semi- arid/humid climate likely with an increasing seasonality through time, which could possibly have resulted in an increasing sediment flux. Furthermore, basic flexural modeling for the northwestern Zagors orogenic belt indicates that the present-day Zagros topography, and thus topographic load alone, cannot explain the observed basin depth. Overall, these evidences suggest that exhumation of the source terranes was enhanced by increased weathering, yet a geodynamic process could have been the main driver for controlling the formation of accommodation space and uplift of the mountain belt.

How to cite: Koshnaw, R., Kley, J., Schlunegger, F., Wemmer, K., Eynatten, H., and Willbold, M.: Linking deep-Earth processes, basin stratigraphy, and topographic build-up during the Neogene Zagors orogeny in the Kurdistan region of Iraq, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18275, https://doi.org/10.5194/egusphere-egu2020-18275, 2020.

TS10.2 – Quantitative structural geology

EGU2020-1659 | Displays | TS10.2

Quantifying the precursors to brittle failure in rocks using synchrotron imaging and machine learning

Francois Renard, Jessica McBeck, and Benoît Cordonnier

Predicting the onset of system-size failure in rocks represents a fundamental goal in assessing earthquake hazard. On the field, seismological, geodetic and other monitoring data may record precursors to earthquakes. In laboratory experiments, such precursors often rely on monitoring acoustic emissions and this technique has some limitations in terms of spatial resolution and the lack of detection of aseismic strain. To overcome these challenges, we have performed a series of forty rock deformation experiments where we imaged, using synchrotron X-ray microtomography, rock samples as they deformed until brittle failure, at in situ conditions of pressure, high spatial micrometer spatial resolution, and through time. On the one hand, direct processing of the X-ray tomograms allow visualizing how precursory microfractures nucleate, grow, and coalesce until failure. From these data, we propose to characterize brittle failure as a critical phase transition, with evidence of several power-laws that characterize fracture growth. On the other hand, digital volume correlation techniques quantify the evolution of the local strain field inside each sample. We analysed the statistical properties of these strain fields using several machine learning techniques to predict the main parameters that control fracture growth (length, volume, shape, distance to the nearest fracture), and the features of the strain field that best predict the distance to failure. Our rock deformation experimental results show that, under laboratory conditions, precursors to brittle deformation exist. These precursors show predictable evolution when approaching system-size brittle deformation and we demonstrate that specific components of the strain field characterize this evolution to failure.

How to cite: Renard, F., McBeck, J., and Cordonnier, B.: Quantifying the precursors to brittle failure in rocks using synchrotron imaging and machine learning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1659, https://doi.org/10.5194/egusphere-egu2020-1659, 2020.

Theoretically, analysis of digital elevation data and remote sensing images allows for convenient mapping of geological settings. Using computer tools, geometric plane elements can be joined with elevation and image data to map structures in 3D. 
One disadvantage is that single geometric elements are processed consecutively, even if belonging to the same structure. Only in rare cases, it is possible to trace a geological structure in its entirety without gaps; moreover, various uncertainties during the mapping process (caused, e.g., by erosion or vegetation coverage) may let elements appear isolated or distorted. Therefore, creating an entirely consistent numerical model of a particular geological setting is highly time-consuming, usually cost-intensive, and – to some extent – error-prone.
We extended the existing 3D geological mapping tool FaultTrace (a module of TerraMath WinGeol) to allow for simultaneous processing of larger and more significant structural segments of faults and bedding planes. Geometric elements can influence each other now and the usage of optional time tables associated with the mapped structures helps to analyze more complex settings.  
The workflow is demonstrated using the example of the Richât Structure in the Sahara Desert of Mauritania.

How to cite: Faber, R. and Domej, G.: FABER, R., DOMEJ, G., 2020. Computer-Assisted Geological Mapping (CAGEM) in 3D with WinGeol by TerraMath: the Richât Structure in Mauritania., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2439, https://doi.org/10.5194/egusphere-egu2020-2439, 2020.

EGU2020-21566 | Displays | TS10.2

A thousand pictures say a million words: digitisation and quantitative characterisation of structurally complex glaciogenic rocks

Christoph Kettler, Daniel Le Heron, Pierre Dietrich, Neil P. Griffis, and Isabel P. Montañez

Gathering statistically useful, quantitative structural data is always time intensive and laborious, and thus complete digital capture of an outcrop is ideal for the modern geologist. For instance, taking several hundreds of clast fabric measurements is tedious and time consuming, especially if material is lithified. For the “time poor geologist” under constant pressure, a solution is to digitize the entire outcrop and surfaces via ground based (hand held camera) or aerial surveying (Unmanned Aerial Vehicle) methods. The acquired imagery can then be processed to produce photogrammetric 3D models. This serves as the basis for both sedimentological and structural work, including bedding geometry, in appropriate 3D modelling software.

This paper presents both the workflow and the results of the digitization of multiple Late Carboniferous outcrops in Namibia. Each of these outcrops corresponds to Late Palaeozoic Ice Age (LPIA: 360-260) deposits that have only been subject to basic description, which exhibit varying degrees of structural complexity, and whose precise relationship to LPIA ice sheets across Gondwana remains unclear. A number of 3D models are presented, which provide vital new insights into the directions of ice movement. Some of this insight comes from diamictites deposited beneath the ancient ice sheets. This is because: (i) clasts tend to align themselves in a stress-field in the active layer below the ice, (ii) striated pavements can be seen as analogous to fault surfaces and (iii) diamictites may show evidence for complex internal shear planes. We measured the orientation of those clasts directly in the 3D models from several locations to acquire a precise understanding of ice flow over a wide (hundreds of km) area, which will serve as the basis for an ice sheet reconstruction. Integrating additional morphological data from numerous drone surveys, e.g. roches moutonnées, U-shaped valleys, striated pavements permits fresh insights into the ancient glacial environment. Thus, the digital outcrop approach underpins a truly interdisciplinary (structural, sedimentological, geomorphological) approach to unravelling the LPIA record.

How to cite: Kettler, C., Le Heron, D., Dietrich, P., Griffis, N. P., and Montañez, I. P.: A thousand pictures say a million words: digitisation and quantitative characterisation of structurally complex glaciogenic rocks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21566, https://doi.org/10.5194/egusphere-egu2020-21566, 2020.

The knowledge of the strain/stress field evolution in time is important to seismic hazard assessment and risk mitigation, and is fundamental to the understanding of the earth dynamic system. Based on the principle that past tectonic stress should have left traces in the rocks, geologists have been trying to determine the paleostress history from evidence found in rocks for decades. Recent development of techniques for automatic extraction of fracture surfaces from digital outcrop models and estimation of historical shear deformation on rock fractures provide an efficient way of quantitatively acquiring large amount of high quality fracture/fault slip data (direction and sense of slip occurs on the fault plane) from outcrops. So unlike traditional paleostress inversion methods whose data is manually collected in the field, this high quality fracture/fault slip data provide an opportunity to develop fully automatic and quantitative methods for deciphering paleostrain. In this study, for slip on each fracture, the corresponding local strain tensor is calculated, then the local strain tensors are grouped into populations corresponding to far-field strain events and local strain events using a clustering analysis technique. The applications on outcrops in the eastern Tian Shan area give a clear picture of the paleostrain variation over space and time, and also throw light on the relationship between paleostrain, fracture development and the distribution of shear displacements in a thrusting environment.

How to cite: Wang, X. and Gao, F.: Quantitatively deciphering paleostrain from digital outcrops model and its application in the eastern Tian Shan, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3467, https://doi.org/10.5194/egusphere-egu2020-3467, 2020.

At the slopes of the ‘Hersbrucker Alb’ nearby Happurg in Franconia (Germany), the so-called ‘Doggerwerk‘ has been projected as huge subsurface armaments factory (mainly for assembling aircraft engines). The name ‘Doggerwerk’ originated from the bedrock ‘Doggersandstein’, from what the tunnels have been excavated. The ‘Doggersandstein’ belongs to the geological stratigraphic formation ‘Eisensandstein’ (Dogger Beta, Middle Jurassic). The tunnel system has been realized only partly (around 3.9 km) until the late phase of the Second World War in 1944/45. The production of engines did never start at all. To date, only one of the originally eight entrances into the tunnel system, which are located at the steep, forested slope of the so-called ‘Houbirg’ mountain is accessible. The raw state of most of the tunnels - without a supporting inner shell - favoured the steady proceeding disintegration. Thus, the stability of most of the ‘Doggerwerk’ is not given. Consequently, the stabilisation of the tunnels in danger of 'imminent collapse' has been projected, resulting in several recovery measures since the beginning of the 1990th. The current stabilisation of overall 1.2 km long tunnels started in 2014 and was finalised in 2019.

After the evaluation of several technical approaches (securing by fencing, blasting etc.) and considering nature conservation guidelines, the gradually backfilling (single sections separated by brick-built walls) of the tunnels with cement suspension was favoured. The used filler (suspension of mainly cement, bentonite, slag sand and water) was specifically developed and certified for this project because of special requirements on viscosity (pumping distance of around 1.6 km), hardening and compressive strength (circa 1,6 N/mm2), as well as of the required environmental compatibility. For the estimation of the needed volume of filler and its potential loss in the fractures, faults and joints, the tunnel system was surveyed by using a quantitative visual application - the terrestrial laser scanning (TLS). Based on the laser scanning, a theoretical filling volume of around 12.918 m3 has been calculated for the 1.2 km long tunnels. Considering, however, the predominantly bad ground conditions, a volume of around 15.000 m3 was estimated. Additionally, the joint system was mapped classically. The joint system shows two general strikes, the Hercynian (110° - 157°) and the Rhenish (18° - 27°). The inclination of the joints is predominantly steep (circa 80°, ± vertical) and the bedding is mainly horizontal. Resulting from the laser scanning and the mapping, sections featuring particularly critical stability issues have been designated. Following the statically demands, these sections with critical ground conditions have been supported with a reinforced (two layers) shotcrete lining (minimum 20 cm thick) to guarantee the underground construction site safety during preparatory works before starting the backfilling.

The stabilisation of the whole ‘Doggerwerk’ tunnel system by gradually backfilling was successfully carried out by using in total 17.360 m3 cement suspension. A potential outflow of filler at the surface was monitored by verifying the actual injection volume with the calculated volume and visually also by the help of installed cameras. An outflow, however, has not been observed.

How to cite: Heindel, K., Wolf, J., Chachaj, P., and Levin, K.: Application of quantitative structural geology using Terrestrial Laser Scanning (TLS) for the stabilisation of the ‘Doggerwerk‘ tunnel system in Happurg (Franconia, Germany), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3532, https://doi.org/10.5194/egusphere-egu2020-3532, 2020.

EGU2020-11868 | Displays | TS10.2

Quantitative structural analysis of fractures using digital outcrop models

Caroline Modica Custódio, Maria Alcione Lima Celestino, Laís Vieira de Souza, Jaqueline Lopes Diniz, Leonardo Campos Inocencio, Juliano Bonato, Aline Fernanda Spaniol, Tiago Siqueira de Miranda, and Francisco Manoel Wohnrath Tognoli

The use of digital outcrop models (DOMs) in geosciences has been increasingly common since the beginning of the 2000s due to the technological advances in the positional and image-quality field equipment, data collection, and processing with practicality, agility, and high accuracy even in inaccessible sites. DOMs incorporate all the visual elements that geoscientists analyze in the outcrops as 3D models with a spatial resolution of a few millimeters per pixel and positional accuracy of less than 2 cm. The great advantage of DOMs is their daily availability for visual inspection and interpretation in the office, complementing the data analysis performed in the field. Therefore, the continuous development of high accuracy and dense image-based and point cloud models has been crucial for quantitative approaches using digital models. Another challenge in this process involves the development of tools and methodologies for interpretation of DOMs, especially analysis and interpretation of linear and planar features such as lineations, paleocurrents, joints, faults, and deformation bands. This study aims to systematize the manual and semi-automatic methods of plane extraction using tools (e.g., Compass and Facets) available in the open-source software such as the CloudCompare, and statistically analyze the structural measurements from the extracted data. In this work, we analyzed two 3D integrated ground-UAV photogrammetric models reconstructed with the Structure from Motion (SfM) technique. The study areas are part of the Araripe Basin basement, located in Northeastern Brazil, and represent two case studies involving joints and faults associated with the damage zone of the boundary fault. Initial results obtained by the automatic planes measured with the Facets plugin show distinct fracturing patterns. This is mainly due to the difference of the rock rheology and competence. In the metasedimentary outcrop, we identified 731 planes in phyllites, reduced to 459 real planes after noise remotion and visual inspection during interpretation. In this case, the data accuracy is 62% for plane recognition. The preferential orientation is N40-90E and N40-80W, with high dip angles, and subordinately N45E and N10W with low dip angles. In the metatonalite, 347 planes were recognized, but only 38 of them showed to be real planes, totalizing accuracy of 10,9%. The planes validated as real indicate a preferential orientation of N10-15W with high angles of dip. Both outcrops used the same processing routine and configuration. The difference observed in the number of planes automatically recognized in each outcrop is a consequence of the relationship between the plane orientation x outcrop orientation, spatial resolution of the model, and the degree of weathering. Besides that, positional accuracy and visual quality are crucial for accurate quantitative interpretation of structural features using digital outcrop models, as well as a well-defined data processing routine and careful inspection of the results by an expert. The data obtained from this methodological approach will contribute to quantitative approaches in structural geology based on robust datasets. 

How to cite: Modica Custódio, C., Alcione Lima Celestino, M., Vieira de Souza, L., Lopes Diniz, J., Campos Inocencio, L., Bonato, J., Fernanda Spaniol, A., Siqueira de Miranda, T., and Manoel Wohnrath Tognoli, F.: Quantitative structural analysis of fractures using digital outcrop models , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11868, https://doi.org/10.5194/egusphere-egu2020-11868, 2020.

The roughness of fracture surfaces is important for a range of geological processes such as the mechanical behaviour of faults or the fluid flow in jointed rocks or fault zones. However, the processes and parameters controlling the details of the fracture roughness are not fully understood yet. We therefore use numerical simulations based on the Discrete Element Method (DEM) to study the formation of fractures in triaxial deformation experiments under a wide range of stress conditions and to quantify the geometric properties of the resulting fracture surfaces. In the numerical experiments a DEM-model of a box-shaped rock sample is subjected to a displacement controlled load along its x-axis while a defined confining stress is applied to the other surfaces.

Based on the data from 131 numerical simulations the roughness of 388 fracture surfaces has been analysed. For this purpose the surface point clouds extracted from the Discrete Element models have been converted to height fields relative to a "best-fit" plane and the height distributions quantified. The results show that the heights are normally distributed. We observe no dependence on the confining stress except that models with equal confining stress in y- and z-direction show a higher standard deviation of the height distribution than those with differing y- and z-confinement. An analysis of the height-height correlation functions for those surfaces shows that they follow a power-law, demonstrating that the surfaces are self-affine. The Hurst exponent H describing the scaling of the roughness can be derived from the power-law relation. Values obtained are in the range H=0.2-0.6 for the full suite of experiments, while the mean of the Hurst exponents for each group of fracture surfaces generated under the same stress conditions is H=0.3-0.45. A weak decreasing trend of the Hurst exponent with increasing confining stress can be observed, but contrary to the standard deviation of the height distribution there is no dependence on the ratio of the confining stresses. There is also no difference between fractures generated in tensile (mode 1) or compressive conditions (mode 2).

Additionally, surfaces of rock samples fractured in triaxial tests in the laboratory have been analysed using the same methods. The surfaces show similar self-affine characteristics as those in the numerical experiments, although with significantly higher Hurst exponents H=0.6-0.8.

A comparison between our numerical models and laboratory experiments and data obtained from literature shows that natural and lab-created fracture surfaces and their numerically modelled counterparts are similar regarding the normally distributed heights and the self-affine scale, but the Hurst exponents do not match exactly. While the majority of field and experimental studies find significantly higher Hurst exponents of about 0.8, there are some studies, for example on Sandstone, which find H=0.4-0.5, falling into the range observed in our numerical experiments.

How to cite: Abe, S. and Deckert, H.: Roughness of fracture surfaces in Discrete Element Model triaxial deformation experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3035, https://doi.org/10.5194/egusphere-egu2020-3035, 2020.

In theory, pockets of fluid in brittle media can be transported large distances, provided that both the fluid volume is large enough, such that fluid pressures can fracture the rock, and that stress gradients exist causing asymmetric growth of the fracture's front. Currently, industrial injections are deemed safe based on empirical observations of volumes, rates and pressures from closed-access industrial data. Existing theoretical models are difficult to use a priori to predict the critical volume of fluid that will cause unhindered fracture ascent, as they are expressed in terms of the fracture’s length, which is hard to predict a priori and difficult to measure. Here we constrain scale-independent critical volumes as a function of only rock and fluid properties by supplementing simple analytical models with numerical simulations in three dimensions. We apply our model to laboratory and natural settings, showing that the volumes we estimate match well with laboratory data and can be used as a conservative estimate in geological applications.

How to cite: Davis, T.: Critical fluid volumes and the start of 'self-sustaining' fracture ascent, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10813, https://doi.org/10.5194/egusphere-egu2020-10813, 2020.

Highly curvilinear folds develop during simple shear deformation due to perturbations in the velocity field around the inclusion heterogeneity. In the field, such structures may be recognized at the micro- and meso-scale within high-strain crustal-scale shear zones. However, at scarce outcrop conditions, fragments of these structures are often interpreted as generated by poly-phase deformation. The structural history becomes even more complex when the deformation within the inclusion is considered. In this inclusion-matrix deformation system, two end-member regimes has been already investigated: (i) a weak ellipsoidal inclusion that acts as a slip surface over which sheath folds develop and (ii) a rigid ellipsoidal inclusion that rotates within the matrix generating sheath folds in the back of the rotating ellipse in direction of the shearing. Between these two end-members, understanding the clast-matrix deformational regime is not trivial and the genesis of sheath fold is unexplored.

We employed 3D numerical models to study fold structure evolution around an ellipsoidal inclusion within a matrix during simple shear. Both inclusion and matrix were homogeneous and isotropic, and had linear viscous rheologies. We tested models with different (i) initial inclusion aspect ratio, (ii) viscosity ratio between the inclusion and the matrix, and (iii) strain. We identified three main deformation regimes that are closely related with the behaviour of the inclusion. In the first regime, the inclusion experiences massive stretching. In the second regime, we observe oscillatory motion of the principal inclusion axes and the deformation of the material lines within inclusion periodically changes from shortening to stretching conditions. In the third regime, principal inclusion axes rotate. The material lines within inclusion, similar as in the second regime, experience cyclic stretching and shortening, however, the amount of extension and shortening is significantly smaller. The transition between regimes is dependent of both initial inclusion aspect ratio and viscosity ratio. The first regime is characteristic for inclusions with small viscosity ratio. With increasing viscosity ratio, the regime changes to the second and eventually to the third. The change occurs at lower viscosity ratio for models with larger initial inclusion aspect ratio than for smaller once. All the models developed sheath folds around the inclusions.

The results of our simulations were compared with the deformation pattern derived from a main shear zone of the Cima-Lunga in the Central Alps. In the field, the elongated high-pressure ultramafic bodies are surrounded by folded amphibolite-facies paragneisses that locally depict sheath folds. The internal structures of ultramafic bodies are characterize by recumbent, sub-isoclinal folds and folded boudinaged mafic layers that suggest internal changes in stress direction. In a selected ultramafic body elongated sub-parallel to the shearing direction and with an aspect ratio a/c=3 and b/c=2, we estimate from a mafic boudinaged layer subparallel to the a/c axis a minimum stretching of 40%. This field data allowed us to establish that the viscosity ratio of the ultramafic body to the paragneisses at the time of the deformation of the shear zone was in the range of 4-11 and the strain was γ>13.

How to cite: Schenker, F. L., Adamuszek, M., and Maino, M.: Numerical models of sheath fold development in rheologically heterogeneous rocks of the Cima Lunga-Adula shear zone (Central Alps), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18351, https://doi.org/10.5194/egusphere-egu2020-18351, 2020.

EGU2020-11189 | Displays | TS10.2

Effective rheology of a two-phase subduction shear zone calculated by numerical simple shear experiments

Paraskevi Io Ioannidi, Laetitia Le Pourhiet, Onno Oncken, Philippe Agard, and Samuel Angiboust

The physical nature and the rheology of a subduction shear zone play an important role in the deformation and the degree of locking along its interface with the upper plate. Inspired from exhumed subduction shear zones that exhibit block-in-matrix characteristics (mélanges), we create synthetic models with different proportions of strong clasts within a weak matrix and compare them to natural mélange outcrops. Using 2D Finite Element visco-plastic numerical simulations and simple shear kinematic conditions, we determine the effective rheological parameters of such a two-phase medium, comprising blocks of basalt embedded within a wet quartzitic matrix. We treat our models and their structures as scale-independent and self-similar and upscale published field geometries to km-scale models, compatible with large-scale far-field observations. Exhumed subduction mélanges suggest that deformation is mainly taken up by dissolution-precipitation creep. However, such flow laws are neither well-established yet experimentally nor of ample use in numerical modelling studies. In order to make our results comparable to and usable by numerical studies, we assume dislocation creep as the governing flow law for both basalt and wet quartz and by using different pressures, temperatures and strain rates we provide effective rheological estimates for a natural subduction interface. Our results suggest that the block-in-matrix ratio affects deformation and strain localization, with the effective dislocation creep parameters varying between the values of the strong and the weak phase, in cases where deformation of both materials is purely viscous. As the contribution of brittle deformation of the strong blocks increases, however, the value of the stress exponent, n, can exceed that of the purely strong phase.

How to cite: Ioannidi, P. I., Le Pourhiet, L., Oncken, O., Agard, P., and Angiboust, S.: Effective rheology of a two-phase subduction shear zone calculated by numerical simple shear experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11189, https://doi.org/10.5194/egusphere-egu2020-11189, 2020.

EGU2020-7882 | Displays | TS10.2

Three-dimensional depth-to-basement modelling based on seismic and potential field data – basement configuration in the westernmost Polish Outer Carpathians

Mateusz Mikołajczak, Jan Barmuta, Małgorzata Ponikowska, Stanislaw Mazur, and Krzysztof Starzec

The Silesian Nappe in the westernmost part of the Polish Outer Carpathians Fold and Thrust Belt exhibits simple, almost homoclinal character. Based on the field observations, a total stratigraphic thickness of this sequence equals to at least 5400 m. On the other hand, the published maps of the sub-Carpathian basement show its top at depths no greater than 3000 m b.s.l. or even 2000 m b.s.l. in the southern part of the Silesian Nappe. Assuming no drastic thickness variations within the sedimentary sequence of the Silesian Nappe, such estimates of the basement depth are inconsistent with the known thickness of the Silesian sedimentary succession. The rationale behind our work was to resolve this inconsistency and verify the actual depth and structure of the sub-Carpathian crystalline basement along two regional cross-sections. In order to achieve this goal, a joint 2D quantitative interpretation of gravity and magnetic data was performed along these regional cross-sections. The interpretation was supported by the qualitative analysis of magnetic and gravity maps and their derivatives to recognize structural features in the sub-Carpathian basement. The study was concluded with the 3D residual gravity inversion for the top of basement. The cross-sections along with the borehole data available from the area were applied to calibrate the inversion.

In the westernmost part of the Polish Outer Carpathians, the sub-Carpathian basement comprises part of the Brunovistulian Terrane. Because of great depths, the basement structure was investigated mainly by geophysical, usually non-seismic, methods. However, some deep boreholes managed to penetrate the basement that is composed of Neoproterozoic metamorphic and igneous rocks. The study area is located within the Upper Silesian block along the border between Poland and Czechia. There is a basement uplift as known mainly from boreholes, but the boundaries and architecture of this uplift are poorly recognized. Farther to the south, the top of the Neoproterozoic is buried under a thick cover of lower Palaeozoic sediments and Carpathian nappes.

Our integrative study allowed to construct a three-dimensional map for the top of basement the depth of which increases from about 1000 m to over 7000 m b.s.l. in the north and south of the study area, respectively. Qualitative analysis of magnetic and gravity data revealed the presence of some  basement-rooted faults delimiting the extent of the uplifted basement. The interpreted faults are oriented mainly towards NW-SE and NE-SW. Potential field data also document the correlation between the main basement steps and important thrust faults.

 

This work has been funded by the Polish National Science Centre grant no UMO-2017/25/B/ST10/01348

How to cite: Mikołajczak, M., Barmuta, J., Ponikowska, M., Mazur, S., and Starzec, K.: Three-dimensional depth-to-basement modelling based on seismic and potential field data – basement configuration in the westernmost Polish Outer Carpathians, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7882, https://doi.org/10.5194/egusphere-egu2020-7882, 2020.

EGU2020-8080 | Displays | TS10.2

Extreme values of fold-related shortening in the hinterland structure of the Shilbilisaj section in the Talas Ridge (Tien Shan)

Fedor Yakovlev, Krzysztof Gaidzik, Viacheslav Voytenko, and Natalia Frolova

Talas Ridge forms the western part of the Tien Shan Caledonian structure. The sedimentary cover shows a thickness of about 10 km and consists of carbonate flysch and para-platform deposits metamorphosed under greenschist and lesser grade. This structure relates to the "hinterland" tectonic type, characterized by the abundance of many small and moderate-sized folds of the "similar" morphological type. Conventional cross-section balancing techniques developed for "foreland" structures, with large "parallel" folds cannot be applied correctly to such complicated structures. Thus, a special method based on the "geometry of folded domains" was developed for balancing of "hinterland" structures. To test the proposed method, we choose the westernmost Shilbilisaj profile of the Talas Ridge that consists of a large number of folds.

The proposed approach is based on the hierarchical system of hinterland fold structures, and on the accordance of the “folded domain” deformation to the strain ellipsoid, as described in detail in F. Yakovlev [2017]. On the first step the detailed structural profile is divided into a number of domains, 0.5-1 km wide; each domain consists of several folds of almost the same morphology. Consequently, a number of morphological parameters are measured, together with the axial surface dip angle and the interlimb angle that allow the construction of a strain ellipsoid for each domain. The core of the reconstruction method consists of three consecutive kinematic operations: 1) rotation, 2) horizontal simple shearing, and 3) horizontal stretching. As a result, a pre-folded form of a domain is produced, characterized by length and tilting of a domain segment that differ from the current profile parameter values. Sequential aggregation of all pre-folded domains leads to a complete pre-folded profile that allows the calculation of its shortening value. In the next step a few "structural cells" with a length approximately equal to the sedimentary cover thickness, are selected that combine several pre-folded domains. Taking into account the pre-folded and current lengths of such cells, their shortening values are determined. In the system of hierarchy of folded structures, folded domains and structural cells (and its strain parameters) belong to the third and fourth levels, respectively.

The first three project participants restored the structure of the section independently, starting with the domain selection procedure. The preliminary estimates of the shortening of the entire profile obtained by participants were close to each other and very high (K=L0/L1, where K – shortening value, L0, and L1 – pre-folded and current length in km, respectively): 4.49=118.5/26.4; 4.29=114.0/26.6; 4.67=119.1/25.5. The first participant allocated 63 domains and 12 structural cells, based on the thickness of the sedimentary cover. The shortening values for these cells varied along the profile from high in the southern cells to relatively small in the center and again to high in the northern parts (K=5.20, 4.47, 4.27, 3.79, 3.86, 3.93, 4.24, 4.91, 4.74, 5.53, 4.84, 4.9).

Yakovlev F.L. 2017. Reconstruction of folded and faulted structures in zones of the linear folding using structural cross-sections. Moscow, Published in IPE RAS, 60 p.

How to cite: Yakovlev, F., Gaidzik, K., Voytenko, V., and Frolova, N.: Extreme values of fold-related shortening in the hinterland structure of the Shilbilisaj section in the Talas Ridge (Tien Shan), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8080, https://doi.org/10.5194/egusphere-egu2020-8080, 2020.

TS10.3 – Analogue and numerical modelling of tectonic processes

EGU2020-13667 | Displays | TS10.3

Free slip conditions in 3D, what does it actually mean ?

Laetitia Le Pourhiet, Anthony Jourdon, Louise Watremez, and Bruno Vendeville

For long time,3D tectonic modelling was reserved to analog methods and many practitioners spent a lot of time and energy developing methods and materials to make their naturally 3D "simulations" as cylindrical as possible.

Fighting with so-called boundary effects, they actually obtained a lot of interesting structures and dynamics related to "border effects" . In the last 5 years, 3D numerical simulations have really emerged thanks to new numerical technics and increase in available 'computational power. The two methods are now competing and sooner or later, with the emergence of exa-scale and quantum technology, it is quite certain that numerical simulations will dominate the field because it is much better suited to tackle multi- physics problems arising in long term tectonics.

However, before entering an era of mass production, it is interesting to re-think how we introduce 3 dimensionality in numerical models. Numerical models can easily produce perfectly free slip boundary conditions, and it has therefore never been a problem to simulate a perfectly cylindrical situation. Is it useful ? Not really since we can run 2D simulations.

However, many models introduce the 3 dimensionality by imposing inherited structures in simulations that use perfectly cylindrical boundary conditions. Technically this corresponds to imposing free slip boundaries in the third dimensions. Nobody question it, and in a way, we numerical modellers, are just mimicking traditional analogue model set ups and emphazing on the multi-physics aspect of our simulations.

Yet, comparing to analogue models, we some time reach different solutions and sometimes, analogue models with their boundary effects produce tectonic structures that are much more realistic than models with perfectly free slip boundaries.

In this pico presentation, I will show exemples of free slip boundaries that introduce biased in continental break-up propagation models and discuss in which conditions free slips are acceptable and in which conditions are should be carefull in our interpretations of simulation results.

How to cite: Le Pourhiet, L., Jourdon, A., Watremez, L., and Vendeville, B.: Free slip conditions in 3D, what does it actually mean ?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13667, https://doi.org/10.5194/egusphere-egu2020-13667, 2020.

Strike-slip systems can accommodate hundreds to thousands of kilometres of horizontal displacement by simple shear.  These systems are prone to high earthquake risk and understanding their structural geology will assist with hazard mapping and future risk mitigation. Deformation by simple shear can be concentrated on a single fault or distributed over tens to hundreds of kilometres.  It is usually challenging to understand the complex geometries that form in strike-slip systems by analysing finite strain in simple horizontal and vertical sections observed in the field.  To understand the fundamental processes that form such system, geologists use analogue experiments to test the development and evolution of structures through time.  The internal 3D evolution of deformation within analogue models of simple shear is often inferred by changes in topography and by using Particle Image Velocimetry (PIV) to analyse changes in incremental and finite strain on the model surface, similar to horizontal outcrop and map patterns, except showing the evolution of these features through time.  Cutting vertical cross sections through a simple shear experiment at specific time steps to reveal its 3D geometry is not an option when using granular materials to represent upper crustal deformation.  In this study, we use X-Ray Computed Tomography (CT) scanning to analyse the 3D evolution of strike-slip fault systems in granular materials without disruption to the analogue experiments.  We present results of the 3D evolution of localized and distributed simple shear zones by CT scanning analogue experiments at regular intervals.  Localized and distributed strike-slip shear zones are generated in an analogue shear box by using stretchable fabric to adjust the basal boundary conditions.    The results are compared to the Marlborough Fault System; a system of strike-slip faults that form the Australian – Pacific plate boundary in northeast South Island, New Zealand. 

 

How to cite: Withers, M. and Cruden, A.: The 3D evolution of localised and distributed strike-slip shear zones, visualised by X-Ray CT scanning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4371, https://doi.org/10.5194/egusphere-egu2020-4371, 2020.

Sedimentary basins in tectonically active settings, such as rift basins, are characterised by complex, dynamic depositional environments, with the interplay between sedimentation and tectonic processes controlling basin architecture and resource distribution. Scaled 3D analogue sandbox experiments with high-resolution digital 3D deformation monitoring, constrained by geological and geophysical data, can realistically simulate upper-crustal brittle deformation on crustal to basin-scale and allow kinematic and mechanical analysis of complex 3D fault systems. First-order syn-kinematic sedimentation can be conceptually applied to the surface of evolving experiments, permitting investigation of its effect on fault localisation, linkage and displacement and resulting tectonic basin subsidence. However, to date, first-order syn-kinematic sedimentation onto analogue models has been done manually; depositing incremental, homogeneous sand layers on top of the evolving experiment surface to simulate tectonic loading. Consequently, current syn-kinematic sedimentation methods are not capable of simulating complex stratal architectures or incorporating depositional controls like eustasy and climate variations. Conversely, numerical stratigraphic-forward modellers are able to produce these more complex stratal geometries, including their controlling parameters, however they currently lack the ability to simulate the complex tectonic subsidence of basins realistically, or in sufficient spatial resolution.

This work presents a new integrated experimental method; applying cellular numerical stratigraphic forward modelling to dynamically scaled analogue sandbox experiments, permitting realistic, incremental deposition of syn-tectonic sediments. Surface topography and displacement components (e.g. subsidence) of the analogue experiment are derived by 3D-Stereo Digital Image Correlation (DIC) and yield scaled inputs for the cellular carbonate stratigraphic forward modelling software (SFM - CarboCAT). These are then run in combination with suitable production parameters (production rate, surface light intensity, extinction coefficient etc.) as a numerical model, to generate a realistic spatial distribution of sediment facies to be incrementally deposited back onto the surface of the evolving sandbox experiment. Deposition of volumes onto the analogue sandbox is achieved using a cellular sieving device which utilises an array of tubes to maintain the spatially heterogeneous material volumes within their corresponding analogue surface locations. This apparatus has been shown to be capable of repeatedly depositing heterogeneous sandpacks with locally controlled volumes and homogeneous mechanical properties.

The novel integrated analogue and numerical workflow is systematically tested in a series of static (depositional ramp) and dynamic (asymmetric half-graben) analogue experiments with varying initial parameters for both the analogue and numerical models. Results demonstrate that model evolution is purely deterministic, producing diverse final architectures solely as a result of initial parameters and ongoing feedback between the analogue tectonic subsidence history and the SFM-derived sediment loading.

Deposition of SFM-calculated sediment volumes onto the analogue model produces more realistic syn-tectonic depositional patterns and facies distributions than current methods can achieve. If applied to larger-scale experiments, this workflow would be capable of simulating more complex, tectonically-controlled settings like segmented rift basins or passive margin sedimentary basins affected by gravity-driven deformation, as well as investigating the role of climatic impacts on basin evolution. Findings have potential to improve understanding of basin evolution and subsequent facies distribution, with implications for resource exploration.

How to cite: Hughes, A., Adam, J., and Burgess, P.: Integrating analogue and numerical modelling techniques for improved simulation of coupled regional tectonic processes and syn-depositional systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5059, https://doi.org/10.5194/egusphere-egu2020-5059, 2020.

EGU2020-21182 | Displays | TS10.3

Monitoring 3D Surface Deformation of Physical Analogue Models using LiDAR Scanning

Carlos R. Nogueira and Fernando O. Marques

Monitoring the surface evolution on physical analogue models is important for quantification of the model deformation. We present the application of LiDAR (Light Detection and Ranging) 3D scanning for monitoring the surface evolution of physical analogue models, complemented with digital imagery acquired during scanning.

Our previous work tested this approach for the first time on sandbox analogue models of geological systems with two model configurations, and sizes, representing specific tectonic settings: a convergent tectonic setting and a strike-slip tectonic setting.

Perspex parallelepiped boxes were used with four fixed walls (one basal and three laterals) and one mobile that worked as a vertical piston on the first model, or with two parallel basal plates with a step contact, where one remained fixed and the other was mobile attached to the back vertical wall, creating a strike-slip displacement with a restraining bend (second model). Initial sizes of model surfaces were 50 × 10 cm to 70 × 50 cm (length × width), respectively. On both models, the mobile walls were pushed by a computer controlled stepping motor at steady velocity, so deforming the models. Fine dry natural quartz sand from Fontainebleau was used as the analogue of brittle rocks. Sequential scanning of the models surface was performed during the models deformation and complemented with digital time-lapse image acquisition synchronized with LiDAR scanning, using an 18 MP camera orthogonally positioned to the models surface (top view), in order to monitor in-plane displacements and timing of the structures development. The previous work highlighted the results obtained for the smaller surface model, whereas here we highlight the results obtained for the large surface model (strike-slip model).

For each scanning, 3D point clouds were obtained and processed into 3D digital surface models (DSM) with high surface accuracy and resolution. With this set of DSMs, a time series of digital elevation models (DEM) was obtained for each analogue model allowing the quantification of the topography with high resolution and to analyse its evolution. Also, in-plane deformation quantification was obtained from the top view digital images and through the correlation of both sets of data, the timing of geomorphological expression and evolution during model deformation.

This work confirm that the LiDAR 3D scanning technique can be applied in laboratory to measure surface topography of physical analogue models with very good results regardless of their sizes and to monitor the topography evolution during deformation.

It also confirm that this combined monitoring method, the synchronized LiDAR 3D scanning and time-step digital image acquisition, can be used to measure the surface deformation of analogue models both vertical (topography) and horizontal (in-plane displacements).

Finally, this work shows new indoor employment possibilities for this technical equipment (LiDAR terrain 3D laser scanners), often available on Earth research institutions, which are generally used for outdoor measurements.

 

Acknowledgements:

The author CRN would like to acknowledge the financial support of FCT through grant SFRH/BD/71005/2010 and project UIDB/50019/2020 – IDL.

How to cite: R. Nogueira, C. and O. Marques, F.: Monitoring 3D Surface Deformation of Physical Analogue Models using LiDAR Scanning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21182, https://doi.org/10.5194/egusphere-egu2020-21182, 2020.

EGU2020-5935 | Displays | TS10.3

Effect of tectonic loading on continental rifting: Imaging, quantification and linkage of deep-seated flow and surface deformation

Timothy Schmid, Guido Schreurs, Jürgen Adam, and David Hollis

Here we use dynamically scaled analogue experiments to investigate the influence of tectonic loading on continental rifting. Analogue models consist of a two-layer brittle-viscous set up overlying a foam base, which expands homogeneously when extension is being applied perpendicular to the rift axis trend. A layer of quartz sand on top of a viscous silicone/corundum sand mixture layer is used as an analogue for an upper brittle crust and a ductile lower part of the crust, respectively. An additional package of sand on one part of the model simulates tectonic loading.

The aim of this work is to investigate in detail dynamic rift propagation in such a setting by means of a fully quantitative monitoring of surface and internal deformation, focusing on rift propagation velocity, growth rate and orientation. The evolution of the surface topography (DEM) and deformation (3D displacement field) is monitored and quantified using 3D Digital Image Correlation (3D stereo DIC). Furthermore, we apply an automated fault segment tracer on the surface deformation data to characterize rift evolution. Model internal deformation is investigated by digital volume correlation (DVC) techniques applied on X-ray computed tomography data of the time-series experiment volumes. With the use of such techniques we are able to visualize, quantify and link deep-seated internal flow and surface deformation over time.

Preliminary results from these experiments suggest that rift propagation in our analogue models is directly influenced by load-induced deep-seated deformation resulting in a horizontal lower-crustal flow opposing rift propagation.

How to cite: Schmid, T., Schreurs, G., Adam, J., and Hollis, D.: Effect of tectonic loading on continental rifting: Imaging, quantification and linkage of deep-seated flow and surface deformation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5935, https://doi.org/10.5194/egusphere-egu2020-5935, 2020.

Magnetic fabric is used as strain indicator to provide further insights into different tectonic settings. Applying anisotropy of magnetic susceptibility (AMS) analysis on analogue models has shown to be a useful approach to understand details of deformation. Here we use this technique on shortened sandbox models to illustrate the relationship between rotation of grains and the influence of décollement friction in fold-and-thrust belts. Layers of sand were scraped to a thickness of 2.5 cm on top of high-friction sandpaper on one side and on low-friction fibreglass on the other side of the sandbox model. After shortening the model by 26%, samples were taken at the surface and at depth for measuring AMS. During shortening, above the high-friction décollement, a stack of imbricates was formed, which shows distinct clustering of the main principal magnetic susceptibility axes (k1 ≥ k2 ≥ k3) around the dip of the forethrusts. In contrast, AMS data above the low-friction décollement show a more heterogeneous AMS pattern due to complex structure development with box folds and fault bending. In general, the magnetic fabric can be differentiated between the initial model fabric in the foreland and a tectonic overprint within the hinterland. The AMS analysis show that strain increases with the development of structures towards the hinterland and additionally with depth, but differs between the two frictional décollements. At the transition zone between the two different frictional environments, a deflection zone developed where the trace of thrusts change trend causing additional rotation of sand grains within this zone perpendicular to main shortening direction, as reflected by the orientation of the k1 and k3 axes. Overall, the orientation of the AMS axes and shape of anisotropy depend on the structure geometry and movement, which are determined by the friction of the individual décollement beneath. Consequently, AMS in models indicates and describes the development of structures and reflects strain above different basal friction.

How to cite: Schöfisch, T., Koyi, H., and Almqvist, B.: Anisotropy of magnetic susceptibility as strain indicator in a fold-and-thrust belt sandbox model above décollements with frictional contrast, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15507, https://doi.org/10.5194/egusphere-egu2020-15507, 2020.

EGU2020-6446 | Displays | TS10.3

Thermal maturity of the accretionary wedge

Utsav Mannu, David Fernández-Blanco, Ayumu Miyakawa, Taras Gerya, and Masataka Kinoshita

Records of thermal maturities in boreholes have led to a better understanding of the formation of geological structures, especially the duration of thrusting during the evolution of accretionary wedges. The temporal extent of thrusting is controlled by a host of factors such as the nature of sedimentation, the topography of the incoming plate and so on. As a result, estimating the peak heating through the thermal maturity of organic material can help elucidate which mechanism has played a prominent role in wedge evolution. However, the thermal maturity value expressed as the distribution of vitrinite reflectance is the combined effect of two factors: the geothermal gradient and the time the sediments were exposed to different temperatures. Thus, the distribution of vitrinite reflectance in accretionary wedges does not necessarily reveal the deformational pathway of individual thrusts. Moreover, since the conductivity of the sediments close to the surface (<10 km) is most accessible in borehole data and predominantly controlled by porosity, models of accretionary wedge simulating thermal maturity ought to incorporate the impact of porosity on thermal conductivity. Additionally, phase transitions of the sediments in the wedge, such as smectite-illite transition and the formation of zeolite facies, that lead to increased thermal conductivity and internal angle of friction for sediments at structurally deeper locations within the wedge, must be accounted for in modeling studies. Therefore, we use a 2D thermomechanical model of subduction with empirical porosity values form the Nankai subduction margin and incorporate the effect of phase transitions to simulate the formation of the accretionary wedge under several sedimentary conditions and track the evolution of the vitrinite reflectance. As a result, we gain a holistic picture of deformation in accretionary wedges exploring different scenarios using geodynamic modeling alongside field data.

How to cite: Mannu, U., Fernández-Blanco, D., Miyakawa, A., Gerya, T., and Kinoshita, M.: Thermal maturity of the accretionary wedge, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6446, https://doi.org/10.5194/egusphere-egu2020-6446, 2020.

EGU2020-666 | Displays | TS10.3 | Highlight

Rift propagation vs inherited crustal fabrics in the Trans-Mexican Volcanic Belt (Mexico): insights into geothermal investigations from analogue models

Daniele Maestrelli, Marco Bonini, Giacomo Corti, Domenico Montanari, and Giovanna Moratti

The Trans-Mexican Volcanic Belt (TMVB) is a large-scale, NW to SE trending volcano-tectonic feature extending through central Mexico for a length of more than 1000 km. In some models, its genesis is related to the interaction between the subducting Rivera and Cocos plates and the North America plate, with the eastward propagation of volcanism being associated with slab detachment and consequent asthenospheric upwelling (e.g., Ferrari, 2004). Progressive SE-directed slab tearing has been causing crustal extension and the emplacement of large-scale volcano and caldera edifices. In the frame of the GEMex Europe-Mexico cooperation project (Horizon 2020 Programme, grant agreement No. 727550), we aim to investigate the interplay between continental extension and inherited crustal fabrics. Particularly, in the easternmost part of the TMVB, where the GEMex Project is focusing geothermal investigation on two calderas (Los Humeros and Acoculco), the inherited fabric is represented by ca. NE-SW and NW-SE regional faults (Campos-Enriquez & Garduño-Monroy, 1987). This fabric may have localized volcanic centres, thereby bearing significant implications for geothermal investigation. We aim to evaluate if and how the inherited structures may have interacted with continental-scale rift propagation through analogue modelling. In the models, the upper continental crust was simulated by a Qz- and K-feldspar sand mixture (80%-20% proportion in weight), while a PDMS-corundum mixture reproduced the lower crust. Continental rift propagation was simulated using a deformation apparatus represented by two basal moving plates hinged at their topmost side, allowing rotational opening. Extensional deformation was distributed using a basal rubber sheet. Artificial dilation zones (simulating the inherited fabrics) have been introduced within the analogue brittle crust at various angles to the rift axis. Our modelling highlights that a propagating rift may reactivate the inherited fabrics as extensional structures or transfer zones (depending on their orientation) for angles ≤45° to the rift axis. Numerical analysis of slip and dilation tendency evaluated for the reactivated fabrics corroborate the modelling results, and suggest that they may represent favourable sites for magma emplacement, and ultimately for geothermal exploration.

Campos-Enriquez, J., & Garduño-Monroy, V. H. (1987). The shallow structure of Los Humeros and Las Derrumbadas geothermal fields, Mexico. Geothermics, 16(5-6), 539-554.

Ferrari, L. (2004). Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology, 32(1), 77-80.

How to cite: Maestrelli, D., Bonini, M., Corti, G., Montanari, D., and Moratti, G.: Rift propagation vs inherited crustal fabrics in the Trans-Mexican Volcanic Belt (Mexico): insights into geothermal investigations from analogue models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-666, https://doi.org/10.5194/egusphere-egu2020-666, 2020.

EGU2020-1213 | Displays | TS10.3

Fault linkage and its controls on fault growth and basin evolution: Insights from analogue experiments

Michael Andrés Avila Paez, Rafael Quintana Gomez, Urs Andreas Kammer, and Fabian Saavedra Daza

The evolution of fault-bounded basins and the concomitant migration of hydrocarbons and fluids are strongly influenced by fault activity and, in the case of an extensional tectonic setting, by the interaction of fault planes in relay zones. Fault linkage is a process that develops at relays between sufficiently closely spaced fault planes during their propagation. Fault interaction depends on several factors, such as the degree of under- or overlapping fault arrays, the similar or opposed polarity of fault planes and a separation that should not exceed a critical distance.

Motivated by observations at a km-scale fault relay of a major normal fault in the Magdalena Valley, Northern Andes of Colombia, we designed an analogous sandbox model, in which we simulated the linkage of rift zones separated at distances equivalent to two to four times the dimension of the height of a uniform sand layer. Fault nucleation took place at pre-designed seeds or at the velocity discontinuity of a moving sheet along the base of the sandbox and gave rise to two offset graben structures. Early fault linkage took place by means of two sub-vertical faults, which formed a shortcut between an inner and an adjacent outer border fault of the offset graben structures, enclosing a small horst in between.

The kinematic meaning of these short-cut faults became evident by the subsequent growth pattern of the faults opposite to the linked strands. On approaching the relay zone, these faults turned into an attitude almost perpendicular to their imposed trend. According to the displacement senses set up parallel to the axes of the offset graben structures, the displacement transfer on the two short-cut faults accommodated a strike-slip component. Particle analysis by means of the MATLAB’s PIVlab © tool and photogrammetric processes corroborated these findings. Displacement transfer on the short-cut faults set in at the very onset of the formation of the two graben structures. During successive deformation stages two distinct velocity fields parallel to the graben axes became established, each one pointing away from the structural high of the relay zone.

Although our boundary conditions are restricted to a uniform layer and orthogonal extension, this experimental scenario may form a starting point for testing new questions about the propagation of bounding faults at the termination of graben structures, such as those found at the East Africa Rift. Here, rifting evolved within a lithospheric high, impeding the accumulation of fine-grained or “soft” sedimentary sequences in precursor basins.

How to cite: Avila Paez, M. A., Quintana Gomez, R., Kammer, U. A., and Saavedra Daza, F.: Fault linkage and its controls on fault growth and basin evolution: Insights from analogue experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1213, https://doi.org/10.5194/egusphere-egu2020-1213, 2020.

EGU2020-8915 | Displays | TS10.3

Evolution of extensional faults between two rift systems: insights from sandbox experiments

Pauline Souloumiac, Romain Robert, Bertrand Maillot, Geoffroy Mohn, Yves-Marie Leroy, Bertrand Gauthier, and Jean-Paul Gomez

The interference between two offset propagating rift systems creates fractures, with a sigmoid shape in map view and previously referred to as accommodation zones (Mc Clay et al, 2002). This peculiar kinematics may be observed in the Southeastern Brazilian margin in the Santos Basin, developed between the tips of two propagating, offset rifts. In this region, northward propagating rift was aborted during the southward propagation of another rift further to the east leading eventually to the opening of this segment of the South Atlantic. Could this structural setting explain the geometry and the position of the fracture zones in this basin?

To answer this question, we explore a range of geometrical and kinematic parameters with sandbox experiments to observe the deformation between these two propagating rift systems. The basement of the rift zones were modelled with rubber strips glued to rigid metal plates, following the setup of McClay et al, 2002. However, this setup suffers from the lateral contraction of the rubber due to its elastic extension (the Poisson’s effect). This introduces a spurious kinematics, and in particular an unrealistic opening at the contact between the two rift parts. A new device, whereby thin metallic strips are glued to the sides of the rubber sheet reduces very substantially the Poisson effect and therefore improves the simulation of the overall extension. 

Two main parameters are varied: the offset between the two rifts (D) and the relative velocity of extension of each rift. Narrowly spaced cross –sections of two experiments are interpreted to build 3D patterns.

The main results from the sandbox experiments are:

- Major and minor faults with the rifting zone localized by the rubber base present dips approximately equal to 75°.

- To obtain sigmoid fault array in map view best resembling the structural interpretation of Lebreton (2012), the rifts must be offsets (D>0) and the extension must be synchronous.

- The 3D fault patterns reveal that fault planes are not continuous in the accommodation zone, between the two rifts.  If these major faults are not connected in the central zone as shown by the physical models, then the fluid flow will be certainly influenced. This central relay zone could also be considered as a diffuse strain zone.

Numerical models will be helpful to introduce further material heterogeneities in this key area. The experimental results provide the data to validate the numerical modeling and to guide in the selection of the boundary conditions.

How to cite: Souloumiac, P., Robert, R., Maillot, B., Mohn, G., Leroy, Y.-M., Gauthier, B., and Gomez, J.-P.: Evolution of extensional faults between two rift systems: insights from sandbox experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8915, https://doi.org/10.5194/egusphere-egu2020-8915, 2020.

EGU2020-13241 | Displays | TS10.3

Development of normal faults affected by inherited extensional tectonic settings and their succeeding strata in the South Depression of Tainan Basin, NE South China Sea

Chao-Hsun Wang, Pin-Rong Wu, Kenn-Ming Yang, Chih-Cheng Barry Yang, and Ching-Weei Lin

Development of normal fault that are affected by inherited extensional tectonic settings can be observed in many rift basins and is highly related to the some parameters, such as mechanical contrast between layers in different successive extensional tectonics, extensional ratio and post-rift stratal thickness of the inherited rift, etc. The South Depression of Tainan Basin (SD-TB), which consists of several half-grabens and went through two phases of rifting during the Paleogene and Neogene respectively, is one of a series of E-W to NE-SW trending Cenozoic rift basins in NE South China Sea. The main purpose of this study is, based on detailed description of normal fault structures on seismic sections and numerical PFC models, to investigate the sequential development of normal faults during the successive rifting and the effects of inherited tectonics on time-spatial distribution of the younger normal faults in the depression.

The normal faults in SD-TB can be grouped into three types. Type 1 normal faults cut downward through the pre-, syn- and the lowest part of post-rift strata of the Paleogene rift, Type 2 normal faults only cut off the Neogene strata, and Type 3 normal faults cut off both the Paleogene and Neogene strata and down to the basement. There is distinct distribution for the Type 2 normal faults; for the thinner post-rift strata of the Paleogene rift, the Type 2 normal faults would widely distribute in the area over the Paleogene grabens during the Neogene rifting, or rather concentrate on the margin the older graben if the post-rift strata are thick. As for Type 3 normal faults, the first type are the upward extended part of Type 1 normal faults that are characterized by significant displacement during the Paleogene rifting and the second type are located outside of the older grabens.

Such spatial distribution of normal faults can be demonstrated by numerical PFC models as set with different thickness of post-rift strata of the Paleogene rift before the initiation of the Neogene rifting. The models also demonstrate that the second type of Type 3 normal faults outside of the older graben initially were Type 2 normal faults but further cut downward to become Type 3 normal faults. While the second type of Type 3 normal faults have developed at variable thickness of post-rift strata, the first type did formed in the cases that thicker post-rift strata were deposited.

We propose that the thick post-rift strata of the Paleogene rift are related with the greater displacement along the main boundary fault of the graben, which not only created thick syn-rift strata but also induced significant post-rift subsidence as indicated by the estimated extension ratio. Also for the thicker post-rift strata, the induced stress during the Neogene rifting was more focusing over the inherited main boundary faults and caused the localized Type 2 normal fault and the first type of Type 3 normal faults.

 

Key words: Normal fault, Inherited structure, Numerical PFC model, South China Sea

How to cite: Wang, C.-H., Wu, P.-R., Yang, K.-M., Yang, C.-C. B., and Lin, C.-W.: Development of normal faults affected by inherited extensional tectonic settings and their succeeding strata in the South Depression of Tainan Basin, NE South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13241, https://doi.org/10.5194/egusphere-egu2020-13241, 2020.

Mobile belts are generally characterized by deformational structures of multiple generations, indicating complex spatial and temporal evolution of the strain fields. These deformed terrains show interference patterns indicating superposition of structures striking transverse to the orogenic trend which leads to the development of cross folds in mobile belts. Despite significant work on cross-folding, it is still not well understood how horizontal shortening can develop regionally along the trend of an orthogonal convergent belts. Our present work deals with the spectacular cross-folds in the eastern flank of the Singhbhum Proterozoic mobile belt.

This study uses three-dimensional continuum models to address the long-standing question: what is the tectonics of regional scale cross-folds with axial planes transecting the orogenic trend? Physical experiments were conducted with PDMS (Poly dimethyl siloxane), a Newtonian viscous material under lower strain rate of deformation. We propose that the belt underwent orogen-parallel flow during tectonic relaxation, developing orogen-parallel shortening, as observed in analogue models. This gravity-driven flow appears to be potential factor for cross folding in orogenic belts. In order to substantiate the deformation of analogue models, the horizontal shear stress was mapped in FE models. This reveals a distinct zone of shear stress localization in the eastern flank. Model results suggest that the arcuate belt is likely to show deformations by large horizontal shear at the flank of the model. This prediction agrees to the observations from analogue models. In order to study the large scale three-dimensional flow pattern, velocity vectors are plotted in the model. The vector diagram shows that the material flow does not take place orthogonally to the orogenic trend, while at the NE margin the flow direction is parallel to orogenic trend, resulting in the development of cross folds in Singhbhum mobile belts.

How to cite: Saha, P., Mitra, A. K., and Mandal, N.: Tectonic relaxation and the development of cross fold in the Singhbhum Proterozoic mobile belt: Insights from physical and numerical model experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1047, https://doi.org/10.5194/egusphere-egu2020-1047, 2020.

EGU2020-1761 | Displays | TS10.3

Forced subduction initiation at passive continental margins: Numerical modeling

Xinyi Zhong and Zhong-Hai Li

EGU2020-5573 | Displays | TS10.3

Analogue modeling and tectono-stratigraphic evolution of the eastern Sicilian fold-and-thrust belt

Maxime Henriquet, Stéphane Dominguez, Giovanni Barreca, Jacques Malavieille, and Carmelo Monaco

            In Central Mediterranean, the Sicilian Fold and Thrust Belt (SFTB) and Calabrian Arc, as well as the whole Apennine-Maghrebian belt, result from the subduction and collision with drifted micro-continental terranes. These terranes detached from the European margin and migrated southeastward in response to Neogene slab roll-back and associated back-arc extension. From N to S, the SFBT is divided in 4 main tectono-stratigraphic domains: (1) the Calabro-Peloritani terrane, drifted from the European margin and detached from the Corso-Sarde block since the back-arc opening of the Tyrrhenian basin, (2) the Neotethyan pelagic cover, constituting the remnants of the Alpine Tethys oceanic accretionary wedge, (3) the folded and thrusted platform (Panormide) and basinal (Imerese-Sicanian) series of the down-going African margin, and (4) the undeformed african margin foreland (Hyblean).

            The scarce good quality outcrops of key tectono-stratigraphic units and crustal scale seismic lines makes the structural architecture of the SFTB very controversial, as testified by the wide variety of tectonic interpretations (Bianchi et al., 1987; Roure et al., 1990; Bello et al., 2000; Catalano et al., 2013). Major outstanding issues particularly concern: (1) the occurence of Alpine Tethys units far from the region where the remnants of the Tethyan accretionary wedge outcrop (Nebrodi range); in a forearc position above the Peloritani block north of the SFTB and in an active foreland context along the southern front of SFTB; (2) the diverging suggested tectonic styles, from stacked large-scale tectonic nappes to foreland imbricated thrust systems rooted into a main basal décollement; and (3), the deposition environnement of substantial units such as the widespread Numidian Flyschs, from syntectonic foreland basin to wedge-top sedimentation.

            We used 2D analogue models to investigate the mechanical processes involved in the formation of the SFTB starting from the Oligocene Tethys subduction to the Middle Miocene - Late Pliocene continental collision with the African paleo-margin. Based on a detailed tectono-stratigraphic synthesis, complemented by field observations, we reproduce the first-order mechanical stratigraphy of the sedimentary and basement units involved in the SFTB as well as the structural inheritance of the African margin. Our models also include: syntectonic erosion and sedimentation, syn-orogenic flexure and adjustable material output via a “subduction channel“.  

            The analog models succeed in reproducing the general structure of the SFTB and main tectono-stratigraphic correlations. For instance, the Panormide platform is underthrusted beneath the Alpine Tethys accretionary wedge, then stacked above the Imerese basinal units and belatedly exhumed in response to basement anticlinal stack. Our results also suggest that the Alpine Tethys units couldn’t overthrust the whole African foreland in the Middle Miocene, nor be back-thrusted over the forearc basin during the Burdigalian. We rather favor a gravity-induced sedimentation process inducing reworking of the tethysian sediments at specific building stages of the accretionary wedge. The structural architecture of the modeled orogenic wedge is also consistent with a SFTB growing by frontal accretion and basal underplating of mechanically resistant stratigraphic units rather than by large-scale nappe overthrusting.  

How to cite: Henriquet, M., Dominguez, S., Barreca, G., Malavieille, J., and Monaco, C.: Analogue modeling and tectono-stratigraphic evolution of the eastern Sicilian fold-and-thrust belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5573, https://doi.org/10.5194/egusphere-egu2020-5573, 2020.

EGU2020-7358 | Displays | TS10.3

Analogue models of progressive arcs: strain partitioning and localization in fold-and-thrust belts developed over ductile layer of different geometry

Alejandro Jiménez-Bonilla, Ana Crespo, Inmaculada Expósito, Juan Carlos Balanyá, Manuel Díaz-Azpíroz, and María Trinidad Soriano

Although analogue models have successfully simulated many different types of arcuate fold-and-thrust belts, we were able to design a backstop whose curvature ratio diminished and its protrusion grade increased during experiments reproducing several kinematic features of progressive arcs never seen before 2016. General models were made up of an homogeneous silicone layer, where detachments tend to localize, overlain by a sand layer. They accomplished to simulate the overall structure and kinematics of fold-and-thrust belts of Mediterranean Arcs, especially that of the Gibraltar arc: (1) highly divergent thrust transport directions, (2) arc-perpendicular normal and strike-slip faults accommodating arc-lengthening, (3) transpressive and transtensional bands oblique to the main trend located in the lateral zones, (4) vertical axis-rotations up to 70º and (5) block individualization that rotated independently clockwise and counterclockwise in the left and right arc limbs, respectively.

However, the ductile layer is neither continuous nor homogeneous in natural cases, such that pinch-outs and diapirs previous to deformation are frequently found across and along strike. Thus, we have modified our original set-up including silicone pinch-outs and different sizes of silicone diapirs. Where silicone pinch-outs were subparallel to the apex movement, differences in the structural style along the foreland thrust-belt occurred. A forward thrust system over frictional detachments (no silicone), or wide, double verging thrust-systems over ductile detachments (with silicone) developed. Differential displacement between both types of thrust-belts was accommodated by transfer zones. Where silicone pinch-outs were perpendicular to the apex movement, the deformation front propagated up to the pinch-out, where it stopped and the thrust-system thickened up to its subsequent collapse. In models with pre-existing diapirs, first thrust and strike-slip faults nucleated close to diapirs and linked them. When deformation proceeded, all diapirs were added and deformed within the fold-and-thrust belts.

We also made experiments to analyze the ductile deformation and the influence of the brittle layer (sand) thickness. In only silicone models, a homogeneous deformation was observed at the grid scale, where each square was deformed by mostly simple shear in the lateral parts whilst by mostly pure shear in its most frontal part of the models. When a sand layer was sieved on top of the silicone layer, discrete structures developed. Although all models showed strain partitioning between arc-perpendicular shortening and arc-parallel stretching, as the brittle layer thickness increased, fold wavelength increased.

All these models show the high complexity derived from the different strain partitioning modes and the strain localization along and across-strike fold-and-thrust belts in progressive arcs. They can be extremely helpful to better understand this kind of arcuate orogens that are also the most frequent in nature. Even though these models were previously carried out to simulate the evolution of fold-and-thrust belts of Mediterranean arcs, they can also shed lights for the evolution of many others progressive arcs.

How to cite: Jiménez-Bonilla, A., Crespo, A., Expósito, I., Balanyá, J. C., Díaz-Azpíroz, M., and Soriano, M. T.: Analogue models of progressive arcs: strain partitioning and localization in fold-and-thrust belts developed over ductile layer of different geometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7358, https://doi.org/10.5194/egusphere-egu2020-7358, 2020.

TS11.1 – Contribution of geophysical methods in tectonics & structural geology: applications to petroleum exploration

EGU2020-850 | Displays | TS11.1

The major factors of seismic-gravity modeling limits of applicability determination

Tatiana Shirokova, Ivan Lygin, and Tatiana Sokolova

Currently, the integration of seismic and "non-seismic" geophysical research methods is increasingly demanded by the practice of exploration. Further improvement of the efficiency of the complex of seismometry and gravimetry, its wide introduction into practice, requires both the creation of recommendations on the methodology of joint interpretation of these methods, and the determination of limitations on the scale of surveying and the specifics of the considered cross-sections, affecting the effectiveness of the methods of the studied geological structures. The aim of the presented work is to identify the main factors that determine the limits of applicability of seismic-gravity modeling.

The possibilities of seismic-gravity modeling in conditions of different physical and geological structure of the considered environment, scale, level and quality of the initial data were investigated on real objects. It is shown that it is impossible to totally formalize a single approach (algorithmize) to the creation of a seismic-gravity model. The modeling technique inevitably changes, adapts to the physical and geological situation and the completeness and detail of a priori information. Against the background of numerous positive examples of use, the situations difficult for seismic-gravity modeling are given and analyzed carefully and the reasons for the low efficiency of the method are revealed.

The experience of practical research has shown that the effectiveness of seismic-gravity modeling is primarily influence by such features of geological structure as the extent of compartmentalization of the reflector horizons’ geometry, contrast and depth of the density boundaries, the accordance of seismic and gravity exploration (both field survey and target exploration intervals), the intricacy of the geological history of the region.

The findings are important at the design stage of field work to compile a set of geophysical methods, the most effective for this area of study.

How to cite: Shirokova, T., Lygin, I., and Sokolova, T.: The major factors of seismic-gravity modeling limits of applicability determination, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-850, https://doi.org/10.5194/egusphere-egu2020-850, 2020.

EGU2020-1226 | Displays | TS11.1

Integrated interpretation of reflection seismic and aeromagnetic data in a marine geological complex area: a case study.

Silvana Fais, Emile Eduard Klingele, Raffaele Tocco, and Giuseppe Casula

This paper presents an integrated seismic and aeromagnetic approach applied in the geological complex area of the Cagliari Gulf in the southern Sardinian margin (Western Mediterranean). The investigated area represents the southern extreme part of the main branch of the Sardinian Rift (SR) (Western Mediterranean) that is made up here of a sub-basin bounded by approximately NW faults. The study was also integrated by complementary information deduced from the GNSS network in southern Sardinia.

The aim of this study was to give a contribution on the knowledge of the tectonic evolution and volcanism of the investigated area. For this purpose we used an integrated interpretation of two-dimensional reflection seismic sections and aeromagnetic data. In the same area a well drilled for oil prospection was used for calibrating the seismic interpretation up to approximately 1.8 sec.. It is worth noting that the interpretation of the seismic data can be problematic in structurally complex areas where volcanic formations occur, but it can be assisted effectively by magnetic interpretation. An interesting magnetic pattern represented by a strong, well-localized positive magnetic anomaly extending N-S for approximately 35 km is present in the western part of the Gulf. Its width in the W-E direction is of almost 20 km. The anomaly seems to be linked with the magnetic anomalies that characterize the southern Sardinian Rift in correspondence to the Campidano Graben. In fact, a set of localized high-gradient anomalies generally corresponding to the Oligo-Miocene andesitic calc-alkaline complexes is present in this Graben. The aeromagnetic interpretation was carried out to explain the origin of the above strong elongated magnetic anomaly that has never been quantitatively interpreted. In this work, this anomaly has been interpreted by means of Euler deconvolution, the analytical signal and by a delineation technique based on the maxima of the radial horizontal derivative of the total magnetic field. The geological knowledge of the area by means of earlier studies also on land contributed to give a petrographic meaning to the magnetic sources, while by the magnetic and seismic integrated interpretation it was possible to carry out a spatial reconstruction of the volcanic source body and to give an useful contribution to the knowledge on the volcano-tectonic evolution of the area. Recently the area of the Gulf of Cagliari was affected in its western sector by a weak earthquake with hypocenter at around 10 km of depth, localized by Istituto Nazionale di Geofisica e Vulcanologia (INGV). The results of this study also provided new elements of knowledge which have contributed to understand this seismic event.

Acknowledgements: This work was partially supported by FIR (Fondi integrativi per la Ricerca) funded by the University of Cagliari (Italy) and by RAS/FBS (grant number: F71/17000190002) grants for funding.

How to cite: Fais, S., Klingele, E. E., Tocco, R., and Casula, G.: Integrated interpretation of reflection seismic and aeromagnetic data in a marine geological complex area: a case study., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1226, https://doi.org/10.5194/egusphere-egu2020-1226, 2020.

Advances in seismic imaging technology can discourage the integration of outcrop data into modern interpretation workflows. Yet, instigation of hydrocarbon exploration still requires the use of legacy seismic data, especially within mature petroleum provinces. Typical exploration workflows include expensive pre-stack seismic reprocessing, to better resolve exploration targets. This is a resourceful but timely process that can be enhanced by using structural geological analogues. The inner Bristol Channel has extensive outcrop: to the east the Severn Estuary, to the north the South Wales Coalfield and Vale of Glamorgan and to the south along the Somerset, Devon and Cornish coastlines. These sources of prolific data, combined with legacy exploration refraction, reflection and earthquake seismology, make the inner Bristol Channel an ideal natural laboratory to integrate analogues with seismic information and to produce realistic interpretations and explanations of complex structural heterogeneities especially in places concealed by Mesozoic and Quaternary cover, marine waters and estuarine sediments typical of the inlet. Successful structural analysis is always reliant on well-processed pre-stack seismic data. It is demonstrated however that numerous known structural inversion events also necessitate the best choice of analogues to resolve the geometry and kinematics of any major faults offshore accurately enough to reach a reliable understanding of the petroleum system. Here, in response to the Department of Energy and Climate Change (DECC) 2016 data release and the 31st licensing round, we use case studies from the inner Bristol Channel to demonstrate the value of structural geological analogues by integrating them into 1985 2D legacy seismic data at an early stage in the seismic interpretation process. With suitably chosen analogues, structural dissection and reconstruction are carried out to generate geometric and kinematic models. The wider waters of the Bristol Channel are situated in quad 105; in which investigation was instigated in the 1970’s by major exploration companies. Currently, an interest in reliable structural analogues is made more relevant by the fourteen exploration licenses held onshore in south west England and South Wales. Thence our study augments the extensive field work carried out over at least three decades of academic research by generations of scholars. The targeted investigations conducted along the southern coast of Wales and the north coast of Somerset, Devon and Cornwall lead to revised syntheses, to better extrapolate, predict and model the structural architecture beneath the inner Bristol Channel. Exemplary Welsh field analogues are accounted in detail, measured, restored and integrated into an interpretation of the 2D 1985 Western-Geco dataset (WG85 2D 2001). The analogues include Trwyn-yr-Wrach, the Cold Knap, St Mary’s Well and Sully Island, among many others. In conclusion, the practical methodology exemplifies the geometric WNW-ESE lateral changes in structure and the effects of numerous kinematic phases and recent seismicity upon the architecture of the inner Bristol Channel basin as well as its relic-fabric. This demonstration of analogues improves immensely the geological understanding of seismic reflection projects whether legacy data, reflection, refraction or seismology and should remain relevant for many more crucial and modern acquisitions.

How to cite: Miliorizos, M. N., Reiss, N., and Melis, N. S.: A demonstration of the tectonic evolution of the inner Bristol Channel UK: application of structural geological analogues to interpretation of legacy and new seismic data., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3178, https://doi.org/10.5194/egusphere-egu2020-3178, 2020.

EGU2020-3304 | Displays | TS11.1 | Highlight

Crustal structure from offshore wide-angle seismic data: Application to South Yellow Sea

weina zhao, zhiqiang wu, hongcai shi, and hui xie

South Yellow Sea was a component of the circum-Pacific continental margin active belt, developing on the marine basement during pre-Paleozoic and mid-Paleozoic. The lack of detail in the offshore seismic model in the crustal levels means that the deep structure remains ambiguous. We processed the offshore wide-angle seismic data from 30 sections that were acquired in 2013 in order to achieve a continuous 2-D velocity and interface model using Rayinvr. The final velocity/interface model along the survey lineshows significant horizontal and vertical variations. The moho depth achieved in this paper (32-36 km) is consistent with those from previous studies, without a root. Two faults mark the gradient locations in the velocity and the changes in the interfaces that separate this high-velocity anomaly from low-velocity bodies. The three velocity bodies correlate well with the regional geological structures (Qianliyan Uplift, Northern Depression, Central Uplift) that are projected onto our model.

Beneath the Northern Depression, the Permian and Triassic strata such as the Qinglong Formation are denuded on a large scale combining velocity model and multi-channel seismic data. Jurassic and Cretaceous strata rest unconformably on the marine residual strata in the Mesozoic and Paleozoic. However, the Triassic strata (Qinglong Formation) and Permian strata (Dalong and Longtan Formations) are preserved in the Central Uplift. In other words, the uplift and denudation in the orogeny generally appear stronger in the north than in the south.

Previous geological and geophysical studies have suggested that abundant normal faults with NE-SW trend played an important role in the tectonic evolution of the South Yellow Sea. More specifically, investigations reveal that the Jiashan-Xiangshui-Qianliyan fault is the boundary between the Qianliyan Uplift and Northern Depression in the sedimentary formations. We suggest that normal faults terminate at the upper crust after passing through the sedimentary layers. Marked velocity changes and interface fluctuations are observed in the middle and lower crust beneath the northern South Yellow Sea, where we infer a NW-dipping fault. In other words, the deep NW-dipping fault is the deep footprint of fault system in the South Yellow Sea and appears a normal fault from the velocity feature. This finding indicates that shallow faults in the northern South Yellow Sea could converge towards the deeper crust.

How to cite: zhao, W., wu, Z., shi, H., and xie, H.: Crustal structure from offshore wide-angle seismic data: Application to South Yellow Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3304, https://doi.org/10.5194/egusphere-egu2020-3304, 2020.

EGU2020-3896 | Displays | TS11.1

A 3-D geological modeling method and its application to petroleum migration and accumulation simulation

Qiulin Guo, Na Wu, Jifeng Liu, and Ningsheng Chen

Besides the carrier bed, faults and unconformities are important migration pathways for the 3-D petroleum migration and accumulation simulation. The fault is often ignored or used only as simulated grid boundaries in the traditional 3-D geological modeling, so that the transport function of faults is neglected or weakened.

In view of the fact that the traditional geological modeling method cannot establish the interrelation of carrier-system (the carrier bed, fault, unconformity, etc.), we propose a hybrid-dimensional mesh modeling technology consisting of body (stratum), surfaces (faults and unconformities), lines and points. The stratum mesh cut by a fault consists of stratum body A, stratum body B and fault surface C. There are two methods: (1) The fault is neglected in the modeling of the geological body, in other words, the mesh form and volume remain unchanged; and (2) The fault is considered in the modeling of the geological body, and the geological body on the two sides of the fault are divided into two parts for modeling. We propose the third processing method. The fault is considered in the modeling of the geological body, and the geological bodies on the two sides of the fault are divided into two parts for modeling, forming stratum meshes. In addition, the fault surface is taken as the third mesh, i.e. surface mesh. At this point, the mesh system is not the original single stratum mesh (3D body mesh) any more, and it also contains the surface mesh (2D surface mesh), therefore it is called a hybrid-dimensional mesh system (hybrid mesh system).

Based on new hybrid-dimensional mesh of the carrier-system, a special 3-D invasion percolation model (3-DIP) is proposed. The fault transport ability can also be determined by shale gouge ratio (SGR) in the 3-DIP model.

The new method is applied to the Luliang uplift in Junggar Basin, China, with an area of 3502 km2. The strata are composed of Permian - Cretaceous, which are divided into 15 simulated layers. Key simulation parameters of the study area include 2884 plane simulation meshes, 59 faults and 1 unconformity. The total number of formed meshes is 54406, including 45972 body meshes, 7884 surface meshes, 549 line meshes and 1 point mesh.

The migration pathway of oil is traced by 3-DIP, and the oil accumulation and wax content of crude oil are simulated. By comparing the simulated wax content with the measured wax content, the results are consistent with each other. It is shown that the model is reliable and the results are credible.

Key words: geological modeling, migration pathway, hybrid mesh, invasion percolation model, petroleum migration and accumulation simulation, Junggar Basin.

How to cite: Guo, Q., Wu, N., Liu, J., and Chen, N.: A 3-D geological modeling method and its application to petroleum migration and accumulation simulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3896, https://doi.org/10.5194/egusphere-egu2020-3896, 2020.

Abstract:The Dawangzhuang area as one of the favorable exploration areas for buried hills in the Jiyang Depression, experienced the complicated accumulation process. Based on the fluid properties and regional tectonic background, it can be briefly discussed oil migration and accumulation process in the Dawangzhuang paleozoic buried hill fields using the petrographic observation, microthermometry and abundance of hydrocarbon inclusions. The result shows that the Dawangzhuang area mainly experienced two stages of crude oil charging from the late Dongying Formation (27-25Ma) and the end of Guantao Formation (5Ma) to now. Moreover, the last charging is the most important in the Dawangzhuang buried hill field. The first charging occurred in the Ordovician in the end of Dongying formation, but was quickly destroyed and adjusted by fault activities. In the end of Guantao formation, crude oil migrated on a large scale and accumulated lately in the Ordovician and Carboniferous-Permian systems respectively when they entered buried hills through Da 1 fault from source center, forming the current oil distribution pattern.

Keywords:Chezhen sag; Paleozoic; buried hill field; fluid inclusion; accumulation process

How to cite: Zhang, Z.: Hydrocarbon Accumulation Process in the Dawangzhuang Paleozoic Buried Hill Fields in the Jiyang Depression, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5078, https://doi.org/10.5194/egusphere-egu2020-5078, 2020.

EGU2020-6611 | Displays | TS11.1

Study on distribution features of faults based on gravity data in the Gulf of Mexico and its adjacent areas

Jie Ma, Wanyin Wang, Xiangdong Du, Wenjie Cai, Xiaolin Ji, Min Yang, Xingang Luo, and Dingding Wang

In the study of Gulf of Mexico and its adjacent areas, the faults are kinds of important structures in the plate tectonics, oceanic-continental distribution and sedimentary basin structure. Based on the normalized vertical derivative of total horizontal derivative (NVDR-THDR) of Bouguer gravity anomaly and the minimum curvature field separation method, the distribution characteristics of the faults and the relating geological effects are studied. Because of the interaction between the plates, at the plate margin, the maximum values in the map of NVDR-THDR of Bouguer gravity anomaly are characterized by stable and continuous strikes. The maximum values in the map of NVDR-THDR of Bouguer gravity anomaly of intraplate region are macroscopically consistent and locally discontinuous. The faults in NWW and EW-NEE directions are mostly related to plate movement. In NE-NEE directions, arc faults are related to oceanic crust expansion. The faults in NE and NW are related to late Jurassic rift activities, or simply showing the boundaries of Yucatan and Chortis old landmass. The faults in nearly SN direction are less than that of we have talked above. In the Gulf of Mexico, there are four kinds of faults: the transition faults and mid-ocean ridge faults in the middle of central deep-sea area, the ocean-crust boundary faults in the north and south side of the central deep-sea area, the faults of thinning continental crust in the north and south of the Gulf of Mexico and the strike slip faults in the west of the Gulf of Mexico. Our research can contribute to regional geological researches and natural resources evaluations.

How to cite: Ma, J., Wang, W., Du, X., Cai, W., Ji, X., Yang, M., Luo, X., and Wang, D.: Study on distribution features of faults based on gravity data in the Gulf of Mexico and its adjacent areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6611, https://doi.org/10.5194/egusphere-egu2020-6611, 2020.

Based on outcrop investigations, 3D seismic interpretations, drilling data and results from physical simulation experiment, the structural deformation characteristics of the Puguang area in the Sichuan Basin were studied. Our results show that there are three main detachment layers at different depths in the Puguang area. The lower detachment layer, which is composed of middle Cambrian gypsum-salt rock, controlled the deep structural deformation system (∈2-3-S). The mudstone at the bottom of the Silurian acts as the central detachment layer, separated while influencing both the bottom and the central structural deformation system (S-T1j). The Triassic Jialingjiang Formation gypsum-salt rock forms the upper detachment layer, which mainly controls the shallow structural deformation system (T2l-K). Different structural deformation systems have different degrees of structural deformation and relatively independent deformation styles. The deformation degree of the deep structural deformation system is relatively high, faults of this system cut through the Cambrian to the Silurian strata, forming a series of low amplitude thrust anticline; the central structural deformation system, which is sandwiched by two gypsum-salt rock layers, mainly brittle ductile shear zone, is characterized by high dipping thrust faulted anticlines with relatively larger amplitudes; the deformation degree of the shallow structural deformation system is relatively low, with narrow detachment anticlines and wide synclines developed, while a series of small pop-up structures superimposing on the overlying Jurassic sequences, and asymmetric highs and steep anticlines formed in local areas. Balanced cross section and physical simulation experiments show that the Puguang area suffered from superimposed compressional deformations originated from two directions, northeast and southeast.They represent the compressive stresses transmitted from the Dabashan orogenic belt in the northern margin of the Sichuan Basin and the compressive stresses transmitted from the Xuefengshan orogenic belt in the eastern margin, respectively.In addition, the rheological properties and the thickness of the detachment layer have important influence on the structural style.

How to cite: huang, H., he, D., and zhang, W.: Constraints of multiple detachment layers on structural deformation patterns in the basin: insight from 3D geological structure model in the Puguang area, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8698, https://doi.org/10.5194/egusphere-egu2020-8698, 2020.

EGU2020-16792 | Displays | TS11.1

Assessment of gravity and magnetic effects of trap formations in Eastern Siberia

Sonya Gvozdik, David Arutyunyan, and Ivan Lygin

Research of Eastern Siberia began after the discovery of hydrocarbons. At the same time, ton the territory of a platform there is the largest trap province in the world - the Siberian province with ubiquitous magmatic bodies of the main composition, which complicate the upper part of the section assessment.

To construct geological sections, borehole data are most often used to determine the power and structure of magmatic complexes. However, drilling cannot provide sufficient details.

Magmatic formations are distinguished by large variations in magnetic properties (from 100 to 1000 * 10-5 SI) and density (from 2.65 to 2.95 g/cm3). They create local gravitational anomalies up to 5-10 mGal, and magnetic ones - from dozens to the first hundreds of nanotests.

With the usage of geological sections as the starting model framework, 2D modeling and selection of the physical properties and geometry of the trap bodies was done. The magnetic field along the profile is set according to the digital model EMAG2 (2009). The gravitational effect was calculated based on the final models, which were assigned density properties.

Modeling of typical sections makes the shape of anomalous sources and supply channels positions more precise. This approach allows to restore the upper part of the section, saturated with trap intrusions.

How to cite: Gvozdik, S., Arutyunyan, D., and Lygin, I.: Assessment of gravity and magnetic effects of trap formations in Eastern Siberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16792, https://doi.org/10.5194/egusphere-egu2020-16792, 2020.

EGU2020-18484 | Displays | TS11.1

Volcanic sequences as reservoir rocks. Importance of natural fracture systems - a case study from the Faroe Islands area - North Atlantic Igneous Province (NAIP)

Óluva R. Eidesgaard, Lars Ole Boldreel, Niels H. Schovsbo, and Jana Ólavsdóttir

Volcanic rocks have been known to be reservoirs for more than a century but due to their often complex geological settings, they are commonly avoided.

The North Atlantic Igneous Province (NAIP) is one of the largest igneous provinces in the world. Large ranges of rock types comprise the NAIP, including tholeiitic and alkali basalts, nepheline- and quartz-syenites, nephelinites and carbonatites. The province is Paleocene in age and covers large parts of the North Atlantic region today. Parts of the NAIP outcrop onshore the Faroe Islands, on the western and the eastern side of Greenland, on Iceland and on the British islands.

In the Faroe Islands region volcanic settings serve as shallow geothermal energy systems, shallow groundwater aquifers and hydrocarbon reservoirs. These settings have been studied by core data and wire-line logs and examples will be presented. The aim of this study is to examine the key important parameters governing the reservoir properties and occurrences.

In all settings microfractures are important as porosity and permeability enhancers and are often linked to lava emplacement pathways and specific lava types such as subaqueous hyaloclastites and pillow lavas.

Studies on water movement from onshore the Faroe Islands on the islands of Streymoy have shown that the water in the volcanic settings in the area is being transported through large fractures and weathered flow tops and bases. This has also been seen in e.g. similar large igneous volcanic provinces such as the Columbia River Basalt Group, USA, and the Deccan Traps, India. Six influx zones were identified in the three approximately 200 meter deep geothermal holes on Streymoy, the Faroe Islands. Three with visible macrofractures striking north-south dipping east, two through weathered units, while the sixth influx zone did not show any visible fractures or weathered zones (Eidesgaard et al., 2019).

Reference: Eidesgaard, Ó.R., Schovsbo, N.H., Boldreel, L.O. and Ólavsdóttir, J. 2019 Shalllow geothermal energy system in fractured basalt: a case study from Kollafjørður, Faroe Islands, NE-Atlantic Ocean. Geothermic vol. 82, p. 296-314.

How to cite: Eidesgaard, Ó. R., Boldreel, L. O., Schovsbo, N. H., and Ólavsdóttir, J.: Volcanic sequences as reservoir rocks. Importance of natural fracture systems - a case study from the Faroe Islands area - North Atlantic Igneous Province (NAIP), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18484, https://doi.org/10.5194/egusphere-egu2020-18484, 2020.

EGU2020-20251 | Displays | TS11.1 | Highlight

Formation Water Characterization of the Shale Reservoir Rocks Using Integrated Workflow

Ekaterina Kazak, Andrey Kazak, and Felix Bilek

The paper presents the results of a novel integrated solution of formation water content and salinity determination of the low permeability reservoir rock of Bazhenov formation (West Siberia, Russia) for petrophysical characterization. The workflow is based on three techniques: evaporation method (EM) with isotopic composition analysis, analysis of water extracts, and cation exchange capacity (CEC) study. The EM offers a fast, efficient, and accurate measurement of the residual water content with breakdown to free and loosely clay-bound types. The isotopic composition reveals the origin and genesis of pore water. The chemical analysis of water extracts delivers a lower bound salinity in terms of NaCl. CEC describes rock-fluid interactions. The two methods of cation exchange capacity (CEC) measurement were applied – alcoholic NH4Cl ((NH4Cl)Alc) and hexammnninecobalt(III) chloride (CoHex) method. Both showed similar results. CEC varies from 2.87 to 5.82 meq/kg by ((NH4Cl)Alc method and from 2.87 to 6.38 cmol/kg by CoHex method and depends on the clay content. Ca, Na, Mg, K form exchange complex of all studied core samples. According to interrelation (rNa+rK)>rCa the exchange complex type is marine and was inherited from the composition of the paleobasin seawater.

The target rock samples contained the residual formation water 0.11–4.27 wt.%, including free 0.04–3.92 wt.% and loosely clay-bound water 0.09–0.96 wt.%. The loosely bound water content correlates well to the clay mineral fraction. The amount of chemically bound water fell in a range of 0–6.40 wt.% and exceeds that of free and loosely bound water.

We found that water extract composition depends on the core mineral content, except chlorine and bromine, which originates from the pore water. Using the thermodynamic modelling in PHREEQC program, next ratio of cations in pore water was found - Na (up to 91%), Mg (up to 5.6%), Ca (up to 2.6 %) and K (up to 0.8%). According to the calculation using the water extracts results, the pore water salinity as NaCl changes from 1.23 to 21.96 g/L. The corresponding isotopic composition indicated the deep formation genesis and generally correlated to that of the deep stratal waters of the West Siberia. Isotopic composition proved the formation origin of extracted pore water samples.

The study made a qualitative step up towards the quantitative characterization of formation water in shale reservoir rocks with the initial water content of less than 1 wt.%.

This work was supported by the Russian Science Foundation (grant No. 17-77-20120).

How to cite: Kazak, E., Kazak, A., and Bilek, F.: Formation Water Characterization of the Shale Reservoir Rocks Using Integrated Workflow, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20251, https://doi.org/10.5194/egusphere-egu2020-20251, 2020.

TS11.2 – 3-D Geological Models as Scientific Tools for Joint Inversion, Uncertainty Quantification, and Machine Learning

EGU2020-5641 | Displays | TS11.2

Uncertainty assessment in subsurface modeling: considering geobody shape and connectivity in complex systems.

Pauline Collon, Guillaume Rongier, Marion Parquer, Nicolas Clausolles, and Guillaume Caumon

Modeling the subsurface is a complex task because the data scarcity leads to ambiguous interpretations. As a result, subsurface models are prone to many uncertainties, which can be accounted for by stochastically simulating a large set of possible models. These models are constrained by the data (of various resolution and types), but also by geological knowledge and concepts. Integrating the latter in simulation methods emerges as a key point to reduce uncertainties, although it adds another layer of complexity to the modeling process. In this presentation, I focus on two different geological contexts characterized by specific geobody shapes and connectivity: channelized systems and salt tectonics.

Channelized systems are, indeed, characterized by elongated and sinuous structures, the channels, which evolve through time by continuous lateral and vertical migrations, and abrupt events like avulsion or meander cut-offs. The combination of erosion and deposition processes is an additional source of complexity in the sedimentary records. When considering the 3D reconstruction of channelized systems, honoring data while reproducing the complex spatial architecture of these structures - so their specific connectivity - remains challenging. The various methods we have recently developed can now be combined to achieve such a goal: (i) single channels or channel parts (for avulsion) can be simulated consistently with well-data, probability cubes, or confinement thanks to a method based on Lindenmayer systems; (ii) from a channel path, consistent 3D architectures can be generated with a reverse-time channel migration approach (ChaRMigS) handling the observed abandoned meanders; (iii) to honor well data within this reverse-time reconstruction, the stochastic simulation of abandoned meanders and avulsions offers interesting solutions. The impact of such modelling methodology on connectivity reproduction has been demonstrated using static criteria, and a flow-based evaluation constitutes an obvious next step.

In the case of salt tectonics, one difficulty comes from the highly convoluted shapes taken by salt bodies, incompatible with the hypothesis of minimal surface classically used in geomodeling methods. To tackle this issue, we have developed a dedicated method to stochastically generate various salt envelopes in a pre-defined uncertainty zone. Simulations of welds, i.e. surfaces (or most often thin volumes) resulting from the removal of salt from a former layer or diapir stage, also allow us to reproduce topological singularities between salt and the surrounding sediments. Welds connect the different salt volumes, which let us recover a more geologically-consistent representation of such complex systems. The present method is still in its early days, and further improvements need to be undertaken to fully integrate the diversity of structures actually observed in the field.

How to cite: Collon, P., Rongier, G., Parquer, M., Clausolles, N., and Caumon, G.: Uncertainty assessment in subsurface modeling: considering geobody shape and connectivity in complex systems., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5641, https://doi.org/10.5194/egusphere-egu2020-5641, 2020.

EGU2020-8102 | Displays | TS11.2

3D geological modelling of the western Aar Massif (external Central Alps, Switzerland)

Ferdinando Musso Piantelli, Marco Herwegh, Alfons Berger, Michael Wiederkehr, Eva Kurmann, Andreas Möri, and Roland Baumberger

3D modelling of complex and irregular geological bodies is an expanding discipline that combines two-dimensional cartographic and structural data managed with GIS technology. This study presents a complete workflow developed to process geological information to build a 3D model of major stratigraphic, structural and tectonic boundaries. The investigated area is located in the western part of the Aar Massif (external Central Alps, Switzerland) characterized by pronounced topographic (600–<4000 m) relief, making it prone for surface based 3D depth constructions. The workflow comprises four major steps:

(1)  Generation of 2D polylines in a map view: a two-dimensional dataset of sequences of polylines has been generated in ArcGIS (10.3.1) defining the starting dataset for the major stratigraphic and tectonic boundaries of the bedrock units. This dataset has been compiled and integrated by using: (i) GeoCover vector datasets 1:25 000 of the Swiss Geological Survey; (ii) The Geological Special Map 1:100 000 of the Aar Massif and the Tavetsch and Gotthard Nappes of the Swiss Geological Survey; (iii) data from literature; and (iv) additional field work conducted for this study in key-locations.

(2) Projection of 2D information onto 3D digital elevation model: with the 3D structural modelling software Move (Petex/Midland Valley; 2019.1) the boundaries have then been projected on a digital elevation model (swissALTI3D) with 2 m resolution.

(3) Construction of tectonic cross sections: the use of geometric arguments as well as structural measurements allows for projection of these boundaries into a dense regularly spaced network of 2D cross-sections.

(4) Interpolation of 3D surfaces: the surface and cross-sections boundaries can be interpolated by applying 3D projection and meshing techniques resulting in a final 3D structural model.

Generally, steps (2–4) require iterative adaptations particularly in the case of surface areas being covered by glaciers or unconsolidated Quaternary sediments. In the model, special emphasis is given to visualize the current structural disposition of the western Aar Massif as well as the relative geometric and overprinting relationships of the deformation sequence that shaped the investigated area throughout the Alpine deformation. Finally, since in the investigated area underground data are scarce, an assessment of the relative uncertainties related to input data and is intended to be performed following the approach proposed by Baumberger (2014) and Ferńandez (2005). The workflow presented here offers the chance to gain validation approaches for domains only weakly constrained or with no surface data available, by generating a 3D model that integrates all accessible geological information and background knowledge.

 

REFERENCES

Baumberger, R. (2014): Quantification of Lineaments: Link between internal 3D structure and surface evolution 328 of the Hasli valley (Aar massif, central alps, Switzerland), University of Bern, PhD Thesis, unpublished.

Ferńandez, O. (2005): Obtaining a best fitting plane through 3D georeferenced data, Journal of Structural Geology 27, pp. 855–858

How to cite: Musso Piantelli, F., Herwegh, M., Berger, A., Wiederkehr, M., Kurmann, E., Möri, A., and Baumberger, R.: 3D geological modelling of the western Aar Massif (external Central Alps, Switzerland), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8102, https://doi.org/10.5194/egusphere-egu2020-8102, 2020.

EGU2020-8500 | Displays | TS11.2

Integrating multiple geotechnical data types with machine learning to construct high-resolution 3D geological models

Willem Dabekaussen, Renée de Bruijn, Romée H. Kars, Bart M.L. Meijninger, and Jan Stafleu

In the central and western parts of the Netherlands, the low-lying areas are vulnerable to flooding by rivers. During times of peak runoff, dikes are essential to keep the land dry and the people safe. Rigorous safety standards are in place to ensure dikes are capable of withstanding extreme water level conditions. Key components for the strength and stability of a dike are the internal structure and composition of the dike and the geology in the subsurface: a sandy aquifer may lead to piping and undercutting of the dike while weak or layered strata under certain hydraulic pressures could potentially lead to collapse and catastrophic failure of the dike.

For the dike reinforcement project ‘Sterke Lekdijk’, the regional water authority ‘Hoogheemraadschap de Stichtse Rijnlanden’ is investigating a 55 km long section of the dike along the right bank of the river Lek. Detailed knowledge about the subsurface is crucial when quantifying the conditions of dikes. Given the very heterogeneous build-up of the Holocene sediments this is not an easy task. For the shallow subsurface (down to 50 m below surface level) TNO – Geological Survey of the Netherlands builds and maintains a nation-wide stochastic 3D geological model called GeoTOP. With a 100x100x0.5 m voxel size this model gives a sense of the overall geology, but lacks the very detailed information below the dikes that is needed for the task at hand.

Construction of a high-resolution geological model requires a high data density. Traditionally, shallow geological models are based on borehole information. However, in the built environment another data source is available in the form of cone penetration tests (CPTs), which are routinely obtained to measure the strength of subsurface sediments for geotechnical purposes. Although classification charts are available to translate CPT measurements into lithological classes, these charts require adjustments for local use and resulting performance remains variable. To enable the use of CPTs for geological modelling an artificial neural network (ANN) was trained to translate CPT measurements to lithological classes. Training of the ANN was done on neighboring borehole-CPT pairs (spaced at max. 10 meters). The ANN produces realistic results, with cross-validation statistics showing a vast increase in performance of the ANN results compared to traditional classification charts.

The disclosure of CPTs for geological modelling greatly increases the data density along man-made structures such as dikes. A local high-resolution version of the GeoTOP model was constructed, with a voxel size of 25x25x0.25 m. This detailed information includes the lithostratigraphical unit the voxel belongs to, the most probable lithological class of the voxel as well as the probability of occurrence of particular lithological classes. The high-resolution model enables the local water authority to better estimate dike stability, better target additional measurements in areas of high uncertainty, and take more location specific reinforcement measures.

How to cite: Dabekaussen, W., de Bruijn, R., Kars, R. H., Meijninger, B. M. L., and Stafleu, J.: Integrating multiple geotechnical data types with machine learning to construct high-resolution 3D geological models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8500, https://doi.org/10.5194/egusphere-egu2020-8500, 2020.

Uncertainties are an inherent part of geological interpretation and immersive rendering has the potential to play a key role in gaining better insights. However, most 3D geological models have a limited possibility of manual, fast and smooth modification in order to make better decisions and interpretations. Here we present examples of parametric surface representations which use control points as a possibility to bring interactivity to geological modelling in immersive frameworks.

In fact, using 2D surfaces of 3D solid objects is a typical representation of 3D models. Two of the major ways for surface representation in computer graphics are implicit representations and parametric surface representations. Parametric surface representations, unlike implicit representations, are based on control points. Manipulating these control points makes it easy and intuitive to modify geological models smoothly and fast, with a potential to more interactive decision-making.

We present two different examples of parametric surface approaches; Spline Surfaces and Subdivision Surfaces. Spline surfaces, e.g. Bezier or NURBS surfaces, are a popular and common standard for CAD (Computer-Aided Design). Also, these surfaces are on the basis of parametric- based curves and a set of weighted control points. Subdivision Surfaces define smooth surfaces after a series of refinement which can be controlled by control points. Subdivision surfaces are not only a popular method for making free form models but also a common tool in animation, computer games and entertainment industry.

Recently, research has been done based on using spline surfaces to model diverse geological structures and reservoirs. Similar to applications in computer graphics, using these methods in geological modelling can have specific considerations. Model refinement (e.g. adding new control points) and the requirement of many patches with geometrical constraints for the representation of complex geometries are some of the main difficulties of using spline surfaces. In this presentation, we will discuss several of these aspects and show two promising and controllable techniques for intuitive use of parametric surface-based representations in 3D geological and reservoir modelling.

How to cite: Moulaeifard, S. and Wellmann, F.: Parametric Surfaced-Based Geological Reservoir Representation: A Computer Graphics Tool for Improved Decision Making in Immersive Environments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9761, https://doi.org/10.5194/egusphere-egu2020-9761, 2020.

EGU2020-10359 | Displays | TS11.2

Fault network uncertainty assessment with a generative graph-based algorithm – Current status and perspectives

Guillaume Caumon, Gabriel Godefroy, and Paul Marchal

Graphs are a commonly used and well-studied mathematical abstraction for the modeling of complex systems. Three-dimensional (3D) structural geology is no exception, and graphs have received significant attention in recent years to characterize the connectivity for fracture sets, faults, geological units and reservoir compartments. The basis for these analyzes is to summarize an existing structural model as a graph, and to label the nodes and edges using the geological features of interest. In this sense, structural geologists building a 3D structural model are actually creating a graph. For this, they use geological reasoning to relate the various rock units of the subsurface.  

As a matter of fact, the final graph corresponding to a 3D structural model also relates the input spatial data, such as field measurements or interpretive contact lines. Based on this observation, we have proposed a graph-based framework to stochastically model 3D fault networks from incomplete observations, which randomizes the assignment of fault evidence to fault objects. The geometry of these faults is then determined using existing geomodeling techniques. In this approach, each piece of data is considered as a node of a complete graph called a possibility graph. The edges of the possibility graph are valued by a likelihood that two graph nodes belong to the same fault surface, which makes it possible to quickly remove some edges corresponding the associations deemed impossible. A hierarchical simulation algorithm is then proposed, based on the observation that each fault network corresponds to a possible partitioning of the input graph into distinct cliques. This formulation allows to give upper bounds for the (very large) number of possibilities that can be generated. We give several examples of likelihoods that integrate prior geological knowledge (e.g., the fault size distribution and orientation distribution), and check the consistency of the sampling algorithm when more informative rules are used. These preliminary results show that the simulation method consistently explores the search space, but they also highlight the need to further study the mathematical and computational properties of the sampler. Nonetheless, this approach is promising to efficiently generate and cluster a large set of possible structural scenarios and the associated ensemble of structural models obtained by a combination of data-perturbation, interpolation and or model-perturbation.

 

 

How to cite: Caumon, G., Godefroy, G., and Marchal, P.: Fault network uncertainty assessment with a generative graph-based algorithm – Current status and perspectives, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10359, https://doi.org/10.5194/egusphere-egu2020-10359, 2020.

EGU2020-10785 | Displays | TS11.2

Probabilistic Machine Learning in Structural Geology

Miguel de la Varga and Florian Wellmann

As the number of underground activities increase, the need for better understanding of the geospatial properties become more and more essential for correct engineering designs and optimal decision making. However, gathering subsurface data is still an extremely costly and imprecise endeavour. Geological modelling has played a crucial role for years helping to understand and correlate the complex geometries encountered underground but single deterministic models fail to capture all possible configurations given the limited data. Probabilistic machine learning allows to integrate domain knowledge and observations of the physical world on a rigorous and consistent manner. Inferences to the probabilistic model implements an automatic learning-from-observations process.

 

In this work, we show how by embedding state-of-the-art implicit interpolants into probabilistic frameworks, we can integrate the information of distinct data sets in one single common earth model. We will present results from a minimal working example to introduce Bayesian statistics, to full 3-D probabilistic inversions. All the models used for this demonstration are implemented in the open-source library GemPy ( www.gempy.org) allowing full reproducibility of the results.

 

How to cite: de la Varga, M. and Wellmann, F.: Probabilistic Machine Learning in Structural Geology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10785, https://doi.org/10.5194/egusphere-egu2020-10785, 2020.

EGU2020-14952 | Displays | TS11.2

3D modelling of a mineral deposit using drill core hyperspectral data

Roberto De La Rosa, Mahdi Khodadadzadeh, Cecilia Contreras, Laura Tusa, Moritz Kirsch, Raimon Tolosana-Delgado, and Richard Gloaguen

Drill core samples have been traditionally used by the mining industry to make resource estimations and to build geological models. The hyperspectral drill core scanning has become a popular tool in mineral exploration because it provides a non-destructive method to rapidly characterise structural features, alteration patterns and rock mineralogy in a cost effective way.

Typically, the hyperspectral sensors cover a wide spectral range from visible and near-infrared (VNIR) to short and long wave infrared (SWIR and LWIR). The spectral features in this range will help to characterize a large number of mineral phases and complement the traditional core logging techniques. The hyperspectral core scanning provide mineralogical information in a millimetre scale for the entire borehole, which fills the gap between the microscopic scale of some of the laboratory analytical methods or the sparse chemical assays and the meter scale from the lithological descriptions.

However, applying this technique to the core samples of an entire ore deposit results in big datasets. Therefore, there is the need of a workflow to build a 3D geological model conditioned by the data applying suitable data reduction methods and appropriate interpolation techniques.

This contribution presents a case study in the combination of traditional core logging and hyperspectral core logging for geological modelling. To attain mineral and alteration maps from the hyperspectral data, unsupervised classification techniques were applied generating a categorical data set. The amount of data was reduced by the application of a domain generation algorithm based on the hyperspectral information. The domain generated by the algorithm is a compositional categorical data set that was then fed to condition the application of stochastic Plurigaussian simulations in the construction of 3D models of geological domains. This technique allows to simulate the spatial distribution of the hyperspectral derived categories, to make a resource estimation and to calculate its associated uncertainty.

How to cite: De La Rosa, R., Khodadadzadeh, M., Contreras, C., Tusa, L., Kirsch, M., Tolosana-Delgado, R., and Gloaguen, R.: 3D modelling of a mineral deposit using drill core hyperspectral data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14952, https://doi.org/10.5194/egusphere-egu2020-14952, 2020.

EGU2020-18359 | Displays | TS11.2

Towards reproducing seismic interpretation uncertainties using open-source stochastic geomodeling in Python

Alexander Schaaf, Miguel de la Varga, Clare E. Bond, and Florian Wellmann

Seismic data plays a key role in developing our understanding of the subsurface by providing 2-D and 3-D indirect imaging. But the resulting data needs to be interpreted by specialists using time-intensive, error-prone and subjective manual labour. While the automation of data classification using Machine Learning algorithms is starting to show promising results in areas of good data quality, the classification of noisy and ambiguous data will continue to require geological reasoning for the foreseeable future. In Schaaf & Bond (2019) we provided a first quantification of the uncertainties involved in the structural interpretation of a 3-D seismic volume by analysing 78 student interpretations of the Gullfaks field in the northern North Sea. Our work also concretized the question of to which degree the seismic data itself could provide useful information towards a prediction of interpretation uncertainty.

We now look at the same dataset in an effort to answer the question if we can adequately reproduce the observed interpretation uncertainties by approximating them as aleatoric uncertainties in a stochastic geomodeling framework. For this we make use of the Python-based open-source 3-D implicit structural geomodeling software GemPy to leverage open-source probabilistic programming frameworks and to allow for scientific reproducibility of our results. We identify potential shortcomings of collapsing interpretation uncertainties into aleatoric uncertainties and present ideas on how to improve stochastic parametrization based on the seismic data at hand.

 

Schaaf, A., & Bond, C. E. (2019). Quantification of uncertainty in 3-D seismic interpretation: Implications for deterministic and stochastic geomodeling and machine learning. Solid Earth, 10(4), 1049–1061. https://doi.org/10.5194/se-10-1049-2019

How to cite: Schaaf, A., de la Varga, M., Bond, C. E., and Wellmann, F.: Towards reproducing seismic interpretation uncertainties using open-source stochastic geomodeling in Python, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18359, https://doi.org/10.5194/egusphere-egu2020-18359, 2020.

Identification and modeling of the carbonate tidal channels is key for finding sweet spots or areas at higher risk to water breakthroughs which have a significant impact on the development and monitoring of reservoir dynamic performance. However, such these channels cannot be easily characterize by conventional seismic attributes. It is important to decipher the complexity of carbonate tidal channel architecture with integrated multisource data and different approaches.

A step wise approach has been taken in this work. First, rock physics model was carried out to ensure that elastic properties can be applied for reservoir characterization from the seismic data. Then, post-stack seismic inversion was carried out on the high resolution of 3D seismic dataset. The seismically derived porosity estimation is undertaken using geostatistical method and multiattributes combination was used. Probabilistic neural network training technique was then performed to improve the results for thick reservoir and the result has been used for seismic conditioning of geological models. Finally, the spatial distribution of porosity volume was cautiously assessed through the comparison between input and blind wells, also validated by core data.

The analysis of rock physics displayed a high correlation between elastic properties and the porosity distribution of the Mishrif channel, three facies were observed. The final interpretation of seismically derived characterization in Mishrif channel, observed a different lateral distribution of inverted elastic properties. These features of Mishrif carbonate tidal channels could be classified into these regions: north, southwest, and east. Related a high porosity with low acoustic impedance appeared mostly in these channels which reflect a good reservoir quality grainstone channels or sholas bodies. While, outside these channels is heavily mud filled by peritidal carbonates and characterized a high acoustic impedance anomaly with low quality of porosity distribution.

The results provided a new insight into the distribution of the petrophysical properties and reservoir architecture of facies with quantification of their influence on dynamic reservoir behavior in the Mishrif channelized systems and also for similar heterogeneous carbonate reservoirs

How to cite: Alali, A. and Stephen, K.: Application of Probabilistic Neural Network and Rock physics Analysis for Carbonate Reservoir Characterization: A Case Study from Onshore Supergiant Oil Field, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-184, https://doi.org/10.5194/egusphere-egu2020-184, 2020.

EGU2020-20042 | Displays | TS11.2

Uncertainty quantification in geological modelling by Hessian-informed MCMC

Zhouji Liang and Florian Wellmann

Uncertainty quantification is an important aspect of geological modelling and model interpretation. Recent developments in geological modelling allow us to view the inversion as a problem in Bayesian inference, incorporating the uncertainties in the observations, the forward models and the prior knowledge from geologists. The sampling method Markov chain Monte Carlo (MCMC) is then often applied to solve this inference problem. However, this stochastic modelling approach is limited as the number of parameters increases to higher dimensions. To ensure an efficient sampling in a high dimensional problem, we take advantage of recent advances using Hessian-based MCMC methods in this work. The Hessian of the negative log posterior with respect to the input parameters is evaluated at the Maximum a Posteriori (MAP) point. A Laplace approximation of the posterior at the MAP is then given by the inverse of the local Hessian. This sampling approach provides a potentially less computationally expensive and more efficient way for high dimensional geological inverse modelling, especially in cases where parameters are highly correlated, a situation that commonly arises in geological modelling.

How to cite: Liang, Z. and Wellmann, F.: Uncertainty quantification in geological modelling by Hessian-informed MCMC, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20042, https://doi.org/10.5194/egusphere-egu2020-20042, 2020.

EGU2020-20125 | Displays | TS11.2

Faulted geological contacts: constraining uncertainty of discontinuities orientation using triangulation and combinatorial algorithm

Michał Michalak, Ryszard Kuzak, Paweł Gładki, and Agnieszka Kulawik

Subsurface information is usually a limited resource in geological modelling. This is not the case, however, for the Kraków-Silesian Homocline in central Poland. It was subject to rapid exploitation of ore-bearing clays in the second half of the 20th century. Exhaustive geological documentation remained after this activity had ceased and it contains thousands of borehole records. A small part of this resource has recently been incorporated to propose a new method for determining the dominant orientation of a selected geological contact. This new method regarded Delaunay triangles as source of local orientations that were then analyzed on stereonets. The geological contacts in this region are inclined gently towards NE, but they are also faulted and indicate some stratigraphic noise which makes the extraction of dominant orientation a challenging task.

It is still unknown, however, to which extent the proposed modelling approach is capable of detecting faults and calculating their orientation. This is particularly important for the introduction of a new method for the recognition of faults based on investigating spatial distribution of orientation patterns. This expert-guided methodology assumes to relate orientation trends with genetic trends and investigate them on 2D maps.

In this research, we built synthetic models of faulted contacts to observe the behaviour of triangles intersecting the fault surface. To observe the variability of the orientation at larger scale, and perhaps to constrain it at the same time, we applied a combinatorial algorithm for creating all three-element subsets from an n-element set. The employment of this combinatorial approach allowed to achieve a better clustering effect around the expected orientation. The limitation of the proposed approach can be attributed to some unexpected and unintuitive orientations. Compared to previous studies these singularities seem to be geometrical and not numerical in nature.

How to cite: Michalak, M., Kuzak, R., Gładki, P., and Kulawik, A.: Faulted geological contacts: constraining uncertainty of discontinuities orientation using triangulation and combinatorial algorithm, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20125, https://doi.org/10.5194/egusphere-egu2020-20125, 2020.

EGU2020-20819 | Displays | TS11.2

Using structural frames to integrate structural geology into implicit 3D modelling

Lachlan Grose, Gautier Laurent, and Laurent Ailleres

Implicit geological modelling allows for observations of surface location and orientation to be interpolated into continuous 3D surfaces. These surfaces are usually built by finding a function that minimises the misfit between the surface and observations (gradient or value of the implicit function) combined with a regularisation constraint that controls how the surface develops between observations. When modelling complex terranes such as fold series, fault networks or intrusions it is usually necessary to use interpretive constraints for creating the expected geometries. These interpretations are problematic, as the constraints are usually not observations but realisations of the geologists’ subjective interpretation, and are therefore difficult to change and interrogate to better understand the geometry. Recent developments for implicit modelling of folds and faults have built new local coordinate systems using the structural geology of the object being modelled and are termed structural frames. For example, for folds, the structural frame is aligned to the axial surface of the fold and fold axis. For faults, the structural frame is aligned to the fault surface and slip direction. Using structural frames, conceptual models of the fold and fault geometries can be combined with the observations of the surfaces. This means that rather than using the geologists' subjective interpretation to constrain the model geometries, the conceptual model can guide the interpolation where observations are missing. Geological uncertainties in the resulting geometries can be assessed by framing the modelling as an inverse problem and varying the conceptual model parameters to fit the geological observations. In this contribution, we review the use of structural frames for constraining 3D geometry of structurally complex terranes and provide an example of a faulted fold series.

How to cite: Grose, L., Laurent, G., and Ailleres, L.: Using structural frames to integrate structural geology into implicit 3D modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20819, https://doi.org/10.5194/egusphere-egu2020-20819, 2020.

EGU2020-21115 | Displays | TS11.2

Geostatistical interpolation and simulation of geological properties considering regional deformation

Jan von Harten, Miguel de la Varga, and Florian Wellmann

Kriging is a widely used geostatistical tool to estimate the value of a spatially correlated property at a certain location based on sampled data in the surrounding domain. It creates a weighted average of this data based on the distances to the point that is to be predicted. Interpolated maps and simulated stationary fields play an important role in various geological fields like flow simulation and resource estimation.

Distances between locations in a specified domain thus play an important role in the kriging process and are traditionally measured as straight-line distances. In this work we develop an alternative distance metric to these Euclidian distances normally used in the geostatistical worklflow.

The metric is based on a scalar field that is calculated for 3-D geologic models that are interpolated based on a potential field method implemented in the open-source, implicit geologic modeling tool GemPy.

The measure follows the curvature of the deformation of stratigraphic units, which is relevant when modeling the distribution of a property that developed before deformation. As an undeformed state of the domain is represented by these distances, authorized variogram and covariance models are still valid with the introduced distance metric.

In addition, anisotropies can be modeled in relation to the deformation of a layer by manipulating the new distance metric. The kriging calculations and distance measurements are combined in a Sequential Gaussian Simulation to estimate an entire domain, while adequately modeling the underlying variance. We show first promising results of our work using the newly developed distance metric in different geological settings, including folded and faulted domains.

How to cite: von Harten, J., de la Varga, M., and Wellmann, F.: Geostatistical interpolation and simulation of geological properties considering regional deformation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21115, https://doi.org/10.5194/egusphere-egu2020-21115, 2020.

EGU2020-21739 | Displays | TS11.2

Novel Approach to Geological Modeling with Combination of Machine Learning

Stanislav Ursegov and Armen Zakharian

This work shows that the traditional version of geological models of oil and gas fields obtained by a computer approach is not the only possible one and it prevents the development of modeling as a whole, since it is not truly mathematical.

Given that computers do not work with images, but with numbers, a novel approach is presented for the construction of truly mathematical geological models. The proposed model has an unusual appearance and is not intended for visual analysis, but it is more effective for forecasting. The mathematical basis of the novel approach is the cascades of fuzzy-logical matrices, which are formed from spatial coordinates and considered geological parameters.

Suppose that for each point in the geological grid there is a coordinate vector, in the simplest case these are the lateral coordinates X and Y, as well as the vertical coordinate Z. There is also a set of points (wells) at which the specified coordinates and the values of considered geological parameter, for example, porosity or oil saturation are determined. If some seismic parameter is added to them, which can be taken from grids constructed according to seismic data at the points of the wells, then four coordinates become available.

Preliminary, all considered geological parameters should be normalized in the range from -1.0 to + 1.0 in order to standardize and equalize them.

Four coordinates give six independent pairs. A matrix is constructed for each of these pairs. The matrix size can be different - from 100 per 100 to 1000 per 1000.

Next, the values of the considered geological parameter at the well points determined by four coordinates are applied to these matrices. Certainly, such points are much smaller than the points in the matrix, therefore, to fill the entire polygon of the matrix, the interpolation method is used, based on the idea of the lattice Boltzmann equations.

The number of fuzzy-logical matrices in one geological model can reach several hundreds.

Using the obtained matrices, one can construct membership functions and predict the values of the selected geological parameters, as well as the distribution of initial hydrocarbon reserves or the effectiveness of new drilling at the field.

The novel approach to geological modeling based on the cascades of fuzzy-logical matrices may seem complicated. However, the calculation of these cascades is carried out completely automatically, since they are the truly mathematical functions, and not the illustrations of the geological structure of the filed, and they are directly used in forecasting calculations.

The cascades of fuzzy-logical matrices can be considered as a new form of machine learning algorithms, for which it is advisable to use big data sets. It opens up the additional possibilities for the application of machine learning methods in geological modeling of oil and gas fields with conventional and unconventional reserves.

How to cite: Ursegov, S. and Zakharian, A.: Novel Approach to Geological Modeling with Combination of Machine Learning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21739, https://doi.org/10.5194/egusphere-egu2020-21739, 2020.

Sharp interfaces often separate regions in the subsurface with distinctively different properties due to processes in geological evolution – and these   interfaces are relevant for a variety of scientific investigations, as well as practical applications.  The delineation of these layers with different properties is commonly attempted on the basis of geological and geophysical data, for example as picks in  prevalent seismic reflectors, interpreted from potential field measurements, and derived from observations in drillholes. 

We evaluate here a specific method to determine the position and shape of such an interface using measurements of state variables related to a physical flow field described with an elliptic PDE. A typical example is the measurement of temperatures related to heat flow through zones with distinctively different thermal conductivities. We use a level-set function to describe the interface and determine the optimal interface shape for a 2-D case. This type of shape inversion has been successfully attempted before, and we extend on this previous work by including additional shape constraints on orientation, interface, and observations of specific segmentation outcomes. These constrains are motivated by geological information that may be available, for example as derived and interpreted from additional geophysical measurements. 

We model this as an image segmentation problem, where we are looking for a segmentation of the image domain whose induced temperature minimizes the squared L2 distance to temperature measurements on a lower dimensional set. From an optimal control perspective, the segmentation is the control and the temperature the state.  Numerically, the segmentation is represented by a level set and the minimization is done using a gradient flow, where the derivative with respect to the level set is computed using dualization. Moreover, we include additional geologically motivated constraints by adding soft penalties to the objective function.

We test our method with several conceptual examples to determine the feasibility and limitations, especially with regard to different interface shapes and the amount of available information and additional geological constraints, as well as the influence of noise on the detection  accuracy. Results show that these additional constraints help determining an interface. However, measurement noise and a non-homogeneous spatial distribution of physical properties reduces the accuracy of the derived interface. 

How to cite: Wellmann, F. and Berkels, B.: Detecting subsurface interfaces with a physics-based level-set segmentation and additional geological constraints, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22526, https://doi.org/10.5194/egusphere-egu2020-22526, 2020.

TS11.3 – Applied seismic data analysis and interpretation in structural geology and tectonics: state-of-the-art and new prospective

Alpine lake sediments in the critical zone have proven their efficiency to record regional climate variability and geohazard history at several time-scales. However, the understanding of lake responses to external environmental factors depends on a precise knowledge of internal lake functioning. High resolution imaging of lake sedimentary infill is crucial to unveil internal and external factors impacting sedimentary processes. In memory of Walter Munk and to his considerable contribution to underwater geophysics, we present 29 high-resolution seismic reflection lines data (8 cm resolution/10 meters penetration) from Lake Altaussee (Walter Munk hometown lake in Austrian Alps), recently acquired using iXblue Echoes 10 000 sub-bottom profiler. Interpretations are supported by multibeam echosounder bathymetry and hydrochemical data.

Lake Altaussee is situated at 713 m a.s.l. in Northern Calcareous Alps (Salzkammergut, Austria). Lake depression is 2.6 km long, 1 km width and mean water depth is 53 m. Three main echofacies are observed: High/low intensity reflectors following the lake bed topography, Structureless weak amplitude layer on top of the bedrock, Massive and discontinuous structures at the eastern part of the lake.

First type suggests a great potential to reconstruct Late Holocene environmental and climatic events. Second type is probably associated to a landslide. Third type is located on top of holes and water resurgence (also visible in the bathymetry) and is attributed to carbonate sedimentation due to supersaturation and oxygenated conditions at the karstic system output. This hypothesis is supported by lower temperature and salinity measured at the karstic system output. Using Delph Seismic software, we constructed 3D modeling of the lake sediments by generating isopaches of main reflectors and estimated spatial distribution of sediment volume. Our model help at deciphering different sedimentary dynamics along the lake infill history and to suggest the deposition of historical earthquake, flood, etc, on top of the bedrock.

How to cite: Alban, B., Jouve, G., Leloup, D., Alain, P., and Chapron, E.: Imaging the Walter Munk lake: Sedimentary dynamics and water resurgence derived from high-resolution seismic reflection survey in Lake Altaussee (Salzkammergut, Austrian Alps), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18318, https://doi.org/10.5194/egusphere-egu2020-18318, 2020.

The oceanic crust in the vicinity of the Hawaiian Islands is of tectonic interest because it formed at a fast spreading mid-oceanic ridge during the Late Cretaceous (Turonian) and has been deformed since the Late Miocene by volcanic loads generated at a deep mantle hotspot. We have used legacy and recently acquired multichannel seismic reflection data to determine the character of oceanic crust and the Moho in a region south of the Hawaiian Islands where the Pacific plate has been flexed upwards partly by volcano loading and partly by the dynamics of the hotspot. The legacy data is based on Common Depth Point (CDP) and Constant Offset Profile (COP) data acquired onboard R/V Robert D. Conrad and R/V Kana Keoki during August/September 1982. Conrad was equipped with a 3.6 km long streamer and a 1864 cu. in. airgun array and Kana Keoki was equipped with a 1864 cu. in. array. During the COP experiment the two ships steamed on a similar heading and a separation distance of 3.6 km, yielding an effective offset for reflection data of 7.2 km. Original field data have been re-processed with ‘state-of-the-art’ seismic processing work flows using Shearwater REVEAL software. The recently acquired data was acquired during October 2018 with R/V Marcus G. Langseth, equipped with a 15 km long streamer and a 6600 cu. in. airgun array. Comparisons between the legacy and recently acquired reflection data have been informative, revealing new methods to process Conrad’s legacy of multichannel data acquired on 31 cruises during 1975 to 1989 and new insights on the structure and nature of the Moho in 95 Ma oceanic crust.

How to cite: Cilli, P., Watts, T., Boston, B., and Shillington, D.: A comparison of legacy and recently acquired multichannel seismic data on 95 Ma Pacific oceanic crust south of the Hawaiian Islands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10612, https://doi.org/10.5194/egusphere-egu2020-10612, 2020.

Remotely sensed seismic images are our main window into sub-surface geology and are used extensively in industries that explore or exploit the sub-surface and it’s geo-resources. Seismic image data are made by bouncing sound waves off sub-surface rock layers to build a picture of the geology. Seismic imagery, has an inherent uncertainty derived from image resolution, processing and acquisition workflows; the interpreting geologist therefore has a crucial role in using information in the image to produce a realistic geological model on which multi-billion dollar and key environmental decisions can be made. Research has shown that experts look at such imagery differently to novices and that colour presentation and other factors influence response to an image. Here we investigate how such factors influence a geologists’ interpreting a seismic image, and consider if we can use our findings to improve future seismic image interpretation through expert learning and potential image enhancement.

Eye movements offer a valuable, unbiased, research method, to reveal not only an individual’s interests and priorities when viewing an image, but also their expertise. In other disciplines eye movements of experts have been used to improve skill and enhance training of novices.Here we use eye-tracking to capture where geologists’ look on a seismic image to investigate whether: 1) colour palette choice for image presentation can affect image perception and influence gaze and 2) if expert and novice gaze patterns are different. In our experiments we have considered multiple colour palettes for a range of seismic imagery containing structural and sedimentological features. We show that expert and novice gaze is different, particularly in the initial phase of image exposure and that colour palettes have a significant impact on gaze and attention of all participants. Ultimately the objective is to see if we can learn from expert gaze to help improve the seismic interpretation skills of novices through image enhancement, and ultimately image interpretation outcome.

How to cite: Bond, C. and Tatler, B.: Expert and novice gaze in seismic interpretation, implications for colour palette choice and learning. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19067, https://doi.org/10.5194/egusphere-egu2020-19067, 2020.

Extension in rift zones and passive margins often occur by multiphase normal faulting which usually accommodates several episodes of lithosphere stretching by brittle deformation. In these settings, pre-existing normal faults may reactivate but also new-formed structures may nucleate, with multiple orientations and deformational styles. The various modes of fault growth and nucleation are strongly influenced by several parameters (including orientation and geometry of pre-existing discontinuities, stress orientation and magnitude, strain rates, confining pressure, etc..) with the lithostratigraphy controlling the brittle or ductile litho-mechanic behavior of each unit.

In this work, we interpreted and analyzed an industrial 3D seismic volume acquired in the Exmouth Plateau, (Northern Carnarvon Basin – offshore NW Australia), where pre-existing Mesozoic normal faults were reactivated during the Cenozoic and controlled the nucleation and growth of the new-formed overlying fault segments. The peculiarity of this system is that the two sets of faults are separated by a ductile interval of shales. The latter acted as decollement level and promoted the formation of prominent faulted anticlines in the overlying brittle sequence; these forced folds are poorly documented in other extensional settings while are common where salt layers are present. In this study, the high-resolution techniques adopted for seismic data interpretation aimed to understand the geometries of faults and their interactions in fine detail. The results of fault analysis suggest that the use of high-quality 3D seismic volumes is very useful to unravel the complex and subtle spatial variability and also the displacement pattern of faults with a limited amount of fault-throw.

How to cite: D'Intino, N.: High resolution imaging of fault reactivation in long-lived extensional setting: a case study from the Exmouth Plateau (NW Australia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22009, https://doi.org/10.5194/egusphere-egu2020-22009, 2020.

The characteristics of oceanic crust are dependent on the spreading rate of a Mid-Ocean Ridge (MOR). Crustal structure near an extinct MOR, therefore, provide unique constraints on how the magma supply and the crustal accretion respond to the reduced and ultimately ceased spreading. We present the crustal structure beneath 11 OBS sites near the extinct MOR in the central sub-basin of the South China Sea (SCS). We use the Receiver Function (RF) method to reveal the thickness and the Vp/Vs ratio of the crust based on the passive-source OBS data collected in this sub-basin. The thickness of the crust varies systematically with the distance to the ridge.  The thinned crust near the ridge likely indicates that, in the late stage of spreading, the magma supply has diminished and the spreading rate has dropped to the ultra-slow range. While the Vp/Vs ratios at most sites fall into the normal range, there exist a few anomalously high Vp/Vs ratios (> 2.0) at sites very close to the ridge. These high Vp/Vs values can be explained by the serpentinization of the uppermost mantle beneath the sites. As the spreading rate and magma supply were reduced, fractures and fissures were easily developed at the frank of the crust accretion, allowing water enters the lowermost crust and serpentinizes the uppermost mantle.

How to cite: Yang, T., Hung, T. D., Le, B. M., and Xue, M.: Crustal structure across the extinct ridge in South China Sea from OBS receiver functions: insights into the spreading rate and the magma supply prior to the ridge cessation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6350, https://doi.org/10.5194/egusphere-egu2020-6350, 2020.

EGU2020-20526 | Displays | TS11.3

Deep seismic reflection profiling across the central part of Northern Honshu arc, Japan

Hiroshi Sato, Tatsuya Ishiyama, Hidehiko Shimizu, Naoko Kato, Masanao Shinohara, Takaya Iwasaki, Hirokazu Ishige, Shinji Kawasaki, Susumu Abe, Makoto Matsubara, Testuo No, Shuichi Kodaira, and Naoshi Hirata

Northern Honshu, Japan, is a classic example of compressive island arc forming a trench-arc-backarc basin and was rifted away from the Asian continent in Miocene. The subduction of the Pacific plate generates megathrust earthquakes, such as the 2011 Tohoku-oki earthquake (M9) and an overriding plate deforms associated with M7-class reverse faulting. The amount of shortening is largest where along the Miocene failed rift basin, the Neogene post rift sediments form a fold-and-thrust belt. To understand the mechanisms of the deformation of overriding plate and generation of devastative earthquake, to reveal the detailed lithospheric structure of overriding plate is significant. In 2019, an onshore-offshore seismic reflection profiling was performed across the Japan trench to the axial part of the backarc basin. Here we focus on the crustal structure of the onshore section across the central part of northern Honshu.

The length of onshore seismic line is 160 km within the total 850-km-long seismic line. The air-gun shots in the forearc and backarc sides were recorded by onshore seismic line using 1616 fixed channels. Onshore seismic sources were four vibroseis trucks and dynamite shots. To obtain the deep crustal image, we used low-frequency signals. The produced sweep frequency was 3 to 40 Hz and seismic signals were recorded by 4.5 and 5 Hz geophones. Sets of 150 stationary vibroseis sweeps were performed at about 10 km interval along the seismic line. By conventional common-midpoint reflection methods and refraction tomography reveal the crustal structure down to 10 km. Together with the velocity structure obtained by earthquake tomography (Matsubara et al., 2019). Lithospheric structure is estimated by velocity structure obtained from active and passive sources, and geological data.

With seismic reflection profiles in the forearc (Miura et al., 2005) and backarc (No et al., 2014), the onshore seismic section portrays the first image of the seismic reflection profile across the Northern Honshu arc from the trench to the backarc basin. The basic structure of the over ridding plate were formed by the rifting of backarc opening stage. Most of the active faults inherited from the Miocene normal faults. The formation of backarc basins were achieved by the development of multi-rift systems. An axial part of failed rift within a continental crust is marked by a higher P-wave velocity lower crust, thick post-rift sediments underlaid by thick basalts. The failed rift is bounded by faults dipping to the outward of rift axis associated with mafic intrusion in a rift axis. The reverse faulting of the rift-bounding faults produced a fold-and-thrust belt in the post-rift Neogene basin fill. Judging from the tectonic geomorphological and geological features, these faulting and fault-related folding are active in late Quaternary. Detachment in this fold-and-thrust belt commonly accommodates in over pressured mudstone units in the rift basin. The major style of deformation of backarc is basement involved normal faults. Reactivation as reverse fault concentrated along the backarc continental failed rift.

How to cite: Sato, H., Ishiyama, T., Shimizu, H., Kato, N., Shinohara, M., Iwasaki, T., Ishige, H., Kawasaki, S., Abe, S., Matsubara, M., No, T., Kodaira, S., and Hirata, N.: Deep seismic reflection profiling across the central part of Northern Honshu arc, Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20526, https://doi.org/10.5194/egusphere-egu2020-20526, 2020.

Modern seismic geomorphology techniques are implemented to infer modes of emplacement of a wide range of products derived by gravity-driven deformation in continental margins and to discuss the implications of these for exploration of georesources in offshore basins.
High-quality 3D seismic data from the Namibian margin (West Africa) show how margin-scale, extensional-contractional gravity-driven linked systems deformed at least 2 km of Cretaceous post-rift strata. The systems are laterally segmented into a series of scoop-shaped megaslides ~30 km long by ~20 km wide, which are formed by listric headwall fault systems with associated 3D rollover structures and thrust imbricates at their toes. Lateral segmentation occurs along sidewall fault systems that display oblique extensional motion and define horst structures up to 6 km wide between individual slides.
Key examples are shown of slope failures offshore North West Shelf of Australia that affected Jurassic rift strata as well as near seabed, Late Oligocene to Recent, post-rift sediments. The seabed collapse systems originated at water depths of ~1000 m and extended downdip to depths well in excess of 1500 m. These are shallow failures that exhibit width ranging 1-5 km and run out of ~15 km, with estimated volumes of sediments in excess of ~10 km3. A number of these failures are characterised by disrupted, slump-like facies which progressively pass downslope into packages of high amplitude, continuous reflections. This facies transition represents a downslope rheological transformation from slump to mass-flow as evidenced by prominent canyons that link the updip failures to well-developed, downdip fan systems several kilometres across.
In the rift section, slope failures affected domino extensional fault systems in the form of well-imaged footwall degradation complexes. These complexes exhibit overlapping, scoop-shaped scars up to 10 km in length that deteriorated the exposed footwall breakaways. Debris from footwall collapse was resedimented in the hanging wall basins, forming talus wedges up to 300 m thick that taper away from adjacent fault planes for distances of several kilometres. These deposits are characterised by sheeted to contorted seismic facies, indicating a variety of mass-wasting processes accompanying footwall collapse.

This research demonstrates that a broad spectrum of slope instability processes can ensue during the evolution of rift systems to passive margins. Margin-scale megaslides emplace through processes of complex lateral segmentation which can create a variety of trapping mechanisms in the post-rift section of unstable margins. Downslope transformation of deepwater slumps into sediment flows may explain the occurrence of sandy deposits in offshore basins, hundreds of kilometres away from coastlines and river inputs.
On the other hand, fault degradation complexes, which are relevant slope instability processes in rift systems, can redistribute and accumulate footwall reservoirs into hanging-wall basins, increasing the diversity of play types in rifted margins.

How to cite: Scarselli, N.: From megaslides to mass flows: using seismic geomorphology to unveil gravity-driven deformation at continental margins., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22035, https://doi.org/10.5194/egusphere-egu2020-22035, 2020.

EGU2020-3608 | Displays | TS11.3

Tectonic controlled sedimentary features at the NE marigin of the Sorgenfrei-Tornquist Zone (STZ), southern Sweden

Yaocen Pan, Elisabeth Seidel, Christian Hübscher, Christopher Juhlin, and Daniel Sopher

The Hanö Bay basin was formed during Late Cretaceous transgression as a sedimentary trough on the NE margin of the Sorgenfrei-Tornquist Zone (STZ), a narrow NW-SE striking intraplate inversion zone within the Fennoscandian Border Zone. Sedimentation within the basin was primarily controlled by inversion tectonics, resulting in a coarse-grained syn-inversion clastic wedge forming adjacent to the basin-bounding fault in the Santonian-Maastrichtian. Previous studies have highlighted the deposition of contourite sediments associated with topographic relief of the chalk sea created by such local inversion-induced uplift. Imaged upper Cretaceous clinforms in the marginal trough show a NE-ward progadational character, that is, away from the uplifted and eroded inversion zone. These extend along the inversion axis all the way to NE of the Mid-Polish trough.

To gain detailed stratigraphic constraints and to better understand the interaction of these syn-sedimentary features that developed during inversion tectonics, we use a combination of high-resolution multichannel seismic data (MCS) from the 2019 AL526 cruise and a number of key profiles from reprocessed 70-80’s legacy industry MCS. Preliminary results suggest a drift-moat system developed during a stepwise uplift of the SW shoulder of the STZ, with the uplift driven by transpressional reactivation of basement faults. The resultant aggradational wedge formed a shelf-margin extending fairly far into the basin. The overlying clinoform depositional successions clearly demonstrate several depositional stages; including highstand-progradation, highstand-aggradation and distinct transgression-retrogradation, during which an overall landward migration of the paleo-shoreline position is revealed. The results constrain relative sea-level changes in this area that were primarily related to tectonic events during the Santonian-Campanian.

How to cite: Pan, Y., Seidel, E., Hübscher, C., Juhlin, C., and Sopher, D.: Tectonic controlled sedimentary features at the NE marigin of the Sorgenfrei-Tornquist Zone (STZ), southern Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3608, https://doi.org/10.5194/egusphere-egu2020-3608, 2020.

EGU2020-7543 | Displays | TS11.3

Seismic processing and imaging of the new 2D marine reflection seismic data in the Polish sector of the Baltic Sea

Quang Nguyen, Michal Malinowski, Piotr Krzywiec, and Christian Huebscher

Geological structure and tectonics of the Phanerozoic sedimentary cover within the transition zone between the Precambrian and Paleozoic platform in the Polish sector of the Baltic Sea was imaged using new 2D high-resolution multi-channel seismic reflection data. The new seismic data were acquired in 2016 during the course of RV Maria S. Merian expedition MSM52 within the framework of the BALTEC project. Eight profiles (with the total length of ca. 850km) covered the tectonics blocks located within the Polish Exclusive Economic Zone, stretching from the East European Craton (EEC) to the Paleozoic platform across the Teisseyre-Torquist Zone (TTZ).

Our in-house seismic processing workflow focused on removing multiples contaminating this shallow-water data, both water bottom and interbed related. Various demultiple techniques such as SRME, TAU-P domain deconvolution, high resolution parabolic Radon demultiple and SWDM (Shallow water demultiple) have been tested. Combination of all those techniques at different stages of the processing with some modifications based on a particular seismic profile proved to be the most effective. Consequently, multiples obscuring seismic sections were efficiently reduced. Data were processed up to Kirchhoff pre-stack time migration.

The longest seismic profile (line BGR16-212, ca. 240 km long) crosses almost perpendicularly majority of Precambrian and Paleozoic fault systems bordering the tectonic blocks of the EEC basement, so fault systems could be easily interpreted. EEC Precambrian basement is characterized by a regional flexure towards the TTZ. Cambrian-Ordovician exhibits similar geometry and is characterized by a relatively constant thickness related to deposition on the Tornquist Ocean passive margin. Thick Silurian succession is characterized by a regional divergent pattern caused by deposition within the Caledonian foredeep basin. Structural pattern within the W part of the study area is much more complex as this area underwent Late Paleozoic extension/transtension, Variscan inversion, Permo-Mesozoic subsidence and Late Cretaceous inversion.

This study was funded by the Polish National Science Centre grant no UMO-2017/27/B/ST10/02316.

How to cite: Nguyen, Q., Malinowski, M., Krzywiec, P., and Huebscher, C.: Seismic processing and imaging of the new 2D marine reflection seismic data in the Polish sector of the Baltic Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7543, https://doi.org/10.5194/egusphere-egu2020-7543, 2020.

Post-orogenetic extensional/gravitational collapse events constitute a relatively poorly understood tectonic process, which is responsible for the quick and effective dismantling of the thickened crust and topographic bulge of fold-and-thrust belt edifices. These events are also responsible for the accumulation of very thick post-orogenetic successions and, in case of active extension, may trigger moderate to strong earthquakes resulting in obvious seismic hazards (e.g., the 1915 Mg 7.0 Fucino earthquake in Central Italy, which caused 30,000 victims)

Here, we combine seismic interpretation coupled with well analyses, basin modelling and a thorough literature review, in order to compare an ancient and a modern example of study areas subject to post-orogenetic collapse. The Devonian-age Old Red Sandstones of north-western Europe and ?Plio-Quaternary fill of the Fucino intramontane extensional basin in the central Apennines (Italy) share several stratigraphic, depositional and tectonic characteristics. Both are characterized by remarkably similar seismic-stratigraphic architecture (with syn-depositional half-grabens) and maximum thickness of >1,500 metres. In the Fucino, the border faults associated to the main tectonic depocentres achieved maximum throw rates of 1,000-1,400 mm/kyr.

Both units comprise thick continental siliciclastic successions, dominated by lacustrine and alluvial to fluvio-deltaic facies. The facies architecture reveals a progressive transition from localized, fault-bounded depocentres to transgressive lacustrine successions in wider basins that are less reliant on the sole fault-driven subsidence. The studied units were deposited due to high and quick tectonic subsidence which took place very shortly after the end (or during?) of crustal shortening processes (respectively Caledonian and Apenninic orogenesis) and in a post-orogenic collapse context.

In both study areas, the sedimentation of the thick continental units are intimately associated to a polyphase inversion tectonics, with pre-existing inherited deep-seated discontinuities affected, in places, first by a positive and subsequently by a negative reactivation during the extensional collapse. A further element common in the two study areas, is a strike-slip or oblique tectonics occurring during or immediately prior to the extensional collapse achieved by the normal faulting. This has been interpreted as a consequence of the gradual rotation of the stress vectors around their axes, culminating in the relaxation of the horizontal compressive stress and the onset of the post-orogenetic extensional/gravitational collapse process itself. For example, in the Fucino Basin, maximum Plio-Quaternary sediment thicknesses of >1700 m occur in two tectonic depocentres, situated respectively to the north and east of the basin. In contrast, the south-eastern striking dip-slip border faults bounding the eastern edge of the Fucino show maximum slip rates in the Lower-Middle Pleistocene, with evidence (e.g., Gioia dei Marsi) for a very recent activity, possibly linked with the 1915 seismic event.

The study of post-orogenic extensional collapse by comparison of ancient and recent basins suggest that in these settings poly-phase tectonic inversion commonly occurs and promote multiple reactivation of inherited zones of weakness. The comprehension of the common and dissimilar features, may be fundamental to better understand the mechanism and evolution of post-orogenic chain reworking and for natural resources and geological hazards assessment, including earthquakes. The coupled analysis of an ancient and recent example enables just that.

How to cite: Patruno, S. and Scisciani, V.: Inversion tectonics during post-orogenic extensional collapse: a comparison between ancient (North Sea, UK) and recent (Fucino Basin, central Apennines Apennines) intermontane systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19818, https://doi.org/10.5194/egusphere-egu2020-19818, 2020.

EGU2020-7164 | Displays | TS11.3

Time reprocessing and depth imaging of vintage seismic data: the Southern Adriatic Sea case study

Edy Forlin, Giuseppe Brancatelli, Nicolò Bertone, Anna Del Ben, and Riccardo Geletti

Nowadays depth imaging of seismic data, using different migration schemes (rays tracing or waves equation methods) and different techniques for velocity model building (i.e. grid or layer-based tomography, isotropic or anisotropic velocity field) is a standard approach for the earth’s subsurface characterization. When dealing with low fold vintage data, acquired with outdated technologies, modern processing algorithms may fail. On the other hand, the reprocessing of these old data with modern techniques may lead to an improvement of quality and resolution, allowing a more accurate interpretation of the investigated geological features. It is important to note that a lot of vintage data were acquired in areas with no recent surveys or currently subject to exploration restrictions. Therefore, available vintage data could be of great importance for all the stakeholders involved in geophysical exploration. We present a case study about the reprocessing of low fold marine seismic data that were acquired in 1971 in the Otranto Channel (Southern Adriatic Sea, Italy).

The first part of the work consists of a modern broadband sequence processing in the time domain, that allowed us to obtain a pre-stack time migrated seismic section; in the second part, depth imaging has been achieved through a pre-stack depth migration (PSDM). Reliable interval p-waves velocity model has been obtained using two tomographic approaches: grid tomography and layer-based tomography; for both, we carried out several iterations of the refinement loop, consisting of migration, ray tomography, residual velocity analysis, velocity model update.

The results show significant improvements compared to the original vintage section, in terms of resolution and signal to noise ratio. Moreover, depth imaging and velocity modeling added further information (e.g., reliable interval p-waves velocity model, real geometry and thickness of the main geological units). This study confirms that applying the up-to-date processing and imaging techniques to vintage data, their geophysical and geological value is enhanced and renewed at a relatively low cost.

How to cite: Forlin, E., Brancatelli, G., Bertone, N., Del Ben, A., and Geletti, R.: Time reprocessing and depth imaging of vintage seismic data: the Southern Adriatic Sea case study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7164, https://doi.org/10.5194/egusphere-egu2020-7164, 2020.

EGU2020-22048 | Displays | TS11.3

Seismic velocity-depth relation in foreland basins: the case study of the Central Adriatic Sea

Vittorio Scisciani and Paolo Mancinelli

In the frame of the geological characterization of the subsurface, the multidisciplinary approach is key to fully understand the geological and geophysical processes. Seismic data analysis and interpretation would result in a mere exercise without constraints provided by geological, geophysical and petrophysical data. These constraints may be provided by borehole data, surface geology or laboratory measurements on samples. In this work, to support geological understanding of foreland basins we integrate reprocessed seismic profiles and borehole data in the Central Adriatic Sea to investigate the velocity-depth trend of the Pliocene-Quaternary turbiditic siliciclastic deposits. These deposits play a key role in the reconstruction of the geodynamic and stratigraphic evolution of the foreland basin, as well as on the hydrocarbon exploration and gas storage in central Adriatic. Relying on independent approaches to map two way time (TWT) thickness of the PH deposits, we converge on testing linear and exponential functions to predict VP depth trend. Results suggest that for large (> 1500 m) thicknesses of the PH deposits best fit is achieved by the exponential function VP(z) = c z(1-n) while for thinner deposits, a linear function like VP(z) = V0 + k z provides best fitting estimates. We also investigate anomalies in velocity trend with depth and suggest that velocity drops observed in deep (2500-3500 m) PH sequences may reflect overpressure of these deposits. An hypothesis supported by the high sedimentation rates in central Adriatic during Pliocene. Finally, we stress the importance of considering vertical-component phenomena and their time evolution when modelling foreland basins.

How to cite: Scisciani, V. and Mancinelli, P.: Seismic velocity-depth relation in foreland basins: the case study of the Central Adriatic Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22048, https://doi.org/10.5194/egusphere-egu2020-22048, 2020.

EGU2020-9073 | Displays | TS11.3

Using 2D long-streamer seismic data waveform tomography to decipher sedimentary record of fault activity

Amin Kahrizi, Matthias Delescluse, Mathieu Rodriguez, Pierre-Henri Roche, Anne Becel, Mladen R Nedimovic, and Donna Shillington

Acoustic full-waveform inversion (FWI), or waveform tomography, involves use of both phase and amplitude of the recorded compressional waves to obtain a high-resolution P-wave velocity model of the propagation medium. Recent theoretical and computing advances now allow the application of this highly non-linear technique to field data. This led to common use of the FWI for industrial purposes related to reservoir imaging, physical properties of rocks, and fluid flow. Application of FWI in the academic domain has, so far, been limited, mostly because of the lack of adequate seismic data. While refraction seismic datasets include large source-receiver offsets that are useful to find a suitable starting velocity model through traveltime tomography, these acquisitions rarely reach the high density of receivers necessary for waveform tomography. On the other hand, multichannel seismic (MCS) reflection data acquisition has a dense receiver spacing but only modern long-streamer data have offsets that, in some cases, enable constraining subsurface velocities at a significant enough depth to be useful for structural or tectonic purposes.

In this study, we show how FWI can help decipher the record of a fault activity through time at the Shumagin Gap in Alaska. The MCS data were acquired on RV Marcus G. Langseth during the ALEUT cruise in the summer of 2011 using two 8-km-long seismic streamers and a 6600 cu. in. tuned airgun array. One of the most noticeable reflection features imaged on two profiles is a large, landward-dipping normal fault in the overriding plate; a structural configuration making the area prone to generating both transoceanic and local tsunamis, including from landslides. This fault dips ~40°- 45°, cuts the entire crust and connects to the plate boundary fault at ~35 km depth, near the intersection of the megathrust with the forearc mantle wedge. The fault system reaches the surface at the shelf edge 75 km from the trench, forming the Sanak basin where the record of the recent activity of the fault is not clear. Indeed, contouritic currents tend to be trapped by the topography created by faults, even after they are no longer active.  Erosion surfaces and onlaps from contouritic processes as well as gravity collapses and mass transport deposits results in complex structures that make it challenging to evaluate the fault activity. The long streamers used facilitated recording of refraction arrivals in the target continental slope area, which permitted running streamer traveltime tomography followed by FWI to produce coincident detailed velocity profiles to complement the reflection sections. FWI imaging of the Sanak basin reveals low velocities of mass transport deposits and velocity inversions indicate mechanically weak layers linking some faults to gravity sliding on a décollement. These details question previous interpretation of a present-day active fault. Our goal is to further analyze the behavior of the fault system using the P-wave velocity models from FWI to quantitatively detect fluids and constrain sediment properties.

How to cite: Kahrizi, A., Delescluse, M., Rodriguez, M., Roche, P.-H., Becel, A., Nedimovic, M. R., and Shillington, D.: Using 2D long-streamer seismic data waveform tomography to decipher sedimentary record of fault activity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9073, https://doi.org/10.5194/egusphere-egu2020-9073, 2020.

In marine seismic surveys, various acquisition systems are used depending on the survey purpose, target depth, survey environment, and conditions. A 3D survey of oil and/or gas exploration, for instance, require large-capacity air-gun arrays and six or more streamers with a minimum length of 6 km. In contrast, a high-resolution seismic survey for the shallow-water geological research and engineering needs a small capacity source such as air-gun, sparker, and boomer, deployed with a single-channel or multi-channel (24-channel) streamers. The main purpose of our seismic survey was to investigate the Quaternary geology and stratigraphy of offshore, Korea. Because the Quaternary is the most recent geological period, our target depth was very shallow at about 50 m below the sea-bottom. We used a high-frequency seismic source including a sparker of 2,000 J capacity or a 60 in3 mini GI-gun and an eight-channel streamer with a 3.125 m group interval or a single-channel streamer that included 96 elements. To compare the resolution of seismic data according to the seismic source, a boomer or sparker systems were used with the single-channel streamer on a small survey ship. The seismic data processing was performed at the Korea Institute of Geoscience and Mineral Resources (KIGAM) with ProMAX, and the data processing and resolution of each survey were compared based on their acquisition systems.

How to cite: Kim, Y. J., Cheong, S., Cukur, D., and Yoo, D.-G.: A comparative study of multi-scaled high-resolution seismic surveys in shallow marine environments: examples from three sites, offshore Korea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12869, https://doi.org/10.5194/egusphere-egu2020-12869, 2020.

EGU2020-21110 | Displays | TS11.3

New tools for 2D full-waveform inversion: applications on Brazilian Pre-Salt velocity model from Santos Basin

Henrique Santos, Claus Eikmeier, and Ernani Volpe

In this work, we present full-waveform inversion (FWI) results of a typical Brazilian Pre-Salt model (Santos Basin) using new open-source tools. The large accumulations of oil with excellent quality and high commercial value discovered in the pre-salt carbonates of southeastern Brazil, especially in the Santos Basin, have made this province one of the most prospective in the world. Velocity model building in areas of highly complex geology (like the Santos Basin) remains a challenging step in seismic processing. FWI proved to be an efficient tool for the determination of high-resolution details in multiparameter models of complex subsurface structures, and it has been applied in different geophysical problem scales. However, since FWI is a computationally and mathematically challenging problem, many issues remain open, such as more efficient ways to deal with multiparameter inversion problems such crosstalk and different orders of magnitude in the seismic signal for different classes of parameters. Inversions for more than one class of parameters are of particular importance in the estimation of the physical properties of rocks (poroacoustic or poroelastic applications), for example, to monitoring oil and gas reservoirs and for monitoring the injection of carbon dioxide into geological structures. Also, programming complex numerical algorithms for each application is time-consuming and often evades the expertise of researchers from the geoscientific community. In this sense, a high-level computational tool for simulations and inversions would greatly improve the working time for researchers. Existing finite difference based FWI tools such as Devito, and finite elements based partial differential equations (PDE) solvers tools such as FEniCS and Firedrake are being explored and used for these purposes. In this work, we initially present an FWI acoustic isotropic inversion test (velocity inversion only), performed with the Devito software while a particular code is being developed in FEniCS and Firedrake computer programs. Devito is also a new and under development software and therefore must be tested under different conditions. Our first numerical results indicate the potential of using freely available computational programs in a real case scenario.

How to cite: Santos, H., Eikmeier, C., and Volpe, E.: New tools for 2D full-waveform inversion: applications on Brazilian Pre-Salt velocity model from Santos Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21110, https://doi.org/10.5194/egusphere-egu2020-21110, 2020.

Northern Honshu, Japan, forms a classical example of the trench-arc-backarc basin system. Along the coast of the Sea of Japan, Miocene aborted rifts were developed filled with thick Neogene sediments and form an active fold-and-thrust belt. Devastative crustal earthquakes, such as the Shonai earthquake 1894 (M7), occurs historically. To reveal the relationship between active fault and fold structure with seismogenic source faults is significant for the evaluation of seismic hazards and possible risk. In the Shonai plain, northern Honshu, we performed 2D high-resolution seismic reflection profiling across the active faults. Seismic data was collected by 10 m shot and receiver interval using Enviro vib and Minivib (IVI) to obtain high-resolution image. Along some of the seismic lines, seismic reflection survey was recorded by fixed 800-1000 channels, producing high number of folds. The resultant seismic profiles provide the image of a fold-and-thrust belt developed in the Miocene volcanic rift basin. Former syn-rift faults reactivated as reverse faults and thin-skinned deformation prevails in the post rift sediments forming detachment in the Miocene over pressured mudstone units. Fault-related folds and wedge thrusting is common feature of the shortening deformation. There are two active thrust systems in the Shonai basin. One is known active fault system along the eastern margin of the Shonai plain and the other is an active-blind - thrust located in the central part of the basin. The late Quaternary tectonic movements along this fault was confirmed by the high-resolution seismic profiling. 

How to cite: Kato, N., Sato, H., and Ishiyama, T.: High-resolution seismic reflection profiling of the active fold-and-thrust systems in the Shonai backarc basin, northern Honshu, Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12185, https://doi.org/10.5194/egusphere-egu2020-12185, 2020.

TS12.1 – Geomorphic and sedimentary records of active tectonics

The range of applicable contexts for dating fault-offset geomorphic features and seismically deformed sediment has been extended by recent developments in luminescence dating, in particular using the post-IR IRSL (Infra-Red Stimulated Luminescence) at 225 degrees centigrade for single grains of potassium feldspar. Sediments in desert contexts as well as coarse gravels deposited under high-energy fluvial conditions appear to provide consistent age estimates. At first order, single-grain K-feldspar post-IR IRSL-225 is reliable and accurate.

 

However, situations where a deposit is composed of grains that were well-exposed to light prior to burial is reworked at night or during a storm may pose a limitation. The degree that an earlier event may be distinguished from the final deposition depends on the luminescence characteristics of grains, the age difference between the two depositional events, and the proportions of grains each event provides to the target deposit. This effect may be referred to as “shadowing”.

 

We are developing new measurement protocols to help identify grains that were well-bleached, that is they were exposed to sufficient daylight to reduce their trapped charge population to a low level before deposition. We are applying IRSL photochronometry, a determination of light exposure duration, for each grain as part of the dating protocol. This is performed with multiple elevated temperature (MET) IRSL, isolating IRSL signals with different sensitivities to light. Age assessment can be based only on responses from grains that were well-bleached, reducing reliance on the assumption that shared apparent age is correctly identifies depositional age populations. The approach can provide age estimates for multiple past events and information about the environmental conditions that existed before final deposition.

How to cite: Rhodes, E. and Ivester, A.: Improving the robustness of single grain K-feldspar IRSL sediment age estimates from active tectonic contexts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19294, https://doi.org/10.5194/egusphere-egu2020-19294, 2020.

EGU2020-4032 | Displays | TS12.1

Discrete changes in fault free-face roughness: constraining past earthquakes characteristics

Olaf Zielke, Lucilla Benedetti, P. Martin Mai, Magali Rizza, Jules Fleury, Lea Pousse Beltran, Irene Puliti, and Bruno Pace

A driving motivator in many active tectonics studies is to learn more about the recurrence large and potentially destructive earthquakes, providing the means to assess the respective fault’s future seismic behavior. Doing so requires long records of earthquake recurrence. The lack of sufficiently long instrumental seismic records (that would be best suited for this task) has led to the development of other approaches that may constrain the recurrence of surface rupturing earthquakes along individual faults. These approaches take different forms, depending on the specific tectonic and geographic conditions of an investigated region.

For example, around the Mediterranean Sea, we frequently find bedrock scarps along normal faults. Assuming that bedrock (i.e., fault free-face) exposure is caused by the occurrence of sub-sequent large earthquakes, we may measure certain rock properties to constrain the time and size of past earthquakes as well as the fault’s geologic slip-rate. A now-classic example in this regard is the measurement of 36Cl concentrations along exposed fault scarps in limestones.

For the presented study, we looked at another property of the exposed fault free-face, namely its morphologic roughness. We aim to identify whether fault free-face roughness contains information to constrain earthquake occurrence and fault slip-rates following the assumption that  sub-sequent exposure to the elements and sub-areal erosional conditions may leave a signal in how rough (or smooth) the fault free-face is (assuming a somewhat uniform pre-exposure roughness). Here, we present observations of fault free-face surface roughness for the Mt. Vettore fault (last ruptured in 2016) and the Rocca Preturo fault (The underlying models of fault free-face morphology were generated using the Structure-from-Motion approach and a large suite of unregistered optical images.). Employing different metrics to quantify morphologic roughness, we were indeed able to observe a) an increase in surface roughness with fault scarp height (i.e., longer exposure to sub-areal erosion causes higher roughness), and b) distinct (rather than gradual) changes in surface roughness, suggesting a correlation to individual exposure events such as earthquakes. Hence, fault free-face morphology of bedrock faults may serve as an additional metric to reconstruct earthquake recurrence patterns.

How to cite: Zielke, O., Benedetti, L., Mai, P. M., Rizza, M., Fleury, J., Pousse Beltran, L., Puliti, I., and Pace, B.: Discrete changes in fault free-face roughness: constraining past earthquakes characteristics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4032, https://doi.org/10.5194/egusphere-egu2020-4032, 2020.

EGU2020-5237 | Displays | TS12.1

Quantifying active deformation within the Southwestern Foothills of Taiwan, from incised fluvial terraces and sedimentary data

Philippe Steer, Valentine Lefils, Martine Simoes, J. Bruce H. Shyu, Magali Rizza, and Lionel Siame

The Taiwan mountain range stands as one of the most active regions on Earth. With an overall shortening rate of ~40 mm/yr and an average erosion rate of ~4 mm/yr, this mountain range appears ideal to better understand the interactions between tectonics and surface processes, and how these shape active landscapes. Here we explore the geomorphic and sedimentary record of active deformation within the Southwestern Foothills of Taiwan, and we quantify from there the kinematics of active faults. In particular, we investigate the downstream portion of the meandering Tsengwen river - one of the largest rivers of this region - where we identify and correlate remnants of 7 terrace levels, progressively abandoned over the last ~5 kyr. The incision of these terraces is interpreted as being controlled to the first-order by folding and uplift related to underlying active faults. The evolution of the river is reconstructed from correlated terrace remnants, and our results indicate that the overall river sinuosity and gradient did not vary significantly during the past ~5 kyr in response to tectonics. Incremental tectonic uplift is retrieved from terrace incision corrected for sedimentation at the mountain front, and is used to derive the incremental shortening since terrace abandonment. Downstream, within the Coastal Plain, the Tsengwen river reaches its base level and aggrades. Sedimentary facies within boreholes of the Coastal Plain record vertical displacements relative to sea level, spatially consistent with potential blind active faults. When corrected for eustatic variations, these data allow for quantifying tectonic uplift rates within the Coastal Plain over the last ~20 kyr. Taken altogether, our quantitative analysis of the Tsengwen river record, from terrace incision to dowsntream aggradation, reveals that the most frontal active faults absorb a shortening rate of at least ~35 mm/yr, that is most of - if not all -  the shortening rate to the absorbed across the whole mountain range.

How to cite: Steer, P., Lefils, V., Simoes, M., Shyu, J. B. H., Rizza, M., and Siame, L.: Quantifying active deformation within the Southwestern Foothills of Taiwan, from incised fluvial terraces and sedimentary data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5237, https://doi.org/10.5194/egusphere-egu2020-5237, 2020.

EGU2020-17152 | Displays | TS12.1

Identifying seismically active blind thrusts by geomorphology and seismic reflection profiles in a reactivated back-arc failed rift basin, Northeast Japan

Tatsuya Ishiyama, Hiroshi Sato, Naoko Kato, Susumu Abe, Satoru Yokoi, Hidehiko Shimizu, and Mao Okuda

We report on the morphotectonic characteristics in the tectonically active Southern Ethiopia Rift (SER) based on the analysis of high-resolution topographic data (12m TanDemX) and satellite imagery. The study region is a wide zone of distributed extension at the transition from the SER and the Northern Kenyan Rift and reflects the long-term effects of episodic tectonic events in the landscape.  The uplifted footwall margins of the north-south trending and left stepping ēn ēchelon basins of the SER constitute Pan-African basement rocks in the southern and central part (Chew Bahir, Mali-Dancha and part of Beto) and tectonized Miocene basalts in the north (Sawula). As such this region is an ideal location to record the tectonic characteristics of a major transition zone between two rift systems. Some of the unsolved problems in this area concern the degree of tectonic activity, spatiotemporal variations in the amount of extension, and the nature of kinematic linkage between different faults. To examine these issues, we calculated morphometric indices of river catchments along major fault-bounded blocks as proxies for tectonic activity and combined this information with structural, seismicity, and climatic data. 
We determined basin asymmetry, hypsometric integral, mountain-front sinuosity, valley floor to valley-width-height ratio, basin shape, the range of basin form and mean slope; additionally, we calculated knickpoint distributions and channel-steepness index values from 89 sub-basins. Combined, the data suggest a significant north-south variation in extensional processes. For example, in the northern basins knickpoints are generally located in upstream areas near the channel heads. They are rare in the Mali-Dancha basin, whereas in the Chew Bahir basin a distinct distribution along the main channel is recognized from basin head to the mountain front. In the south the knickpoints are closest to the mountain front. This unique spatial arrangement of knickpoints in rivers draining the footwalls of extensional blocks in the north-south transect suggests a gradual, southward-directed shift in extensional deformation and recent tectonic activity. The normalized channel-steepness index value is generally small; however, it also exhibits a significant southward trend with higher values (i.e., tectonic activity). Additionally, the normalized channel steepness indices are higher at orthogonally interacting faults compared to neighbouring areas, suggesting strain localization. 
Our new results suggest a northward increase in the geomorphic maturity of the analyzed sub-basins from Chew Bahir (juvenile) to Sawula (mature), which is compatible with a northward decrease in tectonic activity and a dominance of erosional processes. This is consistent with published, northward-decreasing extension rates and the degree of regional seismicity. Furthermore, strain localization at interacting faults suggests kinematic linkage of the left-stepping bounding faults of the sub-basins.

How to cite: Erbello, A., Zeilinger, G., and R. Strecker, M.: North-South variation in tectonic activity along left-stepping extensional basins revealed by morphometric analysis: Gofa province, southwestern Ethiopia, East Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6770, https://doi.org/10.5194/egusphere-egu2020-6770, 2020.

EGU2020-8547 | Displays | TS12.1

Challenging Intraplate Orogens: from geomorphology to lithospheric dynamic. The French Massif Central Case study

Oswald Malcles, Philippe Vernant, Jean-François Ritz, David Fink, Gaël Cazes, Toshiyuki Fujioka, Régis Braucher, Jean Chéry, and Pierre Camps

In the 60’s, the formulation of the plate tectonic theory changed our understanding of the Earth dynamics. Aiming at explaining the earth first order kinematics, this primary theory of plate tectonic assumed rigid plates, a necessity to efficiently transfer stress from one boundary to another. 

If successful to explain, at first order, the plate-boundary evolutions, this theory fails when compared to the unpredicted but identified deformation located inside the plate-domains: the intraplate orogens. Indeed, the intraplate regions are thought to be slowly, if at all, deforming. Therefore, it is expected that intraplate regions do not show important finite deformation, that is to say, no mountains. Some intraplate regions, however, have important relief: the Snowy Mountains (Australia), the Ural Mountains (Russia) or the Massif Central (France) for examples. Traditionally, such regions are interpreted as old structures that are slowly eroded, interpretations that are most of the time weakly constrained. 

 

Our study is aiming at providing stronger constraints and then a better understanding of such challenging area that are the intraplate orogen domains. Because direct measurements of deformations (e.g. GNSS: Global Navigation Satellite System or InSAR: Interferometric Synthetic Aperture Radar) are most of the time below the precision level, it is necessary to derive this information from the landscape evolution. To do so, terrestrial cosmogenic nuclide (TCN) technics are a key method, allowing to constraint the temporal landscape evolution. Classically, two TCN-based approaches are used to quantify the landscape evolution rate: burial ages and watershed-wide denudation rates, based on measurement in quartz sediment of 10Be and 26Al concentrations, two radioactive cosmogenic isotopes.

 

Using the Massif Central (France) as study area, we show that this region is currently deforming.

From new geochronological constraints and a geomorphometric study, we propose that the region undergoes an active uplift encompassing the last c.a. 4 Ma. It can be explained by the combination of at least two phenomena: the first one is the uplift triggering event, that has yet to be clearly identified, and the second one: the erosional isostatic adjustment enhancing the first one and possibly continuing after the end of the first one. 

How to cite: Malcles, O., Vernant, P., Ritz, J.-F., Fink, D., Cazes, G., Fujioka, T., Braucher, R., Chéry, J., and Camps, P.: Challenging Intraplate Orogens: from geomorphology to lithospheric dynamic. The French Massif Central Case study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8547, https://doi.org/10.5194/egusphere-egu2020-8547, 2020.

EGU2020-21495 | Displays | TS12.1

Dynamics and evolution of continental margin clinoform systems

Gerben de Jager, Dicky Harishidayat, Benjamin Emmel, and Ståle Emil Johansen

Clinoforms are aquatic sedimentary features commonly associated with strata prograding from a shallower water depth into a deeper water depth. They are very sensitive to changes in water depth, rapidly moving along the shelf in response to sea level changes.  By reconstructing the initial clinoform geometry of buried clinoforms, an estimate of the paleo water depth (PWD) can be made. When this is done for several subsequent clinoform sets the amounts and rates of bathymetric changes can be calculated.

Here we present a novel approach to estimate clinoform parameters and depositional depths for continental margin clinoforms using seismic reflections, wellbore and biostratigraphy data. Seismic interpretation of three relatively east-west regional full-stack seismic reflection data from the continental margin of the western Barents Sea revealed twelve Late Cenozoic horizons. The clinoform shapes have been restored by removing the effects of compaction and flexural isostasy (backstripping). This includes the effects of glacial/interglacial scenarios on horizons with strong glaciomarine seismic indications.

Based on the reconstructed clinoform geometries we use empirical relationships from literature between clinoform geometry and depositional depth to estimate PWD values. In these analyses it is possible to estimate the PWD of the upper rollover point and the toe point by measuring the bottomset height, foreset height and topset height. A sensitivity analysis study has also been done on several different scenarios, varying elastic thickness, decompaction and net to gross ratio. Comparison with biostratigraphic water depth estimates indicate that PWD estimates revealed from clinoform parameters give reliable results.

Any mismatch between the backstripped PWD values and the PWD values derived from the clinoform geometry can then be attributed to geological processes not included in the backstripping process. Among others, these could be explained by rifting, thermal effects in the lithosphere, faulting or eustatic sea level changes. This allows the quantification of the magnitude of these large-scale crustal processes through time.

We will demonstrate that this method can further constrain the PWD on the continental margin clinoform system and thus can help to improve the understanding of the interplay between sedimentary processes and large-scale crustal processes. Furthermore, the PWD estimates will be a reliable input for further analysis of source-to-sink and stratigraphic forward modeling studies as well as reservoir and source rocks prediction on the petroleum development and exploration.

 

How to cite: de Jager, G., Harishidayat, D., Emmel, B., and Johansen, S. E.: Dynamics and evolution of continental margin clinoform systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21495, https://doi.org/10.5194/egusphere-egu2020-21495, 2020.

EGU2020-13225 | Displays | TS12.1

Slope analysis of active fault in volcanic areas using high-resolution DEM based on GIS

Daisaku Kawabata and Haruo Kimura

The movement of active faults due to inland earthquakes often involves surface displacement. In Japan, where many active faults are distributed, fault displacements are often accumulated and reflected on the current topography. For example, in a region where right-lateral strike-slip faults are distributed, it is possible to observe river topography systematically right-lateral strike-slip from the fault. Japan has many volcanoes as well as active faults, but in volcanic areas it is difficult to find evidence of fault activity accumulation in the terrain, and it is difficult to find fault traces on the surface. In this study, we performed geomorphological analysis using high-resolution DEM based on GIS in the southern part of Iwate prefecture where many volcanic rocks are distributed, and examined the relationship between river topography and active faults. The target area is mainly covered by Miocene to Pleistocene volcanic rocks. In this area, despite significant earthquakes occurring since 1896, there is little apparent surface displacement. An Mw 6.9 earthquake with surface displacement occurred in 2008 in this area. In this study, basic topographical measurements such as slope, aspect, dispersion of altitude, and stream density and stream-power indices were analyzed using 5mDEM in the target area. As a result, it was found that the SPI value tends to be higher in the area where surface displacement was observed in 2008. It is necessary to clarify the relationship between fault activity and topography by increasing the target area and conducting watershed analysis using SPI and other indices.

How to cite: Kawabata, D. and Kimura, H.: Slope analysis of active fault in volcanic areas using high-resolution DEM based on GIS, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13225, https://doi.org/10.5194/egusphere-egu2020-13225, 2020.

Paleozoic orogenic belts developed between the basement rocks in the southern Korean Peninsula records important information to reconstruct the tectonic evolution of East Asia. Here we present SHRIMP and LA–(MC)–ICP MS U-Pb ages and Hf isotopes of detrital zircon grains from the Paleozoic metasedimentary successions that are incorporated into the major Phanerozoic orogenic belts (Okcheon and Hongseong-Imjingang Belts) in South Korea, providing new insights into provenances and tectonic evolution during the Paleozoic period. Based on the internal structures of the zircons from all the samples, they are mostly derived from igneous source rocks, showing two distinct spectra patterns in their presence/absence of Neoproterozoic ages. Our results suggest that (1) the presence/absence of the Grenville-age (ca. 1.3–0.9 Ga) detrital zircons and Hf data from the Early Paleozoic Joseon Supergroup in the Okcheon Belt suggest their derivations from different peripheral clastic provenances at least after the Early Cambrian, (2) ages and Hf isotope signatures of dominant Early Neoproterozoic and Silurian-Devonian detrital zircon populations from the Middle Paleozoic metasedimentary rocks in the Hongseong-Imjingang Belt reflect magmatic history involving juvenile input and crustal reworking, and (3) zircons from the Late Paleozoic Pyeongan Supergroup in the Okcheon Belt display dominant Paleoproterozoic and Carboniferous-Permian ages with Hf patterns showing vertical mixing trends between juvenile and recycled crustal material. These results, integrated with U-Pb and Hf isotope data from other parts of the Korean Peninsula and the Chinese cratons, will eventually help to understand the spatial and temporal relations of basins and orogenic belts in the Korean Peninsula, and will further provide important clues about Paleozoic evolution of the Korean Peninsula in relation to the tectonic history of East Asia.

How to cite: Jang, Y., Kwon, S., and Kim, S. W.: Detrital zircon U-Pb and Hf isotope studies of the Paleozoic successions in the Korean Peninsula: Implications for the provenances and tectonic evolution of the Phanerozoic orogenic belts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4355, https://doi.org/10.5194/egusphere-egu2020-4355, 2020.

This study aims to investigate the thermal history regarding the Late Miocene Formation of the Hengchun Peninsula with low-temperature thermal chronometry. The samples used in our study were from Lilungshan Formation, which included quartzite (conglomerates) and sandstones (matrix). Lilungshan Formation was an upper fan or feeder channel deposits in shelf environments. Measurements of paleocurrent indicate that these rocks were transported from the NW to the SE, which may represent its source area is a low-grade metamorphic orogenic belt (Yuli belt). In the Late Miocene, outcrops of Yuli belt were low-grade metamorphic rocks with low metamorphic temperatures. To do so, low-temperature thermal chronometry was applied to measure the time since the Lilungshan Formation cooling below the closure temperature. Apatite Fission-track thermochronology is used in this study, which is a radiometric dating method that refers to thermal histories of rocks within the closure temperature range of 110–135°C.

Our study indicates that the pooled age of apatite fission tracks of conglomerates is 3.3–5 Ma and the grain ages of sandstones are below 5 Ma. Those ages are lower than the formation age of Lilungshan Formation (NN11, > 5.6 Ma). In addition, the grain ages spectrum of sandstones is partial annealing, which implies that the conglomerate has suffered from the thermal event and rapidly brought to the earth’s surface within 4 Ma. This study also compares data of previous studies with regard to the fission tracks of conglomerates in Southern Taiwan and confirms the existence of thermal events. With the assumption that the thermal gradient of the accretionary prism is 40–45°C/km, we can suggest that Lilungshan Formation was located 3 km below the earth's surface in roughly 4 Ma.

 

Keywords: Hengchun Peninsula, Lilungshan Formation, Apatite Fission Track, thermal history, chronometry, Late Miocene

How to cite: Kao, S.-I., Chen, W.-S., and Chan, T. H.: Late Miocene thermal history of the Hengchun Peninsula, Southern Taiwan: Apatite Fission-Track data from the Lilungshan Formation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3289, https://doi.org/10.5194/egusphere-egu2020-3289, 2020.

EGU2020-2653 | Displays | TS12.1

Tectonic uplift rate in the northern coast of the South China sea: insight from the 10Be exposure dating of marine terrace in southeastern China

Hao Liang, Ke Zhang, Zihao Chen, Ping Huang, Zhongyun Li, and Zhen Chen

Along the northern coast of the South China Sea in southeastern China, marine terraces preserved on the widespread Cretaceous granite and recorded both Quaternary uplift and sea-level oscillation. However, because sediments or materials for dating are usually absent, it is difficult to date these paleo-shoreline, which cause great difficulties in early exploration. Fortunately, as great progress on terrestrial cosmogenic nuclide dating, it is possible to yield the exposure age of marine terrace and to calculate the uplift rate along coastal line. This study focuses on two typical sequences of preserved marine terraces lying on the coastal line adjacent the Taiwan Strait in southeastern China. These two sequences of marine terraces (denoted as NZS and HJC site, respectively) both locate on the footwall (uplifting wall) of normal NE-SW trending fault (the Coastal Normal Fault) but on separated blocks subdivided by a normal NW-SE fault. At least 5 terraces and 2 terraces developed on granite at HJC and NZS site, respectively. In particularly, T1 and T3 terrace at HJC site and T1 terrace at NZS site present typical abrasion wave-cut platform with preserved sea stacks. Hence, we collected both profile and surface quarts samples on these well-preserved marine terraces for 10Be exposure dating and yielded exposure ages of 51.0±1.9 ka, 66.2±2.9 ka in T1 and T3 terrace at HJC site, and 87.9±3.5 ka in T1 terrace at NZS site. After subtracting eustatic sea-level changes from the relative sea-level curve, we measure high uplift rates of 1.13 mm/a at HJC site and 1.04 mm/a at NZS site during late Pleistocene. The similar uplift rates in different faulting blocks suggest that surface uplift can be directly linked to NE-SW fault system. Low difference of uplift rate between tow site suggest relative vertical motion of tow faulting blocks could be adjust by NW-SE faults. The regional uplift with high uplift rates is likely corresponding to the major collision between Luzon arc and the Chinese continental margin. However, because the contribution of by isostasy, e.g. surface erosion or ice-volume variation in Quaternary, remains uncertain, the calculated uplift rate maybe overestimated.

How to cite: Liang, H., Zhang, K., Chen, Z., Huang, P., Li, Z., and Chen, Z.: Tectonic uplift rate in the northern coast of the South China sea: insight from the 10Be exposure dating of marine terrace in southeastern China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2653, https://doi.org/10.5194/egusphere-egu2020-2653, 2020.

        Despite several tens of Pleistocene eustatic oscillations, it is surprised that only two marine sequences were preserved in the PRD (Pearl River Delta), the third biggest delta along the mainland China coast. The younger marine sequence (SQ1) has been consensus on the age of Holocene, i.e., MIS1, whereas the chronology of the older marine sequence (SQ2) is still in debate, i.e. belongs to MIS3 or MIS5. Those favor younger transgression suggest rapid uplift following the SQ2 deposited according to 14C and early luminescence dating, while the others argued that the current depth of SQ2 is affected by tectonic subsidence and better match the sea-level altitude in MIS5. To address this problem, it is significant to investigate a complete spatial distribution of SQ2 prior to dating. We applied 250 boreholes to acquire 5 Quaternary stratigraphic profiles throughout the PRD. These profiles reveal that the deposition area of SQ2 with current depth at -15 - -35m a.s.l. only reach the southern part of PRD, showing a much less area than SQ1. Sediments synchronous to SQ2 in the northern part of PRD present coarse grain in fluvial or piedmont environment, implying an erosional state. Preliminary OSL dating on SQ2 in boreholes in southern PRD yielded 85.5±5 ka, suggesting the SQ2 probably deposited in MIS5, here we infer to the high sea-level in MIS5a with altitude at ca. -20m. Moreover, we estimate the isostasy by erosion of granite highland in/around the PRD via hypsometric integral curve. We find that the modern average altitude of the highland is ca. 100-150m lower than the estimated isostatic altitude, suggesting tectonic subsidence in PRD. Overall, we interpret that the PRD was an eroding highland and keep subsiding since MIS5. Because of the topographic high, transgression occurred in MIS5 did not extend northward to modern delta area and led to absence of SQ2 in northern PRD. Subjected to tectonic subsidence, the once topographic high subsided beneath the modern sea-level but still higher the sea-level in MIS3. Marine sequence did not develop in PRD until transgression occurred in Holocene.

How to cite: Huang, P. and Liang, H.: Coupling of sea level changes and neotectonic activities in the Pearl River Delta─insight from stratigraphic profile and chronology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6880, https://doi.org/10.5194/egusphere-egu2020-6880, 2020.

EGU2020-248 | Displays | TS12.1

New estimates of minimum geological convergence for the eastern Himalaya, India

Rajeeb Lochan Mishra, Ramakrishnan Jayangondaperumal, Arjun Pandey, Vimal Singh, and Pradeep Srivastava

We re-investigate the geological slip along the frontal Nameri Thrust, a local name for the Himalayan Frontal Thrust in the eastern Himalaya, India. Four levels of tectonically displaced and uplifted fluvial terraces preserved along the Kameng River were dated using the Optically Stimulated Luminescence (OSL) method. The OSL ages of the terraces bracket the timing of their abandonment post ~14, 11, 7.2 and 3 ka respectively. Considering the minimum timing of vertical uplift and height of the uplifted and incised bedrock strath beneath the lowermost river terrace T1, we use trigonometric method to infer a vertical uplift rate of ~0.44 mm/a on the Nameri Thrust during the Holocene Period. The mismatch in the geodetic convergence and the geological slip rates proposed for the Himalayan Frontal Thrust in the eastern Himalaya in earlier studies provoked us to re-evaluate the scenario of geological slip in the area. Our results suggest a contrasting estimate of geological slip rate as compared to the earlier studies. Though the results are indicative of a decrease in the Indo-Eurasian convergence in the eastern Himalaya in accordance with the recent GPS observations and models proposed for the region, we, however, suggest that the lower estimation in our study compared to that reported previously could be due to the use of different dating methods for the materials obtained for assigning chronology to the landforms and events. Since the 14C AMS radiocarbon dating method requires a contemporary organic component in the sediments to be dated, an overestimation of the dates is also possible if the sediment has mixed with old carbon, which makes it inferior to the OSL method in which the mineral grains are assumed to have been fully bleached before their burial. This makes the OSL method more reliable to date sediments since it does not encounter the ‘old-carbon’ error problem of overestimation of the ages. Two additional samples obtained to the south of the active mountain front yield southwardly-increasing luminescence ages of ~19 and 26 ka suggesting deposition of older sediments toward downstream by the Kameng River as a result of rampant incision in the upstream triggered by episodes of tectonic uplift prior to ~26 ka.

How to cite: Mishra, R. L., Jayangondaperumal, R., Pandey, A., Singh, V., and Srivastava, P.: New estimates of minimum geological convergence for the eastern Himalaya, India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-248, https://doi.org/10.5194/egusphere-egu2020-248, 2020.

EGU2020-10132 | Displays | TS12.1

Investigating lateral variations in the kinematics of active deformation along the Western Kunlun mountain front (Xinjiang, China): structural and morphological analysis of the Hotan anticline

Christelle Guilbaud, Martine Simoes, Laurie Barrier, Jérôme Van der Woerd, Guillaume Baby, Haibing Li, Jiawei Pan, Paul Tapponnier, and Déborah Harlet

The Western Kunlun Range is a mountain range located at the northwestern boundary of the Tibetan Plateau, facing the Tarim Basin. Our previous combined structural and morphological investigations of the mountain front, nearby the city of Pishan where a Mw 6.4 earthquake occurred in 2015, revealed the existence of a duplex uplifting Cenozoic strata, in which only the most frontal blind ramp is presently active and slips at a probable rate of 2 to 2.5 mm/yr. Located ~100 km further east along the mountain front, the Hotan anticline seems to present a different structure from surface geology, as older strata from Mesozoic and Paleozoic outcrop. Additionally, some authors proposed that the deformation would be here accommodated by a large blind basement thrust sheet, in clear contrast with the duplexes documented further west.

To further document potential lateral variations in the structural style and how they may affect the kinematics of active deformation along the mountain front of the Western Kunlun, we carry out a structural and morphological analysis of the Hotan anticline. We build structural cross-sections based on seismic reflection profiles, and calculate the incremental uplift recorded by dated fluvial terraces to quantify shortening rates over the last ~300 kyr. Our analysis reveals that a duplex structure, located below the basement thrust sheet, presently accommodates active deformation at a rate of 0.5 to 2.5 mm/yr, with a preferred rate of ~1.6 to 2.3 mm/yr. In more detail, uplifted terraces reveal that all ramps of the duplex are active in the case of the Hotan anticline, while only the most frontal ramp is documented as active in the case of the Pishan anticline further west. These results indicate that the style and rate of active shortening are rather homogeneous all along the mountain front, in contrast with the first impression provided by surface geology. Moreover, the discrepancy between surface geology and active morphology reveals progressive structural changes over geological times, from a blind basement ramp to duplexes. However, in the details, active deformation still remains segmented as its partitioning on the various ramps of the duplexes is variable along strike.

How to cite: Guilbaud, C., Simoes, M., Barrier, L., Van der Woerd, J., Baby, G., Li, H., Pan, J., Tapponnier, P., and Harlet, D.: Investigating lateral variations in the kinematics of active deformation along the Western Kunlun mountain front (Xinjiang, China): structural and morphological analysis of the Hotan anticline, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10132, https://doi.org/10.5194/egusphere-egu2020-10132, 2020.

EGU2020-19950 | Displays | TS12.1

Switch-on, switch-off: Plio-Quaternary evolution of the Megalopolis Basin (Southern Greece), through structural overprinting, interaction and fault migration

Haralambos Kranis, Emmanuel Skourtsos, George Davis, Panagiotis Karkanas, Vangelis Tourloukis, Eleni Panagopoulou, and Katerina Harvati

We present an updated tectono-stratigraphic development model of the Megalopolis Basin (MB), which is an intra-montane basin, located in the actively extending domain of the Hellenic Arc, based on re-interpretation of borehole data, field mapping and stratigraphic – sedimentological reconnaissance. The Megalopolis basin develops on the hanging-wall of the W. Mainalo Fault System, which accommodates the deformation associated with the exhumation of the PQ metamorphics in the window of Assea, east of the MB. During the early stages of basin development, NNW-SSE normal faults controlled its eastern margin. These interacted with and gradually dismembered the ENE-WSW ones that were related to pre-Pliocene extension.

The establishment of ENE-WSW Quaternary extension in the southern Peloponnese is associated with major, range-bounding NNW-SSE faults, such as the Sparta F. that controls the eastern margin of the Taygetos horst. Fault growth and consequent uplift of the Taygetos horst affected the southern reaches of the Megalopolis Basin, through the development of an intra-basinal high (Leontari horst) that split the southern portion of the MB in two sub-basins, while the activity on the faults on the eastern margin of the MB ceases. The switching-off of the eastern margin was taken over by the faults that control the western margin of the MB, such as the prominent NNW-SSE, east-throwing Ellinitsa Fault and the Lykaion Fault System; the latter is a rather elusive structure, owing to the nature of the affected formations (erodible Pindos clastics) and dense forest cover that obscure fault exposures.

The successive stages of fault evolution are reflected in, and largely control, the sedimentation type(s) in the MB. The initial Pliocene lacustrine conditions were gradually replaced by extensive fluviatile sedimentation (Megalopolis Fm), which interfingers with more focused, lacustrine deposits in the basin centre (Marathousa Fm.), when the Pleistocene Megalopolis Lake developed. The subsequent deposition of the (mainly) fluvial Apiditsa and Ellinitsa formations, follows the gradual starvation of sediment feeding from the E-ESE, (which fed the Megalopolis Fm) and marks the onset of fault activity in the southern and western parts of the MB. The establishment of the modern Alfeios drainage, initially deposited floodplain sediments, subsequently to cut into them and form terraces, following episodic(?) drops of its base-level, owing to alternating climatic conditions and/or surges of fault activity. Finally, the breaching of the basement salient in the NNW (Karytaina gorge), led to the establishmnent of the present-day base level, with Alfeios cutting into its more recent deposits.

This research was conducted under the auspices of the Ephoreia of Paleoanthropology and Speleology, Greek Ministry of Culture, and was supported by the European Research Council (CROSSROADS).

How to cite: Kranis, H., Skourtsos, E., Davis, G., Karkanas, P., Tourloukis, V., Panagopoulou, E., and Harvati, K.: Switch-on, switch-off: Plio-Quaternary evolution of the Megalopolis Basin (Southern Greece), through structural overprinting, interaction and fault migration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19950, https://doi.org/10.5194/egusphere-egu2020-19950, 2020.

EGU2020-10608 | Displays | TS12.1 | Highlight

Geophysical and Geological investigations of a major Miocene fault system within the city of Vienna: evidence for active tectonics

Bernhard Salcher, Jan-Christoph Otto, Stephanie Neuhuber, Christopher Lüthgens, Sabine Grupe, Thomas Payer, and Markus Fiebig

We present investigations of a major Miocene fault system crossing the city of Vienna by using sedimentological, geophysical, remote sensing and numerical age dating methods. The fault zone is located at the western edge of the Vienna Basin, a c. 55 km wide and c. 200 km long rhomb-shaped pull-apart basin, separating the mountain ranges of the Alps and Carpathians. At its western edge a major sidewall fault, the Leopoldsdorf Fault System  vertically offsets alpine units by up to 5 km. In this study, we focus on Pleistocene fluvial sediments of the Danube deposited along this fault zone. Distribution and facies provide suitable conditions to speculate on Quaternary fault activity. Fluvial gravels rest on top of fine-grained, marine sediments of the Miocene. Quaternary uplift preserved these sediments in the form of terraces that were extensively covered by Pleistocene aeolian deposits (i.e. loess). Later, solifluction affected those fine-grained sediments and obliterated the terrace steps resulting in a relative homogenously inclined top as well as a flat accumulation zone at the toe of the slope. Age brackets of Quaternary deposits are provided from redeposited quartz gravels using cosmogenically produced 26Al and 10Be as well as luminescence ages of the loess-like cover sediments.

The high resistivity contrast of the coarse-grained sediments to the underlying fine-grained marine sediments and the overlying loess deposits provided excellent conditions to infer the geometry of the fluvial deposits. Accordingly, we used electrical resistivity tomography and data derived from driller’s lithologic logs to constrain possible vertical offset of terraces. Possible surface ruptures were discussed by utilizing data from LiDAR-based high-resolution digital elevation models.

How to cite: Salcher, B., Otto, J.-C., Neuhuber, S., Lüthgens, C., Grupe, S., Payer, T., and Fiebig, M.: Geophysical and Geological investigations of a major Miocene fault system within the city of Vienna: evidence for active tectonics , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10608, https://doi.org/10.5194/egusphere-egu2020-10608, 2020.

EGU2020-19543 | Displays | TS12.1

Modelling the base of fluvial Quaternary sediments in the “Seewinkel” area (Austria)

Paul Zemann, Erich Draganits, Barbara Hodits, Bernhard Schiel, Rudolf Berka, and Michael Weissl

The “Seewinkel” region is the eastern most part of Austria located east of Lake Neusiedl, Austria’s largest lake. The area is located in the western part of the Little Hungarian Plain and is characterized by extremely low relief and abundant shallow lakes and pans. The general geological setting shows Quaternary fluvial sediments with minor aeolian cover in places, above Pannonian (Miocene, Tortonian) limnic fine-grained sediments. Recent seismic data show the existence of abundant brittle faults in the subsurface, related to the formation of the Pannonian Basin.

We model the thickness of the Quaternary sediments in this hardly exposed area, to gain insight into their deposition, the influence of pre- and post-tectonic structures and to improve our understanding of the uppermost groundwater storey. This study combines existing borehole data (mainly from OMV, Geological Survey of Austria, Gruppe Wasser Ziviltechnikergesellschaft für Wasserwirtschaft GmbH and Amt der Burgenländischen Landesregierung) and observations from construction sites with high-resolution airborne laser scanning (ALS) topographic data to model the thickness of the Quaternary sediments in an Open-Source geographic information systems (GIS) environment.

The Quaternary fluvial sediments pinch out towards northwest, being virtually zero close to the eastern shore of Lake Neusiedl, and increase in thickness towards east, reaching almost 30 m at the Austrian/Hungarian border. This tendency is mimicking the thickness trend of the underlying Pannonian sediments and most probably is related to the still ongoing regional subsidence in the Little Hungarian Plain.

How to cite: Zemann, P., Draganits, E., Hodits, B., Schiel, B., Berka, R., and Weissl, M.: Modelling the base of fluvial Quaternary sediments in the “Seewinkel” area (Austria), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19543, https://doi.org/10.5194/egusphere-egu2020-19543, 2020.

A breccia is a rock made up of angular clasts. Its formation can be the result of several types of geological processes (sedimentary, tectonic, hydraulic, magmatic, etc.). The aim of this study is to understand the formation and the preservation of sedimentary breccias with a significant thickness (several tens to hundreds of meters) in extensional environments, by comparing the Bas-Agly Basin, in the eastern French Pyrenees, to a recent analogue (Pleistocene-Holocene deposits of the Chora Sfakion region, SW Crete). In both cases, the breccias mainly consist of carbonate elements.

Our preliminary results show that:

- Along the coast of the Chora Sfakion region, sedimentary breccias are preserved at the front of a major normal fault scarp over a distance of ca. 20 km. Their formation results from a destabilization of the topographic slope triggered by the activity of the fault. The breccias were preferentially developed at the expense of dolomitic layers that underwent intense fracturation during an older deformation phase. Breccia deposition was related to processes of aerial or sub-aquatic landslides. Relatively fine-grained unsorted breccias are found close to the main fault whereas larger blocks and olistoliths are found farther away and down-slope, attesting for large mass slides. Preservation of the breccias has been favoured by subsidence at the front of the fault.

- The sedimentary breccias of the Bas-Agly Basin bear characteristics that are broadly comparable to those of Crete. With respect to the Cretan case, the Bas-Agly deposits, which consist of breccias alternating with fine sediments, represent a more distal part of the system. However, the age of the breccias in the Bas-Agly Basin is widely debated, with estimates ranging from the Late Jurassic to the Eocene. Depending on the actual age, the tectonic environment could have been quite different, e.g. extensional or compressional. Thus, it is crucial to know the real age of these rocks. In order to solve this issue, we initiated a geochronological study, using in-situ U-Pb dating by LA-ICP-MS and focusing on the carbonate matrix of the breccias. This approach has proven successful and yielded ages consistent with the proposed extensional environment.

In summary, extensional tectonics appear to favour both the production and the preservation of large volumes of sedimentary breccias, which, therefore, may be considered as a marker of this tectonic regime. Whether compressional tectonics could produce a similar situation is a topic of ongoing research.

Keywords: breccias, sedimentary, syntectonic, extension, Crete, Pyrenees, U-Pb dating

How to cite: Kernif, T., Nalpas, T., Gautier, P., Bourquin, S., and Poujol, M.: Formation and preservation of syntectonic sedimentary breccias in extensional environments (Crete and Pyrenees) and in-situ U-Pb constraints for the age of breccias in the Bas-Agly Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9024, https://doi.org/10.5194/egusphere-egu2020-9024, 2020.

EGU2020-1033 | Displays | TS12.1

Tectonic domains of the Betic Foreland System, SW Iberian Margin: Implications for the Gulf of Cadiz Contourite System

Débora Duarte, Cristina Roque, F. Javier Hernández-Molina, Zhi Lin Ng, Vitor Hugo Magalhães, Estefanía Llave, and Francisco J. Sierro

The southwestern margin of Iberian (SWIM) marks the transition between the Mediterranean Alpine Orogenic Belt and the Atlantic Azores–Gibraltar Fracture Zone, near the diffuse segment of the Africa (Nubia)-Eurasia (Iberia) plate boundary. The Gulf of Cadiz Contourite System (GCCS) has been build-up by the circulation of the Mediterranean Outflow Water (MOW) on the continental middle slope. This work aims to understand how the tectonic structures controlled the development, evolution and morphology of the GCCS. This has been accomplished with the analysis of high quality regional 2D seismic reflection profiles. Four sedimentary basins were mapped in the study area – the Algarve, Doñana, Sanlucar and Cadiz basins – developed in the foreland of the Betic-Rif Orogen. Three major tectonic structures – the Gil Eanes Fault (GEF), Cadiz Fault (CF) and the Albufeira-Guadalquivir-Doñana Basement High (AGDBH) – were identified on the SWIM. The NW-SE-oriented GEF and the NE-SW to ENE-WSW-oriented CF were identified as dextral strike-slip faults. The AGD is an E-W to ENE-WSW elongated morphostructural high that marks the southern boundary of the Algarve Basin. Based on their location and orientation they were interpreted as being inherited structures from the Mesozoic rift system. Based on the described regional structures, the SWIM was divided into four tectonic domains (A, B, C and D) with different structural and seismological characteristics. Contourite depositional and erosional features show different characteristics – distinct size, extension, configuration and depositional architecture - for each of the  tectonic domains recognised. Tectonic-controlled subsidence led to the development of an accommodation space, forming the main depositional sector in the GCCS (Domain C). Contrariwise, where the margin suffered uplift, the accommodation space was limited and the contourite depositional features are not very extensive (Domain D). The presence of structural obstacles (e.g. AGDBH, paleo-slope) is another important factor in the drift evolution: mounded geometries were only observed where important structural obstacles conditioned the current circulation (Domain B, C and D). Where the seafloor is gentle with smooth relief, spread-out MOW circulation occurs, forming sheeted drifts related to weak and wide non-focused bottom-currents (Domain A). This work demonstrates the influence that the inherited tectonic structures and the margin paleo-topography has on the development of the contourite system. Furthermore, we propose that tectonics also control the dimensions and types of the contourite depositional features.

Acknowledgements: D.D. thanks the Portuguese Foundation for Science and Technology (FCT) for a PhD scholarship (reference SFRH/BD/115962/2016). This research has been conducted under the framework of ‘The Drifters Research Group’, Department of Earth Sciences, Royal Holloway University of London (UK). This project is partially funded by a Joint Industry Project supported by TOTAL, BP, ENI, ExxonMobil, TGS and Wintershall and partially supported through the CGL2016-80445-R (AEI/FEDER, UE), CGL2015-66835-P and CTM2016-75129-C3-1-R.

How to cite: Duarte, D., Roque, C., Hernández-Molina, F. J., Ng, Z. L., Magalhães, V. H., Llave, E., and Sierro, F. J.: Tectonic domains of the Betic Foreland System, SW Iberian Margin: Implications for the Gulf of Cadiz Contourite System, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1033, https://doi.org/10.5194/egusphere-egu2020-1033, 2020.

EGU2020-10637 | Displays | TS12.1

Comparing permanent deformation and seismic asperities in the 2015 Illapel earthquake rupture zone

Roland Freisleben, Julius Jara-Muñoz, Daniel Melnick, and Manfred Strecker

Abstract:

Giant subduction earthquakes (MW 8 to 9) are usually characterized by heterogeneous slip distributions, including regions of very pronounced slip that are commonly known as asperities. However, it is a matter of ongoing debate whether asperities constitute persistent geologic features or if they rather represent transient features related to the release of elastic strain accumulated in areas of seismic gaps. Recent giant earthquakes along the coast of north-central Chile, such as the 2010 Maule (M8.8), 2015 Illapel (M8.3), and 2014 Iquique (M8.2) events, were all associated with the rupture of single or multiple seismic asperities. Here we compare permanent deformation and seismic-cycle deformation patterns and rates along the 2015 Illapel earthquake rupture zone (~30° to 32°S) spanning orbital to decadal time scales. To decipher permanent deformation features manifested in the upper plate of the subduction system we identified and correlated the elevations of Late Pleistocene marine terraces using TanDEM-X digital topography and previously published terrace ages. We focused on terraces related to the Marine Isotope Stages (MIS) 5 and 9 (~124 ka and ~320 ka) due to their excellent preservation and lateral continuity. We furthermore compared deformation rates based on these uplifted terraces and compared them with published co-seismic slip and interseismic locking models of the Illapel earthquake. Uplift rates derived from the MIS-5 marine terraces range between 0.08 and 0.35 m/ka, while uplift rates based on MIS-9 terraces range between 0.38 to 0.96 m/ka. The higher uplift rates are found at the northern part of the Illapel rupture and these areas correlate to crustal structures (e.g. Puerto Aldea Fault). We observed a direct correlation between MIS-5 and MIS-9 uplift rates and co-seismic slip in the northern parts of the rupture while there was no clear correlation in the south at the central and southern parts of the rupture zone. The comparison between the spatial distribution of locked areas and uplift rates provided only a weak correlation for the MIS-9 terraces at the southern part of the rupture. Our results suggest that the northern part of the IIIapel rupture zone may accumulate permanent deformation during megathrust earthquakes. In contrast, accumulation of deformation at the southern part of the rupture may be controlled by activity in the neighboring seismotectonic segment. Broad warping patterns of marine terraces might reflect changes in boundary conditions at interplate depths, such as subduction of seamounts or other oceanic bathymetric features. This analysis highlights the temporal and spatial variability of deformation at convergent plate margins over multiple time scales.

How to cite: Freisleben, R., Jara-Muñoz, J., Melnick, D., and Strecker, M.: Comparing permanent deformation and seismic asperities in the 2015 Illapel earthquake rupture zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10637, https://doi.org/10.5194/egusphere-egu2020-10637, 2020.

TS13.1 – Salt basins: from deposition to deformation

EGU2020-11125 | Displays | TS13.1

Minibasin mobility and obstruction on salt-detached slopes: implications for canopy dynamics and sediment routing

Naiara Fernandez, Oliver Duffy, Frank Peel, Michael Hudec, Gillian Apps, and Christopher Jackson

In salt-detached gravity-gliding/spreading systems the detachment geometry is a key control on the downslope mobility of the supra-canopy (supra-salt) sequence. As supra-canopy minibasins translate downslope, they also subside into salt. If the base of salt has high relief, minibasins may weld and stop from further free translation downslope. The degree of minibasin obstruction controls both the kinematics of the individual basins, and the more regional pattern of supra-canopy strain. Here, we use regional 3D seismic data to examine a salt-stock canopy in the northern Gulf of Mexico slope, in an area where supra-canopy minibasins subsided vertically and translated downslope above a complex base-of-salt with high relief.

At a regional scale, we distinguish two structural domains in the study area: a highly obstructed or locked domain and a highly mobile domain. Large-scale translation of the supra-canopy sequence is recorded in the mobile domain by two different structures (a far-travelled minibasin and a ramp syncline basin). Although identifying the deformation area between the two regional domains is challenging due to its diffusive nature, characterizing domains according to base-of-salt geometry and supra-canopy minibasin configuration is helpful in identifying structural domains that may share similar subsidence and downslope translation histories.

At minibasin scale, minibasins that become obstructed modify the local strain field, typically developing a zone of shortening immediately updip of it and an extensional breakaway zone immediately downdip. Seismic attribute analysis performed in a cluster of minibasins in the study area illustrates a long-lived sediment transport system affected by the complex strain patterns associated with minibasin obstruction. At an early stage, a submarine channel system is captured and subsequently rerouted in response to the updip shortening associated with minibasin obstruction. At a later stage, a mass-transport complex (MTC) is steered by the topographic barrier created by the downdip extensional breakaway associated with minibasin obstruction.

Our work illustrates how salt-tectonic processes related to minibasin obstruction can affect the canopy dynamics at both regional and minibasin scale. Furthermore, we show that minibasin obstruction processes can modify the seafloor and subsequently control deepwater sediment dispersal, which, ultimately can affect hydrocarbon reservoir distribution on salt-influenced slopes

How to cite: Fernandez, N., Duffy, O., Peel, F., Hudec, M., Apps, G., and Jackson, C.: Minibasin mobility and obstruction on salt-detached slopes: implications for canopy dynamics and sediment routing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11125, https://doi.org/10.5194/egusphere-egu2020-11125, 2020.

EGU2020-12996 | Displays | TS13.1

Along-Strike Variation of Halokinesis and Structural Inheritance Along the West African Salt Basin, South Atlantic

Etienne Legeay, Jean-Claude Ringenbach, and Jean-Paul Callot

Along the West African margin from Gabon to southern Angola, the Loeme Aptian salt deposited during the late rift break-up process. Following the Atlantic opening, passive margin subsidence, large deltas and dynamic topography triggered and shape gravity tectonic systems. Evaporite deposition occurred during the break-up process, from the rupture of the continental crust to the spreading, thus providing an early inheritance (in term of thickness and geographic distribution of evaporites) for future salt tectonics, which is largely controlled by the genetic domain compartmentalizing the margin, namely the proximal margin, the neck basin, the distal margin, and the outer high and exhumed mantle. Classically, since the mid-90s the gravity gliding system pattern, with the usual triptych extension-translation-compression, has been over-applied along the West African margin. Recent data from Angola show mini-basins in a context of gravity spreading in addition to pure gliding-spreading roll-overs, rafts and diapirs, as well as mini basins developed during the early phase of evolution, and were later on squeezed by the gliding cell. We present here a regional study to compare major internal and external factors controlling halokinesis structural styles and we propose new maps and cross-sections up to 300 km long from onshore to ultra-deep offshore, to describe the main domains and styles across the Gabon, Lower Congo, Kwanza, Benguela and Namibe sub-basins. This work is based on an extensive 2D and 3D seismic reflection data, wells and internal reports. Margin scale cartographic compilation of both pre- and post-salt tectono-sedimentary trends provide elements to constrain both geometries and kinematics. This study documents the spatial and temporal distribution of both the inherited salt controlled basins (i.e. minibasins, salt ridges, etc.) as well as the superimposed gravitational systems, their characteristics and drivers (e.g. gliding, spreading), and by linking them to the genetic domains of the margin to highlight their various roles.

How to cite: Legeay, E., Ringenbach, J.-C., and Callot, J.-P.: Along-Strike Variation of Halokinesis and Structural Inheritance Along the West African Salt Basin, South Atlantic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12996, https://doi.org/10.5194/egusphere-egu2020-12996, 2020.

EGU2020-3328 | Displays | TS13.1

3D structure and kinematics of salt walls and megaflaps driven by differential loading: lessons from analogue modeling and field examples

Eduard Roca, Oriol Ferrer, Mark Rowan, Frederic Escosa, Josep Anton Muñoz, and Katherine Giles

The two dimensional geometry and evolution of salt walls driven by differential loading could be considered well established from previous studies. However, little is known about the internal deformation at the flanking edges and the 3D architecture at their terminations. This induces risk in hydrocarbon exploration of poorly imaged areas that could be significantly reduced with a better understanding of near-salt deformation and salt-sediment interaction in three dimensions. Using an experimental approach based on sandbox models and comparing their results with the southeastern termination of the Gypsum Valley salt wall in the Paradox Basin, we investigate both the internal deformation and the 3D structure of rectilinear salt walls emphasizing the development of faults and folds, including megaflaps, around their terminations. The experimental program includes 5 experiments simulating the salt, pre-kinematic overburden and syn-kinematic detrital deposits with a pure polymer, a sand/clay mixture and silica sand, respectively. It includes experiments with different salt/pre-kinematic overburden thickness ratios and salt wall edge geometries.

The experimental results document that in rectilinear salt walls driven by differential loading the plan-view geometry of the salt walls depends (amongst other factors) on the salt thickness. Hence, salt wall terminations developed over a constant-thickness salt layer are abrupt with a rectangular form; and those developed over a progressively decreasing salt layer thickness are gradual with a plan-view triangular shape. They also show that:

  • At the salt walls edges, the pre-kinematic overburden is folded by limb rotation in the younger minibasin side and by limb lengthening with vertical shearing in the older minibasin side.
  • The prekinematic overburden is internally almost underformed in the younger minibasin side where megaflaps developed. Instead, it is much strongly deformed (faulted) and broken by extensional faults in the opposite older minibasin side. This could have strong implications for hydrocarbon exploration since: 1) the megaflaps lack any significant secondary porosity and have lateral continuity of bedding; and 2) the prekinematic package of the older minibasin is compartmentalized and affected by internal deformation that can significantly increase its porosity and permeability.
  • At the ends of the salt walls, faults are mainly parallel or perpendicular to the diapir trend, being predominantly transversal in the abrupt terminations and longitudinal in the gradual ones.
  • Radial faults are rare and only present at the corners of abrupt salt wall terminations.

How to cite: Roca, E., Ferrer, O., Rowan, M., Escosa, F., Muñoz, J. A., and Giles, K.: 3D structure and kinematics of salt walls and megaflaps driven by differential loading: lessons from analogue modeling and field examples, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3328, https://doi.org/10.5194/egusphere-egu2020-3328, 2020.

The Barreme Basin and the Gevaudan diapir - an example of the interplay between compressional tectonics and salt diapirism

 

Adam Csicsek and Rod Graham

Imperial College London

 

Our understanding of the role of salt diapirism in determining the finite geometry of fold and thrust belts has grown apace in the last few years, but the interplay between the two remains a significant problem for structural interpretation. The Gevaudan diapir in the fold and thrust belt of the sub-Alpine chain of Haute Provence is well known and has been documented by numerous eminent alpine structural geologists. Graciansky, Dardot, Mascle, Gidon and Lickorish and Ford have all described and illustrated the geometry and evolution of the structure, and Lickorish and Ford’s interpretation is figured as an example of  diapirism  in a compressional setting by Jackson and Hudec in their text on salt tectonics. We review these various interpretations and present another.

The differences between the various interpretations say much about the complex interplay of salt diapirism and thin-skinned thrusting and have profound implications for the way we interpret the tectonic and sedimentary evolution of the Barreme basin which lies adjacent to the diapir

The Barreme basin is a thrust-top fragment of the Provencal foreland basin and has been described in detail from both sedimentological (e.g. Evans and Elliott, 1999) and structural (e.g. Antoni and Meckel, 1997) points of view. Here we make the case that it is also a salt related minibasin - a secondary minibasin developed on a now welded allochthonous Middle Cretaceous salt canopy.  We believe that within the basin it is possible to interpret successive depocentres which may record progressive salt withdrawal. We argue that though thrust loading must be the fundamental driving mechanism responsible for salt movement late in the tectonic history of the region, thrusting has not done much more than modify existing salt related geometry.    

How to cite: Graham, R. and Csicsek, A.: The Barreme Basin and the Gevaudan diapir - an example of the interplay between compressional tectonics and salt diapirism, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3655, https://doi.org/10.5194/egusphere-egu2020-3655, 2020.

EGU2020-21499 | Displays | TS13.1

How pre- and syn-Hormuz formations were incorporated into the Zagros salt diapirs and reached the surface?

Gabor Tari, Gholamreza Gharabeigli, Abbas Majidi, Tam Lovett, Ali Asghar Julapour, Ralph Hinsch, Christopher Sellar, and Walter Kosi

The southern Fars region of Iran is a classical and very well-studied area of salt tectonics for more than a century. Our study area is located in the “Simply Folded Belt” of the Zagros Mountains, including the nearby offshore of the Persian Gulf, and has a large number of well-known salt diapirs. These diapirs, composed of the infra-Cambrian Hormuz evaporites, have a surface diameter between 2-12 km and may extend vertically beneath the surface down to anywhere between 6-12 km.

In outcrop, the most striking aspect of these diapirs is the very large proportion of non-evaporitic rocks embedded within the evaporites. Also, these extraclasts (or megaclasts) are sometimes very large, reaching even the kilometer scale. We interpret their present-day dominance and ubiquitous „crowding“ in the outcropping apex of any given diapir as quite misleading as to their overall compositional contribution to these salt bodies. In our view, their seemingly large proportion in the internal make-up of the diapirs should be attributed to the preferential preservation of non-evaporitic rocks exposed on the surface. We argue that the real proportion of the overall non-evaporitic rocks within a typical Hormuz diapir could be as low as 1-2%, but certainly not more than 10%. Nevertheless, given their typical lithologies composed of crystalline basement, Eocambrian carbonates and sandstones with very high seismic velocities on the order of 5,000-5,500 m/s, the megaclasts may make the „dirty“ salt faster than the typical 4,500 m/s velocity of a typical “clean” rock salt sequence. These distinct crystalline and poorly dated Lower Paleozoic carbonate and clastic rocks found in the diapirs appear to have analogue formations outcropping only very far from the study area, like in Central Iran.

Importantly, as reported by others earlier, we have not found any evidence for the presence of post-Hormuz (i.e. post-Cambrian) host-rock lithologies incorporated into the diapiric material. Therefore, the strikingly selective nature of the extraclast lithologies within the diapiric bodies points to their original intra-Hormuz stratigraphic position. During Cenozoic diapirism, these infra-Cambrian Hormuz “stringers”, also including some pre-rift basement lithologies, were selectively incorporated into the ascending evaporite material as megaclasts and were carried to the surface from large depth. Therefore, one of the important conclusions of our study is that the various Hormuz intra-salt lithologic units must have deposited in a broad, wide-rift extensional setting.

How to cite: Tari, G., Gharabeigli, G., Majidi, A., Lovett, T., Julapour, A. A., Hinsch, R., Sellar, C., and Kosi, W.: How pre- and syn-Hormuz formations were incorporated into the Zagros salt diapirs and reached the surface?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21499, https://doi.org/10.5194/egusphere-egu2020-21499, 2020.

EGU2020-19196 | Displays | TS13.1 | Highlight

3D seismic imaging reveals salt-magma interactions in the Santos Basin, offshore Brazil

Craig Magee, Leonardo Muniz-Pichel, Amber Madden-Nadeau, and Christopher Jackson

Many sedimentary basins worldwide host extensive evaporite deposits, which through salt tectonic processes can form a variety of complex salt structures and diapirs. Many of these basins also host extensive networks of igneous intrusions. It thus seems inevitable that, in some scenarios, magma intruded into a sedimentary basin will interact with salt. However, we have a poor understanding of how the unique rheological and compositional properties of salt, or the local stress states developed around salt bodies, may influence the emplacement and composition of magma. For example, do evaporites and associated salt structures provide preferential flow pathways for ascending magma, or do they capture magma? We also do not know how the interaction of hot magma with salt, or the presence of crystallised intrusions within salt, may impact halokinesis. To understand how salt and magma interact, it is critical to investigate both their structural and chemical relationships within a framework where the timing of intrusion, evaporite deposition, and salt movement is well-constrained. Key problems with this ideal approach to unravel salt-magma interaction are: (i) field (or outcrop) exposures of intrusions within salt allow chemical and small-scale structural analysis of magma-salt interactions, but provide little insight into how the whole system behaved in 3D; whilst (ii) seismic reflection images of intrusions within salt bodies reveal their 3D architecture and may provide insight into the impact of magmatism on halokinesis, but do not allow chemical or small-scale structural analysis, unless drilled.

Here, we use 3D seismic reflection data from the Santos Basin, offshore Brazil to characterise the structure of, and relationships between, 38 igneous sills emplaced below, within, or above a Lower Cretaceous evaporite layer. Salt movement initiated soon after deposition, primarily driven by gravity-driven extension, and continued throughout most of the Cenozoic but with different kinematics and degree of salt rise and diapirism throughout the study-area. In the area hosting the sills, Late Cretaceous-Cenozoic deformation was dominated by continued extension with limited salt rise and diapirism. Conversely, in the area where no sills are recognized, Late Cretaceous-Cenozoic salt tectonics was characterized by passive/active diapirism and localized shortening.

There is little overall geometrical difference between sills emplaced below, within, and above the salt, but we note that many intra-salt sills appear more segmented. Seismic-stratigraphic relationships indicate sill emplacement occurred during several episodes in the Cretaceous between the Turonian-to-Santonian. We suggest this phase of magmatism, which separated the major Albian-Cenomanian and Cenozoic periods of salt movement, locally inhibited diapirism and thereby changed the mode of basin deformation. We attribute this local change in salt diapirism to: (i) crystallisation of igneous sills, which locally increased the mechanical strength of salt and overburden, limiting salt rise and acting as buttresses to lateral salt movement; and (ii) melting and assimilation of weak evaporite layers (e.g., carnallite), which usually act to lubricate salt movement, into the magma. These results shed light into the interaction of two common and important structural processes in sedimentary basins that are relatively well studied separately but whose interaction is often overlooked.

How to cite: Magee, C., Muniz-Pichel, L., Madden-Nadeau, A., and Jackson, C.: 3D seismic imaging reveals salt-magma interactions in the Santos Basin, offshore Brazil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19196, https://doi.org/10.5194/egusphere-egu2020-19196, 2020.

EGU2020-19997 | Displays | TS13.1

Influence of a multi-layered salt stratigraphy on rift-basin development; Insights from the Slyne and Erris basins, offshore NW Ireland

Conor O'Sullivan, Conrad Childs, Muhammad Saqab, John Walsh, and Patrick Shannon

This study uses a combination of 2D and 3D seismic reflection surveys coupled with borehole data from the Irish Atlantic margin to map the distribution of salt in the Slyne and Erris basins and understand its influence on basin development throughout the Mesozoic.

The north-western European Atlantic margin is populated by a framework of rift basins stretching from the Barents Sea offshore northern Norway to the south of Portugal. Several of these basins contain significant quantities of salt, which plays an important role in basin development and structural evolution. While salt is present on the Irish Atlantic margin, its distribution and role in basin development is poorly understood. The Slyne and Erris basins, off the northern coast of Ireland, contain two proven layers of salt; the Upper Permian Zechstein Group and the Upper Triassic Uilleann Halite Member of the Currach Formation.

Where present in their salt-dominated forms, both layers act as décollements, mechanically detaching pre-, intra- and post-salt stratigraphy. The Zechstein Group is present throughout the Slyne and Erris basins, while the Uilleann Halite Member is only developed in the northern Slyne Basin and the southern Erris Basin. Both salt layers have undergone significant halokinesis during basin development, and their original thicknesses are unclear. This halokinesis has played a significant role in the formation of hydrocarbon traps in these basins: the Zechstein Group forms salt pillows and salt rollers, causing folding and rafting in the overlying Mesozoic section, driven by active faulting in the pre-salt Palaeozoic basement. The Uilleann Halite Member caused thin-skinned crestal collapse and delamination of the overlying Jurassic section above anticlines cored by Zechstein salt. Both layers of salt play a key role in the development of the Corrib gas field and are responsible for trap formation in the Corrib North and Bandon discoveries. Understanding the genesis of these salt-related structures in a multi-layered salt system will provide insight into future exploration activities in salt-prone basins offshore Ireland, as well as their suitability for storage of sequestered CO2.

ICRAG is funded in part by a research grant from Science Foundation Ireland (SFI) under Grant Number 13/RC/2092 and is co-funded under the European Regional Development Fund and by PIPCO RSG and its member companies.

How to cite: O'Sullivan, C., Childs, C., Saqab, M., Walsh, J., and Shannon, P.: Influence of a multi-layered salt stratigraphy on rift-basin development; Insights from the Slyne and Erris basins, offshore NW Ireland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19997, https://doi.org/10.5194/egusphere-egu2020-19997, 2020.

The strata adjacent to salt bodies (e.g., diapirs, sheets) serve as significant traps for hydrocarbons in numerous basins throughout the world.  The viability of these traps depends on the hydrological properties of the salt-sediment interface as well as the rocks within 200-300 m of that interface.  Although a variety of studies have described shear zones, rubble zones, gouge zones, drag zones and brecciated zones in rocks adjacent to salt, the exact nature and origin of these zones remains unclear.  Do these zones represent halokinetic deformation or slumps and soft-sediment deformation of suprasalt carapace?  Do their hydrological properties vary with structural position (e.g., subsalt ramps or flats) or other variables (e.g., mudrocks vs. carbonates) that are easily identified and risked?  A limited number of drill data are available to address these questions and because these zones typically occur less than 300 m from the salt-sediment interface, they are rarely amenable to seismic investigation. To resolve this data gap, we use field studies of allochthonous salt exposed in the Flinders Ranges of South Australia, a north-south trending foldbelt in the Adelaide Geosycline. The Neoproterozoic strata and evaporites that make up the Flinders Ranges were deposited during the breakup of the Rodinian supercontinent and later subjected to thin- and thick-skinned deformation during the Delamerian orogeny. The strata around many of the salt structures in this region hosts scapolite, suggesting a metasedimentary environment in excess of 250°C. Uplifted strata and salt structures are tilted to expose an oblique, cross-sectional view of both suprasalt and subsalt strata. For this study, we analyze the spatial variability of deformation beneath an allochthonous salt sheet exposed at a site called Tourmaline Hill, specifically looking at the differences between ramps and flats, and the presence (or lack thereof) of a rubble zone. We use high-resolution sUAS (i.e., drone) imagery to facilitate mesoscopic structural analysis and characterization of fracture orientation, style, timing, mineralization and abundance of features too large to photograph on the ground, but too small to be seen in satellite imagery. Detailed drone images are used to characterize deformation along transects perpendicular to the salt-sediment interface to approximately 200 m away in both the subsalt and suprasalt strata. Fractures are generally nonsystematic and abundant near the salt contact and become systematic and less abundant with distance away from salt. We find there is a change in fracture orientation between suprasalt and subsalt strata. Subsalt ramps feature decameter scale folding with halokinetic growth strata and abundant mineralized fractures suggesting fluid migration (accumulation?), whereas subsalt flats feature strata-bound, decimeter scale folding, suggesting soft sediment deformation of slumped carapace with little to no mineralized fractures. Rubble zones are not always present beneath salt in these field locations, but the style of deformation may be linked to the angle of the salt base.

How to cite: Lueck, L. and Fischer, M.: Ramps, Flats, and Rubble Zones: Case Studies of Deformation beneath Allochthonous Salt in the Flinders Ranges, South Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21155, https://doi.org/10.5194/egusphere-egu2020-21155, 2020.

EGU2020-21148 | Displays | TS13.1

Testing numerical models of subsalt deformation through field observations: Case studies from the Flinders Ranges, South Australia

Mackenzie Wegmann, Mark Fischer, Lillian Lueck, and Madison Schweitzer

The viability of hydrocarbon traps beneath allochthonous salt depends in part on the lithology, architecture, and geometry of stratigraphic units near the salt-sediment interface, as well as the hydrological properties of these units. All of these characteristics are intimately associated with the sedimentological and halokinetic processes that operate during salt sheet emplacement.  Key among these processes are the slumping of suprasalt carapace and the deformation of units overridden by the salt.  Although kinematic and conceptual models demonstrate how rates of sedimentation and salt advance work together to influence the geometry of the base salt-sediment interface and the stratigraphic truncations against it, they cannot be used to reliably predict the location, style and extent of subsalt deformation or overridden slumps.  Numerical models that have been used to examine the evolution of salt-sediment systems predict that rocks within 1-2 km of the subsalt-sediment interface should be intensely deformed, but do not incorporate slumping and provide no criteria by which to distinguish between subsalt disturbed zones that were created by halokinetic, ductile shear, and those that were created by slumping or other soft sediment deformation. In this study, we analyze deformation patterns present in the subsalt of three allochthonous salt sheets exposed in the Flinders Ranges of South Australia. Although these structures initiated in the Neoproterozoic, later regional-scale tilting and folding during the Delamerian Orogeny created an oblique, cross-sectional map view that allows for the detailed characterization of near-salt deformation at a scale of meters to hundreds of meters. We use a combination of field mapping and 2-3 cm/pixel resolution drone imagery to conduct mesoscopic structural analysis that characterizes the orientation, dimensions, relative timing, mineralization, spatial distribution, and abundance of deformation features (e.g., joints, veins, cleavage, faults, deformation bands, folds) in the subsalt strata exposed at each field site.  Data were collected along transects that begin at the salt-sediment interface and extend through 50-300 m of subsalt strata.  Two sites are situated in subsalt flats, whereas the third occupies a subsalt ramp.  Deformation beneath the flats appears to correlate to the thickness of the overlying salt sheet.  Where the preserved salt sheet thickness is < 200 m there is little to no mesoscopic deformation.  Where the salt sheet is > 1 km thick, strata are brecciated near the salt-sediment interface, brittle fractures are abundant, and layer-parallel shear zones and mineralized fractures decrease in abundance downward in the stratigraphic section. Deformation at the site with the discordant strata is more diverse and includes meter-scale faults, meter- to decameter-scale folds, abundant brittle fractures and localized brecciation.  These features are typically concentrated within 50 m of the salt-sediment interface and thereafter occur at abundances that are similar to those in strata that are > 100 m away.  Our results suggest that existing numerical models overestimate the amount and stratigraphic extent of deformation beneath allochthonous salt sheets.  Continued field study of near salt deformation will help to constrain future models and provide criteria to distinguish halokinetic and soft sediment deformation.

How to cite: Wegmann, M., Fischer, M., Lueck, L., and Schweitzer, M.: Testing numerical models of subsalt deformation through field observations: Case studies from the Flinders Ranges, South Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21148, https://doi.org/10.5194/egusphere-egu2020-21148, 2020.

The Permian to Lowermost Triassic Perkupa Evaporite forms the base of the enigmatic Silica Nappe (uppermost tectonic unit of the Aggtelek Hills, Inner Western Carpathians) and played the role of the main detachment level during the Cretaceous nappe stacking. Regionally, the Silica Nappe is one of the most enigmatic tectonic units of the Alpine-Carpathian area as up until now, it had many unanswered structural problems, like do the three or four different folding directions necessarily suggest multiple folding phases, how to solve the problem of extreme thickness changes in pre-orogenic sediments or why are young-on-older contacts so frequent in the area. Furthermore, several previous studies suggested that there may be salt diapirs rooting in this evaporitic detachment level but their role in the evolution of the Silica Nappe has not been studied in details.

In this study new approaches were applied in order to explain the abovementioned questions and to understand the deformation of the problematic Aggtelek Mts. Detailed geological mapping and structural analysis resulted in the recognition of extensive salt tectonics in the Inner Western Carpathians. Field results showed that not only simple salt diapirs but also map-scale salt walls were present in the southernmost part of the Silica Nappe. The observed onlap surfaces on the salt flaps and the extreme thickness changes within the Lower Triassic formations suggested that these salt structures originally formed syn-sedimentary with the respect to the Early Triassic sedimentation. Starting probably from the latest Early Triassic, sedimentation occurred in minibasins, the evolution of which was controlled by the continuously growing salt structures. Salt movements were coupled with doming and drag folding along the salt structures that resulted in slumping and syn-sedimentary normal faulting in the sedimentary cover.

These pre-existing salt structures and normal faults strongly influenced the geometry and kinematics of the subsequent Cretaceous deformation: the majority of shortening was localized at the salt walls and diapirs while the minibasins were left mostly unaffected. When the salt walls were squeezed, secondary salt welds formed that were now mapped as linear rauhwacke zones. Due to further shortening, the welds were reactivated as oblique thrust welds and the minibasin borders evolved into young-on-older thrust contacts. After peeling the effects of evaporite deformation off the Cretaceous shortening, the main tectonic transport direction was estimated to be towards S-SE.

Consequently, the structural evolution of the Silica Nappe is much more complex than previously thought but many long-standing problems could be explained by considering structural inheritance and bringing pre-orogenic salt tectonics into the interpretation. Nevertheless, the Aggtelek Mts. turned out to be a good area to further study the effects of inherited salt structures on the evolution of fold-and-thrust belts and to draw conclusions on how to separate salt-related folding from regular shortening related structures in poor outcrop conditions.

The research was supported by the research found NKFIH OTKA 113013 and the ÚNKP-18-2 New National Excellence Program of the Ministry of Human Capacities.

How to cite: Oravecz, É., Héja, G., and Fodor, L.: Salt tectonics in the Inner Western Carpathians (Silica Nappe, Aggtelek Hills): investigating the role of inherited Triassic salt structures during the Alpine deformation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1157, https://doi.org/10.5194/egusphere-egu2020-1157, 2020.

EGU2020-11176 | Displays | TS13.1

Growth of carbonate platforms controlled by salt tectonics (Northern Calcareous Alps, Austria)

Philipp Strauss, Jonas Ruh, Benjamin Huet, Pablo Granado, Josep Anton Muñoz, Klaus Pelz, Michael König, Eduard Roca, and Elizabeth P Wilson

The Mid Triassic section of the Northern Calcareous Alps (NCA) is dominated by carbonate platforms, which grew diachronously on the Neo-Tethys shelf beginning in the Middle Anisian and ending in Lower Carnian times. The platforms grew isolated in previous deeper marine settings with high growth rates reaching 1.5 to 2 mm per year. The concept of self-controlled growth of carbonate systems on salt changes the understanding of Mid-Triassic NCA sedimentology. Conceptual models of the carbonate platform growth were done based on field observations, construction of cross-sections and subsidence analysis of selected carbonate mini-basins. To satisfy the observed boundary conditions of platforms growth in respect of timing, water depth and basin evolution, fast accumulation rates have to be assumed best represented by salt deflation and down-building of carbonate minibasins. A feedback loop of carbonate growth (creating a load gradient) and subsidence by salt evacuation initiates once the pre-kinematic layer reaches the sea level and the first layer of carbonate is produced. An initial phase of fast carbonate aggradation ends once the salt below the platform is fully evacuated and the minibasin is primary welded.

To further analyse and quantify boundary conditions necessary for the observed carbonate mini basin evolution, a series of thermo-mechanical numerical experiments were conducted. The density and rheological parameters for rock salt applied in the experiments were mainly gathered from observations and mechanical experiments on salt from salt mines and from an exploration well by OMV in the Vienna Basin. The numerical simulations essentially support the concept of down-building carbonate platforms. Self-controlled growth of carbonate systems on salt allows a completely new perspective to understand Mid-Triassic NCA carbonate platforms and their boundary conditions, such as the accumulation of thick carbonates (>1.5 km) without basement faulting, the isolated growth of platforms, or the transition of aggradational to progradational growth.

How to cite: Strauss, P., Ruh, J., Huet, B., Granado, P., Muñoz, J. A., Pelz, K., König, M., Roca, E., and Wilson, E. P.: Growth of carbonate platforms controlled by salt tectonics (Northern Calcareous Alps, Austria), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11176, https://doi.org/10.5194/egusphere-egu2020-11176, 2020.

EGU2020-1732 | Displays | TS13.1

Salt tectonics in the Subalpine Chains of SE France, from rifting to Alpine shortening.

Samuel Brooke-Barnett, Adam Csicsek, Rodney Graham, and Lidia Lonergan

The understanding of the evolution of salt structures in passive margins has increased significantly in recent decades, largely driven by advances in seismic reflection imaging in offshore passive margin salt basins. This has provided a new perspective with which to view analogous settings in outcrop. The Subalpine Chains of southeast France is one of these places. This region has undergone a complex tectonic history involving Early to Middle Jurassic rifting related to the opening of the Ligurian Tethys, Late Jurassic to Late Cretaceous passive margin subsidence, and Late Cretaceous to Miocene Alpine shortening. The structures and stratigraphic variations in the area strongly suggest that all of these have provided driving mechanisms for, or been associated with, halokinesis.

This study investigates the role that salt has played in the tectonic evolution of the Subalpine Chains since its deposition in the Triassic using field observations, structural cross sections and drone photography. The period of Early-Middle Jurassic rifting was associated with reactive salt rise, and halokinesis continued during the subsequent passive margin phase driven by sedimentation in the Vocontian basin. Triassic salt reached the sea bed to form salt glaciers during the Aptian-Albian when salt rise outpaced sedimentation rate.

Later, during Alpine shortening, SW directed compression was partly partitioned as sinistral strike-slip deformation along a pre-existing salt wall, forming the Rouaine-Daluis fault system. There is a discrepancy between the amounts of thin skinned shortening northwest and southeast of the strike slip system which can probably be attributed to the interplay of Jurassic Provence carbonate platform geometry, subsurface salt distribution and basement architecture. In the thin skinned domain of the Digne arc, salt diapirs and walls, formed during the rifting and passive margin phases, such as those at Chasteuil and Crête du Teillon, were tightened and displaced up the slope of the Provence Platform margin. Alpine shortening also squeezed salt to surface to form canopies such as the diapir at Gévaudan.

Halokinesis has influenced, and has been influenced by the tectonic history of the region. While previous regional shortening estimates have acknowledged the role of Triassic salt as a decollement layer, they do not account for the presence of salt walls and diapirs during Alpine shortening. Consequentially, the amount of strain in the Digne arc has likely been underestimated.

How to cite: Brooke-Barnett, S., Csicsek, A., Graham, R., and Lonergan, L.: Salt tectonics in the Subalpine Chains of SE France, from rifting to Alpine shortening., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1732, https://doi.org/10.5194/egusphere-egu2020-1732, 2020.

EGU2020-4055 | Displays | TS13.1

Salt tectonics in the Eastern Mediterranean: Chronology, kinematics, and driving forces

Elchanan Zucker, Yechiel Ben Zeev, Yehouda Enzel, and Zohar Gvirtzman

In the Late 1970’s, a slope-parallel normal fault system has been recognized offshore Israel. ~25 years later, a system of folds and thrust faults was recognized farther west in the deep Levant Basin. Initially, this combination of updip extension and downdip contraction seemed to fit the classic paradigm known from other salt basins around the world in which sediments overriding salt glide basinward and produce extension upslope and contraction in the deep basin. However, later studies in the Levant Basin showed that the shapes of the updip extension system and the downdip contractional system do not match; the updip normal faults are trending to the NNE, whereas the deep basin folds are trending to the NW and even to the WNW.

We propose that while extension of the Levant continental slope expresses basinward gliding, the deep basin shortening belongs to the circum-Nile deformation belt (CNDB) that was previously interpreted as an expression of salt squeezing-out from under the Nile Delta.

However, careful mapping of the salt-overburden thicknesses around the Nile delta and its submarine cone clearly shows that in the majority of the study area salt squeeze-out cannot be the dominant driving force, because the thick delta load (nearshore) does not reach the thick basin salt (distal basin). The dominating driving force in the western side of the Nile Delta towards the Herodotus Basin, as well as along the Levant continental margin, is simply the elevation gradient towards the lowest place leading to downslope gliding of the sediment-salt sequence.

Only in the easternmost side of the delta, towards the Levant Basin, does the squeeze-out model work. Here, the delta front covers a thick salt layer and differential loading promotes basinward salt flow. Particularly interesting is the southeast corner of the Mediterranean where the CNDB, driven by differential loading (salt squeezing), is pushed against the Levant margin belt, driven by downslope gliding. By improving the chrono-stratigraphy of the Levant Basin we show that during the first 2.5 my after salt deposition only minor deformation occurred. Then, tilting of the Levant margin (inland uplift) initiated downward gliding and rapid extension; and only ~1 my later the CNDB reached the Levant Basin and started suppressing the downward gliding.

In a wider perspective our analysis shows that the role of salt squeezing by differential loading was previously overestimated in the Eastern Mediterranean and raises the need to carefully map the boundary of the salt basins prior to any interpretation. This conclusion is especially relevant to young basins where deltas and shelves have not propagated far enough into the basin.

How to cite: Zucker, E., Ben Zeev, Y., Enzel, Y., and Gvirtzman, Z.: Salt tectonics in the Eastern Mediterranean: Chronology, kinematics, and driving forces, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4055, https://doi.org/10.5194/egusphere-egu2020-4055, 2020.

EGU2020-404 | Displays | TS13.1

Normal faulting above salt wedges in tilted continental margins: numerical modeling

Itzhak Hamdani, Einat Aharonov, Jean-Arthur Olive, Stanislav Pařez, and Zohar Gvirtzman

Most salt basins are highly deformed and consist of complex faulting systems that is difficult to reconstruct. In contrast, in the Levant basin, the deformation of the Pliocene-Quaternary overburden on top of the Messinian salt is relatively mild, providing a rare opportunity to explore a young salt basin in its early stages of evolution. In the Levant continental margin normal faulting occurs mainly above the wedge of the salt layer where it rapidly thins from a few hundred meters to less than 100m. Recently, chronology of faulting in the Levant continental margin improved. It was indicated that during the Pliocene (duration of 2.7 My) faulting activity was minor. In the Gelasian (duration of 0.8 My) faulting activity peaked alongside huge slumping. Then, in the past 1.8 My, faulting and slumping had both decreased, although they are still mildly active today.

These observations raise questions such as: why didn't faulting start immediately after salt deposition? Why had faulting peaked when it did, and then why did it decrease? In this work we wish to understand the mechanism of normal faulting in continental slopes bordering salt basins. What drives salt motion? How does this motion cause faulting in overriding rocks? Where exactly will faults initiate and how will they progress in space? What controls the rate of faulting and when will they shut down?

This study uses 2D numerical simulations to explore these questions. The model assumes that salt is viscous and its overriding rock is brittle and viscoelastic. The model uses a Stokes flow solver, specifically a finite difference/particle-in-cell numerical approach, that can simulate both viscous and elasto-plastic–brittle rheology.

Answering these questions will contribute to the understanding of halokinematics in young salt basins and will allow better assessment of seismic hazards related to salt related deformation.

How to cite: Hamdani, I., Aharonov, E., Olive, J.-A., Pařez, S., and Gvirtzman, Z.: Normal faulting above salt wedges in tilted continental margins: numerical modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-404, https://doi.org/10.5194/egusphere-egu2020-404, 2020.

Salt-bearing passive margins are typically characterized by thin-skinned, gravity-driven deformation above a salt detachment, resulting in kinematically-linked domains of updip extension and downdip contraction. These domains are commonly connected by a mid-slope translational domain in which salt-related structures accommodate local extensional and contractional strains associated with salt flow across base-salt relief. Despite a general understanding of these salt-tectonic processes and products, little is still known about the detailed geometric and kinematic evolution of mid-slope contractional structures.

We use a high-quality, depth-migrated three-dimensional seismic reflection dataset located in the mid-slope translational domain of the Outer Kwanza Basin, offshore Angola. We analysed the seismic-stratigraphic architecture of the Aptian salt and its immediate Albian overburden to reveal the distribution of local, salt-related contractional structures above varying geometries of base-salt relief.

Our analysis reveals two types of salt-related contractional structures, variably distributed in terms of their trend relative to underlying ramps that trend NW or N. The first type is represented by salt-cored anticlines, the limbs of which may be dissected by salt-detached thrusts. The folds trend parallel to the NW- or N-trending ramps, being located either updip or directly above the underlying ramp. These folds increase in amplitude and decrease in wavelength basinward, and are also locally polyharmonic; showing an upwards increase in wavelength, but a decrease in amplitude. The second type of structure is represented by two sub-types of salt walls: (i) reactive salt walls, and (ii) squeezed salt walls. These salt walls trend broadly parallel to, and are located above or downdip of NW-trending, basinward- and landward-facing ramps. The salt-cored anticlines are formed by local contraction associated with salt flow deceleration above ramp-updip. This process of local contraction also locally induces active rise and overburden piercement as salt walls translate over local base-salt structural highs. Still, other salt walls are locally contracted on the basinward-facing ramp during salt flow seaward, resulting in the squeezed salt wall.

We show that careful seismic-stratigraphic analysis of salt and overburden deformation, in the context of the underlying base-salt geometry, reveals complex patterns of salt structure evolution during seaward translation across the midslope translational domain. The results are applicable along salt-bearing passive margin worldwide and may provide an important insight in identifying potential plays along the midslope translational domain, where major deepwater oilfields reside.

How to cite: Erdi, A. and Jackson, C.: Base-salt Relief Controls Salt-related Contractional Styles in the Translational Domain of the Outer Kwanza Basin, offshore Angola, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1099, https://doi.org/10.5194/egusphere-egu2020-1099, 2020.

EGU2020-10099 | Displays | TS13.1

Halokinetic modulation of sedimentary systems: an integrated approach

Zoe Cumberpatch, Emma Finch, Ian Kane, Christopher Jackson, David Hodgson, Ben Kilhams, and Leonardo Pichel

Complicated structural-stratigraphic traps at the salt-sediment interface have historically hosted large hydrocarbon discoveries. Understanding sediment-routing around active salt bodies, is now vital for carbon capture and storage projects due to salt being a ‘near-perfect’ seal. Despite advances in subsurface visualisation, the salt-sediment interface remains difficult to image due to steep-bedding, bed-thickness changes and lithological contrasts. Outcropping examples provide depositional facies understanding, but are limited, largely due to the dissolution of associated halites. Studied analogues represent specific sedimentation rates and salt rise rates, which are difficult to accurately constrain and decipher.

Discrete Element Modelling (DEM) provides an efficient and inexpensive tool to analyse how depositional architectures around salt structures vary with sedimentation rate. Model input parameters are taken from the Bakio diapir, Basque Cantabrian Basin and the Pierce diapirs, eastern Central Graben and their adjacent, halokinetically influenced stratigraphic successions.

Six experiments were run, lasting for a total of 4.6 Myr. After a 2.2 Myr calibration period sediment was added to the model over three 800,000 year stages: 1) 2.2-3 Myr, 2) 3-3.8 Myr 3) 3.8-4.6 Myr. Sedimentation rate was varied to study the effects of sedimentation on mini-basin individualisation and extent of halokinetic modulation. The six experiments represent: no sedimentation, slow, intermediate and fast sediment input, increasing sedimentation and decreasing sedimentation. Outputs are validated by comparison to subsurface and outcropping examples globally.

Results show that:
1) Diapir growth is increased with some sedimentation, compared to no sedimentation, in agreement with models of passive diapirism by sediment loading, however growth is inhibited by increasing sedimentation rate.
2) Salt withdrawal mini-basins of 4-5 diapir-widths are formed and are controlled by the width of the diapir; outside of this, the overburden is undeformed.
3) Strata, at least initially, onlap and thin towards the topographic high created by the diapir.
4) Slow aggradation results in rotation of onlaps and sedimentation being restricted to mini-basins, making individualisation more probable, while sedimentation on the diapir roof eventually occurs in all other experiments.

5) Under high sedimentation rates, halokinetic influences on stratigraphy are ‘buried’ quicker, which could make the upper part of the syn-kinematic sequence difficult to decipher from the post-kinematic sequence.

The increasing sedimentation scenario simulates progradation, and is integrated with findings from the halokinetically-influenced successions around the Bakio (N.Spain) and Pierce (UK North Sea) diapirs. At Bakio, stratigraphy deposited above the diapir was removed by Pyrenean inversion. Incorporating outcrop-based sedimentary facies analysis with numerical modelling indicates that deposits experience facies changes towards stratigraphic pinch outs, mass failures could be common closest to diapirs and allows for the development of ‘zones’ of variably severe halokinetic influence. Combining Pierce core data and model results highlights a trade-off between reservoir quality and stratigraphic trap integrity that may aid development of hydrocarbon fields and carbon capture and storage sites in salt-bearing sedimentary basins.

Our innovative, iterative, integrated approach is capable of improving understanding of the variables influencing sediment-routing and stratigraphic trap configuration around extensional-passive diapirs, and can be applied to a multitude of depositional settings.

How to cite: Cumberpatch, Z., Finch, E., Kane, I., Jackson, C., Hodgson, D., Kilhams, B., and Pichel, L.: Halokinetic modulation of sedimentary systems: an integrated approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10099, https://doi.org/10.5194/egusphere-egu2020-10099, 2020.

EGU2020-258 | Displays | TS13.1

Pre-salt and post-salt fault trends and regional fault coupling mechanisms and their relationship with salt structural trends in the Southern North Sea basin

Anna Preiss and Jürgen Adam

During Cretaceous and Paleogene times, tectonic shortening caused mild basin inversion of earlier rifting depocentres in the Danish Central Graben. This exerted an important control on the thickness variations and geometries of e.g. the Late-Cretaceous and Danian Chalk Group. Structural highs formed by inversion and especially Permian-salt movements, host important hydrocarbon reservoirs in the sector. Earlier researchers have linked basin inversion in the North-Sea area to Alpine deformational phases and the onset of seafloor spreading in the North Atlantic.

The objective of this 3D seismic-data study is an analysis of the relationships between basement (sub-salt) faults, salt movements, and salt-cover deformation, as well as fluid migration near and within inversion structures.

We find that the northeastern margin of the larger inverted area generally has a thick-skinned style. Here, reverse reactivation of the rift-bounding master fault is coupled between the strata above and below the salt. Oppositely, the southwestern margin has a thin-skinned style. Here, buttressed hangingwall folds sit above reverse faults detaching into even thin evaporite sequences. The strike of this cover-fault trend mimics that of the underlying basement faults, although they dip in opposite directions. A triangle-zone model explains how sub-salt shortening (reactivation of major basement faults) can be balanced to the shortening observed in the sedimentary cover. As the current thickness of Permian salt increases and mobile-salt structures become predominant towards the south, the effects of basin inversion grow difficult to distinguish from those of halokinesis.

Interestingly, the shallow crests of inversion folds, especially along the southwestern margin, host groups of smaller normal faults. These formed to some degree during inversion, indicating that local extensional tectonism (crestal collapse) took place during the overall shortening. We conclude that the shallow parts of the folds experienced forced bending rather than buckling during folding.

A significant number of hydrocarbon reservoirs sit within basin-inversion structures. Potentially, this work can increase our understanding of deformation within these and similar structures.

Acknowledgements: We thank the Centre for Oil and Gas – DTU (DHRTC) for funding and supporting this project and for providing data. We also thank Schlumberger and Eliis for providing seismic-interpretation software.

How to cite: Hundebøl Hansen, T. and Rønø Clausen, O.: Evaporite controls on basin-inversion structures in the southern Danish Central Graben, North Sea – a 3D seismic-data study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19797, https://doi.org/10.5194/egusphere-egu2020-19797, 2020.

The Goleniów salt structure (GSS) is located in the NW part of the Polish Basin which belongs to a system of Permian-Mesozoic epicontinental sedimentary basins of the Western and Central Europe. Its axial part (so called Mid Polish Trough – MPT) was filled with several kilometres of sediments, mainly siliciclastic and carbonates but also with Zechstein (Upper Permian) evaporites. The Polish Basin was fully inverted in Late Cretaceous-Paleogene. The presence of thick layer of evaporites led formation of diverse salt structures. The study area is located within the SW flank of the MPT, characterized by presence of numerous salt and salt-related structures. One of them is NNW-SSE oriented Goleniów structure which extends over 25 km with the salt diapir (salt wall) in its NNW part. Interpretation of the dense array of 2D seismic reflection profiles allowed for the construction of the 3D model of the GSS and assess its spatial evolution including significant role of delamination of the supra-salt Mesozoic sedimentary cover during both extension (basin subsidence) as well as compression (basin inversion).

NNW part of the Goleniów structure is formed by a well-developed salt diapir (salt wall). Its evolution started in Late Triassic when regional extension triggered formation of the asymmetric reactive diapir. After Late Triassic-Early Jurassic active piercement, diapir continued its growth as a passive diapir due to a regional extensional tectonic regime. In Middle and Late Jurassic, insufficient amount of salt in the source layer led to diapir burial. Further extension caused diapir to fall. This resulted in Early Cretaceous localised extension within the crestal part of the diapir and formation of a half-graben filled with Lower Cretaceous sediments of increased thickness. The Goleniów structure was significantly re-shaped during Late Cretaceous inversion of the Polish Basin. GSS was rejuvenated and started to growth which led to roof uplift and its partial erosion. This progressive compression-related Late Cretaceous growth is very well documented by growth strata preserved above the diapir. Finally, after completion of inversion of the Polish Basin, salt crest reached in Cenozoic groundwater active circulation zone which in turn caused its dissolution and eventually development of the dissolution-collapse trough filled with Cenozoic sediments with increased thickness.

The style of the deformation alongstrike changes toward the SSE where, due to smaller amount of evaporites salt diapir did not form and was replaced by a complex zone of thin-skinned deformation detached within Zechstein evaporites. First, thin-skinned half-graben was formed during Late Triassic-Early Jurassic extensional phase. It was then compressionally reactivated during basin inversion and this led to enhanced delamination and then thrusting within the Upper Triassic (Keuper) section. Complex backthrusting and local wedging was related to formation of a secondary detachment level within Keuper evaporites and resulted in formation of "fish tail" structure. Backthrusting was associated with substantial folding of hangingwall strata.

How to cite: Grzybowski, Ł. and Krzywiec, P.: Salt tectonics versus delamination of the supra-salt cover during extension and compression – 3D geometry and Mesozoic evolution of the Goleniów salt structure, NW Poland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9863, https://doi.org/10.5194/egusphere-egu2020-9863, 2020.

EGU2020-17586 | Displays | TS13.1

Relationship between salt and crustal tectonics in the Sørvestsnaget Basin, SW Barents Sea

Gaia Travan, Benjamin Bellwald, Sverre Planke, Virginie Gaullier, Dwarika Maharjan, and Bruno C. Vendeville

The geology of the Barents Sea has been widely studied because of the interest for hydrocarbon exploration. Our study focuses on the SW Barents Sea, on the western side of the Senja Ridge in the Sørvestsnagets Basin, which is still a less deciphered area. Located at the limit of the continental shelf, this deep Cretaceous basin is characterized by a several-kilometer-thick sequence of Cenozoic sediments locally influenced by salt structures. Because of the peculiar rheological characteristics of salt, the deposition of evaporites during Permo-Carboniferous times still represents a key aspect to deeply understand the geological setting because salt tectonics considerably affects the brittle sedimentary cover.

5,500 km2 of high-quality 3D seismic data, integrated with potential field data and existing wells, led to the interpretation of the main horizons and unconformities in the sedimentary sequence, with focus on the salt structures.

The top of the salt is characterized by a strong positive-amplitude reflection in the seismic data, and has been interpreted with a line spacing of 100 m. Subsequent gridding of the interpreted horizon to a bin size of 12.5 m highlights that the geomorphology for the top of the three salt structures is particularly complex, with presence of salt horns and development of minibasins above the salt. Integration of potential field data shows a strong correlation between salt structures and low values in Bouguer-Gravity anomalies. Different families of faults related to salt and to crustal tectonics have been mapped, and strong seismic anomalies related to faults above the salt structures are identified at multiple stratigraphic levels. Part of these faults have been active until 20 000 years ago, and are rarely active at present day.

The three salt structures interpreted on the western side of the Senja Ridge have a total extent of around 800 km2 and are mainly the consequence of different pulses of reactive diapirism, due to several diachronous rifting events during the opening of the Barents Sea. After the opening of the Sørvestsnagets Basin, salt tectonics continued and was influenced by crustal movements and glacial sedimentation and erosion in this pull-apart basin setting.

The presence of the strong seismic anomalies above the salt structures is interpreted as gas accumulations, which makes this topic of particular interest for the future development of the oil and gas industry of the SW Barents Sea.

How to cite: Travan, G., Bellwald, B., Planke, S., Gaullier, V., Maharjan, D., and Vendeville, B. C.: Relationship between salt and crustal tectonics in the Sørvestsnaget Basin, SW Barents Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17586, https://doi.org/10.5194/egusphere-egu2020-17586, 2020.

The Southern Central Graben is a prominent evaporite-influenced rift structure in the Central European North Sea region. The evolution of the graben probably started in the Permian followed by several minor rifting phases during the Mid to Late Triassic. After a phase of regional uplift from the latest Early to Mid Jurassic, a major rifting phase occurred during the Late Jurassic and lasted until Early Cretaceous. In the Late Cretaceous, the graben was partly inverted due to tectonic compression. The southern part of the graben, located in the German and Dutch North Sea sector, is characterized by a half-graben structure bounded by a complex normal fault system at the eastern flank. The internal structure of the graben is differentiated into several sub-basins. More importantly, the Post-Permian graben fill was affected by mobilization of the Upper Permian Zechstein evaporites. Numerous salt diapirs and adjacent depocentres developed due to salt redistribution in particular during the Jurassic and Cretaceous.

Even if the overall tectonic and sedimentary evolution of the graben is well known, a detailed survey on the extensional phases and the influence of salt movement on the subsidence patterns has not yet been carried out. In this study, we intend to investigate these aspects based on interpretation of 2D and 3D seismic data and cross section restoration. With special focus on the Late Jurassic to Early Cretaceous main rift event, we aim to distinguish the effects of extensional tectonics and salt movement on the local subsidence patterns. In the study area (northern Dutch, German and southern Danish North Sea sectors), we mapped 15 stratigraphic Post-Permian horizons in total of which 9 belong to the Jurassic and Early Cretaceous. Based on the depth-converted seismic interpretations, depth and thickness maps were constructed. Subsidence analysis and 2D backstripping of the depocentres enabled us to constrain timing and spacing of the tectonic activity and the salt migration.

The outcomes of this study show that depocentres at the graben edges are mainly controlled by fault movement at the base of the salt. In contrast, structural patterns of post-Permian layers in the graben interior are often decoupled from base-salt features, i.e. faults in the base do not penetrate into supra-salt layer. Instead the post-Permian strata is gently folded, affected by thin-skinned extension, and penetrated by salt diapirs. The subsidence patterns of the Mesozoic strata were controlled by differential movement of sub-salt faults and overprinted by movement of the underlying Zechstein evaporites. We suggest that salt migration and its influence on subsidence patterns were strongest during the Late Jurassic probably accompanied by the initiation and acceleration of salt diapir growth and the lateral migration of depocentres.

How to cite: Warsitzka, M., Müller, S., Jähne-Klingberg, F., and Bense, F.: Jurassic to Cretaceous structural evolution and subsidence patterns of the Southern Central Graben (North Sea) – a combination of extensional tectonics and salt movement, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16825, https://doi.org/10.5194/egusphere-egu2020-16825, 2020.

EGU2020-13333 | Displays | TS13.1

Cenozoic salt remobilization at the Baltic Sea sector of the northeastern North German Basin margin

Niklas Ahlrichs, Elisabeth Seidel, Vera Noack, Hendrik Huster, and Christian Hübscher

In the scope of the “StrucFlow” project, we study salt tectonics at the salt-floored northeastern North German Basin margin, which is part of the Central European Basin System. Salt pillows are located in the Bays of Kiel and Mecklenburg, in the SW Baltic Sea, east of the Glückstadt Graben and west of the Tornquist-Teisseyre Zone. Salt pillow growth initiated in the Late Triassic and rejuvenated in Late Cretaceous to Tertiary times. We combine offshore and nearby onshore wells, shallow seismic surveys and high-resolution seismic sections from the BalTec data to derive a detailed seismo-stratigraphic correlation of Cenozoic units. This allows a more precise analysis of Cenozoic salt movement in the transition zone between the Glückstadt Graben and Tornquist Zone. We present key profiles and time-isochore maps revealing new insights into salt pillow evolution at the northeastern North German Basin margin and discuss active phases of salt movement in the context of the regional tectonic framework.

We associate the Late Cretaceous phase of salt pillow growth with far-field effects of the Africa-Iberia-Europe convergence and the consequent Pyrenean orogeny. The resulting change from extensional to compressional intraplate stress caused graben inversion and thrust faulting in northern Europe. However, Early Cenozoic successions reveal no indications for ongoing salt movement and suggest a phase of salt tectonic quiescence. Within the Eocene, salt was remobilized at the Baltic Sea sector of the North German Basin, leading to renewed salt pillow growth and erosion above pillow crests. We propose that this phase of salt remobilization is controlled by the coeval initiation of the European Cenozoic Rift System, between the rising Alps in the south and the opening North Atlantic Ocean in the northwest. Faulting within Quaternary deposits above a salt wall in the Bay of Kiel could indicate continuous salt movement and was possibly amplified by glacial isostatic adjustment.

How to cite: Ahlrichs, N., Seidel, E., Noack, V., Huster, H., and Hübscher, C.: Cenozoic salt remobilization at the Baltic Sea sector of the northeastern North German Basin margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13333, https://doi.org/10.5194/egusphere-egu2020-13333, 2020.

Qaidam Basin is located at the northern Tibetan Plateau, western China. It is a rifted basin bounded by the Alkin, Qilian and Kunlun Mountains and filled by well-developed Cenozoic strata. The study focus is the Cenozoic upper and lower Ganchaigou formations which have significant influence on hydrocarbon distribution. The exploration discoveries in recent years are mainly concentrated in the sub-salt traps within lower Ganchaigou Formation.

The salt rock of the lower Ganchaigou formation have multiple unique structural characteristics. First, these salt rocks have a wide distribution and a large thickness. they are mainly distributed in the western part of Yingxiongling and Youyuangou area, with a stable thickness up to 300m, which are caused by extrusion due to major orogeny. Second, these rocks are characteristics by strong fluidity and plasticity. Influenced by tectonic movement, the salt strata show “dual structure”, as slide above and deep thrust below. Several traps are developed within the slide structural above and Layered or massive fractured carbonate rock traps are developed below and within salt strata in the lower deep trust belt. Third, salt rock has strong sealing ability. The widely distributed salt strata blanket the traps with lower Ganchaigou Formation. During the extrusion tectonic, the flow and wedging of the salt rocks expand the distribution area of the original salt depositions, resulting in enhancement of cap rock effectiveness.

The salt rocks of the lower Ganchaigou formation have significant impact on the oil and gas distribution. First, the slide movement formed two layers of deep and shallow oil and gas systems, and the widely developed structural traps are good hydrocarbon reservoirs, providing high-quality resources for multiple exploration. The seal ability of rock salts has a greater impact on reservoir performance. Second, the deep and high-yield oil and gas reservior in the western part of Yingxiongling area mostly distribute within the lower salt rocks. Compared with the upper shallow reservoirs, they have higher reservoir pressure and higher single-well production. At the same time, the area of a single reservoir under the salt is also large.

How to cite: Na, W.: The Structural Characteristics of Salt Rocks and Their Impact on the Oil and Gas Distribution in Yingxiongling Area, Qaidam Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2531, https://doi.org/10.5194/egusphere-egu2020-2531, 2020.

TS14.1 – Celebrating the 100th birth anniversary of Marie Tharp: Seafloor mapping and ocean plate tectonics

EGU2020-11736 | Displays | TS14.1 | Highlight

Marie Tharp’s Ongoing Legacy in Global Seabed Mapping Efforts

Vicki Ferrini, William Ryan, Suzanne Carbotte, and Suzanne O'Hara

The illumination of the seafloor through Marie Tharp’s lens was instrumental in the plate tectonics revolution and fundamentally transformed our understanding of earth processes. Rather than creating traditional contour maps from isolated soundings, her work yielded physiographic diagrams based on sparse echo-sounding profiles that were complemented by stylized views based on her interpretation of the trends and texture of the seafloor. These maps showed the fabric of seafloor in ways that could not have been achieved or communicated with traditional contour plots. Despite the sparseness of the input data, Marie Tharp and Bruce Heezen’s early seafloor maps are remarkably consistent with modern bathymetric maps that are based on orders of magnitude more observations.

An important part of the legacy of Tharp’s work is codified in the evolution of bathymetric data synthesis efforts led by several of her contemporaries and successors at the Lamont-Doherty Earth Observatory (LDEO). After Tharp’s seminal work transforming bathymetric profiles into the first maps of the global seafloor, efforts were undertaken to digitize echo-sounding profiles creating new opportunities for analysis and integration as well as the development of new software tools and approaches for working with those data. In the 1980s, the availability of multibeam sonars in the academic sector ushered in a new era of mapping by extending the data coverage from profiles to swaths that revealed spatially-continuous areas of the seafloor. The Ridge Multibeam Synthesis (RMBS) Project, which began in the 1990s, built upon Tharp’s early work and sought to advance understanding of the global mid-ocean ridge system by integrating swath data from multiple ships and cruises to create detailed bathymetric grids served online via the early web. Just over a decade later, the Global Multi-Resolution Topography (GMRT) Synthesis emerged as the next generation product under the inspiration of William Haxby. GMRT shifted the focus of effort from the mid-ocean ridges to the global ocean, and presented an efficient scalable solution using a tiled approach for providing access to global bathymetric data at native resolution. GMRT continues today and includes a curated collection of bathymetry data from over 1,100 research expeditions covering more than 9% of the global ocean at 100m spatial resolution. This presentation will describe the legacy of Marie Tharp in the context of the continuity of seabed mapping work at LDEO, including the evolution of bathymetry data synthesis and integration projects and how they connect to complementary efforts in the international arena including the Nippon Foundation – GEBCO Seabed 2030 Project.

How to cite: Ferrini, V., Ryan, W., Carbotte, S., and O'Hara, S.: Marie Tharp’s Ongoing Legacy in Global Seabed Mapping Efforts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11736, https://doi.org/10.5194/egusphere-egu2020-11736, 2020.

EGU2020-3529 | Displays | TS14.1

IBCSO V2.0: An updated Antarctic bathymetry product of Seabed 2030

Laura Hehemann, Jan Erik Arndt, and Boris Dorschel

The International Bathymetric Chart of the Southern Ocean (IBCSO), part of the Nippon Foundation – GEBCO – Seabed 2030 project, is a collaborative effort to create high-resolution bathymetric compilations off Antarctica. Detailed knowledge of seafloor morphology is fundamental to almost all marine and maritime scientific activities. For example, it can be used to understand past glacial development, to create habitat models and maps, and to identify ocean current pathways that may contribute to increased basal melt of the Antarctic ice sheets. In comparison to IBCSO V1.0, which extended to 60° south, the new version now extends up to 50° south increasing the ocean area by a factor of approximately 2.5. With this extension, the new bathymetric model will include important submarine features like the Drake Passage, the South Sandwich Arc, and the southern parts of the Kerguelen Plateau and Campbell Plateau. IBCSO continues to build on the on the largest database of bathymetric soundings for the Southern Ocean that was gathered by a variety of international institutions. We will present the new IBCSO V2.0 data set for the first time and will highlight its improvement in comparison to its predecessor.

How to cite: Hehemann, L., Arndt, J. E., and Dorschel, B.: IBCSO V2.0: An updated Antarctic bathymetry product of Seabed 2030, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3529, https://doi.org/10.5194/egusphere-egu2020-3529, 2020.

EGU2020-3676 | Displays | TS14.1 | Highlight

A tribute to Marie Tharp: Mapping the seafloor of back-arc basins, mid-ocean ridges, continental margins and plate boundaries

Eulàlia Gràcia, Sara Martínez Loriente, Susana Diez, Laura Gómez de la Peña, Cristina S. Serra, Rafael Bartolome, Valentí Sallarès, Claudio Lo Iacono, Hector Perea, Urgeles Roger, Grevemeyer Ingo, and Cesar R. Ranero

Marie Tharp (1920-2006) was a pioneer of modern oceanography. She was an American geologist and oceanographic cartographer who, together with his husband Bruce Heezen, generated the first bathymetric map of the Atlantic Ocean floor. Tharp's work revealed the detailed topography and geological landscape of the seafloor. Her work revealed the presence of a continuous rift valley along the Mid-Atlantic Ridge axis, causing a paradigm in earth sciences that led to the acceptance of plate tectonics and continental drift theories. Piecing maps together in the late 1940s and early 1950s, Marie and his partner Bruce Heezen discovered the 75.000 km underwater ridge bounding around the globe. By this finding, they laid the conclusion from geophysical data that the seafloor spreads from mid-ocean ridges and that continents are in motion with respect to one another—a revolutionary geological theory at that time. Many years later, satellite images demonstrate that Tharp’s maps were accurate. In this contribution, we focus on detailed bathymetric maps collected from year 1992 to today, which include bathymetric maps from diverse parts of the world. For instance, we will show a) Back-arc basins (i.e. the Bransfield Basin, Antarctica; and the North Fiji Basin, SW Pacific); b) Mid-ocean ridges and fracture zones (i.e. the MAR at the South of Azores, the MAR at the Oceanographer-Hayes, and the St. Paul Fracture Zone at the Equator), and c) Active tectonic structures from the Gulf of Cadiz and Alboran Sea, located at the Africa-Eurasia plate boundary (Gibraltar Arc). Regarding this last area, we will characterize the seafloor expression of the fault systems, as well as the subsurface structure of the faults in the Gulf of Cadiz and Alboran Sea. This zone is characterized by a moderate seismicity, mainly reverse and strike-slip focal mechanisms; although large historical (AD1755, AD1829) and instrumental earthquakes or large/great magnitude also occurred, such as the earthquakes of 1969, 1994, 2004 and 2016. In addition, the Gulf of Cadiz-Alboran Sea area is compartmentalized in different crustal domains, bounded by active strike-slip fault systems. We adopted a multi-scale approach, including morphological analysis of shipboard multibeam bathymetry, near-bottom bathymetry obtained with Autonomous Underwater Vehicles (AUVs) at a resolution of 1-2 m, and medium to deep penetration multi-channel seismic (MCS) data. Finally, we will also show a couple of videos from recent marine cruises in the Gibraltar Arc (SHAKE-2015 and INSIGHT-2018), both using state-of-the-art high-resolution marine technologies.

How to cite: Gràcia, E., Martínez Loriente, S., Diez, S., Gómez de la Peña, L., Serra, C. S., Bartolome, R., Sallarès, V., Lo Iacono, C., Perea, H., Roger, U., Ingo, G., and Ranero, C. R.: A tribute to Marie Tharp: Mapping the seafloor of back-arc basins, mid-ocean ridges, continental margins and plate boundaries, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3676, https://doi.org/10.5194/egusphere-egu2020-3676, 2020.

EGU2020-12641 | Displays | TS14.1

Marie Tharp: Seafloor mapping and ocean plate tectonics

Mathilde Cannat, Deborah Smith, Daniel Fornari, Vicki Ferrini, and Javier Escartin

The pioneering seafloor mapping by Marie Tharp played a key role in the acceptance of the plate tectonic theory. Her physiographic maps,  published with Bruce Heezen,  covered the Earth’s oceans and revealed with astonishing accuracy the submarine landscape. She exposed the full extent of the global mid-ocean ridge system, documented features such as seamounts and volcanic chains, trenches, and transform faults. Marie Tharp co-authored the first papers describing the major fracture zones in the Central Atlantic (Chain, Romanche, Vema). In 1952, she also discovered that the Atlantic ridge has a central valley (the axial valley), and convinced her colleague Bruce Heezen that it, which corresponds to sustained seismicity (highlighted by other researchers at the same time thanks to the worldwide networking of seismological stations), is a rift that separates the eastern and western provinces of the Atlantic Ocean. Tharp and Heezen were not yet talking about plate tectonics at this time. But when, at the beginning of the 1960s, the first magnetic anomaly maps showed that the oceans were "young", and that the age of the seabed increased with the distance from the ridges, their physiographic map became an essential element in understanding the role that these ridges play, as well as the distribution of the main current terrestrial plates. In this poster, we present original maps and sketches that document this key contribution to the understanding of the Earth's tectonics.

How to cite: Cannat, M., Smith, D., Fornari, D., Ferrini, V., and Escartin, J.: Marie Tharp: Seafloor mapping and ocean plate tectonics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12641, https://doi.org/10.5194/egusphere-egu2020-12641, 2020.

EGU2020-5873 | Displays | TS14.1

Variation of the tectono-magmatic activity along the Reykjanes Ridge: Influence of the Iceland hotspot on the accretionary processes

Morgane Le Saout, Colin Devey, Dominik Palgan, Thorsten Lux, Sven Petersen, Daníel Þórhallsson, Adrianna Tomkowicz, and Saskia Brix

The Reykjanes Ridge is a 900 km long oblique slow-spreading ridge, formed by individual “en echelon” axial volcanic ridges (AVR), directly under the influence of the Iceland hotspot. From the Reykjanes Peninsula to the Bight fracture zone, the Reykjanes Ridge shows variations in lava chemistry, crustal thickness, thermal structure and ridge morphology, which has been attributed to this influence. Our study focuses on four areas of the ridge mapped and sampled during the cruise MSM75 in 2018. The northern area is characterized by the only known hydrothermal field discovered along the Reykjanes Ridge. The two central areas are located in a region of increasing magma supply. Finally, the southernmost area is underlined by the only magma body ever detected seismically below the Reykjanes Ridge. The analysis combines 15 m resolution ship-based bathymetry, ground-truthing from ROV dives and geochemical analysis of glass samples to look at variations of magma composition, fault density, seamount density and morphology along the ridge axis. Two major parameters influence the distribution and geometry of faults and seamounts: the distance from the hotspot and the accretion state of individual AVR (i.e., magmatic extension vs. tectonic extension). Fracture geometry is highly influenced by the depth of the brittle-ductile boundary that deepens with distance from the plume center, while fault density at the axis reflects different development stages of individual AVR. Seamount morphologies may also reflect individual AVR development, but we also show morphological variation with distance from the hotspot, correlated with the average variation in lava composition and mantle temperature.

How to cite: Le Saout, M., Devey, C., Palgan, D., Lux, T., Petersen, S., Þórhallsson, D., Tomkowicz, A., and Brix, S.: Variation of the tectono-magmatic activity along the Reykjanes Ridge: Influence of the Iceland hotspot on the accretionary processes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5873, https://doi.org/10.5194/egusphere-egu2020-5873, 2020.

EGU2020-8997 | Displays | TS14.1

Geophysical investigation of the western end of the Carlsberg Ridge: preliminary results of the CARLMAG cruise

Nicolas Chamot-Rooke, Alexandre Janin, Mathieu Rodriguez, Matthias Delescluse, Jérôme Dyment, Marc Fournier, Philippe Huchon, Jean-Arthur Olive, Alain Rabaute, and Christophe Vigny

A sizeable portion of oceanic lithosphere has been produced at the Carlsberg Ridge, one of the three major ridge branches that shaped the Indian Ocean. Accretion started in the Paleocene with the ultra-fast widening of the Arabian Sea to the North and the Eastern Somali Basin to the South (full spreading rate of ~130 mm/yr between 61 Ma and 49 Ma), both basins opening in the wake of the rapid migration of India towards Eurasia. Spreading rate abruptly dropped to ultra-slow after 47 Ma and a long period of accretion stagnation prevailed (full rate <12 mm/yr) until the establishment of the slow present-day regime at ~20 Ma (mean 24 mm/yr rate since Chron 6 at the western end of the Carlsberg Ridge). Mode and rate of production of ocean floor at the Carlsberg Ridge seem to have interacted with a number of regional tectonic events since the beginning of the Himalayan orogeny, including the early Indian continent collision, the westward propagation of the Sheba Ridge into the Africa/Arabia continent and the coeval initiation of the Owen transform and opening of the Gulf of Aden. Here we report the results of the recent CARLMAG survey (Spring 2019) conducted at the westernmost edge of the Carlsberg Ridge close to its intersection with the active Owen transform fault. The cruise was conducted aboard BHO Beautemps-Beaupré operated by the French Naval Hydrographic and Oceanographic Service. We explored the post-50 Ma ocean floor along a set of long profiles crossing both sides of the ridge using multibeam bathymetry, bottom reflectivity, mud penetrator, magnetic and gravimetric measurements. For the first time, semi-complete multibeam coverage allows detailed mapping of the seafloor until it gets buried below the sediments of the Indus fan, at least over the northern limb. The southern limb, devoid of sediments, shows clear rotation of the main fault trends towards older ages, which we attribute to changes in India-Somalia kinematics. The region close to the ridge axis and close to the Owen transform is rich in oceanic core complexes, some of them known from patchy previous acquisitions, and others discovered in the course of our survey. Their highly corrugated surfaces show a wide variety of shapes at various distances from the ridge axis that may be seen as snapshots through time, bearing important information regarding their formation and progressive erosion as they move away. A clear pattern of Miocene oceanic magnetic lineations is recognized, as well as a few older anomalies at the extreme Northern and Southern limits of the survey. This dataset allows us to build a new structural and kinematic scenario for the evolution of this segment of the Carlsberg Ridge and frame it into a more regional geodynamic framework.

How to cite: Chamot-Rooke, N., Janin, A., Rodriguez, M., Delescluse, M., Dyment, J., Fournier, M., Huchon, P., Olive, J.-A., Rabaute, A., and Vigny, C.: Geophysical investigation of the western end of the Carlsberg Ridge: preliminary results of the CARLMAG cruise, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8997, https://doi.org/10.5194/egusphere-egu2020-8997, 2020.

EGU2020-10256 | Displays | TS14.1

Structure of the ultraslow-spreading Southwest Indian Ridge at 64°30’E from coincident multichannel and wide-angle seismic data

Ana Corbalan, Mladen Nedimović, Ingo Grevemeyer, Keith Louden, and Lousie Watremez

Ultraslow-spreading oceanic ridges (<20 mm/yr) constitute about 35% of the global ridge system and yet the lithospheric structure that accretes at these spreading rates is little understood. At these ridges, the interplay between plate- and mantle-driven processes produces complex relationships between intermittent volcanic seafloor and extensive non-volcanic seafloor domains, with a subsurface structure that differs significantly from the traditional 3-layer crust topping the uppermost mantle that forms at faster-spreading rates. We present new constraints on the velocity and reflectivity structure of the oceanic lithosphere at the ultraslow-spreading Southwest Indian Ridge (SWIR) at 64°30’E. The eastern SWIR has a full-spreading rate of <14 mm/yr and represents a magma-poor endmember. In this area, broad serpentinized mantle domains are exposed with little interference of igneous rocks that can make their identification and geophysical characterization challenging. We use coincident wide-angle ocean bottom seismometer (OBS) and multichannel seismic (MCS) data collected during the SISMOSMOOTH 2014 survey along two long (~150 km) orthogonal profiles, one along the ridge valley (EW direction) and one across it (NS direction). We first run traveltime tomography using picks of first arrivals recorded by 16 OBS placed on the NS profile and 16 OBS on the EW profile. The computed models show that seismic velocities increase rapidly with depth, changing from 3.5-4 km/s at the seafloor to 7 km/s at 2-5 km and that the vertical gradient reduces for velocities greater than 7 km/s. We suggest that the changes in velocity with depth are related to changes in the degree of serpentinization and interpret the subsurface structure to be composed of highly fractured and fully serpentinized peridotites at the top with a gradual decrease in pore space and serpentinization to unaltered peridotites at depth. The NS velocity model shows greater lateral velocity variations than the EW profile, which indicates a more complex structure for the former. Next we perform MCS data analysis to produce reflection sections for the two profiles. Time-migrated sections are converted to depth using the velocities derived from the tomographic models. We observe steep south-dipping reflections around the highest topographic feature on the NS profile, coincident with a sharp lateral change in the velocities and a high vertical gradient in the velocity model, which we interpret as the seismic expression of an active axial detachment fault. Clear Moho arrivals are not identified either in the OBS or the MCS record sections, consistent with our interpretation of the subsurface being composed of a gradual transition from serpentinized peridotites to fresh mantle peridotites.

How to cite: Corbalan, A., Nedimović, M., Grevemeyer, I., Louden, K., and Watremez, L.: Structure of the ultraslow-spreading Southwest Indian Ridge at 64°30’E from coincident multichannel and wide-angle seismic data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10256, https://doi.org/10.5194/egusphere-egu2020-10256, 2020.

Terrain classification at slow-spreading ridges has been a topic of interest since the significant discovery of mantle rocks exhumed by detachment faults in various segments of the Mid-Atlantic spreading axis. These rocks commonly form domed massifs, so-called core complexes, in contrast to the linear fault-bounded abyssal hills of magmatic spreading terrains. However, there is still limited quantitative description of these two distinct structures. We present analysis of high-resolution bathymetry data 21-24 N over the Mid-Atlantic Ridge and its derivatives to highlight the shapes and directionality of the two oceanic crust features. We assign an optimized 8 arc-minute (~14.8 km) window, mimicking the average size of core complexes, in which we compute the Eigenvalues from each cell within the window based on its directionality and slope. We use the two most dominant Eigenvalues – representing the window’s overall horizontal directionality – to compute eccentricity values and weight them with the sine of the slope. From the computation, we found that areas with weighted eccentricity of 0-0.6 represent the omnidirectional terrains that result from tectonic activities; 0.6-0.9 represents the extended terrain or the buffer zone between the tectonic and magmatic terrains; values >0.9 highlight bidirectional magmatic terrains. Based on this classification, we found significantly more evidence of detachment faulting west of the spreading axis compared to the eastern side. This analysis also highlights neo-volcanic activity that started at around 2 Ma that propagates to the south, cutting a fracture zone before it became inactive. The result contributes to a new approach in mining information from high-resolution bathymetry data to assess oceanic spreading type and its symmetry at a slow-spreading ridge through time.

How to cite: Alodia, G., Green, C., McCaig, A., and Paton, D.: A novel approach for oceanic spreading terrain classification at the Mid-Atlantic Ridge using Eigenvalues of high-resolution bathymetry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-337, https://doi.org/10.5194/egusphere-egu2020-337, 2020.

EGU2020-19115 | Displays | TS14.1 | Highlight

A magnesium budget for serpentinisation of abyssal peridotite during the Cenozoic

Andrew Merdith, Muriel Andreani, Isabelle Daniel, and Thomas Gernon

The marked increase in seawater Mg/Ca during the Cenozoic is poorly understood, due to the limited availability of proxy data and uncertainty in elucidating the respective contributions of Mg sources and sinks through geological time1. Though established as a potentially large source of dissolved Mg over twenty years ago, the weathering of abyssal peridotites2 is a largely unexplored potential source of Mg to oceanic budgets. The release of magnesium from peridotite weathering can occur in high temperature environments, during serpentinisation near the ridge axis3, as well as low temperature off-axis environments where peridotite and serpentinite are altered to clays, carbonates and silicates4. The relative magnitude of Mg fluxes from these sources are poorly constrained. Recent studies, however, now provide a general method for estimating bulk crustal lithologies of mid-ocean ridges based on spreading rate (i.e. proportion and mass of basalts, gabbros, peridotites and serpentinised peridotite) through time5—enabling us to quantitatively assess potential Mg contributions from these different environments.

We constructed a model for oceanic crustal weathering (proportional to depth below the seafloor) to develop estimates of the mass and isotopic composition of magnesium loss from peridotite during alteration in both high- and low-T environments. As Mg fractionation occurs predominantly in low-T reactions, the primary serpentinisation reaction in near-ridge environments is unlikely to result in isotopic differentiation. Comparably, the secondary low-T alterations, of both remaining peridotites (to clays and iron hydroxides) and serpentinite (e.g. to talc and dolomite) are likely to result in the fractionation of Mg. We extend our analysis to incorporate the fractionation of these systems4 and their release of Mg into the ocean. We completed our analysis by presenting a compilation of fluid data for magnesium concentrations in ultramafic bodies from hydrothermal systems, in order to evaluate our model.

References

(1) Staudigel, H. "Chemical fluxes from hydrothermal alteration of the oceanic crust." (2014): 583-606.

(2) Snow, J.E. and Dick, H.J., 1995. Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59(20), pp.4219-4235.

(3) Seyfried Jr, W.E., Pester, N.J., Ding, K. and Rough, M., 2011. Vent fluid chemistry of the Rainbow hydrothermal system (36 N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes. Geochimica et Cosmochimica Acta, 75(6), pp.1574-1593.

(4) Liu, P.P., Teng, F.Z., Dick, H.J., Zhou, M.F. and Chung, S.L., 2017. Magnesium isotopic composition of the oceanic mantle and oceanic Mg cycling. Geochimica et Cosmochimica Acta, 206, pp.151-165.

(5) Merdith, A.S., Atkins, S.E. and Tetley, M.G., 2019. Tectonic controls on carbon and serpentinite storage in subducted upper oceanic lithosphere for the past 320 Ma. Frontiers in Earth Science, 7, p.332.

How to cite: Merdith, A., Andreani, M., Daniel, I., and Gernon, T.: A magnesium budget for serpentinisation of abyssal peridotite during the Cenozoic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19115, https://doi.org/10.5194/egusphere-egu2020-19115, 2020.

Observations of the apparent links between plate speeds and the global distribution of plate boundary types have led to the suggestion that subduction may provide the largest component in the balance of torques maintaining plate motions. This would imply that plate speeds should not exceed the sinking rates of slabs into the upper mantle. Instances of this ‘speed limit’ having been broken may thus hint at the existence of driving mechanisms additional to those resulting from plate boundary forces. The arrival and emplacement of the Deccan-Réunion mantle plume beneath the Indian-African plate boundary in the 67-62 Ma period has been discussed in terms of one such additional driving mechanism. Its spatial and temporal coincidence with an abrupt speed-up of the Indian plate has led to suggestions that the arrival of plumes at the base of the lithosphere can introduce a push force capable of overwhelming entire circuits of plates and triggering plate tectonic reorganizations.

 

We challenge the occurrence of a pulse of anticorrelating accelerations and decelerations in seafloor spreading rates around the African and Indian plates and, with it, the proposal that plume-related forces in the Indian Ocean had a significant impact on the Indo-Atlantic plate circuit in late Cretaceous and Paleogene times. Using existing and newly-calculated high-resolution models of plate motion based on seafloor spreading data, we show that the increase in divergence rates previously documented for ridges bordering the Indian plate is artefactual. Records from spreading centers throughout the Indo-Atlantic plate circuit show an ubiquitous increase in plate divergence rates at 67-64 Ma, which is best explained in terms of a timescale error affecting chrons 29-28. Corrected for this error, the motion of the circuit’s plates show little change around Deccan times. Furthermore, we find that Post-Deccan reorganization of the Indo-Atlantic plate circuit can be explained in terms of long-term plate boundary evolution without the need to invoke a large additional plume push force in the 70-60 Ma period.

How to cite: Perez-Diaz, L., Eagles, G., and Sigloch, K.: Indo-Atlantic plate accelerations and tectonic reorganisations in the Late Cretaceous: no need for plume-push forces, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5076, https://doi.org/10.5194/egusphere-egu2020-5076, 2020.

EGU2020-2244 | Displays | TS14.1

Mapping Cretaceous Seafloor Fabric: A Changing View of the Equatorial Ellice Basin

Paul Wessel, Elizabeth Benyshek, and Brian Taylor

The plate tectonic revolution and decipherment of magnetic isochrons that followed the pioneering work of Marie Tharp and coworkers in visualizing the seafloor has led to a near-complete understanding of the first-order evolution of global seafloor spreading.  However, lagging behind in exploration and understanding are areas of seafloor formed during the Cretaceous Normal Superchron (CNS, 121-83 Ma) when no magnetic reversals were recorded to guide investigators.  Thus, for such regions tectonic interpretations are largely driven by mapping and identifying seafloor fabric indicators such as fracture zones, abyssal hills, rift propagators, and extinct spreading centers.  Here, we focus on the relict spreading system of the Cretaceous Ellice Basin that was apparently formed by seafloor spreading that split the world’s single largest oceanic plateau Ontong Java Nui, composed of present day Ontong Java, Manihiki and Hikurangi plateaus and other (now subducted) fragments.  We examine what was known about this basin from historical single and multibeam bathymetry, what was revealed by the advent of satellite altimetry, and why bathymetric mapping is still required to infer short-length-scale tectonic fabric.  High-resolution bathymetric data from the central basin were recently acquired by the University of Hawaii’s vessel R/V Kilo Moana. Evolution of the spreading system is characterized by three main stages of spreading based on directional and morphological analyses of the seafloor fabric indicators identified from bathymetry.  Spatially conjugate points symmetric about the spreading central zone were identified at the establishment and cessation of each spreading stage and were assumed to be of the same age to form pseudo-isochrons. Pseudo-isochrons were then utilized in reconstructing the basin through time.  The earliest Stage 1 fracture zones trend E-W and consist of multiple closely spaced, parallel fault strands that were indistinguishable in satellite altimetry.  A clockwise rotation of the spreading direction led to Stage 2 NW-SE trending fracture zones, which splayed from Stage 1 multistrands. An offset between Stage 2 fracture zones indicates a short-lived late Stage 3 that appears to be the result of a counter-clockwise rotation of the spreading direction shortly before spreading ceased.  Seafloor evidence for the initial breakup and rifting between Ontong Java and Manihiki plateaus prior to Stage 1 has yet to be mapped.  Basaltic rocks dredged from selected locations along the survey track promise to provide tighter temporal constraints on the evolution of Ellice Basin.

How to cite: Wessel, P., Benyshek, E., and Taylor, B.: Mapping Cretaceous Seafloor Fabric: A Changing View of the Equatorial Ellice Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2244, https://doi.org/10.5194/egusphere-egu2020-2244, 2020.

EGU2020-11026 | Displays | TS14.1

Early development of a deep sea volcano offshore Mayotte revealed by seafloor mapping : first results from the MAYOBS cruises

Christine Deplus, Nathalie Feuillet, Isabelle Thinon, Stephan Jorry, Yves Fouquet, Patrick Bachèlery, Sylvain Bermell, Florian Besson, Manon Bickert, Arnaud Gaillot, Charline Guérin, Anne Le Friant, Fabien Paquet, Delphine Pierre, and Mathilde Pitel-Roudaut

The early development and growth of seamounts are poorly known as the birth of a volcano on the sea bottom has been rarely observed. The on-going Mayotte seismo-volcanic crisis is associated with the formation of a new seafloor volcano at a water depth of 3300 m and provides the opportunity to study its early development.

Four oceanographic cruises, MAYOBS 1 to 4, were carried out between May and July 2019 aboard the French R/V Marion Dufresne. High resolution bathymetry and backscatter data as well as sub-bottom profiler, gravity and magnetic profiles were collected during each cruise. A dense network of profiles has been achieved over the new volcano at different epochs, allowing to assess its detailed morphology and the evolution through time. During MAYOBS4, a deep-towed underwater camera provided sea bottom videos and photos on the volcano.

First results indicate that the new volcano is still growing at the end of July 2019. Repetitive surveys in May, June and July 2019 allow to document the morphological evolution of the volcano, to estimate the volume of material emplaced between each epoch and to discuss the emitted lava rate.

The new volcano has a starfish shape and is now 820 m high. Steep slopes are observed close to the summit and several radial ridges developed from its central part, displaying hummocky morphology similar to the ones observed along mid oceanic axial volcanic ridges. At the bottom, flat areas with high backscatter could indicate channelized lava flows emplaced at higher effusion rates. The morphological analysis combined with video imagery brings constraints to the eruptive processes yielding to the formation of a nascent volcano.

 

How to cite: Deplus, C., Feuillet, N., Thinon, I., Jorry, S., Fouquet, Y., Bachèlery, P., Bermell, S., Besson, F., Bickert, M., Gaillot, A., Guérin, C., Le Friant, A., Paquet, F., Pierre, D., and Pitel-Roudaut, M.: Early development of a deep sea volcano offshore Mayotte revealed by seafloor mapping : first results from the MAYOBS cruises, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11026, https://doi.org/10.5194/egusphere-egu2020-11026, 2020.

EGU2020-19897 | Displays | TS14.1

The tectonic and volcanic evolution of the Mangatolu Triple Junction

Rebecca Mensing, Margaret Stewart, Mark Hannington, Alan Baxter, and Dorothee Mertmann

The Mangatolu Triple Junction (MTJ) is an intraoceanic back-arc spreading center that is host to at least 3 distinct hydrothermal systems. It is located in the NE Lau Basin, which opened due to rollback of the Pacific plate along the Tonga-Kermadec trench. At the MTJ, three spreading centers meet in a ridge-ridge-ridge (RRR)-type triple junction separating the Tonga plate in the east, the Niuafo’ou microplate in the southwest, and an unnamed microplate in the north. The MTJ is directly linked to the formation and evolution of the Northeast Lau microplate mosaic, as plate fragmentation inevitably results in the formation of triple junctions, but it remains unclear whether the spreading centers are the drivers of plate fragmentation or a consequence of stress relocation related to microplate rotation. Detailed investigation of the geology and structural setting of the MTJ therefore provides valuable insight into the development in the northeast Lau Basin. Here we present the first comprehensive 1:200,000 geological map of the MTJ, based on a compilation of marine geophysical data (hydroacoustics, magnetics, and gravity) derived from 7 research cruises that have investigated the region between 2004 and 2018. Analysis of the mapped geological formations at the MTJ shows the importance of relict arc crust originating from the Tofua Arc in the architecture of the triple junction, which includes three stages of back-arc crust development and extensive off-axis volcanism. The spreading centers along each arm of the MTJ exploit pre-existing crustal weaknesses, interpreted to have formed during initial Lau Basin opening. A reconstruction of the basin opening, based on the mapped features and published spreading rates, revealed that initiation of the MTJ commenced approximately 180,000 years ago, consistent with the very recent and ongoing dynamic evolution of the NE Lau Basin and emerging microplate mosaic. Intersecting fabrics indicate sequential evolution of the 3 arms of the triple junction, with extension along the northeast arm dominant in the early history and more recent extension along the southern and western arms. The results of this study contribute to our growing understanding of the tectonic framework of the northeast Lau Basin and the role of triple junctions in microplate formation.

How to cite: Mensing, R., Stewart, M., Hannington, M., Baxter, A., and Mertmann, D.: The tectonic and volcanic evolution of the Mangatolu Triple Junction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19897, https://doi.org/10.5194/egusphere-egu2020-19897, 2020.

EGU2020-2540 | Displays | TS14.1

Distribution, morphology and magnetic characteristics of near-axis seamounts along the KR1, the easternmost segment of the Australian-Antarctic Ridge

Hakkyum Choi, Seung-Sep Kim, and Sung-Hyun Park

EGU2020-2083 | Displays | TS14.1

Geological mapping in the offshore domain: unravelling the tectonic history of the Scotia Sea

Anouk Beniest and Wouter P. Schellart

We produced the first geological map of the Scotia Sea area based on the available geophysical and geological data. Combining magnetic, Bouguer gravity anomaly and high-resolution bathymetric data with geological data from dredged samples allowed us to map lithologies and structural features in this mostly submerged and complex tectonic area. This geological map allowed us to integrate a very inter-disciplinary dataset, thereby reviewing the available data and addressing some of the still persisting geological challenges and controversies in the area.

One of the most important and persistent discussions is the nature and age of the Central Scotia Sea. We mapped this part of the Scotia Sea as basaltic-andesitic lithology partly covered by thick, oceanic sediments. This differs in lithology from the West and East Scotia Sea, which we mapped as a basaltic lithology. Based on our lithological map, its unusual thickness and the presence of the Ancestral South Sandwich Arc (ASSA, early Oligocene-late Miocene) we argue that Central Scotia Sea has an Eocene to earliest Oligocene age.

Cross-sections combining the geology, crustal structure and mantle tomography reveal high velocity anomalies and colder mantle material below the structural highs along the South Scotia Ridge (Terror Rise, Pirie Bank, Bruce Bank and Discovery Bank) and below the South Sandwich Islands. We interpreted those as the southern, stagnated part of the subducting slab of the South Sandwich Trench, following the geometry of Jane Basin and the currently active subducting slab at the South Sandwich Trench. Low velocity anomalies are observed below Drake Passage and the East Scotia Sea, which are interpreted as warmer toroidal mantle flow around the slab edges below the Chilean trench and the South Sandwich trench.

Based on our geological map and integrated cross-sections we propose a multi-phase evolution of the Scotia Sea area with Eocene or older oceanic crust for the Central Scotia Sea. A first wide-rift-phase initiated before 30 Ma in the West Scotia Ridge, Protector Basin, Dove Basin and Jane Basin either as a result of the diverging South American and Antarctic continents and/or due to subduction rollback that commenced soon after subduction initiation that eventually caused the ASSA to form. The first full spreading center developed in the West Scotia Sea, aided by the warmer toroidal mantle flow causing spreading to be abandoned in the other basins (~30 Ma). A second rift phase in the fore-arc, in between the ASSA and the South Sandwich trench (~20 Ma), initiated through a redistribution of far-field forces as a result of continuous trench retreat. The warmer toroidal mantle concentrated on the East Scotia Ridge resulting in the second spreading system (15 Ma), abandoning the West Scotia Ridge spreading system 6-10 Ma.

We show that it is possible to create a geological map in a very remote area with an extreme environment with the available geological and geophysical data. This new way of producing geological maps in the offshore domain provides a better insight into the geological history of geologically complex areas that are largely submerged.

How to cite: Beniest, A. and Schellart, W. P.: Geological mapping in the offshore domain: unravelling the tectonic history of the Scotia Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2083, https://doi.org/10.5194/egusphere-egu2020-2083, 2020.

TS14.2 – Multi-disciplinary & multi-scale approaches to investigating tectonic and geodynamic events in Earth history

EGU2020-11895 | Displays | TS14.2

Pixels to plates: reconstructing Pacific-Izanagi plate tectonics from seismic tomography

Jonny Wu, Yi-An Lin, Nicolas Flament, Tsung-Jui Wu, and Yiduo Liu

EGU2020-11806 | Displays | TS14.2

Ambient lower mantle structure and composition inferred from seismic tomography, convection models, and geochemistry.

Grace E. Shephard, John Hernlund, Christine Houser, Reidar Trønnes, and Fabio Crameri

The lower mantle can be grouped into high, low, and average (i.e., ambient) seismic velocity domains at each depth, based on the amplitude and polarity of wavespeed perturbations (% δlnVs, % δlnVp). Many studies focus on elucidating the thermo-chemical and structural origins of fast and slow domains, in particular. Subducted slabs are associated with fast seismic anomalies throughout the mantle, and reconstructed palaeo-positions of Cenozoic to Mesozoic subduction zones agrees with seismically imaged deep slabs. Conversely, slow wavespeed domains account for the two antipodal LLSVPs in the lowermost mantle, which are potentially long-lived features, as well as rising hot mantle above the LLSVPs and discrete mantle plumes. However, low-amplitude wavespeeds (close to the reference velocity models) are often overlooked By comparing multiple P- and S-wave tomographic models individually, and through “vote maps”, we reveal the depth-dependent characteristics and the geometry of ambient structures, and compare them to numerical convection models. The ambient velocity domains may contain early refractory and bridgmantic mantle with elevated Si/(Mg+Fe) and Mg/Fe ratios (BEAMS; bridgmanite-enriched mantle structures). They could have formed by early basal magma ocean (BMO) fractionation during a period of core-BMO exchange of SiO2 (from core to BMO) and FeO (from BMO to core), or represent cumulates of BMO crystallization with bridgmanite as the liquidus phase. The high viscosity of bridgmanitic material may promote its convective aggregation and stabilise the large-scale, degree-2 convection pattern. Despite its high viscosity, bridgmanitic material, representing a primitive and refractory reservoir for primordial-like He and Ne components, might be entrained in vigorous, deep-rooted plumes. The restriction of a weak seismic signal, ascribed to iron spin-pairing in ferropericlase, to the fast and slow domains, supports the notion that the ambient lower mantle domains are bridgmanitic.

How to cite: Shephard, G. E., Hernlund, J., Houser, C., Trønnes, R., and Crameri, F.: Ambient lower mantle structure and composition inferred from seismic tomography, convection models, and geochemistry., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11806, https://doi.org/10.5194/egusphere-egu2020-11806, 2020.

EGU2020-19194 | Displays | TS14.2

Testing geodynamic models with major elements geochemistry: implications for Edge-Driven Convection and Mantle plumes

Antonio Manjón-Cabeza Córdoba, Maxim D. Ballmer, Chelsea Allison, and Esteban Gazel

Numerical modeling facilitates the exploration of geodynamic mechanisms that are inaccessible to direct geological sampling. However, quantitative comparison of geochemical signatures predicted by models with real petrological analyses remains restricted. On one hand, efficient melting parameterizations are limited in the information that they provide, on the other, thermodynamic models are not optimized for 3D geodynamic codes. In the Eastern Atlantic, several archipelagos are located near the continental margin, e.g. the Canaries, Cape Verde, Cameroon Volcanic Line, but the origin of this volcanic activity remains poorly understood. Suggested origins range from mantle-plume activity (deep origin) to Edge-Driven Convection (EDC, shallow origin), or an interaction of both mechanisms. To test and constrain these models, we use a recently developed parameterization, which can constrain major-element geochemistry of primary magmas in the form of wt% as a function of the P-T path, together with regional numerical models of EDC with or without plumes. In this work, using the finite-element code CITCOM, we explore 3D models with a step of lithospheric thickness (or “edge”) and with variable distances between an imposed plume and the edge. We predict characteristic compositional trends that depend on model parameters, such as plume temperature or distance of the plume from the continental edge, and compare them with actual melt-inclusion data from the Canary Islands and Cape Verde. We find geochemical trends ranging from alkalic – for the models without thermal anomalies or with weak plumes – to more tholeiitic – for the cases with vigorous plumes. In turn, EDC alone cannot explain the volcanic fluxes observed at the Canary Islands or Cape Verde, with predicted melting rates well below 1 km3 Myr-1. Comparison with melt inclusions points towards the importance of CO2, but a thermal anomaly (plume) is also needed. We use the obtained major elements together with the melt volumes and the plume buoyancy flux to constrain the most likely set of mantle properties that originate the aforementioned islands. Our preferred model is a weak, relatively cold plume (ΔT < 150 ˚C), moderately rich in volatiles, that is affected by the nearby EDC pattern.

How to cite: Manjón-Cabeza Córdoba, A., Ballmer, M. D., Allison, C., and Gazel, E.: Testing geodynamic models with major elements geochemistry: implications for Edge-Driven Convection and Mantle plumes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19194, https://doi.org/10.5194/egusphere-egu2020-19194, 2020.

EGU2020-19758 | Displays | TS14.2

Deformation Regimes in Cratons Caused by Gravitational Instabilities

Açelya Ballı, Oğuz Göğüş, Irina Artemieva, and Hans Thybo

Most cratonic lithospheres are stable entities that have not been deformed since their formation in the Archean. In contrast, geological and geophysical inferences showed that North China and Wyoming Cratons have been deformed/destroyed under specific geodynamic circumstances (e.g metasomatization, slab dehydration). For instance, lithospheric roots are densified-destabilized and they may eventually sink into the mantle. Here, numerical experiments are used to investigate how high-density anomalies/eclogite in the lower crust that is varying in size, density and geometry may control the lithospheric removal process. Based on a large set of parametric numerical calculations, we first classified the lithospheric removal style (e.g localized, non-localized, high degree, and pierce through). In the case where the eclogite blocks attached to the lower crust, two different conditions develop; localized deformation and non-localized deformation occur due to the small-scale convection. Two new different removal mechanisms are evolved after the eclogite becomes detached from the lower crust; (i) pierce through mechanism subsequent to localized deformation and (ii) high-degree deformation following non-localized deformation. While the width of the eclogite block causes high-degree deformation, it is observed that with increasing thickness it leads to the formation of viscous drips. Experimental results indicate that eclogite block(s) under the cratons may still be there while creating small wavelength MOHO depth variations.

How to cite: Ballı, A., Göğüş, O., Artemieva, I., and Thybo, H.: Deformation Regimes in Cratons Caused by Gravitational Instabilities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19758, https://doi.org/10.5194/egusphere-egu2020-19758, 2020.

EGU2020-4876 | Displays | TS14.2

Combining geophysical and petrological estimates of the thermal structure of southern Tibet

Tim Craig, Peter Kelemen, Bradley Hacker, and Alex Copley

The thermal structure of the Tibetan plateau remains largely unknown. Numerous avenues, both geophysical and petrological, provide fragmentary pressure/temperature information, both at the present, and on the evolution of the thermal structure over the recent past. However, these individual constraints have proven hard to reconcile with each other. This study presents a series of models for the simple underthrusting of India beneath southern Tibet that are capable of matching all available constraints on its thermal structure, both at the present day and since the Miocene. Three consistent features to such models emerge: (i) present day geophysical observations require the presence of relatively cold underthrust Indian lithosphere beneath southern Tibet; (ii) geochemical constraints require the removal of Indian mantle from beneath southern Tibet at some point during the early Miocene, although the mechanism of this removal, and whether it includes the removal of any crustal material is not constrained by our models; and (iii) the combination of the southern extent of Miocene mantle-derived magmatism and the present-day geophysical structure and earthquake distribution of southern Tibet require that the time-averaged rate of underthrusting of India relative to central Tibet since the middle Miocene has been faster than it is at present.

How to cite: Craig, T., Kelemen, P., Hacker, B., and Copley, A.: Combining geophysical and petrological estimates of the thermal structure of southern Tibet, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4876, https://doi.org/10.5194/egusphere-egu2020-4876, 2020.

EGU2020-2777 | Displays | TS14.2

Plate tectonic chain reaction constrained from noise in the Cretaceous Quiet Zone

Derya Gürer, Roi Granot, and Douwe J.J. van Hinsbergen

The relative motions of the tectonic plates show remarkable variation throughout Earth’s history. Major changes in relative motion between the tectonic plates are traditionally viewed as spatially and temporally isolated events linked to forces acting on plate boundaries (i.e., formation of same-dip double subduction zones, changes in the strength of the boundary), or thought to be associated with mantle dynamics. A Cretaceous global plate reorganization event has been postulated to have affected all major plates. The Cretaceous ‘swing’ in Africa-Eurasia relative plate motion provides an ideal test-bed for assessing the temporal and spatial evolution of both relative plate motions and surrounding geological markers. Here we show a novel plate kinematic model for the closure of the Tethys Ocean by implementing intra-Cretaceous Quiet Zone time markers and combine the results with the geological constraints found along the convergent plate boundary. Our results allow to assess the order, causes and consequences of geological events and unravel a chain of tectonic events that set off with the onset of horizontally-forced double subduction ~105 Myr ago, followed by a 40 Myr long period of acceleration of the Africa relative to Eurasia that peaked at 80 Myr ago (at rates four times as high as previously predicted). This acceleration, which was likely caused by the pull of two same-dip subduction zones was followed by a sharp decrease in plate velocity, when double subduction terminated with ophiolite obduction onto the African margin. These tectonic forces acted on the eastern half of the Africa-Eurasia plate boundary, which led to counterclockwise rotation of Africa and sparked new subduction zones in the western Mediterranean region. Our analysis identifies the Cretaceous double subduction episode between Africa and Eurasia as a link in the global plate tectonic chain reaction and provides a dynamic view on plate reorganizations.

How to cite: Gürer, D., Granot, R., and van Hinsbergen, D. J. J.: Plate tectonic chain reaction constrained from noise in the Cretaceous Quiet Zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2777, https://doi.org/10.5194/egusphere-egu2020-2777, 2020.

Plate reorganization events are a characteristic of plate tectonics that punctuate the Phanerozoic. They fundamentally change the lithospheric plate-motion circuit, influencing the planet’s tectonic-mantle system and both ocean and atmospheric circulation through changes in bathymetry and topography. The development of full-plate reconstructions for deep time allows the geological record to be interrogated in a framework where plate kinematic reorganizations can be explored. Here, the geological record of the one of the most extensive tracts of Neoproterozoic crust on the planet (the Arabian-Nubian Shield) is interpreted to reflect a late Tonian plate reorganization at ca. 800-715 Ma that switched plate-convergence directions in the Mozambique Ocean, bringing Neoproterozoic India towards both the African cratons and Australia-Mawson, instigating the closure of the intervening ocean and the future amalgamation of central Gondwana ca. 200 million years later. This plate kinematic change is coeval with constraints on break-up of the core of Rodinia between Australia-Mawson and Laurentia and Kalahari and Congo.

How to cite: Collins, A., Blades, M., Merdith, A., and Foden, J.: A late Tonian plate reorganization event: Using a deep-time full-plate global model to unravel Neoproterozoic tectonic convulsions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3171, https://doi.org/10.5194/egusphere-egu2020-3171, 2020.

EGU2020-9789 | Displays | TS14.2 | Highlight

Estimates of true Polar wander since 300Ma

Jean Besse, Marianne Greff, and Sophie Vicente de Gouveia

We investigate true polar wander (TPW) since 300Ma. We construct a hotspot reference frame using an updated list of active hotspots with improved criteria aimed at detecting their depth origin, a compilation of terrestrial volcanic data suspected to reveal hotspot activity, and a set of plate reconstructions, based initially on paleomagnetism corrected with respect to hotspots under the assumption of hotspot fixity. The polar motion curves (representing the motion of the mantle taken as a whole) during the periods t=[0 and 150-170] and [150-170 to 280Ma] roughly aligns along two great circles which poles  are both located close to the equator, with a  longitude differing  by some 50°, and positioned close to an axis passing through the Large Low Shear Velocity Provinces (LLSVPs), and close to the maximum degree 2 geoid high under Africa. The TPW rate is slowly decreasing with respect to time but remains close or below the observed 10cm/yr present value.

            We compare our TPW data with those obtained from a mantle density heterogeneities model which computes the temporal evolution of the Principal Inertia Axis (PIA).  The minimum PIA is shown to be in agreement with the two poles previously determined, while the maximum PIA  path (which represents the evolution of the geographic pole) displays strong similarities with the observed TPW (directions, cusps). The sudden changes of TPW direction (i.e., cusps) can be explained  by mass reorganizations within the mantle principally linked to changes in subductions, while the domes greatly stabilize the system.

 

How to cite: Besse, J., Greff, M., and Vicente de Gouveia, S.: Estimates of true Polar wander since 300Ma, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9789, https://doi.org/10.5194/egusphere-egu2020-9789, 2020.

EGU2020-178 | Displays | TS14.2

The Cenozoic tectonic evolution of the Scotia Sea area

Anne Oldenhage, Anouk Beniest, and Wouter P. Schellart

The breakup of the southern edge of Gondwanaland resulted in the formation of the Scotia Plate and the opening of Drake Passage throughout the Cenozoic. During the same period, the Tasman Seaway opened, although the timing of this opening is much better constrained. Rapid cooling of the Antarctic continent followed the openings of Drake Passage and the Tasman Seaway. The opening of Drake Passage or the Tasman seaway allowed the onset of the Antarctic Circumpolar Current, which is held responsible for the late Miocene global cooling, but discussions about the most important opening are still ongoing.

The opening of Drake Passage and the development of the Scotia plate have been studied in multitude, but paleogeographic reconstructions show many differences and inconsistencies in both timing of opening Drake Passage as well as paleo-locations of crustal segments. The paleogeographic or tectonic reconstructions of the opening of Drake Passage and the formation of the Scotia plate are hard to compare, because differences in shapes of crustal segments, geographic projections and relative movements of segments chosen by previous authors make it difficult to observe similarities and differences between the different reconstructions.

We present a thorough analysis of the previously published paleogeographic reconstructions with the aim to identify agreements and inconsistencies between these reconstructions. We re-defined the crustal segments that formed after the break-up of Gondwanaland by re-interpreting the bathymetry and magnetic anomalies of the study area. We re-modelled and compared georeferenced reconstructions from earlier studies in GPlates plate reconstruction software using our own defined crustal segments.

This comparison shows that the different reconstructions agree quite well along the South Scotia Ridge, but that the North Scotia Ridge shows significant variations between different reconstructions or is not even considered in the reconstructions. Also, the nature and age of the crust of the Central Scotia Sea is heavily discussed, resulting in different opening scenarios. We argue that the tectonic evolution of the North Scotia Ridge and Central Scotia Sea is a crucial factor in identifying the timing of the development of an ocean gateway. We made a new tectonic reconstruction of the North Scotia Ridge crustal segments with less overlaps and gaps between the reconstructed crustal segments.

The next step would be to compare the global sea-level changes and paleo-bathymetry with the different opening scenarios. Because we standardized all scenarios with the same crustal segments, we will then be able to provide opening ages of Drake Passage for the different scenarios that can be compared in a quantitative way.

How to cite: Oldenhage, A., Beniest, A., and Schellart, W. P.: The Cenozoic tectonic evolution of the Scotia Sea area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-178, https://doi.org/10.5194/egusphere-egu2020-178, 2020.

The formation of Gondwana results from a complex history, which can be linked to many orogenic sutures. Those sutures have often been gathered in the literature under broad orogenies — in particular the Eastern and Western Pan-African Orogenies — although their ages may vary a lot within those wide belts.

The Panalesis model is a plate tectonic model, which aims at reconstructing 100% of the Earth’s surface, and proposes a geologically, geometrically, kinematically, and geodynamically coherent solution for the evolution of the Earth from 888 Ma to 444 Ma. Although the model confirms that the assembly of Gondwana can be considered complete after the Damara and Kuunga orogenies, it shows above all that the detachment and amalgamation of “terranes” is a roughly continuous process, which even persisted after the Early Cambrian.

By using the wealth of Plate Tectonics, the Panalesis model makes it possible to derive numerous additional data and maps, such as the age of the sea-floor everywhere on the planet at every time slices, for instance. The evolution of accretion rates at mid-oceanic ridges and subduction rates at trenches are shown here, and yields results consistent with previous estimates. Understanding the variation of the global tectonic activity of our planet through time is key to link plate tectonic modelling with other disciplines of Earth sciences.

How to cite: Vérard, C.: 888 – 444 Ma global plate tectonic reconstruction with emphasis on the formation of Gondwana, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3306, https://doi.org/10.5194/egusphere-egu2020-3306, 2020.

EGU2020-2846 | Displays | TS14.2

The crustal structure in the transition from the on land fold-and-thrust belt to the offshore accretionary prism in the Taiwan arc-continent collision

Joaquina Alvarez-Marrón, Dennis Brown, Juan Alcalde, Ignacio Marzán, and Hao Kuo-Chen

The region of Taiwan is undergoing active, oblique arc-continent colision between the Luzon Arc on the Philippine Sea Plate and the continental margin of Eurasia. The Fold-and-Thrust Belt (FTB) in Taiwan passes southwards into a submarine accretionary wedge at the Manila subduction zone. The aim of this contribution is to examine how an on land FTB changes into a marine accretionary prism in the context of an oblique arc-continent collision. The Miocene pre-orogenic sediments of the continental margin are widespread in the FTB ca. 23° latitude while the offshore wedge is built up dominantly by Pliocene to recent syn-orogenic sediments. In the transition area from the marine accretionary wedge ca. 21° latitude to the on land FTB, the thrust wedge is climbing up the slope of the Eurasian continental margin. The deformation front is at sea floor depth of ca. 4 km in the south to less than 1 km as it reaches the coast line. Here we use the island surface geology, marine reflection seismic profiles, and seismic tomography models to construct contour maps of the basal thrust and the depth to the Moho across a transition area from near 23° to near 21° latitude. In this zone, the deformation front draws a convex curvature as the wedge widens from ca. 50 in the north and south, to more than 130 km near 22° latitude. The basal thrust surface shows a scoop shape as its dip changes from southeast near the coast line to east southward. The basal thrust reaches over 7 km deep beneath the rear of the FTB before ramping into de basement and merging into the Chaochou fault at 10 km depth. Offshore, it shows a gentler dip from 7 km to c. 10 km depth before getting steeper towards the east below the Hengchung Ridge. The basal cuts laterally along-strike through the margin’s sedimentary cover to incorporate thicker Miocene pre-orogenic sediments onto its hanging wall as it passes from the offshore wedge to the on land FTB.

In the offshore area, the Moho (we use a Vp proxy of 7.5 km/s extracted from the seismic tomography) shallows southeastward, from near 25 km depth below the shelf slope break to less than 17 km depth below the offshore wedge near 21.5° latitude before it starts to deep east towards beneath the Taiwan coast. The Moho dips northeast from near 25 km depth below the coast near Kaohsiung, to near 40 depth below the rear of the FTB at 23.5°, latitude. This complex morphology of the Moho may be related to the changes in crustal thickness and the obliquity of the collision. Because of this, crustal thickening is less pronounced beneath southern Taiwan where the thinner part of the margin is colliding with the arc.

This research is part of project PGC2018-094227-B-I00 funded by the Spanish Research Agency from the Ministry of Science Innovation and Universities of Spain.

How to cite: Alvarez-Marrón, J., Brown, D., Alcalde, J., Marzán, I., and Kuo-Chen, H.: The crustal structure in the transition from the on land fold-and-thrust belt to the offshore accretionary prism in the Taiwan arc-continent collision , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2846, https://doi.org/10.5194/egusphere-egu2020-2846, 2020.

EGU2020-12730 | Displays | TS14.2

New geological and paleomagnetic data from Siberian Craton and implications for the post 2 Ga global paleogeography

Sergei Pisarevsky, Tatiana Donskaya, and Dmitry Gladkochub

Siberian Craton is generally recognised as one of the building blocks of two supercontinents: Mesoproterozoic Nuna (Columbia) and Neoproterozoic Rodinia. Although the exact Siberian positions in Nuna and Rodinia are debated, most workers agree that the southern part of Siberia (hereafter in present day coordinates) has been located not too far from the northern margin of Laurentia (cratonic part of North America) between ca. 1600 Ma and ca. 700 Ma. New geochronological, paleomagnetic and geochemical data from the Siberian craton obtained in recent years improved our understanding of Siberian geological history comparing to previous reviews. The progress in global Precambrian paleogeography also contributed to a re-evaluation of the Siberian tectonic history. The compilation of Siberian paleomagnetic data suggests that after the final assembly of Siberian Craton and until Ediacaran time the craton mostly occupied the low- to moderate latitudes. Most of this time western, northern and eastern Siberian edges have been passive or active oceanic margins. The southern margin Siberian margin has been probably connected with some other continent. Using new geological and paleomagnetic data, in particular recent results of the detrital zircons distributions in Siberia, Laurentia and other ancient continents, we tested several paleogeographic reconstructions of this connection. We also propose a new model of the breakup of Siberia from the remnants of Rodinia and consequent opening of the Paleo-Asian Ocean.

How to cite: Pisarevsky, S., Donskaya, T., and Gladkochub, D.: New geological and paleomagnetic data from Siberian Craton and implications for the post 2 Ga global paleogeography , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12730, https://doi.org/10.5194/egusphere-egu2020-12730, 2020.

EGU2020-4483 | Displays | TS14.2

Effect of grid resolution on tectonic regimes in global-scale convection models

Enrico Marzotto, Marcel Thielmann, and Gregor Golabek

A key ingredient to reproduce plate-tectonics in numerical models is a viscoplastic rheology. Strongly temperature-dependent rheology generates a rigid lid at the surface, whereas plastic rheology allows for the formation of plate boundaries. The yield stress limiter  controls the strength of the lithosphere.

Depending on the value used for  different tectonics regimes can be observed: (i) dripping behaviour (low , (ii) plate-like behaviour (intermediate-low ), (iii) Episodic behaviour (intermediate-high ) and (iv) Stagnant lid behaviour (high ).

Each lid behaviour can be distinguished by comparing the evolution profile of several parameters: temperature, viscosity, surface Nusselt number and mobility (Tackley, 2000a.).

Despite the great importance of physical parameters, the outcome of geodynamical models is also affected by the grid resolution as it has been shown that the critical that separates each lid behavior is resolution dependent (Tosi et al., 2015).

Here we use the code StagYY (Tackley, 2008) in a 2D spherical annulus geometry (Hernlund & Tackley, 2008) to determine the resolution-dependent tectonic regime in a global-scale convection setting. We tested 12 grid resolutions (ranging from 128x32 to 1024x128 nodal points) and 9 different  (ranging from 10 to 90 MPa), keeping all the remaining physical parameters unchanged.

For these simplified models we assume isothermal free slip boundaries, constant radiogenic heating, no melting, endothermic (410) and exothermic (660) phase transitions. Each simulation was run for 15 Gyrs with a Rayleigh number of ≈8*10^7 to make sure that steady-state conditions were reached.

Our resolution tests show that the observed tectonic regime is affected by grid resolution as this parameter controls how well the lithosphere is resolved. Low radial resolutions favour weak lid regimes (dripping and plate-like) as the lithosphere is defined by few thick cells, that propagate basal stress to shallower depths. On the other hand low azimuthal resolutions favour strong lid regimes (episodic and stagnant) since plate boundaries remain unresolved. In conclusion, only at high grid resolutions (512x128 and higher) the numerical influence on the observed tectonic regime is low.

How to cite: Marzotto, E., Thielmann, M., and Golabek, G.: Effect of grid resolution on tectonic regimes in global-scale convection models , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4483, https://doi.org/10.5194/egusphere-egu2020-4483, 2020.

EGU2020-4742 | Displays | TS14.2

Integration of bedrock, seismic tomographic and plate kinematic constraints to test models of the India-Asia collision

Andrew Parsons, Kasra Hosseini, Richard Palin, and Karin Sigloch

The India-Asia collision is one of the most well-studied orogenic events on Earth; it recorded the terminal stages of the central Tethys ocean basins and offers invaluable insight into the geological processes associated with continental collision. In this study, we integrate bedrock datasets, observations of subducted slabs in the mantle, and plate kinematic constraints, to constrain models for the India-Asia collision and the central Tethys oceans.

Previously proposed models for the India-Asia collision differ in terms of subduction zone configurations and paleogeographic reconstructions of Greater India, which represents to northern passive margin of India prior to collision. Five distinct subduction zone configurations have been proposed previously, which differ in the number of active trenches (one or two trenches) in the central Neotethys Ocean and differ in the respective timing, duration, location and migration of those trenches. Three distinct paleogeographic reconstructions of Greater India have been proposed previously, which differ in size and structure. Here, we consider the validity of these subduction zone configurations and Greater India reconstructions with respect to the bedrock record, plate kinematics and the deep mantle structure of subducted slabs beneath the Indian hemisphere.

Following the assumption that slabs sink vertically through the mantle, the positions and geometries of subducted slabs determined from seismic tomography constrain the locations and kinematics of paleo-subduction zones. Integrating this with bedrock constraints allows us to constrain post-Triassic subduction zone configurations for the central Tethys oceans. Our analysis demonstrates that the Neotethys Ocean was consumed by at least two subduction zones since the Jurassic. At the onset of the India-Asia collision at 59±1 Ma, one subduction zone was active along the southern Asian continental margin at ~20°N. At that time, a second may have been active at subequatorial latitudes, but support for this from a bedrock perspective is lacking. This subduction zone configuration allows for three reconstructions for Greater India: The (1) minimum-area; (2) enlarged-area; and (3) Greater India Basin reconstructions. We integrate these reconstructions and subduction zone configurations in a plate kinematic framework to test their validity for the India-Asia collision.

Our findings show that no single model is entirely satisfactory and each invokes assumptions that challenge accepted concepts. These include our understanding of suture zones, subduction-erosion processes, and the limits of continental subduction. We explore these challenges and their implications for our understanding of the India-Asia collision and continental collisions in general.

How to cite: Parsons, A., Hosseini, K., Palin, R., and Sigloch, K.: Integration of bedrock, seismic tomographic and plate kinematic constraints to test models of the India-Asia collision, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4742, https://doi.org/10.5194/egusphere-egu2020-4742, 2020.

CC BY 4.0