Content:

CL – Climate: Past, Present, Future

CL1 – Open Session on Climate: Past, Present and Future

The controversy between the CO2 driving or lagging models is elucidated in a new climate model, that reunites insights from models from other planets, carbon draw down models during earth history as a whole, spores spike related to catastrophic events from the Phanerozoic, late Palaeozoic climate models and carbon dioxide and temperature fluctuations during the Quaternary as shown by Petit et al., (1999).

 

This model advocates that for the natural system orbitally induced insolation maxima (eccentricity in particular) momentarily and erratically trigger ocean degassing and drive temperature rise orbitally while it is otherwise driven by carbon drawdown through photosynthesis leading to cooling.

 

For the natural system high concentrations of particulate organic carbon (fungal spore, pollen, vegetation debris, soot and charcoal) or abiotic dust are forming crystallisation cores that trigger an ephemeral greenhouse effect in the cirrus from the lowermost stratosphere. This happens at the onset of orbital insolation peaks when warming leads to larger crystal sizes. The consecutive warming induces the waxing of the cirrus forming sphere which necessarily has lower concentrations of crystallisation cores and shifts back to the albedo effect.

 

In this model the decrease in CO2 concentration in the atmosphere through photosynthesis regulates temperature and supports the view that temperature lags CO2 concentration, yet in this natural system, the greenhouse effect is briefly triggered by orbital forcing and support the results of Feulner (2017) indicating that both the carbon drawdown and orbital forcing are driving temperature in the natural system. In this model the CO2 gets ping-ponged from the terrestrial to the marine system until both are depleted in CO2.  It indicates that, ultimately, under natural circumstances, spreading rate and tectonic events drive climate. From this model it also follows that the industrial use of organic and inorganic carbon sinks, as they have constantly been replenished during earth history through tectonic activity, will lead to CO2 concentrations as experienced before photosynthesis appeared and concentrations far beyond.

 

The aberrant CO2 and temperature rise in the Anthropocene reflects the tempering of the response system in the lowermost stratosphere because of increasing concentrations of particulate organic carbon and dust by changing land use, lowering of the ground water table by wood cutting, aridification (pyro-cumulonimbi), transport (contrails) and soot emission.

How to cite: Waveren, I.: Midas or Gaia revisited, about anthropogenic tempering with the natural response system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2689, https://doi.org/10.5194/egusphere-egu2020-2689, 2020.

EGU2020-11039 | Displays | CL1

Global temperature response to regional and sectoral air pollutant and greenhouse gas emissions under the Shared Socioeconomic Pathways

Marianne T. Lund, Borgar Aamaas, Camilla W. Stjern, Zbigniew Klimont, Terje K. Berntsen, and Bjørn H. Samset

Achieving the ambition of the Paris Agreement and meeting the Sustainable Development Goals require both near-zero levels of long-lived greenhouse gases and deep cuts in emissions of so-called short-lived climate forcers (SLCFs), including methane and black carbon. Here we present a comprehensive dataset of contributions to future global temperature change from emissions of CO2 and individual SLCFs from 7 economic sectors and 13 source regions, both as they are today and as they are projected to change under the Shared Socioeconomic Pathways (SSPs). Such detailed knowledge about the mix of emissions from individual sources and benefits and trade-offs of reductions is essential for designing efficient mitigation strategies at the national and international levels, as well as for informing policy processes on how to best address linkages between climate, sustainable development and air quality.

Our results demonstrate that the mitigation potential inherent in the present SLCF emissions is highly inhomogeneous across region and sector, and that co-emissions of all species – including CO2 – should be considered in any targeted climate policy. We also reinforce the importance of reducing methane emissions, from agriculture, waste management and energy production, for reducing warming in the near-term. In contrast, in many regions, reducing industry emissions brings air quality benefits but may cause a net additional near-term warming. The spatiotemporal heterogeneity is expected to continue under the SSPs. Most scenarios project a particularly strong increase in aerosol and other SLCF emissions in South Asia and Africa South of the Sahara, suggesting that technology development and air pollution legislation in these regions is a key step in the transition to a low emission future. Moreover, both rapidly increasing and decreasing emissions of SLCFs will play an important role in shaping the regional climate and air quality.

By using an analytical climate model, we build a methodological framework that can be used to estimate the impact of any emission scenarios. Our data set hence provide a toolkit for further studies of implications of mitigation pathways and policy responses, and support assessments of environmental impacts.

How to cite: Lund, M. T., Aamaas, B., Stjern, C. W., Klimont, Z., Berntsen, T. K., and Samset, B. H.: Global temperature response to regional and sectoral air pollutant and greenhouse gas emissions under the Shared Socioeconomic Pathways, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11039, https://doi.org/10.5194/egusphere-egu2020-11039, 2020.

EGU2020-13155 | Displays | CL1

Evaluation of Clouds in the E3SM Atmosphere Model with Satellite Simulators

Yuying Zhang, Shaocheng Xie, Wuyin Lin, Stephen A. Klein, Mark Zelinka, Po-Lun Ma, and Philip J. Rasch

EGU2020-6095 | Displays | CL1

Short-Lived Climate Forcers over the Arctic between 1995 and 2015 as simulated by the GISS modelE2.1

Ulas Im, Kostas Tsigaridis, Cynthia H. Whaley, Gregory S. Faluvegi, Zbigniew Klimont, and Knut von Salzen

The Arctic Monitoring and Assessment Programme (AMAP) is currently assessing the impacts of Short-Lived Climate Forcers (SLCF) on Arctic climate and air quality. In support of the assessment, we used the NASA Goddard Institute of Space Sciences (GISS) Earth System Model (modelE2.1), with prescribed sea surface temperature and sea-ice fraction, to simulate SLCF concentrations globally between 1995 and 2015. Two simulations were conducted, using the One-Moment Aerosol (OMA) and the Multiconfiguration Aerosol TRacker of mIXing state (MATRIX) aerosol modules. OMA is a mass-based scheme in which aerosols are assumed to remain externally mixed and have a prescribed and constant size distribution, while MATRIX is an aerosol microphysics scheme based on the quadrature method of moments, which is able to explicitly simulate the mixing state of aerosols. Anthropogenic emissions from the ECLIPSE v6b emissions database were used, along with emissions from aircrafts and open biomass burning from the Coupled Model Intercomparison Project Phase 6 (CMIP6), while the natural emissions of sea salt, DMS, isoprene and dust are calculated interactively. The simulated monthly surface concentrations of sulfate (SO4), black carbon (BC), organic carbon (OA), and ozone (O3) are compared with observations from a set of Arctic stations, extracted from the EBAS and IMPROVE databases, as well as a few additional locations. Simulated aerosol optical depths (AOD) are also compared with Advanced Very-High Resolution Radiometer (AVHRR). The study will present the evaluation of the modelE2.1 in simulating SLCF levels over the Arctic using different aerosol schemes, along with observed and simulated trends of SLCFs over the Arctic between 1995 and 2015.

 

How to cite: Im, U., Tsigaridis, K., Whaley, C. H., Faluvegi, G. S., Klimont, Z., and von Salzen, K.: Short-Lived Climate Forcers over the Arctic between 1995 and 2015 as simulated by the GISS modelE2.1, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6095, https://doi.org/10.5194/egusphere-egu2020-6095, 2020.

The Turpan basin is one of the most arid and water insecure regions in China. The mountain snowmelt is the primary source of water. To assess the impact of climate change on stream flow, this study examined the long-term trends and change points of hydro-meteorological variables and explored the possible correlation between them at annual and seasonal scales. A set of non-parametric statistical tests including Mann-Kendall, Kendall’s tau, Sen’s slope estimator, and Pettitt test was applied, and change point of the hydro-meteorological variables. This study provided valuable information in understanding the changing properties of the stream flow in the basin and insights for a better integrated water resources management planning.

How to cite: Du, L.: Hydrological Variability and its Response to Climate Change in Turpan basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12545, https://doi.org/10.5194/egusphere-egu2020-12545, 2020.

EGU2020-8357 | Displays | CL1

New records of freshwater ostracoda from the xingyun lake

Manping Xie

This present paper reports eight modern ostracode collected from the bottom of the Xingyun Lake,Yunnan Province, including Candonocypris novaezelandiae (Baird, 1843), mateless cyclocypris Cypridopsis Vidua (O.F.M ller, 1776), star (which really wedge dielectric) Eucypris CF. Cuneata (Tsao, 1959), Cleveland star kraeplini (G.W.M mediated Cypris ller, 1903) Belgium, sheshi (similar) glass dielectric Schellencandona CF. Belgica (Klie, 1937), Fabaeformiscandona subacuta (Yang, 1982), unarmed mobs mediated Cetacella inermis (Martin, 1958), the Yunnan flower (compare kinds) Yunnanicyhere cf.reticulate mediated gen.etsp.nov. the true star (dielectric wedge comparison of three) Eucypris CF. Cuneata (Tsao, 1959), unarmed mobs mediated Cetacella inermis (Martin, 1958) and Yunnan (a comparison of dielectric reticulate flowers) Yunnanicyhere cf.reticulate gen.etsp.nov.  these species are newly recorded from modern lakes.It has enriched the understanding of freshwater ostracoda of the biological communities in China.

Key word  freshwater ostracods; Xingyun Lake; Yunnan Province

How to cite: Xie, M.: New records of freshwater ostracoda from the xingyun lake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8357, https://doi.org/10.5194/egusphere-egu2020-8357, 2020.

In this study, we focus on the relationship between the water vapor source region and the isotopic composition of the precipitation. The change of isotope characteristics of precipitation depends on the moisture source region. Long-term stable isotope (δ18O, δ2H ) measurements of precipitation were performed in Debrecen, Hungary, between 2001 and 2014. The long-term isotope time series and trajectory modeling are suitable for determining moisture source regions. Backward trajectory analysis was carried out using the Lagrangian Raptor model based on ERA5 atmospheric data. Hourly backward trajectories were calculated for Debrecen for the days with precipitation in the period between 2001-2014.

Based on the study three source regions were identified. Of these, 60% represented the Carpathian Basin, which is where most of the moisture evaporated from near the surface. The remaining 40% of the northwest and southwest were represented by moisture source regions. This means that the isotopic composition of precipitation significantly determines the local and continental effects, i.e. the moisture evaporated from the continental surface contributes significantly to the spatial and temporal variation of the precipitation isotope composition.

How to cite: László, E., Palcsu, L., and Leelőssy, Á.: Identification of moisture source region based on trajectory model analysis and isotopic composition of the precipitation in Debrecen, Hungary , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18226, https://doi.org/10.5194/egusphere-egu2020-18226, 2020.

EGU2020-13537 | Displays | CL1

Comparison of noble gas temperature with recent mean annual air and soil temperature in different regions of Hungary

Anita Puskás-Preszner, Carmen Fekete, Elemér László, László Kompár, Andor Hajnakl, and László Palcsu

This paper describes the relation of noble gas temperature (NGT) and mean annual air (MAAT) and soil (MAST) temperature through studying water samples and meteorological data from six Hungarian regions. Alluvial plains, hilly and mountainous regions were studied to investigate the effects of geomorphological, hydrogeological and micro-climatic conditions. Water samples were collected from springs and wells fed from different aquifers. Comparing NGTs derived from these water samples with the MAAT and MAST values of the given region, we identified differences between the sampled areas. In case of the Geresd Hills, Mezőföld, Danube-Tisza Interfluves and Nyírség, the NGTs (13.0 ± 0.9 °C, 12.1 ± 1.1 °C, 12.1 ± 0.6 °C and 12.7 ± 1.6 °C, respectively)  generally reflect MAST, however in karstic Bükk Mts. (6.8 ± 0.6 °C) and Mecsek Mts. (10.7 ± 1.9 °C) they are closer to MAAT. Consequently, it can be concluded that the direct relationship between noble gas temperature and mean annual air temperature is not always as well-defined as it is often assumed. It is shown that MAAT and MAST should be distinguished, especially when using NGT as a paleoclimate proxy.

How to cite: Puskás-Preszner, A., Fekete, C., László, E., Kompár, L., Hajnakl, A., and Palcsu, L.: Comparison of noble gas temperature with recent mean annual air and soil temperature in different regions of Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13537, https://doi.org/10.5194/egusphere-egu2020-13537, 2020.

EGU2020-9276 | Displays | CL1

A synchronous change of mid- to late- Holocene hydroclimate and prehistoric population in coastal East Asia indicated by pollen, XRF and grain size data

Jinheum Park, Jungjae Park, Sangheon Yi, Jin Cheul Kim, Eunmi Lee, Quihong Jin, and Jieun Choi

A relationship between climate change and prehistoric civilizations is a topic of growing interest. Here, we present a 6,000-year-long pollen, X-ray fluorescence (XRF), and grain size data of the core STP18-03 from the southern Korean peninsula, spanning the mid- to late- Holocene. The proxies generally show a synchronous change throughout the core. During dry periods, reduced precipitation indicated by lower sand proportion (river discharge) would have hindered tree growth, which then resulted in increased titanium erosion from nearby hills, and vice versa. The drying trend is remarkable during ca. 4.8, 4.3, 4.0, 3.3, 2.7-2.3 ka BP and corresponds with sudden dropping points of a summed probability distribution (SPD) of archaeological records found in the Korean Peninsula. This implies that ancient civilizations of Korea responded highly sensitively to abrupt climate deterioration. As an underlying mechanism of the change, we suggest a role of the equatorial Pacific Ocean. The temporal pattern of our arboreal pollen proportion closely follows that of sea surface temperature (SST) data from the Western Pacific Warm Pool (WPWP) region. Furthermore, the dry periods indicated by our multiple proxies coincide with strong El Niño–Southern Oscillation (ENSO) activity, when the core region of the warm seawater pool deviated eastward than usual. This supports that the equatorial Pacific Ocean has served as an important factor for modulating mid- to late- Holocene hydroclimate of the Korean Peninsula, where the East Asian Summer Monsoon (EASM) accounts for nearly 70 percent of the total annual precipitation amount.

How to cite: Park, J., Park, J., Yi, S., Kim, J. C., Lee, E., Jin, Q., and Choi, J.: A synchronous change of mid- to late- Holocene hydroclimate and prehistoric population in coastal East Asia indicated by pollen, XRF and grain size data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9276, https://doi.org/10.5194/egusphere-egu2020-9276, 2020.

Temperature cycles with periods > 2000 yr, including peaks of order 6000 yr, has been reported in 14C proxy records in sediments for Fennoscandia (Olsen et al, 2005) and in glacier geochemistry for the Greenland ice-sheet (Mayewski et al, 1997, 2004).  Similar spectral peaks are also seen in 14C and 10Be isotopes in Greenland GRIP ice-cores (Xapsos, 2009); these cycles have been attributed to solar sunspot activity (Solanki et al, 2004). Complicating the question of existence of global millennial cycles, a comparison of d18O data in ice cores for Greenland (NGRIP) and Antarctica (EDML) has shown that for events prior to the Last Glacial Maximum (LGM), variations on the scale of 2-6kyr are markedly stronger in northern hemisphere records, associated with ice dynamics and Dansgaard–Oeschger (D-O) and Heinrich events (EPICA, 2006).

This paper discusses ocean sediment cores from three temperate zone and sub-tropical sites which provide sea-surface temperature (SST) histories using the UK37 proxy.  The available time spans are 20, 70 and 136 ka.  This study restricts the three records to 0-20ka thus avoiding complexities of D-O and Heinrich events, and of the associated phase changes between hemispheres which have been discussed by EPICA (2006).  We apply Lomb-Scargle spectral analysis and find that all three sediment SST records (Okinawa Trough, Murray Canyon south of South Australia, and Iberian Margin) show a high-confidence 6000 yr period spectral peak for the time span 0-20ka; we may conclude that this post-LGM peak is unlikely to be related to glacial-epoch ice dynamics.  The same 6000 yr spectral peak also shows in 0-20ka EDML d18O data from EPICA (2006).

The three SST records also show spectral peaks in the range 1000 to 3500 yr periods. The high-resolution Okinawa Trough shows a clear 2300 yr (Hallstatt) peak and the Iberian Margin similarly.  The peak is visible on southern hemisphere Murray Canyon data but is of doubtful significance.  A unique feature of the Iberian Margin data is a strong 3400 yr spectral peak.  This peak is also visible but much weaker on the other SST records, and on the 0-20ka EPICA d18O data.   We hypothesize the strong peak for the Iberian Margin is a consequence of effects of ocean and ice dynamics in the north Atlantic.

Similar spectral analysis of limited 10Be data from McCracken et al 2013, (available length limited to 0-10ka) supports the hypothesis that millennial cycles in temperature (especially the 6000 yr and 2300 yr periods) are global and associated with cosmic ray/solar magnetic activity.  This is in contrast with the longer Milankovich cycles which are well established as being primarily related to forcing associated with variable solar insolation.

How to cite: Asten, M.: Holocene 6000-yr climate cycles in temperate and sub-tropical SST records – a cosmic ray connection?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7285, https://doi.org/10.5194/egusphere-egu2020-7285, 2020.

EGU2020-12830 | Displays | CL1

Perturbations in Antarctic bottom water formation in the Atlantic sector of the Southern Ocean during the last peak interglacial period

Julia Gottschalk, Robert F. Anderson, Adam P. Hasenfratz, Bärbel Hönisch, Samuel L. Jaccard, Jerry F. McManus, Luke C. Skinner, Claire Waelbroeck, and Gisela Winckler

Interglacial climate conditions are generally characterized by relatively strong and persistent deep-water formation both in the North Atlantic and in the Southern Ocean, and overall ‘stable’ climate conditions. Recent evidence, however, challenges the notion of persistent deep-water formation in both hemispheres during the last interglacial, and points at rapid reductions in convective mixing that may have lasted few centuries to millennia. The spatial pattern of this phenomenon and its driving mechanisms remain poorly constrained. Here we present multi-proxy data for rapid reductions in bottom water oxygen in the central sub-Antarctic Atlantic (sediment core MD07-3077, 44°9.20’S, 14°13.69’W, 3776 m water depth) during the warmer-than-present period of the last interglacial (i.e., 132-116 kyr before present). The first of these “stagnation events”, as they are often denoted, is synchronous, within dating uncertainties, with a similar drop in bottom water oxygenation at a more southern site, ODP Site 1094, south of the Polar Front. Our findings hint at a widespread and significant change in the formation rate and/or end-member pre-formed oxygen levels of Antarctic bottom water (AABW) in the South Atlantic during the last interglacial. The onset of these events closely coincides with increases in sea surface temperatures in the sub-Antarctic Atlantic above average Holocene levels. Although this needs to be further tested at more proximal sites, we argue that stagnation events were likely driven by excess ocean warming, in particular below ice shelves in the Weddell Sea, that may have perturbed AABW formation and/or air-sea gas exchange in that region during the last interglacial. Our findings highlight important feedback mechanisms linking hydrographic conditions at the sea surface, instabilities of the local cryosphere, and the strength of deep water formation in warmer-than-present climate scenarios – the full understanding of which has relevance for assessing the trajectory of future changes in the Southern Ocean.

How to cite: Gottschalk, J., Anderson, R. F., Hasenfratz, A. P., Hönisch, B., Jaccard, S. L., McManus, J. F., Skinner, L. C., Waelbroeck, C., and Winckler, G.: Perturbations in Antarctic bottom water formation in the Atlantic sector of the Southern Ocean during the last peak interglacial period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12830, https://doi.org/10.5194/egusphere-egu2020-12830, 2020.

EGU2020-3496 | Displays | CL1

The Last Glacial Maximum and Holocene along the western Iberian Margin: paleoceanographic and paleoclimatic analyses preliminary results

Carmen Argenio, Pierluigi Palladino, José Abel Flores Villarejo, and Filomena Ornella Amore

During the past 25 ky, the Earth system underwent a series of dramatic climate transitions until the most recent glacial period. It peaked about 21 ky ago during the time interval known as “Last Glacial Maximum” (LGM). This study focuses on the reconstruction of global changes occurred from the LGM to the Holocene.

For this aim coccolithophore assemblages have been studied at Integrated Ocean Drilling Program (IODP) Site U1385 (37°34.285’N, 10°7.562’W, 2578 m below sea level) located on the continental slope of the southwestern Iberian Margin in a timeframe between 25 and 0 ky. Moreover, an integration with isotopic and biogeochemical data and a comparison with other proxies were carried out.

This IODP Site nowadays is influenced by the Portugal Current system (Pérez et al., 2001; Relvas et al., 2007), whose seasonality is driven by migrations of the semi-permanent subtropical Azores High pressure system (Coelho et al., 2002). The study area also undergoes intra-seasonal oscillations mainly related to changes, during winter, of westerly wind prevalence, induced by the North Atlantic Oscillation (Trigo et al., 2004).

Coccolithophore data were carried out by sediments from the first four sections of the core A of the IODP Site U1385. Coccolithophores, haptophyte algae living in the photic zone, are sensitive to some environmental parameters as temperature, salinity, availability of nutrients and sunlight. Thanks to their ecological sensitivity, coccolithophores are able to record paleoceanographic changes and for this reason are considered to be an important proxy to study the climate variability.

The age model was calculated using linear interpolation between 64 tie points based on log (Ca/Ti) records of Site U1385 and MD01-2444 (Hodell et al., 2015; Datema et al., 2019) and on δ18O records of Site MD01-2444 and Greenland (Hodell et al., 2013). About 500 samples were sampled and preliminary results are based on the analysis of samples with a time-resolution of about 0,3 ky.

The preservation of the assemblages is from good to moderate (Flores et al., 2003). For quantitative analyses, a minimum of 300 coccoliths was counted per slide in a varying number of visual fields using a light microscope at 1000x magnification. This allows a 95% level of confidence to be reached for all species present in at least 1% abundance (Patterson and Fishbein, 1989). Absolute abundance (coccoliths per gram of sediment) and nannofossil accumulation rate (NAR; coccoliths cm-2 ka-1) were estimated following Flores and Sierro (1997).

The preliminary results highlight a progressive increase of small Gephyrocapsa and a decrease of Emiliania huxleyi, between 4,26 ky and 0,91 ky. Moreover, most abundant species, in this interval, are Gephyrocapsa oceanica, Umbilicosphaera sibogae and Calcidiscus leptoporus. Furthermore, between 18,40 ky and 14,72 ky a significant increase of E. huxleyi > 4 µm and G. mullerae occurs associated with a decrease of small Gephyrocapsa and E. huxleyi.

How to cite: Argenio, C., Palladino, P., Flores Villarejo, J. A., and Amore, F. O.: The Last Glacial Maximum and Holocene along the western Iberian Margin: paleoceanographic and paleoclimatic analyses preliminary results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3496, https://doi.org/10.5194/egusphere-egu2020-3496, 2020.

Long chain n-alcohols and n-alkanes in core sediments from the northern South China Sea (SCS) were measured to make a comparison during terrestrial vegetation reconstruction from ~42 to ~7 ka. The results showed that terrestrial vegetation record from long chain n-alkanes matched well with previous studies in nearby cores, showing more C4 plants developed during the Last Glacial Maximum (LGM) and C3 plants dominated in the interglacial period. However, these scenarios did not occur during terrestrial vegetation reconstruction using long chain n-alcohols, i.e., showing C3 plant expansion during the LGM. The discrepancy during the interglacial period could be likely attributed to aerobic degradation of functionalized long chain n-alcohols due to the oxygen-rich SCS bottom water, resulting in the weak response of terrestrial vegetation signals. On the other hand, the difference between functionalized n-alcohols and non-functional n-alkanes to record local and distal vegetation signals, respectively might be a potential interpretation for the contradiction during the LGM when the SCS was characterized by low-oxygen deep water. Nevertheless, large variations on n-alkyl lipid compositions in C3/C4 plants could likely play a part in modulating sedimentary long chain n-alcohols and n-alkanes towards different vegetation signals, and caution must be taken in respect to the terrestrial vegetation reconstruction using long chain n-alkanes and long chain n-alcohols.

How to cite: Mao, S., Zhu, X., Sun, Y., Liu, L., and Wu, N.: Last glacial terrestrial vegetation record of leaf wax n-alcohols in the northern South China Sea: Contrast to scenarios from long chain n-alkanes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12293, https://doi.org/10.5194/egusphere-egu2020-12293, 2020.

 

Calcareous stromatolite crusts overgrowing beach gravels and stabilising piles of rocks were observed on shoreline terraces of Lake Lisan along the eastern coast of the Dead Sea. The stromatolite crusts are thick, massive and hard, with a dark-grey or white-grey finely-laminated structure, indicating that they are mostly calcareous organic build-up of cyanobacterial origin. Samples from these stromatolites have been analyzed using Stable Isotopes (δ13C & δ18O), AAS and XRD analysis. The samples range in altitude between -350 m and -19 m, representing the time interval of Lake Lisan (~ 80-19 ka BP) according to our U/Th dating. Since stromatolites grow in shallow water, they are very sensitive to minor shifts in rainfall and evaporation and therefore an excellent tool to track small changes in hydrology, in climate and in paleoenvironmental conditions of the lake basin.

 

Oxygen and carbon isotopic compositions of these stromatolites show a linear covariant trend with a strong positive correlation (r = 0.8) and large ranges of 7.85 and 6.78‰, respectively. This trend is most typical of primary carbonates formed in closed lakes. Isotopes analyses show low negative values of stromatolites from the lake highest stands at -76 m to -19 m, reflecting fresh water conditions of the lake basin at the last interglacial-glacial boundary (80-76 ka BP). The lowest values were derived from stromatolites at -103 to -119 m associated with the transgression of the lake to these high stands between 55 and 33 ka BP. The heaviest values were derived from stromatolites at -137 to -160 m indicating a change to dry climatic conditions in the Eastern Mediterranean that caused a subsequent drop of the lake level during MIS 2 (31-19 ka BP).

 

The Mg/Ca ratio and the XRD analysis of the stromatolites correlate also with transgression-regression phases of the lake. Dominance of calcite in stromatolites at -76 to 0 m and inferred low Mg/Ca ratios of the lake water (i.e. ~2) imply a high fresh water input of the lake during the   highest stands period. A high Mg/Ca ratio of the lake water of >7 inferred from low-level stromatolite at -350 m and the existence of aragonite as the sole mineral reflect low fresh water input and high evaporation rates that caused a lake level regression during H6, ~ 60 ka BP.

 

Inferred low Mg/Ca ratios of stromatolites at -247 to -101 m and the existence of calcite as a main mineral phase indicate wet climatic conditions of the eastern Mediterranean and lake level transgression to higher than -137 during MIS 3. The appearance of more aragonite in stromatolites at -137 to -154 m and the inferred high Mg/Ca ratio of the lake water points to a return to dry climatic conditions that caused a regression of Lake Lisan between 32 to 22 ka BP (MIS 2). However, the change in the mineral composition to pure calcite at -160 m in addition to the inferred low Mg/Ca ratio correlates well with the transgression of the lake to this level by the end of the LGM.

 

 

How to cite: Abu Ghazleh, S. and Kempe, S.: Fluctuations of Lake Lisan (the Dead Sea) during the last glacial: Implications for paleoclimatic changes of the Levant. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12906, https://doi.org/10.5194/egusphere-egu2020-12906, 2020.

EGU2020-13551 | Displays | CL1

Reconstruction of paleoenvironmental changes using geochemical data from South Carpathian Mountains

Katalin Hubay, Mihály Braun, Sándor Harangi, Mihály Molnár, Krisztina Buczkó, and Enikő Magyari

This study applied bulk sediment geochemistry to reconstruct lateglacial and early Holocene climatic changes in a glacial lakes (Lake Brazi, 1740 m a.s.l. and Lake Lia, 1910 m a.s.l.) in the Retezat Mts. (South Carpathians, Romania). We studied how the changes of chemical element concentration in the sediment can indicate environmental changes, climate variations and human effects. Our aim was to develop analytical methods, which may complement the methodology of routinely applied paleoenvironmental methods and can be used to identify environmental changes in the past and help us reconstruct local and regional processes.

            In the Retezat Mts., Southern Carpathians, more than hundred glacial lakes were formed after the last glaciation. These glacial lakes are paleoecologically significant because they are characterized by continuous sedimentation since their origin to the present.

            In 2007 and 2008 continuous undisturbed sediment cores were obtained from Lake Brazi and Lake Lia in the Retezat Mts. (Southern Carpathians, Romania) with Livingstone and modified Kullenberg corers. The lowermost part of the sediment cores, covering the period between 9900 and 15 800 cal yr BP, was used for high resolution bulk analysis of major elements (Al2O3, SiO2, TiO2, CaO, MgO, K2O, Na2O, Fe2O3 and MnO). Linear discriminant analysis (LDA) was used to compare a priori classified main chemical groups. Subsamples from the core were priory ordered to “warm” and “cold” groups respectively, according to their age and evidence of cold and warm events in the record, as suggested by proxy correlation with the lateglacial event stratigraphy of North Greenland Ice Core Project (NGRIP). The discriminant function was calculated using concentration of major elements after log ratio transformation. Loss-on-ignition and silicon concentration were not used for the discriminant analysis, but regarded as comparison proxies for checking up the validity of outputs.

            The calculated discriminant values are good indicators of changes in sediment caused by climate change, as their values give the cold and warm directions. The “a posteriori” groups can be used to determine the period during which local changes differed from the climate changes in the North Atlantic region. The chemical composition of sediments deposited during the “cold” and “warm” periods shows differences in both sediments. The discriminant scores showed strong correlation with the NGRIP d18O data and with the pollen percentage sum of trees and shrubs.

            Discriminant analyses of bulk sediment major oxide chemical data may be a useful tool to identify the impact of climate events upon the nature and composition of materials delivered to a lake basin.

Key words: climate reconstruction, sediment geochemistry, Retezat Mts.

How to cite: Hubay, K., Braun, M., Harangi, S., Molnár, M., Buczkó, K., and Magyari, E.: Reconstruction of paleoenvironmental changes using geochemical data from South Carpathian Mountains, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13551, https://doi.org/10.5194/egusphere-egu2020-13551, 2020.

CL1.4 – Climate Change in the geological record: what can we learn from data and models?

EGU2020-10623 | Displays | CL1.4

Tectonic forcing of global chemical weathering since the mid-Paleozoic

Thomas Gernon, Thea Hincks, Andrew Merdith, Eelco Rohling, Martin Palmer, Gavin Foster, Clement Bataille, and Dietmar Muller

Weathering of the Earth’s surface has commonly been invoked as a driver of global cooling through geologic time. During the Phanerozoic Eon (541–0 million years ago, Ma), for example, the periodic onset of icehouse conditions has variously been attributed to enhanced weathering fluxes associated with mountain building (e.g. the Himalayas) (1), reductions in the global extent of continental arc volcanoes (e.g. the present-day Andes) (2), and uplift of oceanic crust during arc-continent collisions (e.g. present-day Indonesia and New Guinea) (3). These processes, tied to the global plate tectonic cycle, are inextricably linked.  The resulting collinearity (i.e. independent variables are highly correlated) makes it difficult — using conventional statistical techniques — to isolate the contributions of individual geologic processes to global chemical weathering.   An example of this is the Late Cenozoic Ice Age (34–0 Ma) that corresponds both to uplift of the Tibetan Plateau and Himalaya, and a gradual reduction in the extent of the global continental arc system. 

We developed a machine learning framework to analyse the interdependencies between multiple global tectonic and volcanic processes (e.g., continental distribution, extent of volcanic arcs, mid-ocean ridges etc.) and seawater Sr composition (a proxy for weathering flux) over the past 400 million years. We developed a Bayesian network incorporating a novel algorithm that accounts for time lags for each of the predictor variables, and joint conditional dependence (i.e. how variables combine to influence the environmental outcome). Our approach overcomes problems traditionally encountered in geologic time series, such as collinearity and autocorrelation. Our results strongly indicate a first-order role for volcanism in driving chemical weathering fluxes since the mid-Palaeozoic. This is consistent with the strong empirical correlation previously observed between the strontium isotope composition of seawater and continental igneous rocks over the past billion years (4). Our study highlights how geologic processes operate together — not in isolation — to perturb the Earth system over ten to hundred million-year timescales.

References

(1). M. E. Raymo, W. F. Ruddiman, Tectonic forcing of late Cenozoic climate, Nature 359, 117 (1992).

(2). N. R. McKenzie, et al., Continental arc volcanism as the principal driver of icehouse greenhouse variability, Science 352, 444 (2016).

(3). F. A. Macdonald, N. L. Swanson-Hysell, Y. Park, L. Lisiecki, O. Jagoutz, Arc-continent collisions in the tropics set Earth’s climate state, Science 364, 181 (2019).

(4). C. P. Bataille et al., Continental igneous rock composition: A major control of past global chemical weathering, Science Advances 3, e1602183 (2017).  

How to cite: Gernon, T., Hincks, T., Merdith, A., Rohling, E., Palmer, M., Foster, G., Bataille, C., and Muller, D.: Tectonic forcing of global chemical weathering since the mid-Paleozoic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10623, https://doi.org/10.5194/egusphere-egu2020-10623, 2020.

EGU2020-19675 | Displays | CL1.4

The contribution of numerical models to our understanding of the Phanerozoic CO2 history

Yves Godderis and Yannick Donnadieu

Our understanding of the geological regulation of the carbon cycle has been deeply influenced by the contribution of Bob Berner with his well-known model GEOCARB. Here, we will present a fundamentally different carbon cycle model that explicitly accounts for the effect of the paleogeography using physically based climate simulations and using 22 continental configurations spanning the whole Phanerozoic (GEOCLIM, geoclimmodel.wordpress.com). We will show that several key features of the Phanerozoic climate can be simply explained by the modulation of the carbon cycle by continental drift with the notable exception of the Late Paleozoic Ice Age, which is explained by the intense weathering of the Hercynian mountain range. In particular, the continental drift may have strongly impacted the runoff intensity as well as the weathering flux during the transition from the hot Early Cambrian world to the colder Ordovician world. Another fascinating example is the large atmospheric CO2 decrease simulated during the Triassic owing to the northward drift of Pangea exposing large continental area to humid sub-tropics and boosting continental weathering. Conversely, our model fails to reproduce the climatic trend of the last 100 Ma. This is due to the highly dispersed continental configurations of the last 100 Ma that optimize the consumption of CO2 through continental weathering. This discrepancy may be reduced if we account for a larger influence of the Earth degassing flux on the atmospheric CO2 evolution, which could come from the increase contribution of the pelagic component on the oceanic crust on the global carbonate flux and from the many sub-marine LIPs occurring during the Late Cretaceous.

 

How to cite: Godderis, Y. and Donnadieu, Y.: The contribution of numerical models to our understanding of the Phanerozoic CO2 history, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19675, https://doi.org/10.5194/egusphere-egu2020-19675, 2020.

EGU2020-242 | Displays | CL1.4

Temperate rainforests near the South Pole during peak Cretaceous warmth

Johann Philipp Klages, Salzmann Ulrich, Bickert Torsten, Hillenbrand Claus-Dieter, Gohl Karsten, Kuhn Gerhard, Bohaty Steven, Titschack Jürgen, Müller Juliane, Frederichs Thomas, Bauersachs Thorsten, Ehrmann Werner, van de Flierdt Tina, Simões Pereira Patric, Larter Robert, Lohmann Gerrit, Igor Niezgodzki, Uenzelmann-Neben Gabriele, Zundel Maximilian, and Spiegel Cornelia and the Science Team of Expedition PS104

The mid-Cretaceous was one of the warmest intervals of the past 140 million years (Myr) driven by atmospheric COlevels around 1000 ppmv. In the near absence of proximal geological records from south of the Antarctic Circle, it remains disputed whether polar ice could exist under such environmental conditions. Here we present results from a unique sedimentary sequence recovered from the West Antarctic shelf. This by far southernmost Cretaceous record contains an intact ~3 m-long network of in-situ fossil roots. The roots are embedded in a mudstone matrix bearing diverse pollen and spores, indicative of a temperate lowland rainforest environment at a palaeolatitude of ~82°S during the Turonian–Santonian (93–83 Myr). A climate model simulation shows that the reconstructed temperate climate at this high latitude requires a combination of both atmospheric COcontents of 1120–1680 ppmv and a vegetated land surface without major Antarctic glaciation, highlighting the important cooling effect exerted by ice albedo in high-COclimate worlds.

How to cite: Klages, J. P., Ulrich, S., Torsten, B., Claus-Dieter, H., Karsten, G., Gerhard, K., Steven, B., Jürgen, T., Juliane, M., Thomas, F., Thorsten, B., Werner, E., Tina, V. D. F., Patric, S. P., Robert, L., Gerrit, L., Niezgodzki, I., Gabriele, U.-N., Maximilian, Z., and Cornelia, S. and the Science Team of Expedition PS104: Temperate rainforests near the South Pole during peak Cretaceous warmth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-242, https://doi.org/10.5194/egusphere-egu2020-242, 2020.

EGU2020-5962 | Displays | CL1.4

A new framework to quantify carbon cycle perturbations using trace metal isotopes

Markus Adloff, Sarah E. Greene, Fanny M. Monteiro, and Andy Ridgwell

Reconstructing the environmental consequences of large carbon additions in the past has the potential to improve our understanding and prediction of how the Earth system will respond to human carbon emissions. However, uncertainties over the scale and timing of external carbon additions during past carbon emission events limit quantitative knowledge gained from the geological record. The metals Sr, Os, Li and Ca are essential proxies for changes in volcanic activity and terrestrial weathering rates, and thus for major causes of pre-industrial carbon emission and sequestration, because their isotopic compositions in old continental crust and Earth’s mantle differ significantly. So far, box models and equilibrium-state equations have been the only method to quantitatively relate weathering-derived and magmatic input fluxes to trace metal concentrations and isotopic ratios preserved in ancient sediments. This approach results most commonly in a first order estimate of emitted carbon or weathering changes, but it does not account for the effect of climate feedbacks on metal sources and sinks and associated variations in the residence time of these metals in the ocean. Particularly during fast carbon emissions (e.g. Cenozoic hyperthermals, Oceanic Anoxic Events), the processes which added isotopically traceable metals to the oceans also enchained environmental changes which would have affected metal cycles and residence times, resulting in significant alterations of the recorded isotopic excursion in marine sediments. To disentangle the signals of causes and consequences of environmental change recorded by trace metal isotopes, we simulated various coupled carbon and metal cycle perturbations in the 3D Earth system model of intermediate complexity cGENIE, now containing the first representation of isotope-enabled trace metal dynamics. Here, we present a resulting extended framework to reconstruct metal and carbon fluxes from the geological trace metal record during periods of environmental change.

How to cite: Adloff, M., Greene, S. E., Monteiro, F. M., and Ridgwell, A.: A new framework to quantify carbon cycle perturbations using trace metal isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5962, https://doi.org/10.5194/egusphere-egu2020-5962, 2020.

When it comes to paleoclimate data-model integration, temperature is arguably the most important parameter. Although a range of temperature proxies has been developed over the decades, many of the available methods suffer from large calibration uncertainties, in particular when applied on deep-time intervals. Clumped isotope thermometry is based on thermodynamic principles and therefore can provide accurate temperature constraints for the deeper geological record. Recent analytical developments allow now the analysis of relatively small sample sizes and the application in paleoceanogaphic studies becomes more feasible. I will present new clumped isotope based temperature estimates for the Atlantic deep-sea across the Cenozoic. I will also show that the analysis of small samples now allows us to even resolve seasonal sea surface temperature estimates from high-resolution archives. Deep-sea temperatures as well as seasonally resolved surface temperature estimates are particularly useful for data-model comparison.

How to cite: Ziegler, M.: Cenozoic climate evolution revealed by clumped isotope thermometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20336, https://doi.org/10.5194/egusphere-egu2020-20336, 2020.

A compilation of benthic δ18O from the whole Atlantic and the Southern Ocean (Atlantic sector), shows two major jumps in the interbasinal gradient of d18O (Δδ18O) during the Eocene and the Oligocene: One at ~40 Ma and the second concomitant with the isotopic event of the Eocene-Oligocene transition (EOT), ~33.7 Ma ago. From previously published circulation models, we show that the first Δδ18O jump reflects the thermal isolation of Antarctica associated with the proto-Antarctic circumpolar current (ACC). The second marks the onset of interhemispheric northern-sourced circulation cell, similar to the modern Atlantic meridional overturning circulation (AMOC). The onset of AMOC-like circulation probably slightly preceded (100-300 ky) the EOT, as we show by the high resolution profiles of δ18O and δ13C previously published from DSDP/ODP sites in the Southern Ocean and South Atlantic. We suggest that while the shallow proto-ACC supplied the energy for deep ocean convection in the Southern Hemisphere, the onset of the interhemispheric northern circulation cell was due to the significant EOT intensification of deepwater formation in the North Atlantic driven by the Nordic anti-estuarine circulation. This onset of the interhemispheric northern-sourced circulation cell could have prompted the EOT global cooling.

How to cite: Abelson, M. and Erez, J.: Was the onset of interhemispheric AMOC slightly prior to Antarctic glaciation at the Eocene-Oligocene transition?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2204, https://doi.org/10.5194/egusphere-egu2020-2204, 2020.

EGU2020-18410 | Displays | CL1.4

Reconstructing ocean temperatures using coccolith clumped isotopes

Luz Maria Mejia, Alvaro Fernandez, Hongrui Zhang, Jose Guitian, Stefano Bernasconi, and Heather Stoll

     Reliable temperature reconstructions of the ocean are often difficult to obtain due to the limitations of widely used proxies. The application of clumped isotope thermometry to coccolith calcite, which is geographical and chronological ubiquitously distributed, and whose production is limited to the photic zone, may provide ocean’s temperature information when and where other proxies have been shown inaccurate or not applicable.

     To evaluate the potential of coccolith clumped isotopes in paleoceanography we compare the temperatures derived from the fine fraction (<11µm), a pure mixed coccolith fraction (2-10 µm), and to a fraction of carbonate fragments from unidentified sources (<2 µm), with coeval alkenone sea surface temperatures (SST) from ODP Site 982 in the North Atlantic covering the last 16 Ma. The similarity in magnitudes and trends from the <11 and 2-10 µm size fractions, and trace element analysis of the <2 µm size fraction, suggest that for this site and time interval, exclusion of small unrecognizable fragments is not necessary to obtain reliable temperatures. The warmer values of alkenone SSTs compared to coccolith clumped isotope-derived temperatures cannot be explained by diagenetic processes, but may be related to temperature overestimations by alkenone calibrations, which assume a warm season and/or shallow production of coccolithophores in the study area.           

     Vital effects in coccolith clumped isotopes potentially associated to carbon limitation may also help to explain the differences in cooling magnitudes compared to the alkenone record. To further investigate vital effects in clumped isotopes, we compare calcification temperatures of three pure coccolith size fractions (3-5, 5-8, and 8-10 µm), and relate them to vital effects observed in their δ13C and δ 18O. The analysis of the fine fraction of Holocene sediments (<10 or <8 µm) showing a range of temperature and CO2 concentrations also provide information on the potential effects of carbon availability in coccolith clumped isotopes, and suggests calcification of coccolithophores may occur in deeper habitats than those considered by alkenone calibrations. Our study shows clumped isotope thermometry applied to coccolith calcite as a promising alternative proxy for calcification temperature of coccolithophores.

How to cite: Mejia, L. M., Fernandez, A., Zhang, H., Guitian, J., Bernasconi, S., and Stoll, H.: Reconstructing ocean temperatures using coccolith clumped isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18410, https://doi.org/10.5194/egusphere-egu2020-18410, 2020.

EGU2020-3350 | Displays | CL1.4

Resolution-dependent variations of sinking particle trajectories in general circulation models: Implications for data-model comparison in past climate

Peter Nooteboom, Philippe Delandmeter, Peter Bijl, Erik van Sebille, Henk Dijkstra, and Anna von der Heydt

Any type of non-buoyant material in the ocean is transported by currents during its sinking journey. This transport can be far from negligible for typical (plankton) particles with a low sinking velocity. To estimate the lateral transport, the material can be modelled as a set of Lagrangian particles advected by currents that are obtained from Ocean General Circulation Models (OGCMs). State-of-the-art OGCMs are often strongly eddying, providing flow fields with a horizontal resolution of  10km on a daily basis. However, many long term climate modelling studies (e.g. in palaeoclimate) rely on low resolution models that cannot capture mesoscale features. The lower model resolution could influence data-model comparisons using Lagrangian techniques, but this is not properly evaluated yet through a direct comparison.

In this study, we simulate the transport of sinking Lagrangian particles using low (1°; non-eddying)  and high (0.1°; eddying) horizontal resolution OGCMs of the present-day ocean, and evaluate the effect of the two resolutions on particle transport. We find major differences between the transport in the non-eddying versus the eddying OGCM (in terms of the divergence of particle trajectories and their mean trajectory). Addition of stochastic noise to the particle trajectory parameterizes the effect of eddies well in some regions (e.g. in the North Pacific gyre).

We recommend to apply sinking Lagrangian particles only in velocity fields with eddying OGCMs, which basically excludes all paleo-simulations. We are currently simulating the equilibrium Eocene (38Ma) climate using an eddying OGCM, to be able to apply these Lagrangian techniques in an eddying ocean of the past. We expect this to lead towards a better agreement between the OGCM and sedimentary fossil microplankton.

How to cite: Nooteboom, P., Delandmeter, P., Bijl, P., van Sebille, E., Dijkstra, H., and von der Heydt, A.: Resolution-dependent variations of sinking particle trajectories in general circulation models: Implications for data-model comparison in past climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3350, https://doi.org/10.5194/egusphere-egu2020-3350, 2020.

EGU2020-20554 | Displays | CL1.4

Neogene changes in land surface reactivity and implications for Earth system sensitivity to carbon cycle perturbations

Jeremy Caves Rugenstein, Daniel Ibarra, and Friedhelm von Blanckenburg

Long-term cooling, pCO2 decline, and the establishment of permanent, polar ice sheets in the Neogene has frequently been attributed to increased uplift and erosion of mountains and consequent increases in silicate weathering, which removes atmospheric CO2. However, geological records of erosion rates are potentially subject to averaging biases and the magnitude of the increase in weathering fluxes, and even its existence, remain debated. Moreover, a weathering increase scaled to the hypothesized erosional increase would have removed nearly all carbon from the atmosphere, leading to proposals of compensatory carbon fluxes in order to preserve carbon cycle mass balance. In contrast, increasing land surface reactivity—resulting from greater fresh mineral surface area or an increase in the supply of reactive minerals—rather than an increase in the weathering flux, has been proposed to reconcile these disparate views. We develop a parsimonious carbon cycle model that tracks two weathering-sensitive isotopic tracers (stable 7Li/6Li and cosmogenic 10Be/9Be) to show that an increase in land surface reactivity is necessary to simultaneously decrease atmospheric CO2, increase seawater 7Li/6Li, and retain constant seawater 10Be/9Be since 16 Ma. We find that the global silicate weathering flux remained constant, even as the global silicate weathering intensity—the fraction of the total denudation flux derived from silicate weathering—decreased, sustained by an increase in erosion. Thus, long-term cooling during the Neogene reflects a change in the partitioning of denudation into weathering and erosion. Variable partitioning of denudation and consequent changes in silicate weathering intensity reconcile marine isotope and erosion records with the need to maintain mass balance in the carbon cycle and without increases in the silicate weathering flux. These changes in land surface reactivity through time suggest that the Earth system’s response to carbon cycle perturbations is not constant and that today’s Earth can more efficiently remove excess carbon than during analogous perturbations observed in the geologic record. 

How to cite: Caves Rugenstein, J., Ibarra, D., and von Blanckenburg, F.: Neogene changes in land surface reactivity and implications for Earth system sensitivity to carbon cycle perturbations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20554, https://doi.org/10.5194/egusphere-egu2020-20554, 2020.

EGU2020-10864 | Displays | CL1.4

The continental Middle Miocene Climatic Transition in Southern Europe as derived from clumped isotope analyses

Niklas Löffler, Andreas Mulch, Wout Krijgsman, Emilija Krsnik, and Jens Fiebig

Reconstructing Cenozoic terrestrial paleoclimate is frequently limited by temporal resolution and suitable quantitative tools to reliably assess changes in temperature and aridity. The dynamics of ocean temperatures1 and chemistry2, varying pCO23, and faunal assemblages are known to a certain extent, however, terrestrial data on temperatures, which are mostly indirectly derived from fossil assemblages and palynologycal data4 are rare. This study contributes to the understanding of the dynamics and variability of terrestrial temperatures during one of the most extreme Neogene climate changes, the Middle Miocene Climate Transition (MCT). The comparison of pCO2 forecasts for the coming century and reconstructed Mid-Miocene pCO2 levels suggest that the Mid-Miocene is an important time interval for ascertaining suitable model projections of the future anthropogenic impact on climate. In order to establish an appropriate understanding and modeling of the natural variability of the European/Mediterranean climate system, quantitative climate information of the European continental Mid-Miocene is mandatory. This would facilitate the identification of main drivers of climate evolution in an area which is exposed to the present climate change and its subsequent natural hazards.

 

This study presents a profound and well-dated terrestrial clumped isotope (Δ47) paleosoil carbonate dataset from Spain that ranges from 13.0 to 15.1 Ma (100 kyr resolution) and hence covers an interval that was previously classified as the MCT. The Δ47 data is supported by stable carbon and oxygen isotope analyses that are in agreement with previously published continental and oceanic records. A distinct decline in apparent Δ47-based temperatures between 13.7 and 14.1 Ma reveals a substantial drop in continental temperatures and indicates changes in seasonality of pedogenic carbonate formation. The major cooling thereby coincides with a change in Milanković periodicities and can be linked to oceanic isotope records5. While the transition into the MCT shows a high temperature variability indicating varying environmental conditions, calculated oxygen isotopic values of the soil water point to a rather stable moisture source across the MCT in Southern Europe.

 

1: Super, J. R., Thomas, E., Pagani, M., et al. (2018) North Atlantic temperature and pCO2 coupling in the early-middle Miocene. Geology, 46(6), 519-522.

2: Pearson, P. N., and Palmer, M. R. (1999) Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science, 284(5421), 1824-1826.

3: Pagani, M., Freeman, K. H., and Arthur, M. A. (1999) Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science, 285(5429), 876-879.

4: Lewis, A. R., Marchant, D. R., Ashworth, A. C., et al. (2008) Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National academy of Sciences.

5: Holbourn, A., Kuhnt, W., Clemens, S., et al. (2013) Middle to late Miocene stepwise climate cooling: Evidence from a high resolution deep water isotope curve spanning 8 million years. Paleoceanography, 28(4), 688-699.

How to cite: Löffler, N., Mulch, A., Krijgsman, W., Krsnik, E., and Fiebig, J.: The continental Middle Miocene Climatic Transition in Southern Europe as derived from clumped isotope analyses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10864, https://doi.org/10.5194/egusphere-egu2020-10864, 2020.

EGU2020-9756 | Displays | CL1.4

A modeling study of physical and biogeochemical changes occurring in the tropical Indian Ocean during Miocene times.

Anta-Clarisse Sarr, Yannick Donnadieu, Clara Bolton, and Baptiste Suchéras-Marx

The South Asian Monsoon (SAM) is one of the most important climatic features of the Asian continent. Proxy-based reconstructions from continuous records in the Indian Ocean suggest a settlement of modern-like monsoon during the Miocene, with a modern winds distribution and strength potentially reached by ~13 Ma. Concurrent with the SAM intensification, a major reorganization of surface ocean currents occurred in the Indian Ocean. The timing of monsoon strengthening overlaps with changes in Indian Ocean and Indonesian Gateway configurations, Himalayas uplift, global cooling, as well as East Antarctic Ice Sheet expansion. Thus, the respective influence of each factor on SAM evolution and Indian Ocean paleoceanography is still poorly understood owing to the modification of multiple forcing mechanisms.

Here we will use a set of experiments with the IPSL-CM5A2 Earth System Model under early to late Miocene configurations in order to tease apart the effects of paleogeography changes, ice-sheet growth and CO2levels on the Indian Ocean region during the Miocene. We will focus on the impact of increasing SAM winds and precipitation on the oceanographic conditions in the Indian Ocean including not only physical parameters but also biogeochemical ones.

 

How to cite: Sarr, A.-C., Donnadieu, Y., Bolton, C., and Suchéras-Marx, B.: A modeling study of physical and biogeochemical changes occurring in the tropical Indian Ocean during Miocene times. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9756, https://doi.org/10.5194/egusphere-egu2020-9756, 2020.

EGU2020-13972 | Displays | CL1.4

Atmospheric CO2 during the Late Miocene Cooling

Thomas Tanner, José Guitián, Iván Hernández-Almeida, and Heather Stoll

Alkenone sea surface temperature records recently observed suggest a substantial long-term and large-magnitude ocean surface cooling during the Late Miocene. At the same time, starting about seven million years ago, both hemispheres on Earth witnessed synchronous cooling and large areas of the continents experienced drying and enhanced seasonality. Coinciding with this climatic shift were significant changes in ecology, including the rise of C4-photosynthesizing terrestrial plants and the emergence of so-called "vital effects" in oceanic coccolithophores. These changes are collectively hypothesized to be induced by declining atmospheric CO2. However, the sparse proxy data available for this time interval limits our understanding of the link between these changes and atmospheric greenhouse gas fluctuations and has let people to propose a "climate-CO2 decoupling".
In this study, the alkenone based pCO2 proxy is used to reconstruct atmospheric CO2 for the time interval between 4.5 and 8.5 Ma. Estimations are based on the carbon isotopic fractionation during photosynthesis (εp) and a new statistical multilinear regression model based on an analysis of culture and sediment data. Past coccolithophore growth rates are reconstructed using foraminiferal isotopic-based proxies, related to water column structure which favour or limit nutrient supply to the photic zone. A thorough sensitivity analysis of modern and past  εp values and its influencing factors in the Southern Ocean yield to a new, high resolution pCO2 record. Estimated pCO2 concentrations synchronously decline with the observed long-term cooling (5°C) from 6.8 to 5.9 Ma, periodically decreasing to sufficiently low values of <200 ppm, potentially inducing ephemeral Northern Hemisphere glaciation. CO2 concentrations during the Late Miocene Cooling Event are thus successfully reproduced in this study and allow a reasonable interpretation of past conditions as has not yet been previously achieved in the relevant literature. 

How to cite: Tanner, T., Guitián, J., Hernández-Almeida, I., and Stoll, H.: Atmospheric CO2 during the Late Miocene Cooling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13972, https://doi.org/10.5194/egusphere-egu2020-13972, 2020.

EGU2020-13946 | Displays | CL1.4

The linkage of dust cycle dynamics and loess during the Last Glacial Maximum in Europe

Patrick Ludwig, Erik J. Schaffernicht, Yaping Shao, and Joaquim G. Pinto

In this work, we present different aspects of the mineral dust cycle dynamics and the linkage to loess deposits during the Last Glacial Maximum (LGM) in Europe. To this aim, we simulate the LGM dust cycle at high resolution using a regional climate-dust model. The simulated dust deposition rates are found to be comparable with the mass accumulation rates of the loess deposits determined from Loess sites across Europe. In contrast to the present-day prevailing westerlies, easterly wind directions (36 %) and cyclonic regimes (22 %) were dominant circulation patterns over central Europe during the LGM. This supports the hypothesis that recurring east sector winds, dynamically linked with a high-pressure system over the Eurasian ice sheet (EIS), are an important component for the dust transport from the EIS margins towards the central Europe loess belt. Our simulations reveal the occurrence of highest dust emission rates in Europe during summer and autumn, with the highest emission rates located near the southernmost EIS margins corresponding to the present-day German-Polish border region. Coherent with the persistent easterlies, westwards running dust plumes resulted in high deposition rates in western Poland, northern Czechia, the Netherlands, the southern North Sea region and on the North German Plain including adjacent regions in central Germany. Further, a detailed analysis of the characteristics of LGM cyclones shows that they were associated with higher wind speeds and less precipitation than their present-day counterparts. These findings highlight the importance of rapid and cyclic depositions by cyclones for the LGM dust cycle. The agreement between the simulated deposition rates and the mass accumulation rates of the loess deposits corroborates the proposed LGM dust cycle hypothesis for Europe.

How to cite: Ludwig, P., Schaffernicht, E. J., Shao, Y., and Pinto, J. G.: The linkage of dust cycle dynamics and loess during the Last Glacial Maximum in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13946, https://doi.org/10.5194/egusphere-egu2020-13946, 2020.

EGU2020-5526 | Displays | CL1.4

Antarctic Uncertainty: Learning more about past ice sheet shapes with Bayesian methods

Fiona Turner, Richard Wilkinson, Caitlin Buck, Julie M. Jones, and Louise Sime

Understanding the effect warming has on ice sheets is vital for accurate projections of climate change. A better understanding of how the Antarctic ice sheets have changed size and shape in the past would allow us to improve our predictions of how they may adapt in the future; this is of particular relevance in predicting future global sea level changes. This research makes use of previous reconstructions of the ice sheets, ice core data and Bayesian methods to create a model of the Antarctic ice sheet at the Last Glacial Maximum (LGM). We do this by finding the relationship between the ice sheet shape and water isotope values. 

We developed a prior model which describes the variation between a set of ice sheet reconstructions at the LGM. A set of ice sheet shapes formed using this model was determined by a consultation with experts and run through the general circulation model HadCM3, providing us with paired data sets of ice sheet shapes and water isotope estimates. The relationship between ice sheet shape and water isotopes is explored using a Gaussian process emulator of HadCM3, building a statistical distribution describing the shape of the ice sheets given the isotope values outputted by the climate model. We then use MCMC to sample from the posterior distribution of the ice sheet shape and attempt to find a shape that creates isotopic values matching as closely as possible to the observations collected from ice cores. This allows us to quantify the uncertainty in the shape and incorporate expert beliefs about the Antarctic ice sheet during this time period. Our results suggests that there may have been a thicker West Antarctic ice sheet at the LGM than previously estimated.

How to cite: Turner, F., Wilkinson, R., Buck, C., Jones, J. M., and Sime, L.: Antarctic Uncertainty: Learning more about past ice sheet shapes with Bayesian methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5526, https://doi.org/10.5194/egusphere-egu2020-5526, 2020.

EGU2020-3988 | Displays | CL1.4

Greenhouse climate forces expansion of peatlands into inland areas

Zhihui Zhang, Chengshan Wang, Dawei Lv, and Tiantian Wang

As a significant terrestrial carbon reservoir, peatland has great potential to affect the global carbon cycle and global climate. However, our understanding of broad-scale mechanisms that control the long-term global peatland expansion and carbon accumulation rates is still limited. Here we present a new data synthesis of global coal deposit location, thickness changes, carbon concentration, and distribution area changes, along with new carbon pool estimates of global peatlands from Devonian through geological time. By identifying orbital cycles in coal seams, we show that the long-term rate of carbon accumulation (LORCA) in peatland calculated from published data is controlled by pO2, pCO2, temperature, precipitation, and total solar irradiance. We use this relationship and latitudinal temperature gradients to reconstruct the equations between LORCA with latitude on different geological time. The results suggest that there are three main sets of high carbon pool and high carbon accumulation rate of global peatlands in Late Paleozoic, Early-Middle Jurassic, and Late-Cretaceous to Early Cenozoic under low tectonic activity and high terrestrial plant diversity background. In addition, we measure the shortest distances between all coal locations and coastlines based on the new Scotese’s paleo-Atlas for the past 400 million years, in order to exhibit the extent of peatland expansion into inland. The result shows the Early-Middle Jurassic period has the longest average distance, which is probably due to the high sea level that minimizes the development of peat swamps on coastal areas and facilitated the moisture to move into deeper inland under the Jurassic Greenhouse climate condition. This study highlights that combining comprehensive coal-related database with paleoclimate, tectonics, and evolution of land plants provides insights into the mechanisms of the long-term behavior of the peatland expansion and carbon reservoir through deep time.

Keywords: Greenhouse climate, Peatland expansion, Carbon pool, Cabon accumulation rates, Coal

This study wasfinancially supported by the National Natural Science Foundation of China (grant No. 41888101), the National Key R&D Plan of China (grant No. 2017YFC0601405) and the National Natural Science Foundation of China (grants 41790450, 41772096).

How to cite: Zhang, Z., Wang, C., Lv, D., and Wang, T.: Greenhouse climate forces expansion of peatlands into inland areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3988, https://doi.org/10.5194/egusphere-egu2020-3988, 2020.

The Neoproterozoic glaciations, referred to as snowball Earth periods, describe the most extreme transition from a very cold climate to a state of strong greenhouse effect. Atmospheric CO2 concentrations are rising during the snowball, due to the shutdown of oceanic and terrestrial carbon sinks, until a tipping point is reached and a rapid deglaciation sets in. Subsequently, a warm and completely ice-free climate under very high CO2 concentrations develops. We show first results of simulations using a coupled atmosphere-ocean general circulation model covering the initiation, as well as the melting of the Marinoan snowball Earth (645 – 635 My ago) and the greenhouse climate in its aftermath. CO2 concentrations are decreased to initiate a global glaciation and then increased again in order to melt the snowball Earth. As soon as a certain CO2 threshold is reached, sea-ice melts rapidly, reaching a completely ice-free ocean after only one hundred years, in our model without land glaciers. The ocean becomes strongly stratified, because at the surface the freshwater from the sea-ice melt is warming up quickly, whereas the deeper ocean remains cold and salty. Ocean surface currents return to their pre-snowball behavior soon after the melt, but destratification is slow. The largest mixed layer depths of up to 500 m are reached in the mid latitudes of the winter hemisphere. We compare the climate before and after the snowball state and estimate the time needed for destratification.

How to cite: Ramme, L. and Marotzke, J.: Ocean dynamics and climate during a Neoproterozoic snowball Earth and its aftermath as simulated in a coupled Earth system model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10320, https://doi.org/10.5194/egusphere-egu2020-10320, 2020.

EGU2020-20746 | Displays | CL1.4

Modeling the impact of oceanic circulation and marine productivity on Cretaceous seafloor anoxia

Yannick Donnadieu, Marie Laugie, Jean-Baptiste Ladant, François Raisson, and Laurent Bopp

Oceanic anoxic events (OAEs) are abrupt events of widespread deposition of organic-rich sediments and extensive seafloor anoxia. Mechanisms usually invoked as drivers of oceanic anoxia are various and still debated today. They include a rise of the CO2 atmospheric level due to increased volcanic activity, a control by the paleogeography, changes in oceanic circulation or enhanced marine productivity. In order to assess the role of these mechanisms, we use an IPCC-class model, the IPSL-CM5A2 Earth System Model, which couples the atmosphere, land surface, and ocean components, this last one including sea ice, physical oceanography and marine biogeochemistry which allows to simulate oceanic oxygen.

We focus here on OAE2, which occurs during the Cretaceous at the Cenomanian-Turonian boundary (93.5 Ma), and is identified as a global event with evidence for seafloor anoxia in the Atlantic and Indian Oceans, the Southwest Tethys Sea and the Equatorial Pacific Ocean. Using a set of simulations from 115 to 70 Ma, we analyze the long-term paleogeographic control on oceanic circulation and consequences on oceanic oxygen concentration and anoxia spreading. Short-term controls such as an increase of pCO2, nutrients, or orbital configurations are also studied with a second set of simulations with a Cenomano-Turonian (90 Ma) paleogeographic configuration. The different simulated maps of oxygen are used to study the evolution of marine productivity and oxygen minimum zones as well as the spreading of seafloor anoxia, in order to unravel the interlocking of the different mechanisms and their specific impact on anoxia through space and time.

How to cite: Donnadieu, Y., Laugie, M., Ladant, J.-B., Raisson, F., and Bopp, L.: Modeling the impact of oceanic circulation and marine productivity on Cretaceous seafloor anoxia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20746, https://doi.org/10.5194/egusphere-egu2020-20746, 2020.

EGU2020-19916 | Displays | CL1.4 | Highlight

The simulated transition from a hard snowball Earth

Philipp de Vrese, Tobias Stacke, Victor Brovkin, and Jeremy Caves Rugenstein

Geological evidence suggests that Earth's past featured periods during which the planet was largely or even entirely covered by ice, a state termed "snowball Earth".  Model based studies confirm that one of Earth's equilibrium states is a fully glaciated planet (hard snowball) but it is not clear how this state could have been left once it had been established. We use simulations with the Max-Planck-Institute for Meteorology's Earth system model to investigate the conditions that enable the transition out of the snowball-state. We show that the high albedo of pure snow would have prevented deglatiation, even for extremely high atmospheric CO2 concentrations. Terminal deglaciation is only triggered for surface albedos corresponding to old, darkened snow or sea-ice. Here, increasing snowfall rates, resulting from the intensification of the hydrological cycle with rising CO2 concentrations, would have prohibited the gradual build-up of dust that leads to a darkening of the surface.  Only when assuming dust deposition fluxes at least similar to present-day fluxes, can the deglation be triggered for plausible atmospheric CO2 concentrations.

How to cite: de Vrese, P., Stacke, T., Brovkin, V., and Caves Rugenstein, J.: The simulated transition from a hard snowball Earth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19916, https://doi.org/10.5194/egusphere-egu2020-19916, 2020.

EGU2020-15254 | Displays | CL1.4

Role of paleogeography in preconditioning the Late Cretaceous Oceanic Event (OAE2) in a full global circulation Earth System model

Alexander Manning, Paul Valdes, Fanny Monteiro, and Jonny Williams

Ocean anoxic event 2 (OAE2) was a large perturbation in the Earth's ocean carbon system, occurring at approximately 93.5 Ma, and is characterised by widespread black shales deposition in sediment records. This record has been interpreted as evidence of large anoxia in the global ocean for a long period, resulting in large scale extinction of marine life. However, the exact causes of OAE2, and how it initially developed, are not fully understood. We modelled the period leading up to OAE2 using the HadCM3L global climate model with full ocean (HADOCC) and terrestrial carbon cycle (TRIFFID) modules. We compared our results to equivalent simulations using late Cretaceous (Maastrichtian) paleogeographies. This allowed us to analyse the effects of continental configuration on the development to the OAE. Our results show that restricted ocean circulation, caused by the paleobathymetry, is necessary for anoxic conditions to develop but is not sufficient alone. This suggests that continental configuration is highly important in determining the ability of the oceans to develop an OAE and may explain why they only occur during some times during Earth history.

How to cite: Manning, A., Valdes, P., Monteiro, F., and Williams, J.: Role of paleogeography in preconditioning the Late Cretaceous Oceanic Event (OAE2) in a full global circulation Earth System model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15254, https://doi.org/10.5194/egusphere-egu2020-15254, 2020.

EGU2020-9074 | Displays | CL1.4

Exploring Mesozoic Climates - Modeling and Evaluation of Proxy Distributions

Jan Landwehrs, Georg Feulner, Matthias Hofmann, Stefan Petri, Benjamin Sames, and Michael Wagreich

The Mesozoic Era (~252-66 Ma) is a decisive period in Earth’s history. It is marked by a tectonic transition from the Pangea supercontinent towards a modern continental configuration as well as the ecological success of the dinosaurs and the evolution of mammals, flowering plants, stony corals and important groups of planktic calcifiers. The Mesozoic is generally considered as a greenhouse climate period, with especially high global temperatures during the Triassic and the Late Cretaceous. Here, we present novel modeling results on the evolution of global climatic conditions through the Mesozoic.

An ensemble of equilibrium climate states for 40 geological timeslices between 255 and 60 Ma is simulated with the CLIMBER-3α Earth System Model of Intermediate Complexity. The influence of changing paleogeography, sea level, vegetation cover, solar luminosity, orbital configuration and atmospheric CO2 concentration is systematically tested based on constraints from published geological proxy reconstructions and previous modeling work.

Atmospheric pCO2 is found to be the strongest driver of global mean temperatures, which are generally elevated above the present and reach 20°C in the Late Triassic to Early Jurassic and the mid-Cretaceous if a recently published pCO2 proxy compilation is employed. The simulated seasonal latitudinal shift of high precipitation zones exhibits a maximum during the mid-Triassic to Early Jurassic and therefore supports the notion of a “Megamonsoon” during this time. Simulated humid and arid climate zones generally agree well with spatial distributions of geologic climate indicators like coal and evaporites, although some discrepancies exist. The same applies to the correlation of fossil stony coral reef distributions with regions where seawater temperatures would have been suitable for (modern) coral reefs. We will discuss which changes of Earth System parameters throughout the Mesozoic can best explain shifts in these distributions.

How to cite: Landwehrs, J., Feulner, G., Hofmann, M., Petri, S., Sames, B., and Wagreich, M.: Exploring Mesozoic Climates - Modeling and Evaluation of Proxy Distributions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9074, https://doi.org/10.5194/egusphere-egu2020-9074, 2020.

Antarctic bryozoans are important colonial marine invertebrates in terms of their origin, palaeoenvironment and climatic approaches. The changes of the bryozoan fossil records during the last 55 Ma years  are well-defined by their biodiversity, taxonomic composition and colony growth-forms. The late Early Eocene biota from the shallow-marine–estuarine clastic succession of the lower part (Telm1-2) of the La Meseta Formation of Seymour Island are represented by the prolific, spectacular in size, massive multilamellar colonies dominated by the cerioporids as well as diverse ascophorans  cheilostomes (Hara, 2001). The free-living lunilitiform, disc-shaped colonies, which occur in the middle part of the La Meseta Formation (Telm4-Telm5), are characteristic for the warm, shallow-self environment and bottom temperature, which ranges from 10 to 29°C. The presence of the bimineralic skeletons of this fauna (such as Lunulites, Otionellina, and Uharella) with the traces of aragonite is indicative for the temperate shelf environment, sandy and often shifting substrate. Lunulitids are inhabited by the circumpolar to warm-temperate waters, at the present day. Contrary to that, the bryozoans  from the upper part of the LM (Telm6-7) are  represented by the scarce lepraliomorphs accompanied by the crustaceans, brachiopods and gadiform fish remains. The individuality of the Eocene bryozoan assemblages are well-correlated with the EECO, MECO and EOT climatic events, based on the other marine macrofaunal marine fossil records (see also Ivany et al. 2008). The lower Pliocene bryofauna recently described  from the Cockburn Island Formation  is composed of the rich encrusting shallow-water, membraniporiform zoaria (Hara and Crame, in review, 2020). The biota of thePectenConglomerate are indicative of the interglacial conditions during the deposition of the Cockburn Island Formation. At the present day bryozoans with the preponderance of cheilostomes are the most significant marine benthic community, thriving successfully in cool-water Antarctic  conditions.

References,

Hara, U., 2001. Bryozoans from the Eocene of Seymour Island, Antarctic Peninsula, Palaeontogia Polonica , 60:33-155.

Hara, U., Mors, T., Hagstrom, and Reguero M. A., 2018. Eocene bryozoans  assemblages from the La Meseta Formation of Seymour Island. Geological Quarterly, 62: 705-728. 

Hara., U., and Crame, J.A. 2019. Paleobiodiversity of the Lower Pliocene bryozoan  benthic community and its response to interglacial conditions.  Geological Review (in review).

Ivany L.C., Lohmann, K. C. Hasiuk, F., Blake D.B., Glass A., Aronson R.B., and Moody R.M. 2008. Eocene climate record of the high southern latitude continental shelf: Seymour Island, Antarctica. Geological Society of America Bulletin, v. 120, no. 5-6: 659-678.

 

How to cite: Hara, U.: Cenozoic bryozoan biota and their response to climatic changes in Antarctica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22540, https://doi.org/10.5194/egusphere-egu2020-22540, 2020.

EGU2020-18748 | Displays | CL1.4

The climate in Antarctica during the Middle Eocene: a modelling perspective

Frederic Fluteau, Delphine Tardif, Guillaume Le Hir, Yannick Donnadieu, Pierre Sepulchre, Jean-Baptiste Ladant, Fernando Poblete, and Guillaume Dupont-Nivet

The Middle Eocene represents the last ice-free period of the Cenozoic. Vegetation proxy data (wood, leaves, palynomorphs) discovered in the Antarctica peninsula and neighbouring islands or hosted in sedimentary sequences deposited on the continental margin reveal the presence of paratropical rain forests which thrived along the Antarctica coast during the Early Eocene. During the Middle and Late Eocene these flora have been progressively replaced by temperate Nothofagus-dominated rainforests (Contreras et al., 2013). Jacques et al. (2012) proposed, using a physiognomic approach (CLAMP), that a warm temperate and wet climate (with a marked summer rainy season) prevails until the middle Eocene (43±2 Ma) on the tip of the Antarctica Peninsula.

            To better constrain the climate in Antarctica and understand processes governing the polar climate during the Middle Eocene, we performed a set of experiments using the IPCC-like Earth System Model (IPSL-CM5A2-VLR) forced with a Middle Eocene (~40 Ma) paleogeography reconstruction and a 4 times pre-industrial atmospheric CO2 level (1120ppm). To highlight the importance of the seasonality, we launched 6 orbital configurations exploring end-members situations. To complete the procedure, simulated sea surface temperatures and sea ice extents were then employed as boundary conditions to force the Atmospheric General circulation model LMDz6 (run at higher spatial resolution) coupled with a soil and vegetation model ORCHIDEE to simulate the corresponding vegetation over Antarctica. The 6 end-members Earth's orbital configuration allows exploring the full climatic spectrum which would have been recorded by proxy data. Simulated changes in atmospheric circulation will be discussed and the simulated climate and vegetation will be confronted to paleoclimatic indicators and vegetation data.

How to cite: Fluteau, F., Tardif, D., Le Hir, G., Donnadieu, Y., Sepulchre, P., Ladant, J.-B., Poblete, F., and Dupont-Nivet, G.: The climate in Antarctica during the Middle Eocene: a modelling perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18748, https://doi.org/10.5194/egusphere-egu2020-18748, 2020.

EGU2020-8370 | Displays | CL1.4

Estimating structural and parametric uncertainties in the simulated early Eocene surface warming

Sebastian Steinig, Fran J. Bragg, Peter J. Irvine, Daniel J. Lunt, and Paul J. Valdes

Simulating the proxy-derived surface warming and reduced meridional temperature gradient of the early Eocene greenhouse climate still represents a challenge for most atmosphere-ocean general circulation models. A profound understanding of uncertainties associated with the respective model results is thereby essential to reliably identify any similarities or misfits to the proxy record. Besides incomplete knowledge of past greenhouse gas concentrations and other boundary conditions, structural and parametric uncertainties are the main factors that determine our confidence in paleoclimate simulation results.

The recent publication of coordinated model experiments that apply identical paleogeographic boundary conditions for key time periods of the early Eocene (DeepMIP) allows a systematic analysis of inter-model differences and therefore of structural uncertainties in the simulated surface warming. Here we additionally explore the parametric uncertainty of the early Eocene climatic optimum (EECO) surface warming within one DeepMIP model. For this we performed perturbed parameter ensemble (PPE) simulations with HadCM3B at different atmospheric CO2 concentrations following the DeepMIP protocol. Twenty-one parameter sets based on changes in six atmospheric parameters, a sea-ice parameter and the ocean background diffusivity were branched off from the respective DeepMIP control simulations and integrated for a further 1500 model years. The selected parameter sets are based on previous results demonstrating their ability to simulate a pre-industrial global-mean surface temperature within ±2 °C of the standard configuration.

Preliminary results indicate a large spread of the simulated low-latitude surface warming in the PPE and therefore significant changes of the large-scale meridional temperature gradient for the EECO. Some ensemble members develop numerical instabilities at CO2 concentrations of 840 ppmv and above, most likely in consequence of high temperatures in the tropical troposphere. We further compare the magnitude of the parametric uncertainty of the HadCM3B perturbation experiments with the structural differences found in the DeepMIP multi-model ensemble and explore the sensitivity of the results to the strength of the applied greenhouse gas forcing. Model skill of the PPE members is tested against the most recent DeepMIP compilations of marine and terrestrial proxy temperatures.

How to cite: Steinig, S., Bragg, F. J., Irvine, P. J., Lunt, D. J., and Valdes, P. J.: Estimating structural and parametric uncertainties in the simulated early Eocene surface warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8370, https://doi.org/10.5194/egusphere-egu2020-8370, 2020.

EGU2020-13450 | Displays | CL1.4

Thermohaline Fingerprints of the Greenland-Scotland Ridge and Fram Strait Subsidence Histories

Akil Hossain, Gregor Knorr, Gerrit Lohmann, Michael Stärz, and Wilfried Jokat

Changes in ocean gateway configuration are known to induce basin-scale rearrangements in ocean characteristics throughout the Cenozoic. However, there is large uncertainty in the relative timing of the subsidence histories of ocean gateways in the northern high latitudes. By using a fully coupled General Circulation Model we investigate the salinity and temperature changes in response to the subsidence of two key ocean gateways in the northern high latitudes during early to middle Miocene. Deepening of the Greenland-Scotland Ridge causes a salinity increase and warming in the Nordic Seas and the Arctic Ocean. While warming this realm, deep water formation takes place at lower temperatures due to a shift of the convection sites to north off Iceland. The associated deep ocean cooling and upwelling of deep waters to the Southern Ocean surface causes a cooling in the southern high latitudes. These characteristic impacts in response to the Greenland-Scotland Ridge deepening are independent of the Fram Strait state. Subsidence of the Fram Strait for a deep Greenland-Scotland Ridge causes less pronounced warming and salinity increase in the Nordic Seas. A stronger salinity increase is detected in the Arctic while temperatures remain unaltered, which further increases the density of the North Atlantic Deep Water. This causes an enhanced contribution of North Atlantic Deep Water to the abyssal ocean and on the expense of the colder southern source water component. These relative changes largely counteract each other and cause little warming in the upwelling regions of the Southern Ocean.

How to cite: Hossain, A., Knorr, G., Lohmann, G., Stärz, M., and Jokat, W.: Thermohaline Fingerprints of the Greenland-Scotland Ridge and Fram Strait Subsidence Histories, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13450, https://doi.org/10.5194/egusphere-egu2020-13450, 2020.

EGU2020-10818 | Displays | CL1.4

Transport of planktic foraminifera by ocean currents in the Uruguayan margin

Anne Kruijt, Andrew Mair, Peter Nooteboom, Anna S. von der Heydt, Martin Ziegler, and Tracy Aze

Fossils of planktic foraminifera are found in marine sediments and are widely used as a proxy for past ocean conditions. The habitat of these unicellular marine zooplankton ranges from tropical to polar regions and is mostly located in the upper mixed layer of the ocean. The foraminifera form a calcium carbonate ’shell’ around their cell during their lifespan. When they die, foraminifera lose their ability to control their buoyancy and their shells sink to the ocean floor. It is often assumed that the proxies which are derived from the shells in sediment cores represent ocean conditions above the location of deposition. However, foraminifera are transported by ocean currents, both during and after their lifespan. Hence, the paleoclimatic conditions recorded from their shells may originate far from the core site, generating large footprints in foraminifera-based paleoclimatic proxies. 

In this project, we quantify the influence of the transport by ocean currents on the proxy signal of foraminifera found at core sites in the Uruguayan margin of the Punta del Este basin. This is a region where two western boundary currents meet: The southward flowing Brazil current and the northward flowing Malvinas current. We use a high resolution (0.1° horizontally) ocean general circulation model to track virtual sinking particles and the local oceanic conditions along their pathways. These model results are compared to proxy- and species analysis from the core sites. We found that offsets in modelled proxy signals due to transport in the Uruguayan margin are strongly linked to the relative position of the core site to the Brazil-Malvinas confluence. These offsets are most pronounced in the tails of the temperature distributions where they can reach up to +/- 7°C at sites located in the confluence zone. Species analysis from core tops taken slightly north of this region show more cold water species than reflected by the modelled temperature distributions, suggesting biological activity and nutrient availability not taken into account in the model play an important additional role in the relative abundances of species.
Our model simulations have provided both a first order insight into the potential proxy-signal offsets in highly dynamic ocean regions and show that understanding of the interplay between transportation effects and the biological activity of foraminifera is crucial for the interpretation of these proxies.

 

How to cite: Kruijt, A., Mair, A., Nooteboom, P., von der Heydt, A. S., Ziegler, M., and Aze, T.: Transport of planktic foraminifera by ocean currents in the Uruguayan margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10818, https://doi.org/10.5194/egusphere-egu2020-10818, 2020.

EGU2020-5974 | Displays | CL1.4

Concurrent Miocene Antarctic ice sheet growth and CO2 increase caused by disequilibrium

Lennert Stap, Gregor Knorr, and Gerrit Lohmann

Geological evidence indicates considerable Antarctic ice volume variations during the early to mid-Miocene. Hitherto, ice modelling studies have mostly used equilibrium simulations to explain this variability. In these simulations, the gain in precipitation due to increased temperatures has to outweigh the loss caused by increased ice melt, to obtain simultaneous ice sheet growth and CO2 level rise. Here, conceptualising ice dynamical model results, we find that this is not a necessary condition for the transiently evolving Miocene Antarctic ice sheet. Instead, ice volume increase when CO2 levels are rising can also be explained as a consequence of disequilibrium between the transiently changing ice volume and forcing climate. This disequilibrium permits a continuation of ice sheet growth after a gradual CO2 decline. When the CO2 level is increased again, the ice sheet is still adapting to a relatively large equilibrium volume. Lowering the periodicity of the forcing leads to a larger disequilibrium, and consequently larger CO2-ice volume phase differences. Furthermore, amplified forcing variability increases ice volume variations, because the growth and decay rates depend on the forcing. It also leads to a reduced average ice volume, which is induced by the growth rate generally being smaller than the decay rate. We therefore submit that retrieval of high resolution proxy-CO2 records covering the Miocene would be very beneficial to constrain ice modelling studies.

How to cite: Stap, L., Knorr, G., and Lohmann, G.: Concurrent Miocene Antarctic ice sheet growth and CO2 increase caused by disequilibrium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5974, https://doi.org/10.5194/egusphere-egu2020-5974, 2020.

The North American Great Plains are characterized by a sharp aridity gradient at around the 100th meridian with a more humid climate to the east and a more arid climate to the west. This aridity gradient shapes the region's agriculture and economy, and recent work suggests that arid conditions on the Great Plains may expand eastward with global warming. The abundant Neogene sediments of the Ogallala Formation in the Great Plains present an opportunity to reconstruct regional hydroclimate conditions at a time when pCO2 and global temperatures were much higher than today, providing insight into the aridity and ecosystem response to warming. We present new paleosol carbonate δ13C and δ18O data (n=366) across 37 sites spanning the Great Plains and compile previously published measurements (n=381) to evaluate the long-term hydroclimatic and ecosystem changes in the region during the late Neogene. This study combines a spatial and temporal analysis of carbon and oxygen isotope data with reactive-transport modeling of oxygen isotopes constrained by climate model output, providing critical constraints on the paleoenvironmental and paleoclimatological evolution of the Neogene Great Plains. Carbonate δ18O demonstrate remarkable similarity between the spatial pattern of paleo-precipitation δ18O and modern precipitation δ18O. Today, modern precipitation δ18O over the Great Plains is set by the mixing between moist, high-δ18O moisture delivered by the Great Plains Low-Level Jet and drier, low-δ18O westerly air masses. Thus, in the absence of countervailing processes, we interpret this similarity between paleo and modern δ18O to indicate that the proportional mixing between these two air masses has been minimally influenced by changes in global climate and that any changes in the position of the 100th meridian aridity gradient has not been forced by dynamical changes in these two synoptic systems. In contrast, prior to the widespread appearance of C4 plants in the landscape of the Great Plains, paleosol carbonate δ13C show a robust east-to-west gradient, with higher values to the west. We interpret this gradient as reflective of lower primary productivity and hence soil respiration to the west. Close comparison with modern primary productivity data indicates that primary productivity has declined and shifted eastward since the late Neogene, likely reflecting declining precipitation and/or a reduction in CO2 fertilization during the late Neogene. Finally, δ13C increases across the Miocene-Pliocene boundary, which, consistent with previous studies, we interpret as a shift from a C3 to a C4 dominated landscape. We conclude that, to first order, the modern aridity gradient and the hydrologic processes that drive it are not strongly sensitive to changes in global climate and any shifts in this aridity gradient in response to rising CO2 will be towards the west, rather than towards the east.

How to cite: Manser, L., Kukla, T., and Caves Rugenstein, J. K.: Long-term stability of large-scale hydroclimate processes in the North American Great Plains revealed by a Neogene stable isotope study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11141, https://doi.org/10.5194/egusphere-egu2020-11141, 2020.

For several decades, the comparison of climate data with results from water isotope-enabled Atmosphere General Circulation Models (AGCMs) significantly helped to a better understanding of the processes ruling the water cycle, which is one of the main drivers of the climate variability. For the modern period, the use of AGCMs nudged with weather forecasts reanalyses is a powerful way to obtain model outputs under the same weather conditions than at the sampling time of the observations.

Here we present new isotopic simulations results from ECHAM6-wiso [1] nudged with the last reanalyses dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA5 [2], at different spatial resolutions over the period 1979-2018. Model results are evaluated against isotopic data compilations, including GNIP (Global Network of Isotopes in Precipitation [3]), speleothems [4], ice cores datasets and water vapor measurements. To quantify the impact of these reanalyses on our simulations, we also performed nudged simulations with the previous model version ECHAM5-wiso [5] by using ERA5 data and its predecessor ERA-Interim [6].

These new simulation products could be a useful contribution to the isotopic data community for the interpretation of their water isotope records and for the exploration of the mechanisms controlling the variability of the surrounding water isotopic composition.

 

[1] Cauquoin et al., Clim. Past, 15, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, 2019.

[2] Copernicus Climate Change Service (C3S), 2017.

[3] IAEA, the GNIP Database, available at: https://nucleus.iaea.org/wiser.

[4] Comas-Bru et al., Clim. Past, 15, 1557–1579, https://doi.org/10.5194/cp-15-1557-2019, 2019.

[5] Werner et al., Geosci. Model Dev., 9, 647–670, https://doi.org/10.5194/gmd-9-647-2016, 2016.

[6] Dee et al., Q. J. R. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.

How to cite: Cauquoin, A. and Werner, M.: High-resolution isotopic simulations from ECHAM6-wiso nudged with ERA5 reanalyses: new products for isotopic model-data comparisons, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12319, https://doi.org/10.5194/egusphere-egu2020-12319, 2020.

EGU2020-12420 | Displays | CL1.4

Investigation of the response of water isotope records to the changes in orbital forcing with the isotope-enabled AGCM MIROC5-iso

Kanon Kino, Atsushi Okazaki, Alexandre Cauquoin, and Kei Yosnimura

It has been well demonstrated that the variations of orbital parameters, known as Milankovitch theory, are one of the most important drivers of the Earth’s climate system. However, the way how the changes in orbital forcing imprint the glacial-interglacial cycles recorded in paleo-proxies, such as stable water isotopes in ice cores and speleothems, is still unclear. One way to progress in this question is to make direct comparisons of isotopic data with simulation results from isotope-enabled General Circulation Models (GCMs). We use here such a model, the Japanese atmospheric GCM MIROC5-iso[1], to perform simulations under different idealized paleoclimate conditions. For that, corresponding orbital parameters and greenhouse gases concentrations are set. Prescribed sea surface temperature and sea ice coverage boundary conditions from the fully coupled atmosphere-ocean GCM MIROC (MIROC-AOGCM) experiments are used, after an adaptation to the MIROC5-iso grid. Because earlier version of MIROC-AOGCM has been widely used for paleoclimate modeling purposes, the climatological mean states of MIROC5-iso under preindustrial conditions are evaluated against simulation results from different versions of MIROC-AOGCM (MIROC4m, which is a slightly updated version of MIROC3.2(med), and MIROC5 [2]). In addition, several interglacial periods and idealized paleoclimate experiments will be investigated and implications for the interpretation of water isotope response to the changes in orbital forcing will be discussed.

[1] Okazaki and Yoshimura, J. Geophys. Res. Atmos, 124, 8972–8993, 2019.

[2] Watanabe et al., J. Climate, 23, 6312–6335, 2010.

How to cite: Kino, K., Okazaki, A., Cauquoin, A., and Yosnimura, K.: Investigation of the response of water isotope records to the changes in orbital forcing with the isotope-enabled AGCM MIROC5-iso, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12420, https://doi.org/10.5194/egusphere-egu2020-12420, 2020.

The hydrological response to radiative forcing is less understood than the thermal one: many climate models have difficulties in simulating seasonal rainfall and its variability. Indeed, future precipitation projections are much more uncertain than those of temperature. However, confident projections of precipitation are of crucial importance, particularly for highly populated regions where agriculture strongly relies on seasonal rainfall, such as South and Central Asia.

Instrumental data from Eurasia show a negative correlation between temperature and precipitation on short timescales (10-3 to 100 years). However, on longer timescales (101 to 103 years), proxy data covering the Holocene show a positive correlation between temperature and precipitation. Climate models in contrast simulate a negative correlation on all timescales. To extend previous estimates to longer time scales, we focus on the last Glacial period, characterized by colder temperature than the Holocene as well as pronounced millennial-scale climate fluctuations in the Northern Hemisphere.

We reconstruct temperature and precipitation from four high resolution pollen records at mid-latitudes in the Northern Hemisphere. The estimates are compared with climate simulations. The chosen proxy sites cover the East and West coasts of both the Eurasian and North American continent. We employ four different statistical reconstruction methods to assess validity and biases of each method. The differences between reconstructed and simulated temperature-precipitation relationships as well as the zonal structure of orbital- and millennial-scale variations are examined. In particular, we explore the thermodynamic and dynamic contributions to the inferred relationships between temperature and precipitation.

How to cite: Sommani, A., Weitzel, N., and Rehfeld, K.: Northern Hemisphere temperature to precipitation relationships during the last Glacial from pollen records and climate simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7293, https://doi.org/10.5194/egusphere-egu2020-7293, 2020.

The project PalMod II is the second phase of Germany’s national paleoclimate modelling initiative (www.palmod.de) whose aim is to model the transient climate evolution from the last interglacial to the anthropocene with state of the art earth system models. The second phase more precisely wants to perform simulations for the last glacial inception, the marine isotope stage 3, and the last deglaciation. It further plans to compile paleo-observational proxy data over the full glacial cycle from about 130,000 years before present until today. Models of differing complexity (fully-coupled earth system models and models of intermediate complexity) will be used to assess the scientific questions posed in PalMod II. Model output will be combined with the compiled paleo-proxy data for validation purposes. The sheer data amount in excess of several petabytes and different data handling practices of the participating communities require dedicated management of the data workflow both in- and outside of the immediate PalMod community.

The PalMod II data management takes place in close collaboration between data management specialists and the scientists. The objectives include the standardisation of each simulation and proxy dataset, the facilitation of data sharing and data reuse between work packages, the access channels for external collaborators, and the long-term preservation of the data. The data management follows the concept of the "Active Data Management Plan", which foresees a continuous development of the data management plan (DMP), starting with an initial basic version. The DMP covers the entire life cycle of the research data generated in the project, from generation and analysis to data publication and archiving. This includes aspects such as data formats, metadata standards and data usage licenses. Ownership and responsibilities for simulation and paleo data sets as well as the input data during and after the end of the project will also be considered.

This contribution will present the initial DMP for PalMod II. It will describe the amount of data produced in the project, highlight how the above mentioned aspects will be dealt with, and present how the project aims to ensure the Findability, Accessibility, Interoperability, and Reusability, i.e. the FAIR data principles, of simulation output, post-processed model data, and paleo-proxy data from PalMod II.

* This contribution presents results of the full PalMod II initiative, the authors present them on behalf of the initiative.

How to cite: Bothe, O. and Peters, K.: The initial Data Management Plan for PalMod II - FAIR simulation and paleo data from the Last Interglacial to the Anthropocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13189, https://doi.org/10.5194/egusphere-egu2020-13189, 2020.

CL1.8 – Orbital forcing and internal climate feedbacks in climate transitions of the last 5 million years

EGU2020-17480 | Displays | CL1.8

Ocean carbon storage and release over a glacial cycle

James Rae, Alan Foreman, Jessica Crumpton-Banks, Andrea Burke, Christopher Charles, and Jess Adkins

Perhaps the most important feedback to orbital climate change is CO2 storage in the deep ocean.  By regulating atmospheric CO2, ocean carbon storage synchronizes glacial climate in both hemispheres, and drives the full magnitude of glacial-interglacial climate change.  However few data exist that directly track the deep ocean’s carbon chemistry over a glacial cycle.  Here, we present geochemical reconstructions of deep ocean circulation, redox, and carbon chemistry from sediment cores making up a detailed depth profile in the South Atlantic, alongside a record of Southern Ocean surface water CO2, spanning the last glacial cycle.  These data indicate that initial glacial CO2 drawdown is associated with a major increase in surface ocean pH in the Antarctic Zone of the Southern Ocean, cooling at depth, enhanced deep ocean stratification, and carbon storage.  Deep ocean carbon storage and deep stratification are further enhanced when CO2 falls at the onset of Marine Isotope Stage 4, and are also pronounced during the LGM, illustrating a link between orbital scale climate stages and deep ocean carbon.  However our data also illustrate non-linear feedbacks to orbital forcing during glacial terminations, which show abrupt decreases in pH in Southern Ocean surface and subsurface waters, as CO2 is rapidly expelled from the deep ocean at the end of the last ice age.

How to cite: Rae, J., Foreman, A., Crumpton-Banks, J., Burke, A., Charles, C., and Adkins, J.: Ocean carbon storage and release over a glacial cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17480, https://doi.org/10.5194/egusphere-egu2020-17480, 2020.

EGU2020-6778 | Displays | CL1.8 | Highlight

Millennial-scale variability in Antarctic Circumpolar Current and its impacts during the last glacial cycle

Shuzhuang Wu, Frank Lamy, Gerhard Kuhn, Lester Lembke-Jene, Xu Zhang, Christian Haas, Nortbert Nowaczyk, Helge W. Arz, and Ralf Tiedemann

The Antarctic Circumpolar Current (ACC) is the largest current system in the world, linking the Pacific, Atlantic and Indian Ocean basins. However, the variability of the ACC, which plays a fundamental role on global ocean circulation and climate variability, is still poorly constrained. This information is crucial for understanding the role of the ACC on global ocean circulation in response to global warming. Here, we reconstruct changes in the ACC over the past 155,000 years based on sediment grain size variations recorded in a highly-resolved marine sedimentary record from the central Drake Passage near the Polar Front. Our results show significant changes in the ACC during the last glacial cycle and a remarkable boundary between the glacial and interglacial periods. Substantial decreases (~33% to ~47%) in the ACC flow speed from interglacial to glacial period, which corroborates and extends results of previous studies along the subantarctic northern limit of the ACC into the central Drake Passage. This strong variation of ACC likely plays a significant role in regulating Pacific-Atlantic water mass exchange via the “cold water route” and could significantly affect the Atlantic Meridional Overturning Circulation. Superimposed on these glacial-interglacial changes, we found strong millennial-scale variations in ACC current speed, increasing in amplitude close to full glacial conditions. We hypothesise that the central ACC increases its sensitivity to Southern Hemisphere millennial-scale climates oscillations, likely associated with westerlies’ wind stress and Antarctic sea ice extent once glacial conditions fully formed.

How to cite: Wu, S., Lamy, F., Kuhn, G., Lembke-Jene, L., Zhang, X., Haas, C., Nowaczyk, N., W. Arz, H., and Tiedemann, R.: Millennial-scale variability in Antarctic Circumpolar Current and its impacts during the last glacial cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6778, https://doi.org/10.5194/egusphere-egu2020-6778, 2020.

EGU2020-9828 | Displays | CL1.8

The Role of Changing Indian Ocean Salinity in shaping Pleistocene Climate

Sophie Nuber, James W. B. Rae, Morten B. Andersen, Bas de Boer, Xu Zhang, Ian R. Hall, and Stephen Barker

Indian Ocean surface salinity dynamics are thought to play an important role in shaping glacial-interglacial climate through controlling Agulhas leakage efficiency. It is proposed that a strong Agulhas leakage supplies warm and salty Indian ocean surface waters to Atlantic surface currents influencing convective potential at North Atlantic deep-water formation sites. Here, we present new planktonic foraminiferal Mg/Ca and stable isotope-derived salinity reconstructions for the last 1.2Ma from the northern Mozambique channel. We find salinity increases well before terminations, followed by early decrease before glacial inception. We present a possible link between the hydrography in the northern Mozambique channel and whole ocean salinity changes due to unique surface circulation in the Indian ocean. Despite being a mostly tropical and subtropical ocean, salinity in the modern tropical Indian Ocean is fresher than at comparable latitudes in the Atlantic or Pacific. This is due to the inflow of freshwater from the Indonesian throughflow and recycling via an active Agulhas leakage. We show that salinity in the glacial western Indian Ocean was significantly higher due to a reduced ITF and a weaker Agulhas leakage. We hypothesise that opening and closing of these two gateways influences the development/diminishment of a strong subtropical Indian Ocean gyre which controls sea surface salinity and temperature of tropical Indian Ocean water masses and subsequently the efficiency of the Agulhas Leakage.

How to cite: Nuber, S., Rae, J. W. B., Andersen, M. B., de Boer, B., Zhang, X., Hall, I. R., and Barker, S.: The Role of Changing Indian Ocean Salinity in shaping Pleistocene Climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9828, https://doi.org/10.5194/egusphere-egu2020-9828, 2020.

EGU2020-10495 | Displays | CL1.8 | Highlight

The Evolution of Subantarctic Fronts, Deep Ocean Ventilation and Flow Vigour at the Agulhas Plateau: Surface-Deep Coupling Across Climate Transitions of the past 3 Ma

Aidan Starr, Ian R. Hall, Stephen Barker, Jeroen van der Lubbe, Sidney R. Hemming, Francisco J. Jimenez-Espejo, and Nambiyathodi Lathika

The geometry of large-scale deep ocean circulation is closely linked to processes occurring in the Southern Ocean (SO). The SO is the ‘window’ through which much of the world’s ocean interior interacts with the atmosphere, and understanding the complex relationships coupling SO dynamics to deep circulation can provide valuable insights into biogeochemical and physical processes important to global climate. Of particular interest is how these processes interacted with, and behaved under different climate states, such as the glacial-interglacial cycles of the Pleistocene (0-2.8 Ma), and the intensification of Northern Hemisphere glaciation during the transition from the warm Mid-Pliocene (3.3-3.1 Ma) to the early Pleistocene. Here, we utilise new composite sediment core records (41oS, 25oE, 2700-2900 m water depth) to reconstruct deep chemical and physical ventilation at the Agulhas Plateau, as well as the competing presence of warm Subtropical waters vs cold Subantarctic waters in the surface, over the past ~3 Ma. We present records of the ‘sortable silt’ flow speed proxy, the stable isotope (δ18O, δ13C) composition of benthic foraminifera, bulk sediment element concentrations, and the accumulation of ice-rafted debris (IRD). The sortable silt proxy demonstrates that deep physical ventilation is largely decoupled from deep chemical ventilation as indicated by benthic δ13C, with higher flow speeds coincident with more depleted δ13C. Furthermore, deep ventilation is related to changes in the terrigenous sediment composition: deep flow speeds and δ13C vary concurrently with bulk sediment geochemistry (K/Al, Ti). At the Agulhas Plateau, we interpret deep chemical ventilation and near-bottom flow speeds to reflect changes in the advection of northern-sourced deep waters (e.g. North Atlantic Deep Water and its glacial equivalent) and meridional variability in the location of the deep-reaching Antarctic Circumpolar Current (ACC) and its associated fronts. The presence of IRD at the Agulhas Plateau is controlled primarily by the equatorward survivability far-travelling Antarctic icebergs, and therefore represents the relative presence of cold, iceberg-bearing Subantarctic Zone (SAZ) surface waters. Generally, at times of high near-bottom flow speed and more ‘southern’ terrigenous sediment composition, IRD is higher, implying a meridional expansion of the SAZ. Together, these proxy records provide a continuous and long-term insight into the evolution of coupled surface-deep conditions at the Agulhas Plateau. We postulate that these conditions may reflect the wider geometry of ocean circulation in the SO, documenting the interactions between the ACC and circum-Antarctic fronts with the upwelling, conversion, and export of deep water masses. Our records represent the first multi-proxy reconstruction of this system across climate transitions of the past ~3 Ma, allowing us to explore its evolution across a range of timescales, from million-year to orbital-scale. Furthermore, by measuring multiple proxies on the same samples, we are able to determine the relative phasing between different processes independent of chronostratigraphic uncertainties, for example the timing of SAZ changes vs perturbations in deep ocean circulation at the site.   

How to cite: Starr, A., Hall, I. R., Barker, S., van der Lubbe, J., Hemming, S. R., Jimenez-Espejo, F. J., and Lathika, N.: The Evolution of Subantarctic Fronts, Deep Ocean Ventilation and Flow Vigour at the Agulhas Plateau: Surface-Deep Coupling Across Climate Transitions of the past 3 Ma, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10495, https://doi.org/10.5194/egusphere-egu2020-10495, 2020.

EGU2020-18340 | Displays | CL1.8

Glacial-to-interglacial variations in the deep water at the Bermuda Rise inferred from a Nd isotope record covering the last million years

Maria Jaume-Seguí, Joohee Kim, Karla P. Knudson, Maayan Yehudai, Steven L. Goldstein, Louise Bolge, Patrizia Ferretti, and Leopoldo D. Pena

The formation of North Atlantic Deep Water (NADW) in the North Atlantic is an important modulator of the climate system, as it drives the global termohaline circulation, responsible for the distribution of heat, salts and nutrients across the oceans. ODP Site 1063 (4584 m), on the deep Bermuda Rise, is located in the mixing zone between NADW and Antarctic Bottom Water (AABW) and appears to be a good location to study how ocean circulation and climate interconnect. Here we present a new record based on Nd isotope ratios that covers ~1 Ma at that Site. Our data shows Nd isotope ratios during parts of interglacials that are much lower than present day NADW. These results are coherent with recent published studies on the last interglacial–glacial cycle that show that the deep North Atlantic Nd isotope ratios are also lower than NADW during the early interglacial. However, Nd isotope values from the shallower DSDP Site 607 (3427 m), within the core of NADW, have remained similar to modern NADW during interglacials over the same time interval. Site 607 is thought to represent the deep North Atlantic, as shown by an Atlantic meriodional transect that displays Nd isotopes ratios for glacial and interglacial maxima over the last ~1 Ma. We suggest that Nd isotope ratios at Site 1063 do not fully represent the North Atlantic endmember of the AMOC during interglacials, but regional or local processes. However, glacial values at Site 1063 fitting those of Site 607 suggest that Nd isotope ratios represent, indeed, water mass mixing during glacial periods. The low Nd-isotope ratios in the deep Bermuda Rise during interglacials would be the result of particle-seawater exchange derived from the arrival of freshly ground, poorly weathered bedrock from the Canadian shield to the North Atlantic during major ice sheet retreats, such as deglaciations as well as stadial-to-interstadial transitions. Consequently, a deep, regionally constrained layer of seawater is tagged with this extreme Nd isotope signature that is not representative of the AMOC. We suggest that a benthic nepheloid layer, whose development is driven by a deep-recirculating gyre system regulated by the interaction between the northward flowing Gulf Stream and the southward flowing deep western boundary current, facilitates the periodical masking of the deep Atlantic Nd isotope signature at Site 1063. The intermittence of the masking allows for a speculation on how the deep-recirculating gyre system might have changed over the last ~1 Ma glacial-to-interglacial cycles.

How to cite: Jaume-Seguí, M., Kim, J., Knudson, K. P., Yehudai, M., Goldstein, S. L., Bolge, L., Ferretti, P., and Pena, L. D.: Glacial-to-interglacial variations in the deep water at the Bermuda Rise inferred from a Nd isotope record covering the last million years , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18340, https://doi.org/10.5194/egusphere-egu2020-18340, 2020.

EGU2020-5427 | Displays | CL1.8 | Highlight

Exploring the nature and timing of glacial climate transitions

Henning Bauch

The causes for major climate transitions in the Upper Pleistocene are based on the assumption that orbital forcing, i.e. the increase in northern hemisphere summer insolation (NHSI), initiates glacial ice sheets to melt away leading to the formation of warm interglacials. Good examples are plentiful available, e.g. major glacial terminations (T) such as T1, 2, or 5. Besides these major climate transitions there are also other glacial terminations across marine substage boundaries that, although seemingly of minor scale, had nevertheless massive climate impacts either globally (MIS4/3, MIS7d/7c) or regionally (MIS5b/5a). While an interglacial decrease in NHSI seems to run in parallel with early glacial inception - as can be noted for the later Holocene and MIS5e - the onset of T2 vs. T1 has long been controversially discussed with respect to its orbitally forced timing. This study therefore explores the involvement of other mechanisms. Primarily, these have to do not so much with internally produced feedback processes but are the consequence of temperature changes to be found in the low-latitudes. Transferred northward through the atmosphere and ocean these changes then feed ice sheet growth and determine its geographical configuration of different magnitudes, also eventually leading to a glacial maximum. During the past, climate transitions from a glacial into an interglacial world therefore did not start with the end of a glacial maximum. It is the time just prior to that particular maximum when the major change occurred.

How to cite: Bauch, H.: Exploring the nature and timing of glacial climate transitions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5427, https://doi.org/10.5194/egusphere-egu2020-5427, 2020.

From the combination of orbital theory with benthic δ18O it has been suggested which obliquity cycles led to interglacials during the Quaternary (e.g. Tzedakis et al., 2017). Here, we define interglacials, as deduced for the last 800 kyr (Past Interglacials Working Group of PAGES, 2016), by the absence of substantial northern hemispheric land ice outside of Greenland. When applied to land-ice distribution derived from a 3D-ice-sheet model-based deconvolution of the LR04-benthic δ18O stack into its temperature and sea-level components (de Boer et al., 2014) we find an irregular pattern of interglacials not only, as suggested so far, in the late Pleistocene but across most of the last 2.6 Myr. In the early Pleistocene eight obliquity cycles miss the onset of new interglacials, therefore increasing the average interglacial periodicity to 60 kyr. Both prolonged glacials (due to skipped terminations) and prolonged interglacials (so-called continued interglacials) are the reasons for these new irregularities. This finding adds new irregularities to the already known glacial/interglacial pattern during the last 1 Myr that include eleven obliquity cycles without new interglacials. Only in the Mid-Pleistocene in-between interglacials reappear regularly once in each obliquity cycle (every 41 kyr) with an exception around 1.1 Myr BP in which the onset of two successing interglacials is more than 100 kyr apart. This finding suggests that the notation of the Quaternary as an obliquity driven period with a growing influence of ice volume on the timing of deglaciations is too simple, or that our definition of interglacials, that seems to be suitable for the last 1.6 Myr, is not applicable to the whole Quaternary.

References:

de Boer, B., Lourens, L. J. & van de Wal, R. S. Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene. Nature Communications 5, 2999 (2014). doi: 10.1038/ncomms3999.

Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years. Reviews of Geophysics 54, 162–219 (2016). doi: 10.1002/2015RG000482.

Tzedakis, P. C., Crucifix, M., Mitsui, T. & Wolff, E. W. A simple rule to determine which insolation cycles lead to interglacials. Nature 542, 427–432 (2017). doi: 10.1038/nature21364.

How to cite: Köhler, P. and van de Wal, R.: Land ice distribution suggests an irregular pattern of interglacials across most of the Quaternary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1340, https://doi.org/10.5194/egusphere-egu2020-1340, 2020.

EGU2020-9574 | Displays | CL1.8

The role of eccentricity in determining the spacing between interglacials

Eric Wolff, Michel Crucifix, and Chronis Tzedakis

In a recent paper Tzedakis et al (2017) described a simple rule that predicts, using only caloric summer half-year insolation as input, which insolation cycles lead to the onset of an interglacial. The rule is based on an energy threshold, one of whose characteristics is that it reduces with time since the last interglacial onset, reflecting increased fragility of glacial climate as ice sheets get larger. The rule correctly predicts every complete deglaciation of the past million years, a period in which interglacial onset skips both precession and obliquity cycle maxima. This then raises the question to what extent the approximate 100 ka period observed in the last million years is due simply to internal dynamics rather than to the period of eccentricity present in the insolation record. Here we will test this by creating synthetic insolation curves from which eccentricity (or other orbital components) have been removed.  We will then use the proposed rule to test to what extent eccentricity influences the spacing of interglacials. We will also assess the impact of other orbital components and the impact earlier in the Quaternary when the energy threshold was lower.

How to cite: Wolff, E., Crucifix, M., and Tzedakis, C.: The role of eccentricity in determining the spacing between interglacials, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9574, https://doi.org/10.5194/egusphere-egu2020-9574, 2020.

EGU2020-4227 | Displays | CL1.8 | Highlight

Glacial Termination: Going, Going, Gone

Gregor Knorr and Stephen Barker

Within the Late Pleistocene, a ‘termination’ is the name given to the rapid (~10kyr) deglacial transition marking the end of a (~100kyr) glacial cycle. These massive events involve all the critical elements of Earth’s climate system: global temperatures, precipitation patterns, ice sheet extent, ocean and atmospheric circulation systems, atmospheric composition and biological activity. Investigations into the mechanisms of glacial termination have been many and it is now thought that abrupt shifts in the ocean/atmosphere system play a ubiquitous and critical role in deglaciation. However, significant uncertainties remain concerning the timing and magnitude of deglacial changes and the likelihood that they will be interrupted by ‘terminal oscillations’ such as the Bølling-Allerød / Younger Dryas oscillation during Termination 1. In this presentation we will address these uncertainties in the light of recent developments in the understanding of glacial terminations as the ultimate expression of the interaction between millennial and orbital timescale variations in Earth’s climate. Innovations in numerical climate simulation and new geologic records that enable us to test these simulations allow us to highlight new avenues of research as well as to emphasise the importance of lingering uncertainties in key climatic parameters such as sea level variability through time.

How to cite: Knorr, G. and Barker, S.: Glacial Termination: Going, Going, Gone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4227, https://doi.org/10.5194/egusphere-egu2020-4227, 2020.

EGU2020-12928 | Displays | CL1.8 | Highlight

Reconstructions of Global and Regional Temperature Change for the Last 5 Myr

Peter U. Clark, Jeremy Shakun, Yair Rosenthal, Patrick Bartlein, Peter Koehler, and Hari Mix

We use a global array of ~120 sea-surface temperature (SST) records based on Mg/Ca, alkenone, and faunal proxies to reconstruct global and regional temperature change over the last 5 Myr. All records are placed on the LR04 age model. Here we report the reconstructions and discuss their implications for characterizing global climate evolution (frequency, variance, transitions) over this interval and its relationship to changes in CO2, orbital forcing, and mean ocean temperature. Average global temperature has cooled by ~6.5oC since 5 Ma, with significant breakpoints tentatively identified at ~3.38 Ma, 1.34 Ma, and 0.88 Ma. We also invert the global reconstruction to reconstruct global sea level for the last 5 Myr.

How to cite: Clark, P. U., Shakun, J., Rosenthal, Y., Bartlein, P., Koehler, P., and Mix, H.: Reconstructions of Global and Regional Temperature Change for the Last 5 Myr, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12928, https://doi.org/10.5194/egusphere-egu2020-12928, 2020.

EGU2020-8762 | Displays | CL1.8

Reconstructing the evolution of ice sheets, sea level and atmospheric CO2 during the past 3.6 million years

Tijn Berends, Bas de Boer, and Roderik van de Wal

Understanding the evolution of, and the interactions between, ice sheets and the global climate over geological time is important for being able to constrain earth system sensitivity. However, direct observational evidence of past CO2 concentrations only exists for the past 800,000 years. Records of benthic d18O date back millions of years, but contain signals from both land ice volume and ocean temperature. In recent years, inverse forward modelling has been developed as a method to disentangle these two signals, resulting in mutually consistent reconstructions of ice volume, temperature and CO2. We use this approach to force a hybrid ice-sheet – climate model with a benthic d18O stack, reconstructing the evolution of the ice sheets, global mean sea-level and atmospheric CO2 during the late Pliocene and the Pleistocene, from 3.6 Myr ago to the present day. The resulting reconstructions of CO2 and sea level agree well with the ice core record and different sea-level proxies, indicating that this model set-up yields useful information for colder-than-present climates. For the warmer-than-present climates of the Late Pliocene, different proxies for both CO2 and sea level are contradictory, making model validation difficult. During the early Pleistocene, 2.6 – 1.2 Myr ago, we simulate 40 kyr glacial cycles with CO2 ranging between 270 – 280 ppmv during interglacials and 210 – 240 ppmv during glacial maxima. After the Mid-Pleistocene Transition (MPT), when the glacial cycles change from 40 kyr to 80/120 kyr cyclicity, these values change to 260 to 280 ppmv during interglacials, and 180 – 200 ppmv during glacial maxima.

How to cite: Berends, T., de Boer, B., and van de Wal, R.: Reconstructing the evolution of ice sheets, sea level and atmospheric CO2 during the past 3.6 million years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8762, https://doi.org/10.5194/egusphere-egu2020-8762, 2020.

EGU2020-20914 | Displays | CL1.8

Simulations of large climate transition occurring at high and low latitudes during the late Pliocene (3.3 Ma) and the Plio/Pleistocene (3-2.5 Ma) boundary

Ning Tan, Emma Yule, Gilles Ramstein, Doris Barboni, Rani Raj, and Christophe Dumas

The late Pliocene corresponds to a large cooling over Northern Hemisphere associated with sporadic occurrences of glaciations. The most important event occurred during the marine isotope stage M2 (MIS M2, 3.312–3.264 Ma) when a large glaciation took place with a sea level drop from 20 to 60 m, but its duration is short and the summer insolation forcing change at 65°N is weak. De Schepper et al (2013) invoked to explain the onset and termination of this glaciation with the opening and closing of the Central American Seaway (shallow CAS). Based on their hypothesis, we have intensively studied the onset mechanism of  MIS M2 through a series of sensitivity experiments using the IPSL AOGCM and the asynchronous coupling with an Ice sheet model (GRISLI). Our results demonstrate that the shallow CAS helps to precondition the low-latitude oceanic circulation and affects the related northward energy transport, but cannot alone explain the onset of the M2 glaciation, the most important contribution on MIS M2 are from the large change of pCO2 as well as the internal feedbacks of vegetation and ice sheet. Moreover, we have also investigated the period from the late Pliocene to the early Pleistocene (3-2.5 Ma) through a transient-like simulation using the same AOGCM and ISM. This enables to simulate the Greenland Ice Sheet (GRIS) onset and development using the pCO2 reconstructions from different proxies. All these simulations were analyzed with emphasis on cryosphere and focused on the Northern Hemisphere (mid-to-high latitudes). Here we used the same modeling simulations but with a focus over the tropical Africa. We first depict the large changes of temperatures and hydrological cycle produced over this area during these two periods and compare our data to reconstructions. Moreover, by prescribing our climate results as inputs for the vegetation model (Biome4), we compare more directly the simulated plant functional types (PFTs) with that constructed by the pollen data. In addition, we further quantify the respective impact of various driving factors on these PFTs variations.

How to cite: Tan, N., Yule, E., Ramstein, G., Barboni, D., Raj, R., and Dumas, C.: Simulations of large climate transition occurring at high and low latitudes during the late Pliocene (3.3 Ma) and the Plio/Pleistocene (3-2.5 Ma) boundary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20914, https://doi.org/10.5194/egusphere-egu2020-20914, 2020.

EGU2020-10925 | Displays | CL1.8 | Highlight

High resolution CO2 record of the great Plio-Pleistocene glaciations using boron isotopes

Rachel Brown, Thomas Chalk, Paul Wilson, Eelco Rohling, and Gavin Foster

The intensification of Northern Hemisphere glaciation (iNHG) at 3.4-2.5 million years ago (Ma) represents the last great transition in Cenozoic climate state with the development of large scale ice sheets in the Northern Hemisphere that waxed and waned with changes in insolation. Declining atmospheric CO2 levels are widely suggested to have been the main cause of iNHG but the CO2 proxy record is too poorly resolved to provide an adequate test of this hypothesis. The boron isotope-pH proxy, in particular, has shown promise when it comes to accurately estimating past CO2 concentrations and is very good at reconstructing relative changes in CO2 on orbital timescales. Here we present a new orbitally resolved record of atmospheric CO2 (1 sample per 3 kyr) change from Integrated Ocean Drilling Program Site 999 (12.74˚N, -78.74 ˚E) spanning ~2.6–2.4 Ma based on the boron isotope (δ11B) composition of planktic foraminiferal calcite, Globingerinoides ruber (senso stricto, white).  We find that δ11B values of G. ruber show clear glacial-interglacial cycles with a magnitude that is similar to those of the Mid-Pleistocene at the same site and elsewhere.  This new high-resolution view of CO2 during the first large glacial events of the Pleistocene confirms the importance of CO2 in amplifying orbital forcing of climate and offers new insights into the mechanistic drivers of natural CO2 change. 

How to cite: Brown, R., Chalk, T., Wilson, P., Rohling, E., and Foster, G.: High resolution CO2 record of the great Plio-Pleistocene glaciations using boron isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10925, https://doi.org/10.5194/egusphere-egu2020-10925, 2020.

EGU2020-14645 | Displays | CL1.8

Reconstruction of environmental and climatic change during the late Pliocene and early Pleistocene in northwestern North America based on a new drill core from paleo-Lake Idaho

Frederik Allstädt, Andreas Koutsodendris, Erwin Appel, Wolfgang Rösler, Alexander Prokopenko, Tammo Reichgelt, and Jörg Pross

The Pliocene to early Pleistocene yields a close analogy to near-future climate, with atmospheric pCO2 between pre-industrial and anthropogenically perturbed levels as they may be reached in few decades. A sedimentary archive that is well suited to study Plio-Pleistocene climate dynamics in the terrestrial realm has recently become available through the ICDP-sponsored HOTSPOT project on the evolution of the Snake River Plain (Idaho, USA). At the Mountain Home site, HOTSPOT drilling has yielded the MHAFB11 core that comprises 635 m of fine-grained lacustrine sediments (Shervais et al. 2013). Based on the yet available paleomagnetic age control, these sediments span from the late Pliocene to the early Pleistocene, which makes them the first archive in continental North America that covers this time interval at one site. Based on their geographic position, the sediments from paleo-Lake Idaho can contribute to a better understanding of climate variability across the Plio-Pleistocene transition in western North America, notably with respect to the hypothesis that enhanced moisture transport into the higher latitudes of North America from ~2.7 Ma onwards allowed the initiation of Northern Hemisphere glaciation (Haug et al., 2005).

To gain insight into the paleoclimatic evolution of northwestern North America during the late Pliocene to early Pleistocene, we have palynologically analyzed 131 samples from the 732–439 m depth interval (corresponding to an age of ~2.8 to ~2 Ma) of the MHAFB11 core. The obtained palynological dataset, which has a mean temporal resolution of ~7 ka, documents that a Pinus-dominated coniferous forest biome prevailed in the catchment area of paleo-Lake Idaho throughout the study interval. However, percentages of pollen from conifer taxa decrease in the latest Pliocene before reaching consistently lower values in the early Pleistocene at ~2.4 Ma. In contrast, pollen taxa representing an open vegetation (e.g., Artemisia, Asteraceae) and deciduous trees (e.g., Quercus, Betula and Alnus) become increasingly abundant in the early Pleistocene (at ~2.4 Ma). We interpret this vegetation shift to an open mixed conifer/deciduous forest to be caused by wetter climate conditions. This interpretation is supported by quantitative climate estimates, which show a gradual increase in mean annual precipitation in the early Pleistocene. This trend towards wetter conditions supports the notion that enhanced moisture transport to northern North America from the subarctic Pacific Ocean contributed to the onset of Northern Hemisphere glaciation at ~2.7 Ma (Haug et al., 2005).

 

References:

Haug, G.H., Ganopolski, A., Sigman, D.M., Rosell-Mele, A., Swann, G.E., Tiedemann, R., Jaccard, S.L., Bollmann, J., Maslin, M.A., Leng, M.J. and Eglinton, G., 2005. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 433, 821-825.

Shervais, J.W., Schmitt, D.R., Nielson, D., Evans, J.P., Christiansen, E.H., Morgan, L.A., Shanks, P. W.C., Prokopenko, A.A., Lachmar, T., Liberty, L.M., Blackwell, D.D., Glen, J.M., Champion, D., Potter, K.E., Kessler, J., 2013. First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A. Scientific Drilling, 3, 36-45.

 

How to cite: Allstädt, F., Koutsodendris, A., Appel, E., Rösler, W., Prokopenko, A., Reichgelt, T., and Pross, J.: Reconstruction of environmental and climatic change during the late Pliocene and early Pleistocene in northwestern North America based on a new drill core from paleo-Lake Idaho , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14645, https://doi.org/10.5194/egusphere-egu2020-14645, 2020.

EGU2020-9940 | Displays | CL1.8

A Simple Model for Glacial Cycles and Impact of fossil fuel CO2 emissions

Stefanie Talento and Andrey Ganopolski

We propose a simple physically-based model of the coupled evolution of Northern Hemisphere (NH) landmass ice-volume, atmospheric CO2 concentration and global mean temperature. The model only external forcings are the orbital forcing (maximum solar insolation at 65°N) and anthropogenic CO2 emissions. The model consist of a system of 3 coupled non-linear differential equations, representing physical mechanisms relevant for the evolution of the climate system in time-scales longer than thousands of years.

 

When forced by the orbital forcing only, the model is successful in reproducing the natural glacial-interglacial cycles of the last 800kyr, in agreement with paleorecords and simulations performed with the CLIMBER-2 Earth System Model of intermediate complexity. The model is successful in reproducing both the timing and amplitude of the glacial-interglacial variations, producing a correlation with paleodata of 0.75 in terms of NH ice-volume.

 

For the next million years, we analyse the model results under different scenarios: the natural scenario (in which only orbital forcing is applied) and scenarios in which various magnitudes of fossil fuel CO2 emissions are considered (in addition to the orbital forcing).

 

When anthropogenic emissions are included the model shows that even fairly low CO2 anthropogenic emissions (100 Pg or larger) are capable of affecting the next glacial inception, expected to occur in 120kyr from now, delaying large NH ice formation by 50kyr. Considering total carbon releases ranging between 1000 and 5000 Pg (a reasonable expectation of fossil fuel CO2 emissions to occur in the next few hundred years) the temporal evolution of the climate system could be significantly different from the natural progression. Emissions larger than 3000 Pg could have long-lasting effects, being natural conditions not resumed even after 1 Million years have passed. In addition, emissions larger than 4000 Pg prevent glacial cycles in the next half million years.

How to cite: Talento, S. and Ganopolski, A.: A Simple Model for Glacial Cycles and Impact of fossil fuel CO2 emissions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9940, https://doi.org/10.5194/egusphere-egu2020-9940, 2020.

EGU2020-11682 | Displays | CL1.8

Orbital CO2 cycles and the Mid-Pleistocene Transition

Thomas Chalk, Mathis Hain, Gavin Foster, Sophie Nuber, Eelco Rohling, Stephen Barker, Soraya Cherry, and Paul Wilson

Over the past 1.5 million years, Earth’s climate has shifted from a predominantly 41 thousand year (kyr) dominated climate cycle to one dominated by longer and larger glacial-interglacial cycles, known as the Mid-Pleistocene Transition (MPT). The MPT occurs over a period of several hundreds of thousands of years, with little change to Earth’s external orbital forcing, thus implicating internal climate feedbacks. Here we interrogate the current capacity, and future potential, of boron isotope records to provide high quality carbon cycle information for the Pleistocene. We also present a compilation of boron isotope-derived pH-CO2 records from low-latitude ocean drill cores which closely follow the evolution of atmospheric CO2 over the ice core interval but extend it to 1.5 million years ago with a resolution of up to ~1 sample per 3 kyr. This new, near continuous δ11B-derived CO2 record is compared against other independent CO2 data from blue-ice cores and records of ocean and climate change., This confirms there is a decline in mean CO2 across the MPT which manifests as a lengthening and deepening of glacial CO2, and highlights the distinct difference in the nature of CO2 cycles in the 41-kyr world.

 

How to cite: Chalk, T., Hain, M., Foster, G., Nuber, S., Rohling, E., Barker, S., Cherry, S., and Wilson, P.: Orbital CO2 cycles and the Mid-Pleistocene Transition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11682, https://doi.org/10.5194/egusphere-egu2020-11682, 2020.

The Mid-Pleistocene Transition (MPT, ~1.3-0.7 Ma) is one of the most drastic climatic transition in the recent climatic history of our planet. During this transition, glacial-interglacial variability shifted from 41- to 100-ka cycles, without notable changes in the orbital forcing. Internal forcing mechanisms in Earth’s climate likely shifted the system towards particularly more extreme glacial periods. A decrease in the atmospheric CO₂ contemporary to a severe weakening of the Atlantic deep-ocean circulation around 900 ky suggests that weakened deep-ocean circulation facilitated the capture of CO₂ into the deep ocean and thus contributed to the switch towards more intense and longer glacial periods.

 

ODP Site 668B, in the deep eastern equatorial Atlantic, has been previously used to reconstruct the atmospheric CO₂ evolution across the MPT using boron isotopes in surface dwelling foraminifera. Here we present new high resolution proxies from the same site covering the last 2 Ma. In particular, benthic foraminifera stable isotopes and trace elements (B/Ca, Mg/Ca, Cd/Ca), as well as Nd isotope data (εNd) from Fe-Mn encrusted foraminifera shells. Using the newly improved chronology based on benthic foraminifera stable isotopes we show that our new εNd data covaries substantially with the atmospheric pCO₂ data and shows a glacial-interglacial variability through the entire record, with εNd values matching typical glacial-interglacial range values in the North-Atlantic basin (~-11 to ~-14). Between ~1 to 2 Ma, when the 41-ka-cycles were dominant, εNd data also covaries with carbonate ion saturation index (ΔCO₃²-) as derived from the new B/Ca data, Bottom Water Temperatures (BWT, Mg/Ca) and, with deep ocean nutrient content (phosphate derived from Cd/Ca). Results indicate a higher fraction of warmer, less corrosive and nutrient-poor northern-sourced waters (higher BWT, higher ΔCO32-, lower Cd/Ca, lower εNd) reaching the deep-equatorial Atlantic during interglacial periods compared to glacial periods. Interestingly, this covariation does not stand after ~0.9Ma. Even though εNd and BWT data suggest an increased contribution of southern-sourced waters to the site during glacial periods after 0.9Ma, as shown by a gradual decrease in glacial BWT (>1°C) and increasing glacial εNd values (~1ε units), both B/Ca and Cd/Ca show a distinctive low frequency variability superimposed to the glacial-interglacial variability. These oscillations can be interpreted as infiltrations and/or overflows of southern-sourced waters across the mid-ocean ridge into the SE Atlantic basin that do not completely follow glacial-interglacial periodicity. We propose that bathymetrical constrains exert a control on the chemistry of the deep waters in the deep eastern equatorial Atlantic with potential impacts on global climate. Partially isolated sub-basins such as the SE Atlantic could have effectively acted as carbon reservoirs over longer time scales than glacial-interglacial changes.

How to cite: Pena, L. D. and Jaume-Seguí, M.: Deep water mass geometry in the south east Atlantic across the Mid-Pleistocene Transition: bathimetric vs oceanographic controls , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13196, https://doi.org/10.5194/egusphere-egu2020-13196, 2020.

EGU2020-19225 | Displays | CL1.8

Are Cryosphere-Driven Feedbacks a Requisite for Abrupt Climate Events?

Dakota Holmes and Audrey Morley

Abrupt climate events are generally believed to be characteristic of glacial (intermediate-to-large cryosphere) climate states, requiring either sizeable ice-sheets or large freshwater pulses to act as triggers for abrupt climate changes to occur. Amplification occurs when these triggers bear upon the Atlantic Meridional Overturning Circulation (AMOC). However, the focus on glacial climate states in abrupt climate change research has led to an underrepresentation of research into interglacial periods. It thus remains unclear whether high-magnitude climate variability requires large cryosphere-driven feedbacks or whether it can also occur under low ice conditions. Here we present a high resolution analysis of surface and deep water components of the AMOC spanning the transition from Marine Isotope Stage (MIS) 19c to 19a to test if orbital boundary conditions similar to our current Holocene can accommodate abrupt climate events. Sediment core DSDP 610B (53°13.297N, 18°53.213W), located approximately 700-km west of Ireland, was specifically chosen due to its high sedimentation rate during interglacial periods, excellent core recovery over the Quaternary and its unique geographical location. Above the core site, the dominant oceanographic feature is the North Atlantic Current and at 2417-m water depth, 610B is influenced by Wyville Thomson Overflow Water flowing southwards. A multiproxy approach including paired grain size analysis, planktic foraminifer assemblage counts, and ice-rafted debris counts within the same samples allows us to resolve the timing between both surface and bottom components of the AMOC and their response to abrupt climate events during MIS-19 in the eastern subpolar gyre. This study is societally relevant as future freshwater inputs from a melting Greenland ice sheet may impact ocean circulation, potentially causing shifts in climate for many European countries.

How to cite: Holmes, D. and Morley, A.: Are Cryosphere-Driven Feedbacks a Requisite for Abrupt Climate Events?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19225, https://doi.org/10.5194/egusphere-egu2020-19225, 2020.

EGU2020-19780 | Displays | CL1.8 | Highlight

The role of obliquity forcing on the interglacial climate instabilities in the mid-latitudes of the North Atlantic

Teresa Rodrigues, Xu Zeng, Mária Padilha, Dulce Oliveira, Joan O. Grimalt, and Fátima Abrantes

Anthropogenic CO2 release into the atmosphere leads to temperature projections for 2100 only experienced on Earth since many million years. However, those periods are poorly known due to low temporal and spatial data and ill-defined climate forcings. However past warm periods (interglacials), occurring during the Quaternary, under variable boundary conditions (e.g. greenhouse gases concentration, sea level and ice sheets size, insolation and orbital forcing), can provide invaluable information on the dynamics and processes behind natural warm climates. Here we present records for the sea surface temperature based in Uk’37-SST at orbital and millennial-scale over the last 1.25 Ma, with special focus on the past interglacials of two SW Iberian margin sedimentary sequences recovered during IODP Expedition 339,  Sites U1385 (37°34.285′N, 10°7.562′W;  2589m) and U1391 (37°21.5322′N, 9°24.6558′W; 991m). We also performed a data-model comparison to explore the dynamics related with the role of obliquity on the Atlantic Meridional Overturning Circulation (AMOC) changes. Our data  show that Interglacials are characterized by an interval of maximum warmth followed by a temperature decline punctuated by millennial-scale SST oscillations. In most cases the first stadial marks the beginning of a glacial inception that is characterized by an abrupt SST decrease, followed by high frequency SST oscillations, and large amounts of freshwater input. This suggests a climatic change from interglacial to glacial conditions linked to the start of ice sheets growth (enrichment of d18O) and the AMOC slowdown resulting in an enhanced cooling of the mid-latitudes.

How to cite: Rodrigues, T., Zeng, X., Padilha, M., Oliveira, D., O. Grimalt, J., and Abrantes, F.: The role of obliquity forcing on the interglacial climate instabilities in the mid-latitudes of the North Atlantic , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19780, https://doi.org/10.5194/egusphere-egu2020-19780, 2020.

EGU2020-21063 | Displays | CL1.8

Was the Atlantic a predominantly Polar Ocean during the last glacial?

Marleen Lausecker, Freya Hemsing, Thomas Krengel, Julius Förstel, Andrea Schröder-Ritzrau, Evan Border, Covadonga Orejas, Jürgen Titschack, Claudia Wienberg, Dierk Hebbeln, Anne-Marie Wefing, Paolo Montagna, Eric Douville, Lelia Matos, Jacek Raddatz, and Norbert Frank

The Last Glacial Maximum (LGM) is marked by significant cooling of the global ocean, which was recently estimated to 2.6°C using noble gases trapped in ice cores (1). This cooling is not equally distributed throughout the world oceans, since global ocean circulation models predict regional temperature anomalies during the LGM of up to 7°C (annually and zonally averaged) when compared to modern interior ocean temperature (2). The oceans deep interior thus became haline stratified (3) due to the drop in temperature to near freezing and the global increase in salinity from ice sheet growth. In contrast to a deepening of the modern thermocline as a result of anthropogenic global warming, cooling causes the thermocline to rise in the sub-tropics as more polar waters enter the mid-depth ocean.

Here we present glacial thermocline temperature reconstructions since the LGM based on the Li/Mg ratio in aragonite skeletons of precisely dated cold-water corals. Corals have been collected from 300-1000m water depths from sites in the northern and southern Atlantic (62°N to 25°S) and demonstrate synchronous 5 - 7°C glacial cooling, and a dramatic shoaling of the thermocline. Through the deglaciation the warming of the upper thermocline ocean occurs early in the southern hemisphere followed by fluctuating warming and thermocline deepening in the northern Hemisphere, which supports the oceanic climate seesaw proposed by Stocker and Johnson in 2003 (4). We thus propose dramatic changes in export of polar waters towards the Equator and augmented subsurface ocean stratification leading to a mostly polar Atlantic with a shallow permanent thermocline. This shoaling possibly increased the rate of nutrient recycling causing higher biological surface ocean activity and the cooling promoted carbon storage. During the glacial, we assume an atmospheric forcing, such as equatorward displacement of the Hadley circulation, to steer the glacial polar water advance as mid-depth boundary currents in the northern and southern hemisphere to effectively spread the cold water through the entire mid-depth Atlantic.

References:

  1. Bereiter et al.: Mean global ocean temperatures during the last glacial transition. Nature 553, 39-44 (2018).
  2. Ballarotta et al.: Last Glacial Maximum world ocean simulations at eddy-permitting and coarse resolutions: do eddies contribute to a better consistency between models and palaeoproxies?, Clim. Past 9, 2669-2686 (2013).
  3. Adkins et al.: The Salinity, Temperature, and d18O of the Glacial Deep Ocean. Science 298, 1769-1773 (2002).
  4. Stocker and Johnsen: A minimum thermodynamic model for the bipolar seesaw, Paleoceanography 18, 1087 (2003).

How to cite: Lausecker, M., Hemsing, F., Krengel, T., Förstel, J., Schröder-Ritzrau, A., Border, E., Orejas, C., Titschack, J., Wienberg, C., Hebbeln, D., Wefing, A.-M., Montagna, P., Douville, E., Matos, L., Raddatz, J., and Frank, N.: Was the Atlantic a predominantly Polar Ocean during the last glacial?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21063, https://doi.org/10.5194/egusphere-egu2020-21063, 2020.

EGU2020-2844 | Displays | CL1.8 | Highlight

Centennial-scale evolution of methane during the penultimate deglaciation

Loïc Schmidely, Lucas Silva, Christoph Nehrbass-Ahles, Juhyeong Han, Jinhwa Shin, Jochen Schmitt, Hubertus Fischer, and Thomas Stocker

Small air inclusions in ice cores represent a direct archive of past atmospheric compositions, allowing us to measure the concentration of the three most potent non-condensable Greenhouse Gases (GHG) CO2, CH4 and N2O as far back as 800,000 years before present (kyr BP). These records demonstrate that transitions from glacial to interglacial conditions are accompanied by a substantial net increase of CO2, CH4 and N2O in the atmosphere (Lüthi et al. 2008, Loulergue et al. 2008, Schilt et al. 2010). A sound understanding of the interplay between the reorganization of the climate system and the perturbation of GHG inventories during glacial terminations is partly limited by the temporal resolution of the records derived from ice cores. In fact, with the exception of the last deglaciation (23-9 kyr BP) centennial-scale GHG variability remained uncaptured for precedings glacial terminations.

In this work, we exploit the exceptionally long temporal coverage of the EPICA Dome C (EDC) ice core to reconstruct, for the first time, centennial-scale fluctuations of CH4 mole fractions from 145 to 125 kyr BP, encompassing the entire penultimate deglaciation (138-128 kyr BP). With a temporal resolution of ~100 years, our new record is now unveiling all climate-driven signals enclosed into the EDC ice core, exploiting the maximum resolution possible at Dome C (). This offers us the opportunity to study the timing and rates of change of CH4 in unprecedented details.

Preliminary analysis reveals that the deglacial CH4 rise is a superimposition of gradual millennial-scale increases (~0.01-0.02 ppb/year) and abrupt and partly intermittent centennial-scale events (~80-200 ppb in less than a millennium). We will investigate processes modulating the observed changes in the CH4 cycle, compare the structure of our record with the CH4 profile of the last deglaciation (Marcott, 2014) and contrast it with the EDC CO2 and N2O records over the penultimate glacial termination now available in similar resolution.

How to cite: Schmidely, L., Silva, L., Nehrbass-Ahles, C., Han, J., Shin, J., Schmitt, J., Fischer, H., and Stocker, T.: Centennial-scale evolution of methane during the penultimate deglaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2844, https://doi.org/10.5194/egusphere-egu2020-2844, 2020.

EGU2020-10253 | Displays | CL1.8

Primary productivity dynamics in the northeastern Bay of Bengal over the last 26,000 years

Xinquan Zhou, Stéphanie Duchamp-Alphonse, Masa Kageyama, Franck Bassinot, Luc Beaufort, and Christophe Colin

Paleo-records of primary productivity (PP) changes from the Arabian Sea (AS) have revealed the major influence of monsoon-wind intensity in controlling productivity variations at different timescales, through mixed-layer dynamics and upwelling activity. Much less is known, however, about past changes in paleo-PP in the Bay of Bengal (BoB).

       In the present study, we have reconstructed PP over the last 26,000 years from a sediment core located on the northeastern (NE-) BoB. Paleo-PP was estimated by a PP empirical equation using the relative abundance of Florisphaera profunda, a deep dwelling coccolithophore that develops in the lower euphotic zone. Our record does not reveal any obvious difference of PP between the Last Glacial Maximum (LGM) and the late Holocene, but strong oscillations characterize the deglaciation. Our NE-BoB record is anti-phased to PP records in the AS, and positively correlated to surface seawater salinity (SSS) changes reconstructed from the same core since the LGM. We propose that the strong correlation to salinity variations reflects the role of salinity-stratification related to monsoon precipitation on PP at both orbital- and millennial-scales. Outputs of a climatic transient simulation (TraCE-21) and runs obtained with the Earth System Model IPSL-CM5 support the above interpretation of a strong control of past PP variations by local hydrological changes in the NE-BoB. Our data also highlight the potential teleconnection of the Atlantic Meridional Overturning Circulation strength and Indian Monsoon intensity during the deglaciation.

How to cite: Zhou, X., Duchamp-Alphonse, S., Kageyama, M., Bassinot, F., Beaufort, L., and Colin, C.: Primary productivity dynamics in the northeastern Bay of Bengal over the last 26,000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10253, https://doi.org/10.5194/egusphere-egu2020-10253, 2020.

EGU2020-17440 | Displays | CL1.8

Millennial-scale oceanic CO2 release during marine isotope stage 3

Rachael Shuttleworth, Helen Bostock, and Gavin Foster

During the last glacial period atmospheric CO2 and temperature in Antarctica varied together on millennial timescales, with CO2 abruptly increasing by 10-20 ppm in <1000 years in some cases. The exact causes of these rapid CO2 changes during a cold glacial climate remain unclear. Here we examine the role of ocean carbon storage and atmospheric exchange by applying the boron isotope-pH (CO2) proxy to Globigerina bulloides from core site TAN110628 located in the Pacific Sector of the Southern Ocean.  By reconstructing the surface carbonate system at TAN110628 at high temporal resolution (1 sample every 1 kyr) from 30 to 64 kyr we are able to fully constrain the nature of carbon leakage from the Sub Antarctic Zone of the Southern Pacific Ocean associated with these millennial-scale changes in atmospheric CO2.  This provides unique insights into the causes of abrupt changes in atmospheric CO2 during Marine Isotope Stage 3 and the last termination. 

How to cite: Shuttleworth, R., Bostock, H., and Foster, G.: Millennial-scale oceanic CO2 release during marine isotope stage 3, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17440, https://doi.org/10.5194/egusphere-egu2020-17440, 2020.

EGU2020-20750 | Displays | CL1.8

Deep water circulation patterns in the Atlantic during MISs 12-11

Jasmin M. Link and Norbert Frank

Glacial Termination V is one of the most extreme glacial-interglacial transitions of the past 800 ka [1]. However, the changes in orbital forcing from Marine Isotope Stage (MIS) 12 to 11 are comparatively weak. In addition, MIS 11c is exceptionally distinct compared to other interglacials with for example a longer duration [2] and a higher-than-present sea level [3] despite a relative low incoming insolation. Therefore, the term “MIS 11 paradox” was coined [4]. However, only little is known about the Atlantic overturning circulation during this time interval [e.g. 5,6].

Here, we present Atlantic-wide deep water circulation patterns spanning the glacial maximum of MIS 12, Termination V, and MIS 11. Therefore, sediment cores throughout the Atlantic were analyzed regarding their Nd isotopic composition of authigenic coatings to reconstruct the provenance of the prevailing bottom water masses.

During the glacial maximum of MIS 12, the deep Atlantic Ocean was bathed with a higher amount of southern sourced water compared to the following interglacial. Termination V is represented by a sharp transition in the high-accumulating sites from the North Atlantic with a switch to northern sourced water masses. MIS 11 is characterized through an active deep water formation in the North Atlantic with active overflows from the Nordic Seas, only disrupted by a short deterioration. A strong export of northern sourced water masses to the South Atlantic points to an overall strong overturning circulation.

 

[1] Lang and Wolff 2011, Climate of the Past 7: 361-380.

[2] Candy et al. 2014, Earth-Science Reviews 128: 18-51.

[3] Dutton et al. 2015, Science 349: aaa4019.

[4] Berger and Wefer 2003, Geophysical Monograph 137: 41-60.

[5] Dickson et al. 2009, Nature Geoscience 2: 428-433.

[6] Vázquez Riveiros et al. 2013, EPSL 371-372: 258-268.

How to cite: Link, J. M. and Frank, N.: Deep water circulation patterns in the Atlantic during MISs 12-11, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20750, https://doi.org/10.5194/egusphere-egu2020-20750, 2020.

Antarctic ice core and deep ocean sediment core records imply that the interglacial climate during Marine Isotope Stage 13 (MIS 13) was relatively cold, and ice sheets were likely larger than today. We model the MIS 13 climate with a coupled climate-ice sheet model AWI-ESM1.2-LR under different orbital configurations at 495, 506 and 517 kyr BP. Summer insolation at 65 °N at 495 kyr BP is similar to the preindustrial, but the lower greenhouse gas values lead to an ice sheet buildup relative to today. Boreal summer at perihelion at 506 kyr BP causes a warmer summer over Northern Hemisphere continents, inhibiting the development of Northern Hemisphere ice sheets. Lower obliquity induces cooling over the polar regions and is favorable for the ice sheet buildup. Aside from the polar regions, mountains with high elevation also have favorable conditions for ice sheet buildup. The Cordilleran Ice Sheet is more sensitive and has a faster response to boreal summer insolation change than the other large scale Northern Hemisphere ice sheets. This indicates that different ice sheets might have different development processes. In addition, ice sheets do not build up over northeastern North America and Eurasia in our simulations. In our final set of simulations, we address the multi-stability of the ice sheets which could be a reason for causing this phenomenon.

How to cite: Niu, L., Gierz, P., J. Gowan, E., and Lohmann, G.: The influence of orbital configurations on Northern Hemisphere ice sheet evolution during MIS 13 with a coupled climate-ice sheet model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9156, https://doi.org/10.5194/egusphere-egu2020-9156, 2020.

CL1.9 – Orbital forcing, tectonics and global climate change

EGU2020-158 | Displays | CL1.9 | Highlight

Astronomically paced climate changes during the demise of the penultimate icehouse

Qiang Fang and Huaichun Wu

Late Paleozoic deglaciation is the only deep-time analogue of an icehouse-to-greenhouse transition in a vegetated world, but the detailed processes of this climatic upheaval are still under debate due to the absence of higher precision and accuracy in global correlations. The astronomical calibration of sedimentary cycles (3–4 m) in a carbonate succession from Naqing in South China to the 405 kyr eccentricity cycle reveals short eccentricity (135 kyr and 96.1 kyr), main obliquity (31.6 kyr), and precession (21.5 kyr and 19.3 kyr) for the early Cisuralian (Early Permian). 405-kyr-eccentricity-forced teleconnections are established between Paleo-Tethyan deep-marine carbonate cyclicity and U-Pb zircon ages-calibrated cyclothems from Euramerica in the Pangean paleotropics, providing a refined chronostratigraphy for the Asselian and Sakmarian stages on global scale. Geological record indicates a (s4s3) − (g4g3) resonance likely transited into (s4s3) − 2(g4g3) resonance at ~296.8 Ma, which confirms the chaotic dynamical behaviour of the Solar System during the Cisuralian. The synchronized proxies from marine records (magnetic susceptibility, gamma ray, carbon and oxygen isotope) and terrestrial climate indicators (paleosols, evaporates and tillites) across continents and latitudes demonstrate that long-term glacial, glacioeustatic, and climatic events were in pace with eccentricity and obliquity modulation cycles superimposed on secular global warming, reinforcing solid linkage between climate changes at low and high latitudes regardless of the ice sheet volume. Quasi-periodic alignments of the maxima (minima) of eccentricity and obliquity amplitude decelerated (accelerated) the trajectory of the CO2-forced deglaciation. Intermittent nondeposition of the Cisuralian cyclothems on the North American Midcontinent correspond to the enhanced none-astronomical-related noise in the sedimentary record from South China, both of which were likely attributed to weaker or less apparent influence of astronomical forcing on the climate changes without an ice-sheet amplifier. Our study provides a better temporal resolution and understanding of the late Paleozoic deglaciation.

How to cite: Fang, Q. and Wu, H.: Astronomically paced climate changes during the demise of the penultimate icehouse, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-158, https://doi.org/10.5194/egusphere-egu2020-158, 2020.

EGU2020-5383 | Displays | CL1.9 | Highlight

Orbital pacing of large fluctuations in wildfire activity during the Pliensbachian

Teuntje Hollaar, Sarah Baker, Jean-Francois Deconinck, Luke Mander, Micha Ruhl, Stephen Hesselbo, and Claire Belcher

At present Earth’s climate is warming and the frequency of large wildfires appears to be increasing (Westerling and Bryant, 2008). Long term trends in climate and the effect on wildfire are understudied and examining the geological record can aid current understanding of natural variability of wildfire over longer time scales. The Early Jurassic is a period of overall global warmth, and therefore serves as a suitable modern-day analogue to understand changes in the Earth System. The Early Jurassic was characterized by major climatic and environmental perturbations which can be seen preserved at high resolution on orbital timescales. Recent research has indicated from Quaternary deposits that wildfires respond to orbital forcings (Daniau et al., 2013). This study tests whether wildfire activity corresponds to changes over Milankovitch timescales in the deep past.

        A high-resolution astrochronology exists for the Upper Pliensbachian in the Llanbedr (Mochras Farm) borehole (NW Wales). Ruhl et al. (2016) show that elemental concentration recorded by hand-held X-ray fluorescence (XRF), changes mainly at periodicities of ~21,000 year, ~100,000 year and ~400,000 year, and which can be related to visually described sedimentary bundles.

        We have quantified the abundance of fossil charcoal at a high resolution (10-15 cm) to test the hypothesis that these well-preserved climatic cycles influenced fire activity throughout this globally warm period. Our results suggest that variations in charcoal abundance are coupled to Milankovitch forcings over periods of ~21,000 and ~400,000 years. Supplementary to the charcoal record, a high-resolution clay minerology dataset has been generated, which indicates the presence of the 400ky cycle. Decreased hydrology on land, corresponds to increased charcoal production. We suggest that these changes in fire relate to changes in seasonality and monsoonal activity that drove changes in vegetation that are linked to variations in the orbital forcing.

How to cite: Hollaar, T., Baker, S., Deconinck, J.-F., Mander, L., Ruhl, M., Hesselbo, S., and Belcher, C.: Orbital pacing of large fluctuations in wildfire activity during the Pliensbachian, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5383, https://doi.org/10.5194/egusphere-egu2020-5383, 2020.

EGU2020-2209 | Displays | CL1.9

Pliocene ocean and climate dynamics in the eastern Indian Ocean and their implications for the global climate state.

David De Vleeschouwer, Angelina Füllberg, Rebecca Smith, Gerald Auer, Benjamin Petrick, Isla Castañeda, and Beth Christensen

The Indonesian Throughflow (ITF) operates as an important link in global thermohaline circulation and is often considered a modulator of global past climate changes, with effects as far as Africa or the Atlantic Ocean. Yet, to what extent ITF variability accounted for oceanographic change along the west Australian coast remains controversial. A tectonically reduced ITF has been invoked to explain the short, but intense Pliocene glaciation Marine Isotope Stage (MIS) M2 (3.3 Ma). The hypothesis hinges on a reduced equator-to-pole heat transfer in the Indian Ocean, in response to low connectivity with the Indo-Pacific warm pool. To clarify links between regional oceanographic change and global climate, we present a two-site multiproxy reconstruction from the Perth (U1459) and the Carnarvon (U1463) Basin. These sites provide the opportunity to unravel the Pliocene history of the Leeuwin Current (LC). We use the LC as a proxy for ITF connectivity, as the ITF is the source for the warm, low-salinity, nutrient-deficient LC. A U1459-U1463 comparison thus allows for investigating the possible relationship between mid-Pliocene glaciations and ITF heat flux. We show that the LC was active throughout the Pliocene, albeit with fluctuations in intensity and scope. We identify three main factors that controlled LC strength. First, a tectonic ITF reorganization caused an abrupt and permanent LC reduction at 3.7 Ma, coeval with the remarkably intense Pliocene glacial MIS Gi4. On shorter timescales, eustatic sea level and direct orbital forcing of wind patterns hampered or promoted the LC. At 3.3 Ma, LC intensity plunged in response to a eustatic ITF restriction. MIS M2 caused the latitudinal U1463–U1459 planktonic oxygen isotope gradient to steepen from 1.2 to 2.0‰ and the TEX86 sea surface temperatures gradient to increase from 3 to 6°C. Yet, comparison with Exmouth Plateau Site 763 shows that the LC did not shut down completely during MIS M2: The ITF heat flux dwindled but did not cease. Weakened ITF connectivity led to a significant drop in Indian Ocean poleward heat transport and thus constitutes a positive feedback mechanism that contributed to the relative intensity of MIS M2 and the thermal isolation of Antarctica. This positive feedback mechanism is ultimately driven by orbital-scale changes in relative sea level in the ITF region.

How to cite: De Vleeschouwer, D., Füllberg, A., Smith, R., Auer, G., Petrick, B., Castañeda, I., and Christensen, B.: Pliocene ocean and climate dynamics in the eastern Indian Ocean and their implications for the global climate state., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2209, https://doi.org/10.5194/egusphere-egu2020-2209, 2020.

EGU2020-19313 | Displays | CL1.9

Are models becoming more sensitive to Pliocene boundary conditions?

Alan Haywood and Julia Tindall

The nature and dynamics of Pliocene climate has been a focus of intense study for many years. This is because the Pliocene has a unique potential to inform science/society about how the Earth system responds to forcing of direct relevance to future climate change. We examine large-scale climate features derived from the second phase of the Pliocene Model Intercomparison Project. PlioMIP2 is composed of simulations derived from sixteen coupled atmosphere-ocean and Earth System Models of a variety of vintages (IPCC AR3/4 to 6). This represents one of the largest ensembles of models ever assembled to represent a particular interval in Earth history. Each model has been set up to include the very latest Pliocene boundary conditions provided by the U.S. Geological Survey Pliocene Research Interpretation and Synoptic Mapping Project (PRISM4). As well as examining large-scale features of the PlioMIP2 model ensemble we further examine trends in model sensitivity versus model age in order to ascertain if newer versions of models are becoming more sensitive to Pliocene boundary conditions. We examine this across the PlioMIP2 ensemble as a whole and within individual model families, and examine what this implies in terms of the potential for individual models, or families of models, to represent patterns of surface temperature change reconstructed from geological proxies.

How to cite: Haywood, A. and Tindall, J.: Are models becoming more sensitive to Pliocene boundary conditions?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19313, https://doi.org/10.5194/egusphere-egu2020-19313, 2020.

EGU2020-5897 | Displays | CL1.9

Reconstructing the intensity and location of Northern Hemisphere westerlies during the Plio-Pleistocene using marine sediments

Jordan T. Abell, Gisela Winckler, Robert F. Anderson, and Timothy Herbert

The warm Pliocene serves as an analogue for predicted warming over the next century. However, large uncertainties exist for atmospheric circulation and land surface conditions during the Pliocene. Dust transported by wind to locations of accumulation (terrestrial or marine) can provide a record of wind intensity and/or direction. Few dust flux records spanning the Plio-Pleistocene exist. As such, there is ample opportunity to use marine sediments to reconstruct changes in atmospheric conditions during a warmer-than-present world, as well as across the onset/intensification of Northern Hemisphere Glaciation (NHG). During this time, East Asia’s interior, the second largest source of mineral dust today, experienced aridification, occurring alongside a major reorganization of the subarctic North Pacific circulation which led to stratification of the surface ocean. Here, we present two North Pacific marine sediment records of extraterrestrial (ET) 3He-derived terrigenous dust flux proxies (4HeTerr and Th), along with a record of multiple paleoproductivity proxies (Baxs, Opal, and C37Total) for the period spanning ~2.5-4.5 Ma. Our results show that dust flux to the western North Pacific was relatively low and constant through the Pliocene up until ~2.7 Ma, with minor peaks during cooler phases from ~2.9-3.1 Ma. At ~2.7 Ma, concurrent with the intensification of NHG and formation of a permanent halocline cap in the subarctic North Pacific, dust fluxes increase dramatically. The central North Pacific record shows a less drastic shift in dust, but generally displays higher fluxes after ~3 Ma. Dust fluxes in East Asia and the North Pacific are consistent during this time interval, as are global dust fluxes from the North Atlantic, South Atlantic and North Pacific. Western North Pacific dust, SST, and paleoproductivity records point to northward-shifted and weakened Northern Hemisphere westerlies during the warm Pliocene, with evidence for strengthening and southward movement of the westerlies during glacials after ~2.7 Ma. Changes in both winds and dust production mechanisms are likely working in tandem to produce the coherent global dust signals.

How to cite: Abell, J. T., Winckler, G., Anderson, R. F., and Herbert, T.: Reconstructing the intensity and location of Northern Hemisphere westerlies during the Plio-Pleistocene using marine sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5897, https://doi.org/10.5194/egusphere-egu2020-5897, 2020.

EGU2020-9472 | Displays | CL1.9

Orbitally-paced South American Summer Monsoon variability during the mid- to late-Pleistocene

Alicia Meng Xiao Hou, André Bahr, Jacek Raddatz, Silke Voigt, Ana Luiza Albuquerque, Cristiano M. Chiessi, and Oliver Friedrich

Hydrological extremes related to the South American Summer Monsoon (SASM) are expected to become more frequent in the near future and might have devastating socioeconomic consequences for the densely populated region of eastern Brazil. Given the complexity in SASM behaviour in space and time, a dense coverage of monsoonal precipitation records, particular those spanning multiple glacial-interglacial cycles, are urgently needed to constrain this high spatial-temporal variability. This information is necessary to reduce the uncertainty associated with projections of SASM precipitation in response to rising anthropogenic greenhouse gas (GHG) emissions. Here we use elemental ratios from X-ray fluorescence scanning of two sediment cores retrieved off the eastern Brazil margin to reconstruct long-term rainfall changes in the hinterland. Our findings from core M125-55-7 (offshore the Doce River, 20°S) reveal that during the past ~320 kyr, precession-paced insolation forcing is the primary pacemaker of variations in SASM precipitation over the Doce basin. We also determined an anomalous interval of weak monsoonal response to insolation forcing during Marine Isotope Stage 6, which we attribute to enhanced wintertime precipitation due to exceptionally strong southeast trade winds created by a steep South Atlantic latitudinal temperature gradient. Moreover, our results suggest that albeit predominantly driven by insolation forcing, the intensity of SASM rainfall responds negatively to GHG forcing, most likely through indirect feedbacks. We propose that GHG forcing directly influences the magnitude of both the inter- and intrahemispheric latitudinal temperature gradients, which in turn modify the strength of atmospheric circulation and precipitation in the tropics. Thus, we suggest that SASM rainfall intensity over tropical eastern Brazil will likely be suppressed by rising CO2 emissions in the future. Our preliminary analysis of core M125-73-3 (off the Contas River; 12°S) reveals regional differences in monsoonal precipitation between the more northerly Contas basin and the more southerly Doce basin. Most notably, unlike the insolation-paced continental rainfall variability recorded at site M125-55-7, SASM rainfall intensity over the Contas basin appears to be more sensitive to glacial-interglacial scale pacing over the past ~800 kyr. Taken together, our records reveal both the high spatial variability in SASM precipitation over eastern Brazil and the dominant influence of orbital forcing on monsoonal rainfall intensity.

How to cite: Hou, A. M. X., Bahr, A., Raddatz, J., Voigt, S., Albuquerque, A. L., Chiessi, C. M., and Friedrich, O.: Orbitally-paced South American Summer Monsoon variability during the mid- to late-Pleistocene , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9472, https://doi.org/10.5194/egusphere-egu2020-9472, 2020.

EGU2020-4765 | Displays | CL1.9

Different response of sea surface temperature and sea ice to precession and obliquity between the two hemispheres

Zhipeng Wu, Qiuzhen Yin, Zhengtang Guo, and André Berger

The response of the climate system to astronomical parameters is an important scientific issue, but the internal processes and feedbacks need to be better understood. This study investigates the differences of the climate response to the astronomical forcing between the Northern (NH) and Southern (SH) hemispheres based on a more than 90,000-year long transient simulation using the model LOVECLIM. Our results show that the response of sea ice and sea surface temperature (SST) to precession and obliquity are different between the two hemispheres. Precession plays a dominant role on the NH sea ice. This is mainly due to its response to the local summer insolation and also, to a less degree, the influence of the northward oceanic heat transports. However, obliquity plays a dominant role on the SH sea ice through its influence on insolation and the westerly winds. As far as the SST is concerned, it shows a strong precession signal at low latitudes in both hemispheres. For the SST in the mid and high latitudes, obliquity plays a dominant role in the SH whereas precession is more important in the NH. This is largely due to the different response to insolation and feedbacks related to the different land-ocean distribution in the two hemispheres. Near the Equator, besides the precessional signal, the SST also shows strong half-precessional signal, which can be explained by the unique characteristics of the insolation variations at the Equator.

How to cite: Wu, Z., Yin, Q., Guo, Z., and Berger, A.: Different response of sea surface temperature and sea ice to precession and obliquity between the two hemispheres, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4765, https://doi.org/10.5194/egusphere-egu2020-4765, 2020.

EGU2020-7565 | Displays | CL1.9

Exceptionally preserved Milankovitch cycles in Lower Devonian argillaceous limestone of the Hudson Valley, New York State (USA)

Anne-Christine Da Silva, Alex Bartholomew, Carlton Brett, Frits Hilgen, Charles Ver Straeten, and Mark Dekkers

Uncertainties on the radiometric ages of Devonian stage boundaries are currently on the order of several millions of years. A cyclostratigraphic approach is the foremost way forward to improve the Devonian geological time scale. To do so requires well-preserved continuous records, as well as reliable paleoclimatic proxies.  The NY Route 199 section, from Kingston, in the Hudson Valley of eastern New York, is a road cut outcrop, which exposes most of the Schoharie Formation. It corresponds to the upper portion of the Emsian Stage (upper Lower Devonian, ~400 to ~394 Ma), with essentially continuous deposition. The lithology consists of a mixed siliciclastic-carbonate succession with overall increasing carbonate upsection, showing various degrees of bioturbation (traces includes primarily Zoophycos, Planolites and Chondrites); colors range from white to beige, brown or dark grey. The quality of most of the outcrop is so remarkable that the color variations by themselves permit recognition of Milankovitch cycles, with prominent bundles of light and dark beds. One type of cycle expression is represented by a succession of about six darker beds nested between lighter beds, which is interpreted as six precession cycles within a short eccentricity cycle (precession in the Devonian was ~17 kyr).

Samples were collected every 2 cm through 38 m of the section for magnetic susceptibility measurements. On top of these measurements, we provide elemental geochemistry, carbon isotopes and hysteresis measurements (every 50 cm) to constrain the depositional setting and the diagenesis. Hysteresis measurements show that despite being remagnetized (throughout the Appalachians, these Paleozoic rock sequences are all remagnetized during the Variscan-Alleghenian Orogeny), the magnetic susceptibility reflects depositional information. The geochemistry and carbon isotopes give insight into the occurrence of oxic/reducing conditions and detrital inputs. Milankovitch cycles are visible on the outcrop and in the magnetic susceptibility record, allowing a precise floating timescale framework to be constructed for this interval.

How to cite: Da Silva, A.-C., Bartholomew, A., Brett, C., Hilgen, F., Ver Straeten, C., and Dekkers, M.: Exceptionally preserved Milankovitch cycles in Lower Devonian argillaceous limestone of the Hudson Valley, New York State (USA) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7565, https://doi.org/10.5194/egusphere-egu2020-7565, 2020.

The Late Paleozoic Ice Age (LPIA), one of the best known and prolonged glaciation events in Earth's history, resulted in the widespread deposition of glacial sediments over Gondwana (Crowell, 1999). Some of the most important LPIA deposits of the multiple glacial-deglacial episodes (Isbell et al., 2003) were preserved in the Itararé Group of the Paraná Basin (Brazil). This unit presents continental and marine glacially-influenced deposits formed by advances and retreats of glaciers and consists in an opportunity to better understand the mechanisms forcing climate shifts during the LPIA. In low latitudes, the deposition of the Carboniferous cyclothems was controlled by long- and short-eccentricity (Davydov et al., 2010). In high latitudes, orbital-scale climate cycles may also be preserved in the sedimentary succession. We aim to recognize whether or not orbital and millennial-scale climate cycles are preserved in the sedimentary succession of a core drilled in the southeastern border of the Paraná Basin. Here, we present the first cyclostratigraphic study based on X-ray fluorescence records from a 27 m-long interval of LPIA rhythmites of the Rio do Sul Formation (top of the Itararé Group). The sedimentary succession is composed of lithological couplets of fine-grained siliciclastic sediments, locally displaying subtle plane-bedding. Such rhythmites are characterized by abrupt contacts between couplets and normal grading internally. TiO2 and Fe2O3 vary in phase and display well-defined cyclicities in the stratigraphic domain. The TiO2 series presents millennial and orbital scale periodicities. Variations in the concentrations of the analyzed terrigenous components are likely indicative of glacial-interglacial changes, reflected by advances and retreats of glaciers under drier and wetter climate conditions, respectively. Here we show that these high latitude glacial-interglacial cycles were probably paced by short-eccentricity, as previously suggested for Carboniferous cyclothems in low latitude deposits, and highlight the importance of millennial-scale climate cycles forcing high latitudes glacial-related deposits, similar to patterns seen in Pleistocene records.

 

References:

Crowell, J. C. (1999). Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate 375 System. Geologic Society of America Memoir 192, pp. 1–112.

Davydov, V. I., Crowley, J. L., Schmitz, M. D., & Poletaev, V. I. (2010). High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine. Geochemistry, Geophysics, Geosystems, 11.

Isbell, J. L., Miller, M. F., Wolfe, K. L., & Lenaker, P. A. (2003). Timing of late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of Northern Hemisphere cyclothems? In Geologic Society of America Special Paper 370, pp. 5–24.

How to cite: Kochhann, M., Cagliari, J., Kochhann, K., and Franco, D.: Climate variability during the Late Paleozoic Ice Age in the southwestern Gondwana: records of orbital and millennial-scale cycles in the Carboniferous rhythmite of the Paraná Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11886, https://doi.org/10.5194/egusphere-egu2020-11886, 2020.

EGU2020-9556 | Displays | CL1.9

Cyclo and chemostratigraphic characteristics of the Middle Silurian in Gotland, Sweden

Michiel Arts, Bradley Cramer, Mikael Calner, Christian Rasmussen, Alyssa Bancroft, Stephan Oborny, Emma Hartke, Ellie Biebesheimer, and Anne-Christine Da Silva

The cumulative work of geoscientists over the past decades has shown that the Silurian Period which was once thought as warm and climatically stable time interval is in fact punctuated by numerous paleoenvironmental perturbations or events. These Silurian events follow a similar pattern where a minor extinction event precedes a substantial carbon isotope excursion. Many theories have been brought forward to explain these events ranging from glaciations, to changes in precipitations patterns, ocean currents and ocean anoxia. Constraints on the duration and timing of these extinction events and subsequent positive carbon isotope excursions are weak, which hampers a full understanding of the processes at play.

The data from the Altajme core from Gotland, Sweden provides us with a unique opportunity to look at two of these climatic perturbations during the Silurian. The Altajme core spans both the Sheinwoodian Ireviken event and the Homerian Mulde event. The Altajme core dataset includes a litholog, high-resolution δ13C data, correlated bentonites with U-Pb dates and a high-resolution XRF core scan: important data required for and integrated stratigraphic study. The U-Pb-dated bentonites give us age constraints. The δ13C data in combination with the high resolution XRF scan gives us insights into the changes in the ocean before during and after the events, while the XRF is also used to build cyclostratigraphic age constraints for the events and for the whole core. This stratigraphic study will provide us with a palaeoclimatological insights to explain these two events and provide us with a cyclostratigraphy based age model for the Middle Silurian.

How to cite: Arts, M., Cramer, B., Calner, M., Rasmussen, C., Bancroft, A., Oborny, S., Hartke, E., Biebesheimer, E., and Da Silva, A.-C.: Cyclo and chemostratigraphic characteristics of the Middle Silurian in Gotland, Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9556, https://doi.org/10.5194/egusphere-egu2020-9556, 2020.

EGU2020-8923 | Displays | CL1.9

Astrochronology of the Barremian Stage: implications for the dynamics of the anoxic events in the Early Cretaceous

Mathieu Martinez, Roque Aguado, Miguel Company, Jose Sandoval, and Luis O'Dogherty

Large uncertainties exist on the numerical ages of the stages in the Early Cretaceous which hamper from an accurate reconstruction of the past climate. Recent radio-astrochronologic data suggest to move the ages of the Tithonian to the Hauterivian stages by 3 to 5 Myr toward younger ages (Lena et al., 2019; Aguirre-Urreta et al., 2019). As the numerical ages in the Cenomanian are constrained with radio-astrochronology, this means that the duration of the Barremian to the Albian stages is overestimated. The duration of the Barremian Stage was estimated by bed counting on the assumption of a control by precession and eccentricity cycles (e.g., Bodin et al., 2006). The alternations and bundling can vanish leading to uncertainties in the duration estimates. Here, we provide an astrochronology from the eccentricity cycles based on spectral analyses performed on both magnetic susceptibility and calcium carbonate content series. Two sections are studied here in the Subbetic Domain (SE Spain). They are composed of marl-limestone alternations which reflect humid-arid cycles orbitally-driven. Detailed ammonite and calcareous nannofossil controls allow correlations with other sections in the basin and in the Tethyan Realm. The short and long-eccentricity cycles are identified throughout the Late Hauterivian to the earliest Aptian. The interval around the Hauterivian-Barremian boundary was recovered in a section previously studied for astrochronology and shows that the eccentricity cycles can be correlated to the sections studied here, validating the interpretations. From the record of the 405-kyr eccentricity cycle, the duration of the Barremian Stage is proposed at 4.25 ± 0.13 Myr. Anchoring this duration on previously obtained radio-astrochronology at the end of the Hauterivian, the Barremian Stage started at 125.91 ± 0.06 Ma and ended at 121.67 ± 0.11 Ma. The age of the latest Barremian agrees well with the age of the base of magnetochron M0r calculated from a synthesis of radiometric ages (Olierook et al., 2019). The Faraoni, Mid-Barremian and Taxy episodes show a pacing of 2.34 Myr, suggesting a strong orbital control on the expansion of oceanic anoxic conditions in the Tethys.

References:

Aguirre-Urreta, B., et al., 2019. Gondwana Res., 70, 104–132. https://doi.org/10.1016/j.gr.2019.01.006.

Bodin, S., et al., 2006. Palaeo-3, 235, 245–264. https://doi.org/10.1016/j.palaeo.2005.09.030.

Lena, L., et al., 2019. Solid Earth, 10, 1–14. https://doi.org/10.5194/se-10-1-2019.

Olierook, H.K.H., et al., 2019. Earth-Sci. Rev., 197, 102906. https://doi.org/10.1016/j.earscirev.2019.102906.

How to cite: Martinez, M., Aguado, R., Company, M., Sandoval, J., and O'Dogherty, L.: Astrochronology of the Barremian Stage: implications for the dynamics of the anoxic events in the Early Cretaceous, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8923, https://doi.org/10.5194/egusphere-egu2020-8923, 2020.

EGU2020-21479 | Displays | CL1.9 | Highlight

Thirty-five million years of changing climate – carbon cycle dynamics

David De Vleeschouwer, Anna Joy Drury, Maximilian Vahlenkamp, Diederik Liebrand, Fiona Rochholz, and Heiko Pälike

Fifty-one years of scientific ocean drilling through the International Ocean Discovery Program (IODP) and its predecessors generated a treasure trove of Cenozoic climate and carbon cycle dynamics. Yet, it remains unclear how climate system and carbon cycle interacted under changing geologic boundary conditions. Here, we present the carbon isotope (d13C) megasplice, documenting deep-ocean d13C evolution since 35 million years ago (Ma). We juxtapose the d13C megasplice with its d18O counterpart and determine their phase-difference on ~100-kyr eccentricity time-scales. This analysis uncovers that 2.4-Myr eccentricity modulates the in-phase relationship between d13C and d18O during the Oligo-Miocene (34-6 Ma), potentially related to changes in continental weathering. At 6 Ma, a striking switch from in-phase to anti-phase behaviour occurs, signalling a threshold in the climate system. We hypothesize that Arctic glaciation and the emergence of bipolar ice sheets enabled eccentricity to exert a major influence on the size of continental carbon reservoirs. Our results suggest that a reverse change in climate - carbon cycle interaction should be anticipated if CO2 levels rise further and we return to a world of unipolar ice sheets.

How to cite: De Vleeschouwer, D., Drury, A. J., Vahlenkamp, M., Liebrand, D., Rochholz, F., and Pälike, H.: Thirty-five million years of changing climate – carbon cycle dynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21479, https://doi.org/10.5194/egusphere-egu2020-21479, 2020.

EGU2020-15256 | Displays | CL1.9

Eccentricity-paced ice sheet variability and obliquity-driven bottom-water changes during the Oligocene-Miocene

Tim van Peer, Victoria Taylor, Diederik Liebrand, Swaantje Brzelinski, Iris Möbius, André Bornemann, Oliver Friedrich, Steven Bohaty, Chuang Xuan, Peter Lippert, and Paul Wilson

Variations in solar insolation exert a fundamental control on the high-latitude climate–cryosphere system. Controversy, however, exists about the relative importance of orbital eccentricity versus axial tilt (obliquity) in driving pre-Quaternary Antarctic ice sheet variability. This problem is particularly acute during the late Oligocene-to-early Miocene interval (Oligo-Miocene, ~27-21 Ma), because several benthic foraminiferal oxygen isotopes (δ18O) records show strong pacing by obliquity, while others primarily show eccentricity pacing. The differences in orbital pacing are impossible to reconcile with the globally congruent imprint of ice volume on benthic δ18O on orbital time scales. Here we present a new astronomically tuned δ18O record generated at Integrated Ocean Drilling Program (IODP) Site U1406 (north-western Atlantic Ocean), a key area in modern-day thermohaline circulation. Clear imprints of both obliquity and eccentricity on the δ18O record are observed at Site U1406 throughout the study interval, irrespective of changes in sedimentation rate. The eccentricity variations at Site U1406 are remarkably similar to those seen in all other δ18O records, suggesting that eccentricity exerts a strong control on the high-latitude climate–cryosphere system via the modulation of the precession cycle. In contrast, the δ18O sensitivity to obliquity is globally variable, suggesting the influence of temperature in different bottom-water masses.

How to cite: van Peer, T., Taylor, V., Liebrand, D., Brzelinski, S., Möbius, I., Bornemann, A., Friedrich, O., Bohaty, S., Xuan, C., Lippert, P., and Wilson, P.: Eccentricity-paced ice sheet variability and obliquity-driven bottom-water changes during the Oligocene-Miocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15256, https://doi.org/10.5194/egusphere-egu2020-15256, 2020.

EGU2020-10667 | Displays | CL1.9

Early to Late Pliocene climate change in the mid-latitude North Atlantic

Antje H. L. Voelker, Francisco J. Sierro, B. David A. Naafs, Nils Andersen, and Henning Kuhnert

The early Pliocene, with atmospheric CO2 concentrations at levels similar to today, is seen as a case study for Earth’s future climate evolution. During this period the progressive closing of the Central American Seaway led to increased poleward heat and salt transport within the Atlantic with North Atlantic Deep Water (NADW) becoming warmer and saltier and resulting in an enhanced Atlantic Meridional Overturning Circulation (AMOC). In order to evaluate how stable the Pliocene AMOC really was, we are producing surface and deep-water records for IODP Site U1313 (41°N, 33°W, 3412m) for the interval from 3.3 to 4.1 Ma. This site is ideally located to monitor past AMOC changes with North Atlantic Drift waters at the surface and NADW, exported by the deep western boundary current, in the deep. Surface water conditions are reconstructed based on the stable isotope data of planktonic foraminifer species Globigerinoides ruber (white) or Globigerinoides extremus with centennial-scale resolution and on sea-surface temperatures (Uk37' alkenone thermometer) with an average 4 ky resolution. Stable isotope records of the benthic foraminifer genus Cibicidoides reveal changes in the deep water.

Besides the interglacial/glacial cycles, higher frequency oscillations are recorded in both the planktonic and benthic foraminifer stable isotope records. Varying surface water conditions, especially during Late Pliocene interglacial periods, are reflected in the Globigerinoides isotope data and appear to be linked to salinity changes since they are not recorded in the sea-surface temperature data. The high-frequency oscillations in the planktonic isotope records are related to precession (insolation) forcing, especially its harmonics in the 5.5 ky and 11 ky ranges. The benthic δ13C values indicate nearly continuous NADW presence and confirm a strong AMOC throughout the studied interval, also during most of the glacial periods. Excluding the pronounced M2 glacial, glacial stage Gi 6 had a stronger impact on the AMOC, as revealed by cooler, less ventilated surface waters and a less ventilated NADW, than Gi 2 and Gi 4. Overall, the AMOC was strong throughout, but experienced high frequency oscillations at a level similar to the middle Pleistocene interglacial periods.

How to cite: Voelker, A. H. L., Sierro, F. J., Naafs, B. D. A., Andersen, N., and Kuhnert, H.: Early to Late Pliocene climate change in the mid-latitude North Atlantic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10667, https://doi.org/10.5194/egusphere-egu2020-10667, 2020.

EGU2020-20327 | Displays | CL1.9 | Highlight

Green Sahara Megaperiods during the Pliocene: What was the role of North Atlantic Ocean temperature?

Paul Wilson, Amy Jewell, Anya Crocker, Solana Buchanan, Bryce Mitsunaga, Thomas Westerhold, Ursula Röhl, James Russell, and Timothy Herbert

The Sahel region is one of the most vulnerable regions on Earth to anthropogenically-driven climate change, but also one of the least equipped to deal with the consequences. Predictions of precipitation levels over the forthcoming centuries diverge, not only in magnitude, but also in the sign of change. One key aspect of this uncertainty comes from the role of Atlantic Ocean sea surface temperatures (SST), which are known to exert a strong control over precipitation in the Sahel and are implicated in both the major drought of the late 20th century and extreme droughts associated with the Heinrich events of the last glacial. To better understand how Sahelian hydroclimate may respond to SST variability in a warmer world, we turn to the Pliocene epoch, when atmospheric CO2 levels were comparable to present.

 

We studied sediments from Ocean Drilling Project Site 659, which is situated in the subtropical North Atlantic beneath the major modern summer Saharan dust plume. Our new dust accumulation rates and X-ray fluorescence core scan data indicate that there were major shifts between highly arid conditions and humid intervals with vegetated or “Green Sahara” conditions over much of northern Africa, driven by both solar insolation and glacial-interglacial variability. We also report three unusually long Plio-Pliocene humid intervals (each lasting ca. 100 kyr) characterised by very low dust emissions, that we term “Green Sahara Megaperiods (GSMPs)”. All three of these GSMPs occur at times when insolation variability was weak, resulting in values close to the long-term mean. This observation strongly suggests that factors other than insolation drove the sustained humidity of GSMPs. We present paired alkenone SST estimates and multi-species planktonic foramaniferal isotope records from 3.5–2.3 Myr ago to explore the extent to which the GSMPs were accompanied by intervals of extended warmth in the surface waters of the North Atlantic Ocean.

How to cite: Wilson, P., Jewell, A., Crocker, A., Buchanan, S., Mitsunaga, B., Westerhold, T., Röhl, U., Russell, J., and Herbert, T.: Green Sahara Megaperiods during the Pliocene: What was the role of North Atlantic Ocean temperature?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20327, https://doi.org/10.5194/egusphere-egu2020-20327, 2020.

EGU2020-11480 | Displays | CL1.9 | Highlight

Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation.

Elwyn de la Vega, Thomas B. Chalk, Paul A. Wilson, Ratna Bysani, and Gavin L. Foster

The Piacenzian stage of the Pliocene (2.6 to 3.6 Ma) is the most recent past interval of sustained global warmth with mean global temperatures markedly higher (by ~2-3 oC) than today. Quantifying CO2 levels during the mid-Piacenzian Warm Period (mPWP) provides a means, therefore, to deepen our understanding of Earth System behaviour in a warm climate state. Here we present a new high-resolution record of atmospheric CO2 using the δ11B-pH proxy from 3.35 to 3.15 million years ago (Ma) at a temporal resolution of 1 sample per 3-6 thousand years. Our study interval covers both the coolest marine isotope stage of the mPWP, M2 (~3.3 Ma) and the transition into its warmest phase including interglacial KM5c (centered on ~3.205 Ma) which has a similar orbital configuration to present. We find that CO2 ranged from ca. 390 ppm to ca. 330 ppm, with CO2 during the KM5c interglacial being ca. 370 ppm. Our findings corroborate the idea that changes in atmospheric CO2 levels played a distinct role in climate variability during the mPWP. They also facilitate ongoing data-model comparisons and suggest that, at present rates of human emissions, there will be more CO2 in Earth’s atmosphere by 2025 than at any time for at least the last 3.3 million years.  

How to cite: de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R., and Foster, G. L.: Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11480, https://doi.org/10.5194/egusphere-egu2020-11480, 2020.

EGU2020-19088 | Displays | CL1.9

Modelling Tropical Precipitation in the mid-Pliocene Warm Period

Julia Tindall and Alan Haywood

Models from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) show that the mid-Pliocene Warm Period (mPWP) was a warmer and wetter world than today. However, there is not strong model agreement as to how tropical precipitation was different in the mPWP. Although PlioMIP2 models agree that there was more precipitation associated with the African Monsoon and the Asian Monsoon, away from these regions models do not show a consistent and robust change in precipitation between the mPWP and the preindustrial.

Here we use the HadGEM2 model to explore changes in tropical precipitation between the mPWP and the preindustrial, particularly those associated with the position and strength of the Intertropical Convergence Zone (ITCZ). Reasons for these changes within HadGEM2 will be discussed. We will also expand our discussion of the ITCZ to the PlioMIP2 ensemble in order to show the differing factors that could influence ITCZ characteristics in a warmer world.

How to cite: Tindall, J. and Haywood, A.: Modelling Tropical Precipitation in the mid-Pliocene Warm Period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19088, https://doi.org/10.5194/egusphere-egu2020-19088, 2020.

EGU2020-21860 | Displays | CL1.9

Pacific Meridional Overturning Circulation during the Mid-Pliocene Warm Period

Heather L. Ford, Natalie Burls, and David Hodell

Today in the North Pacific only intermediate water forms because of a strong halocline, but Pacific Meridional Overturning Circulation (PMOC) may have existed in the past. The mid-Pliocene warm period (3.264-3.025 Ma) is a time of sustained warmth where atmospheric carbon dioxide concentrations were similar to today and the northern hemisphere was relatively ice free – making it a pseudo-analogue for future climate change. North Pacific sedimentological and climate modeling evidence suggests a PMOC formed during this time.  To determine the spatial extent of a PMOC during the mid-Pliocene warm period, we constructed a depth transect of sites between 2400 to 3400 m water depth on Shatsky Rise by measuring stable isotopes of Cibicidoides wuellerstorfi. We compare these new results with previously published records and calculate anomalies using the OC3 water column and core-top data products. The δ13C spatial pattern is consistent with a modest PMOC of intermediate depth (core ~2000 m) extending to the equator during the mid-Pliocene warm period. Ventilation of the North Pacific by a PMOC has broad implications for deep ocean carbon storage as the North Pacific contains the oldest, carbon-rich waters today. Future work will include minor and trace element analyses to determine the temperature and carbon characteristics of the PMOC water mass and comparisons with PlioMIP modeling outputs.

How to cite: Ford, H. L., Burls, N., and Hodell, D.: Pacific Meridional Overturning Circulation during the Mid-Pliocene Warm Period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21860, https://doi.org/10.5194/egusphere-egu2020-21860, 2020.

EGU2020-399 | Displays | CL1.9

Reconstructing Past Indian Summer Monsoon Productivity and Stratification During the Late Pliocene and Early Pleistocene

Emmeline Gray, Pallavi Anand, Clara Bolton, Masafumi Murayama, and Marcus Badger

The South Asian or Indian Summer Monsoon (ISM) brings seasonal winds and rains to the Indian subcontinent and affects billions of people.  It is likely that the global monsoon will strengthen in a 1.5 °C warming scenario (IPCC special report (2018)), however our ability to predict ISM behaviour in the future is restricted due to lack of understanding of its behaviour under varying climatic conditions before instrumental records began.  Thus, reconstructing the palaeo-monsoon using proxies gives insight into past and potentially future controls on the ISM.  We present new data covering the interval ~5 to ~2 million years ago (Ma), during the Pliocene and early Pleistocene when the long-term Cenozoic cooling trend culminated in intense northern hemisphere glaciations from 2.7 Ma.  At this time, global temperatures are suggested to have been 2-3 °C warmer than today and atmospheric CO2 was over 400 ppm (similar to today). 

This study focuses on sediments from Site U1443 ( 5°N, 90°E), drilled during International Ocean Discovery Program (IODP) Expedition 353 in the Bay of Bengal (BoB) for the Pliocene – early Pleistocene.  We present X-ray fluorescence (XRF)-derived bulk sediment geochemical data and suggest that erosional flux (terrigenous elements/total counts) as well as productivity (Br/Cl) varied in response to runoff strength, precipitation, and wind stress at the study site to reconstruct ISM variability.  Additionally, new nannofossil assemblage and morphometric data, collected using the automated system SYRACO, are used to reconstruct BoB stratification and productivity and thereby assess ISM dynamics.  A new benthic oxygen isotope-based age model will allow us to place the Site U1443 records into the context of existing climate and monsoon records and evaluate ISM response due to external and internal climate forcing factors.

How to cite: Gray, E., Anand, P., Bolton, C., Murayama, M., and Badger, M.: Reconstructing Past Indian Summer Monsoon Productivity and Stratification During the Late Pliocene and Early Pleistocene , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-399, https://doi.org/10.5194/egusphere-egu2020-399, 2020.

EGU2020-2427 | Displays | CL1.9 | Highlight

Lessons from a high CO2 world: an ocean view from ~3 million years ago

Erin McClymont, Heather Ford, Sze Ling Ho, Julia Tindall, Alan Haywood, Montserrat Alonso Garcia, Ian Bailey, Melissa Berke, Kate Littler, Molly Patterson, Benjamin Petrick, Francien Peterse, Christina Ravelo, Bjorg Risebrobakken, Stijn De Schepper, George Swann, Kaustubh Thirumalai, Jessica Tierney, Carolien van der Weijst, and Sarah White

A range of future climate scenarios are projected for high atmospheric CO2 concentrations, given uncertainties over future human actions as well as potential environmental and climatic feedbacks. The geological record offers an opportunity to understand climate system response to a range of forcings and feedbacks which operate over multiple temporal and spatial scales. Here, we examine a single interglacial during the late Pliocene (KM5c, ca. 3.205 +/- 0.01 Ma) when atmospheric CO2 concentrations were higher than pre-industrial, but similar to today and to the lowest emission scenarios for this century. As orbital forcing and continental configurations were almost identical to today, we are able to focus on equilibrium climate system response to modern and near-future CO2. Using proxy data from 32 sites, we demonstrate that global mean sea-surface temperatures were warmer than pre-industrial, by ~2.3 ºC for the combined proxy data (foraminifera Mg/Ca and alkenones), or by ~3.2ºC (alkenones only). Compared to the pre-industrial, reduced meridional gradients and enhanced warming in the North Atlantic are consistently reconstructed. There is broad agreement between data and models at the global scale, with regional differences reflecting ocean circulation and/or proxy signals. An uneven distribution of proxy data in time and space does, however, add uncertainty to our anomaly calculations. The reconstructed global mean sea-surface temperature anomaly for KM5c is warmer than all but three of the PlioMIP2 model outputs, and the reconstructed North Atlantic data tend to align with the warmest KM5c model values.  Our results demonstrate that even under low CO2 emission scenarios, surface ocean warming may be expected to exceed model projections, and will be accentuated in the higher latitudes.

How to cite: McClymont, E., Ford, H., Ho, S. L., Tindall, J., Haywood, A., Alonso Garcia, M., Bailey, I., Berke, M., Littler, K., Patterson, M., Petrick, B., Peterse, F., Ravelo, C., Risebrobakken, B., De Schepper, S., Swann, G., Thirumalai, K., Tierney, J., van der Weijst, C., and White, S.: Lessons from a high CO2 world: an ocean view from ~3 million years ago, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2427, https://doi.org/10.5194/egusphere-egu2020-2427, 2020.

It remains unclear how El Niño–Southern Oscillation (ENSO)—the prominent interannual anomalous climate mode—varied during the full glacial cycles. We study the evolution of ENSO of the last 300,000 years using continuous fully-coupled climate model simulations. How the slow time‐varying changes in insolation, greenhouse gases concentration, and continental ice sheets could influence the behaviours of El Niño are taken into account. The simulated ENSO variance and the tropical eastern Pacific annual cycle (AC) amplitude change in phase, and both have pronounced precession-band variance (~21,000 years) rather than the obliquity-band (~40,000 years). The precession‐modulated slow (orbital time scales) ENSO evolution is determined linearly by the change of the coupled ocean‐atmosphere instability, notably the Ekman upwelling feedback and thermocline feedback. In contrast, the greenhouse gases and ice sheet forcings (~100,000‐year cycles with sawtooth shapes) are opposed to each other as they influence ENSO variability through changes in AC amplitude via a common nonlinear frequency entrainment mechanism. The relatively long simulations which involve pronounced glacial‐interglacial forcing effects gives us more confidence in understanding ENSO forcing mechanisms, so they may shed light on ENSO dynamics and how ENSO will change in the future.

How to cite: Lu, Z.: Prominent precession-band variance in El Niño–Southern Oscillation Intensity over the last 300,000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11315, https://doi.org/10.5194/egusphere-egu2020-11315, 2020.

EGU2020-1092 | Displays | CL1.9

Coral reconstructed Mid-Holocene seasonality in the southwestern Caribbean

Vanessa Skiba, Ulrich Struck, Lars Reuning, Dieter Garbe-Schönberg, Norbert Frank, Reinhold Leinfelder, Aaron O'Dea, and Jens Zinke

Seasonality is a dominant factor in the Earth’s climate system, but proxy reconstructions on this time scale are sparse. Corals provide an excellent archive to reconstruct environmental conditions on seasonal time scale using geochemical proxies. Here, we use subfossil (~6.2-7.1 ka BP) Siderastrea siderea and Pseudodiploria labyrinthiformis corals from a pristine Mid-Holocene reef, located in Panamá, southwestern Caribbean. Mid-Holocene insolation seasonality in the Northern Hemisphere was stronger than at present. We investigate the resulting changes in SST and hydrological seasonality using coral Sr/Ca, δ18O and δ13C. To evaluate, if the coral heads can be utilised for geochemical analyses, they have been screened for diagenetic alteration (2D-XRD, thin section analysis). Obtained modern coral Sr/Ca-SST based annual cycle corresponds well with in situ measured SST. Fossil coral Sr/Ca-SST based cycles exceed the modern one by up to 50%. Fossil coral δ18O seasonal amplitudes are higher than the modern one by up to 30% and show a reduction in the mean gradient between wet and dry period, attributable to the northward shift of the Intertropical Convergence Zone. Increased SST and δ18O seasonality are consistent with model simulated SSTs (Kiel Climate Model) and model-based calculated pseudocoral δ18O, but the model underestimates the seasonality increase in the Mid-Holocene.

How to cite: Skiba, V., Struck, U., Reuning, L., Garbe-Schönberg, D., Frank, N., Leinfelder, R., O'Dea, A., and Zinke, J.: Coral reconstructed Mid-Holocene seasonality in the southwestern Caribbean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1092, https://doi.org/10.5194/egusphere-egu2020-1092, 2020.

EGU2020-2961 | Displays | CL1.9 | Highlight

Identifying sources of changed precipitation in paleoclimate studies through moisture tracking: A case study for orbital extremes over the Mediterranean Sea

Ruud van der Ent, Joyce Bosmans, Rein Haarsma, Sybren Drijfhout, and Frits Hilgen

Enhanced winter precipitation over the Mediterranean Sea at times of minimum precession and maximum obliquity could provide freshwater required to form orbitally-paced sedimentary cycles across the Mediterranean Sea floor, offering an alternative to monsoonal runoff. We investigate the sources of the enhanced winter precipitation by applying a moisture tracking model (WAM-2layers) on the results of idealized orbital extreme experiments with a state-of-the-art climate model (EC-Earth).

Tracking the moisture sources of the enhanced winter precipitation over the Mediterranean Sea shows that the source differs during the winter half year. In fall, the majority of the precession-induced precipitation increase originates from the Mediterranean itself. However, in late winter, the increase can be attributed to enhanced moisture advection from the Atlantic. This agrees with changes in evaporation and air-sea temperature differences over the Mediterranean. The obliquity-induced precipitation increase shows much less differences, with an equal contribution of local and Atlantic sources.

The mechanism behind the Atlantic source of moisture is not related to storm track activity, but to a weakened Azores High and slightly higher surface pressure over North Africa. The resulting anomalous circulation patterns generate enhanced Atlantic moisture transport towards the Mediterranean. Our combined climate and moisture tracking modelling approach thus provides an alternative mechanism for Atlantic sources of orbitally-paced Mediterranean precipitation changes.

The results of this study have been published in:

Bosmans, J. H. C., van der Ent, R. J., Haarsma, R. J., Drijfhout, S. S. and Hilgen, F. J.: Identifying sources of changed precipitation in paleoclimate studies through moisture tracking: A case study for orbital extremes over the Mediterranean Sea, Paleoceanogr. Paleoclimatology, accepted, doi:10.1029/2019PA003655, 2020.

The atmospheric moisture tracking through WAM-2layers revealed concrete information about the evaporative sources of enhanced/reduced precipitation. This method has not been previously applied in paleoclimate studies, but thus proved to be a powerful tool in attributing reasons for precipitation changes in addition to climate model experiments and classical meteorological analyses. New ideas for collaborations to apply this method in other (paleo)climate studies are welcome.

How to cite: van der Ent, R., Bosmans, J., Haarsma, R., Drijfhout, S., and Hilgen, F.: Identifying sources of changed precipitation in paleoclimate studies through moisture tracking: A case study for orbital extremes over the Mediterranean Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2961, https://doi.org/10.5194/egusphere-egu2020-2961, 2020.

EGU2020-6318 | Displays | CL1.9

Upper ocean heat content (OHC) changes in the tropical Pacific induced by orbital insolation and greenhouse gases (GHG)

Yue Wang, Zhimin Jian, Haowen Dang, Zhongfang Liu, Haiyan Jin, Shuai Zhang, Li Luo, and Xingxing Wang

The ocean is the largest heat capacitor of the earth climate system and a main source of atmospheric moist static energy. Especially, upper ocean heat content changes in the tropics can be taken as the heat engine of global climate. Here we provide an orbital scale perspective on changes in OHC obtained from a transient simulation of the Community Earth System Model under orbital insolation and GHG forcings. Considering the vertical stratification of the upper ocean, we calculate OHC for the mixed layer and the upper thermocline layer according to the isotherm depths of 26℃ and 20℃ respectively. Generally, our simulated OHC are dominated by thickness changes rather than temperature changes of each layer. In details, there are three situations according to different forcings:

(1) Higher GHG induces positive mixed layer OHC anomalies inside the western Pacific warm pool but with neglected anomalies outside it. For the upper thermocline layer, there are negative OHC anomalies inside the warm pool and positive anomalies in the subtropical Pacific of two hemispheres. For the total OHC above 20℃ isotherm depth, positive anomalies mainly come from the mixed layer between 15ºS-15ºN and from the thermocline between 15º-30º. Lower obliquity induces similar spatial patterns of OHC anomalies as those of higher GHG, but total OHC anomalies are more contributed by upper thermocline anomalies.

(2) Lower precession results in positive mixed layer OHC anomalies in the core of warm pool (150ºE-150ºW, 20ºS-10ºN) and the subtropical northeastern Pacific, but with negative anomalies in other regions of the tropical Pacific. Upper thermocline layer OHC anomalies have similar patterns but with opposite signs relative to the mixed layer in regions between 15ºN-30ºS. As a combination, positive total OHC anomalies occupy large areas of 130ºE-120ºW from 30ºS to10ºN, while negative anomalies dominate the subtropical north Pacific, the western and eastern ends of the tropical Pacific.

If confirmed by paleoceanographic proxies, our simulated OHC results can be served as the first guide map of anomalous energetic storage & flows in the earth climate system under orbital forcings.

How to cite: Wang, Y., Jian, Z., Dang, H., Liu, Z., Jin, H., Zhang, S., Luo, L., and Wang, X.: Upper ocean heat content (OHC) changes in the tropical Pacific induced by orbital insolation and greenhouse gases (GHG), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6318, https://doi.org/10.5194/egusphere-egu2020-6318, 2020.

The climate's mean state reflects only part of the changing climate and how it affects everyday lives. Understanding the climate's variability is crucial to provide more reliable simulations and projections, but temporal and spatial variability patterns and how they are related to changes in the mean state remain unclear. Here, we examine changes in variability since the Last Glacial in response to the warming of the global climate by several degrees. The analysis uses simulations from climate models of different complexity: a two-dimensional energy balance model (TransEBM), an earth system model of intermediate complexity (LoveClim), and a general circulation model (HadCM3). We analyse the simulated variability with respect to the different processes and parameterizations included in the different models and compare the temporal and spatial patterns that emerge. Commonalities as well as differences between models and how they relate to the changing mean state show that fast, low complexity models can capture a range of features of a climate variable's development, but also where such reduced descriptions fall short. As such, the results offer implications for the complexity that is needed and sufficient in parameterizations of climatic processes. Furthermore, we envisage that a comparison to paleoclimate archives can provide limits on the temporal and spatial scales that dominate the variability of climate.

How to cite: Ziegler, E. and Rehfeld, K.: Evaluation of simulated climate variability since the Last Glacial using climate models of varying complexity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8615, https://doi.org/10.5194/egusphere-egu2020-8615, 2020.

Periodic bottom water oxygen deficiency in the Mediterranean Sea has led to the deposition of organic rich sediments during geological history, so called sapropels. Although a mechanism linking the formation of these deposits to orbital variability has been derived from the geological record, physics-based proof is limited to snapshot and short time-slice experiments with (Oceanic) General Circulation Models. Specifically, previous modelling studies have investigated atmospheric and oceanographic equilibrium states during orbital extremes (minimum and maximum precession).

In contrast, we use a conceptual box model that allows us to focus on the transient response of the Mediterranean Sea to orbital forcing and investigate the physical processes causing sapropel formation. The model is constrained by present day measurement data, while proxy data offers constraints on the timing of sapropels.

The results demonstrate that it is possible to describe the first order aspects of sapropel formation in a conceptual box model. A systematic model analysis approach provides new insights on features observed in the geological record, such as timing of sapropels, intra-sapropel intensity variations and interruptions. Moreover, given a scenario constrained by geological data, the model allows us to study the transient response of variables and processes that cannot be observed in the geological record. The results suggest that atmospheric temperature variability plays a key role in sapropel formation, and that the timing of the midpoint of a sapropel can shift significantly with a minor change in forcing due to nonlinearities in the system.

How to cite: Dirksen, J. P. and Meijer, P.: The mechanism of sapropel formation in the Mediterranean Sea: Insight from long duration box-model experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8717, https://doi.org/10.5194/egusphere-egu2020-8717, 2020.

EGU2020-10137 | Displays | CL1.9

On the astronomical forcing of simple conceptual ice age models

Gaëlle Leloup and Didier Paillard

Variations of the Earth’s orbital parameters are known to pace the ice volume variations of the last million year [1], even if the precise mechanisms remain unknown.
Several conceptual models have been used to try to better understand the connection between ice-sheet changes and the astronomical forcing. An often overlooked question is to decide which astronomical forcing can best explain the observed cycles.

A rather traditional practice was to use the insolation at a some specific day of the year, for instance at mid-july [2] or at the june solstice [3].
But it was also suggested that the integrated forcing above some given threshold could be a better alternative [4]. In a more recent paper, Tzedakis et al. [5] have shown that simple rules, based on the original Milankovitch forcing or caloric seasons, could also be used to explain the timing of ice ages.
Here we adapt and simplify the conceptual model of Parrenin and Paillard 2003 [6], to first reduce the set of parameters.
Like in the original conceptual model from [6], this simplified conceptual model is based on climate oscillations between two states: glaciation and deglaciation. It switches to one another when crossing a defined threshold. While the triggering of glaciations is only triggered by orbital parameters, the triggering of deglaciations is triggered by a combination of orbital parameters and ice volume.
Then, we apply the different possible forcings listed above and we try to adapt the model parameters to reproduce the ice volume record, at least in a qualitative way. This allows us to discuss which kind of astronomical forcing better explains the Quaternary ice ages, in the context of such simple threshold-based models.

[1] Variations in the Earth's Orbit: Pacemaker of the Ice Ages, Hays et al., 1976, Science


[2] Modeling the Climatic Response to Orbital Variations, Imbrie and Imbrie, 1980, Science


[3] The timing of Pleistocene glaciations from a simple multiple-state climate model, Paillard, 1998, Nature

[4] Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing, Huybers et al., 2006, Science

[5] A simple rule to determine which insolation cycles lead to interglacials, Tzedakis et al., 2017, Nature

[6] Amplitude and phase of glacial cycles from a conceptual model, Parrenin Paillard, 2003, EPSL.

How to cite: Leloup, G. and Paillard, D.: On the astronomical forcing of simple conceptual ice age models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10137, https://doi.org/10.5194/egusphere-egu2020-10137, 2020.

EGU2020-19923 | Displays | CL1.9

Towards image based assessment and characterization of cyclic paleo-wind and flow fields

Matthias Halisch, Christian Zeeden, and Christian Rolf

Cylcostratigraphy is used to investigate quasi-cyclic patterns in sediments. It often provides insight about time and climate. While most studies utilize proxies related to precipitation and temperature, reconstruction of wind and flow directions is more challenging. Due to this, the dynamic change of atmospheric circulations from geophysical data is not well established on orbital timescales. One key method for this purpose is the assessment of the anisotropy of the magnetic susceptibility. Nevertheless, the so derived data are of volume-integrated nature, i.e. a result of the combined mineral composition and structure of the entire investigated sample material. Accordingly, it would be most favorable to link and assess the volume integrated data with spatial sample features. X-ray micro computed imaging enables extensive and non-destructive sample material characterization in three dimensions, with special regards to mineralogical, textural, geometrical and topological material features. By combining volume specific magnetic anisotropy data with state of the art X-ray micro CT imaging data sets, we can derive spatially resolved information about (e.g.) grain sizes, grain shapes, sorting, layering patterns, preferential grain / pore/ layer orientations, secondary precipitates, pore sizes, pore shapes and many other parameters. With this, we greatly increase our understanding about the ancient depositional environment, which is important for investigating and characterizing the dynamic and quasi-cyclic wind and flow fields.

How to cite: Halisch, M., Zeeden, C., and Rolf, C.: Towards image based assessment and characterization of cyclic paleo-wind and flow fields, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19923, https://doi.org/10.5194/egusphere-egu2020-19923, 2020.

Lake Towuti is a tectonic lake on central Sulawesi, Indonesia. It is located within the Indo Pacific Warm Pool, a convection cell which has major impact on tropical climate and the ability to project its influence on a global scale (Chiang, 2009; De Deckker, 2016). Pre-site surveys using seismic methods and piston cores indicated that sediments in Lake Towuti provide best conditions to obtain a long-term paleoclimate record in this key region (Russel et al., 2014).  

During an ICDP-project in 2015, downhole logging equipment of the Leibniz Institute for Applied Geophysics was used at two drill-sites to record a series of chemical and physical parameters (spectral gamma ray, magnetic susceptibility, resistivity, sonic velocity, dipmeter, ultrasonic imaging of the borehole wall). Continuous lithological logs based on downhole logging data were constructed using cluster analysis. Although the spatial resolution of constructed logs is not as detailed as core descriptions, good correlation to core descriptions and differentiation between the upper lacustrine facies and the lower pre-lacustrine facies (Russell et al., 2016) show that cluster analysis is a powerful tool in giving an instant overview of in situ sediments and determining their physical properties.

Cyclostratigraphic methods in downhole logging can help developing a better understanding of sedimentation rates and thus improving age-depth models for lacustrine sediments (Molinie and Ogg, 1990; Hinnov, 2013; Baumgarten et al., 2015). In case of Lake Towuti, a magnetic susceptibility log from the upper lacustrine facies (0-98 meters below lake floor) was analysed to calculate changes in sediment influx. A careful pre-processing of the data is crucial to secure undisturbed amplitude spectra. This includes the identification and exclusion of event-layers (tephra and turbidite-like mass movement deposits) from the log. Also side effects of those layers to surrounding sediments were diminished from the record.

Sedimentation rates for certain parts were calculated and complement the preliminarily age model derived from 14C- (Russel et al., 2014) and tephra-dating (A. Deino, personal communication, December, 2018). Further refining of the model and omission of an interpretation of long cyclicities results in the most detailed age-depth model for Lake Towuti, and thus is a fundamental step towards our understanding of paleoclimate processes in this region.

How to cite: Ulfers, A., Hesse, K., and Wonik, T.: Paleoenvironmental indications and cyclostratigraphic studies of sediments from tropical Lake Towuti obtained from downhole logging, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21806, https://doi.org/10.5194/egusphere-egu2020-21806, 2020.

The Milutin Milankovic Astronomical Model of Ice Ages revisited

As per the M.M.-Model, the 3 combined precessional effects have a cycle of ca. 21,000 years;

the cycle of the axis tilting from 21.80 to 24.40 runs ca. 41,000 years; the cycle from circle to ellipse, back to circle spans ca. 90,000 - 120,000 years. Science predicts the inception of a new ice age, fearing that the period the system achieved its best parameters is already behind us.

However, the data from other sources, from Plato and the Greek Sibyls to the New Testament and beyond, predict the imminence of a Golden Age, with optimal weather patterns, following a prophesied earthshaking and a few other astrophysical and geophysical woes. This is most consistent with what Milankovic’s true parameters would predict, once certain hidden variables are dealt with.

Besides the pull of sun, moon and planets, affecting the motions of the earth and insolation levels on a regular basis of solar system motions, we must factor in periodic entries of special "controller" comets whose purpose is to exercise potent "sucking" power, which helps re-calibrate the motions of the earth. Such comets do not cause impacts, but earth-shaking all the same, due to the reaction of the earth to such potent attraction. We have evidence of many comets entering the system (the "myths", Plato's Timaeus, Critias, Politicus, etc.) and geological evidence of the effects of such cometary activity.

Depending on the comet's size and its motion parameters, we get ekpyrosis and cataclysm, at global levels. Plate tectonic activity due to a major earthshaking `fatal attraction' will most definitely influence the axis' obliquity, once the `dust is settled'. If at the same time we get a minor impact that generates Flooding and enhanced volcanic activity, the results are more pronounced.

What is the periodicity of such "controller" comets which enter the inner solar system and change so drastically our motion parameters? The notion of `aeon' as per Heraclitus of Ephesus deserves our attention.

The Heraclitus aeon is a period of 10,800 years. Besides being twenty times the `age of Phoenix' calculated at 540 years, the aeon of 10,800 years is the most accurate unit for measuring the cycles of the Milankovic model. In fact,

10,800 x 2 = 21,600 our best approximation to the combined effects of all three precessional cycles.

10,800 x 4 = 43,200 (the cycle of axis tilting)

10,800 x 10 =108,000 the best calibration, so far, of the "eniautos" from circle to ellipse and back.

It is no `co-incidence' that makes the numbers fit so neatly. Not to mention the `ancient myths' which loved periods of 540 years; or 432,000; the combined effects of 25,920 and 108,000 etc.

Very soon we shall witness such a`controller comet', making the year 360 days long. It will provide the parameters for a new Golden Age for the survivors of the Floods and the Ekpyrosis. Golden Ages and years of 360 days with enhanced insolation come at a high price in the Drama Of Evolution.

How to cite: Otto, H.: The Milutin Milancovic Astronomical Model of Ice Ages Revisited, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22130, https://doi.org/10.5194/egusphere-egu2020-22130, 2020.

CL1.12 – Exploring spatiotemporal variability of abrupt climate change through the INTegration of Ice core, MArine and TErrestrial records (INTIMATE)

EGU2020-9422 | Displays | CL1.12

New approaches to radiocarbon calibration arising from statistical developments in IntCal20

Christopher Bronk Ramsey, Timothy Heaton, Maarten Blaauw, Paul Blackwell, Paula Reimer, and Marian Scott

Calibration is a key element of the radiocarbon dating methodology and the underlying Bayesian statistical approach taken, and algorithms used, are well established and used in calibration software and associated analysis packages.  These calibration methods are based on a calibration curve which provides a mean estimate for the radiocarbon isotope ratio (fractionation corrected) expected in samples, and the associated standard uncertainty, both as a function of time (or calendar age).  The measured samples also have their radiocarbon isotope ratio reported in the same form and so the calibration process involves comparison of the sample radiocarbon measurements with the calibration curve at different points on the calendar age scale.  This then yields a probability distribution function, with associated highest probability density ranges, for the sample calendar age.  We discuss here how improvements in the construction of the IntCal20 curve offer new opportunities, enabling users to obtain more from the calibration curve than previously possible and address some of the limitations of previous calibration approaches.

Previous approaches to calibration assumed that the values of the calibration curves at any time were normally distributed around their estimated mean. However, there are time periods where the distribution of these curves are not well represented by such a normal distribution. This is potentially significant even for calibrations of single samples. The new IntCal20 curve generates multiple possible calibration curves, providing us with the opportunity to identify and adapt to such non-normality.  A second limitation of previous approaches to calibration arises when multiple determinations are used within a broader chronological model. In such cases the usual assumption is that the calibrated uncertainties are independent.  This is certainly not the case if all the samples are the same age (which is currently addressed by combination before calibration) but also is potentially wrong if the samples are close enough in age for there to be correlated uncertainty in the calibration curve.  Again, using the collection of possible curves provided in the construction of IntCal20, rather than just the summary curve, we look at possible solutions to this challenge.  The implications for high-precision chronologies are also discussed.

How to cite: Bronk Ramsey, C., Heaton, T., Blaauw, M., Blackwell, P., Reimer, P., and Scott, M.: New approaches to radiocarbon calibration arising from statistical developments in IntCal20, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9422, https://doi.org/10.5194/egusphere-egu2020-9422, 2020.

EGU2020-1955 | Displays | CL1.12

Heinrich Stadials: Globa Climate Impacts and the "Bipolar Seesaw" Phase Relationsip

Richard Peltier, Jesse velay-Vitow, and Deepak Chandan

With the recent demonstration that millennial timescale Dansgaard-Oeschger oscillations of MIS 3 are predictable in a modern coupled climate model following a Heinrich event-like reduction of AMOC strength (eg. Peltier and Vettoretti, 2014), the stage was set for a renewed attack upon the physics of H-events themselves (see Velay-Vitow et al, 2019, JGR-Oceans). This predicts that the freshwater forcing of the AMOC by individual H-events will be on the order of 0.1 Sv and to be maintained for a period between 500 years and 1500 years in accord with data-based inferences (Hemming, 2004). Whereas in the original analysis of H-event induced D-O oscillations the D-O initiating H-event appeared simply as a sharp reduction in AMOC strength in the spin-up of the coupled model, in the work to be reported we transform the pseudo H-event into one that involves explicit freshwater forcing applied at a strength and over a range of times in accord with observational constraints. This has enabled a detailed analysis of the global climate impacts of these events as represented in the coupled climate model that we continue to employ. A critical focus of this analysis is upon the phase relationship between events recorded in the oxygen isotopic records from Greenland and Antarctic ice cores, analyses which demonstrate that this phase relationship is set by the D-O initiating Heinrich event. We also address the expected global climate impacts of stadial-interstadial transitions and provide an initial discussion of these impacts with those recorded in speliothems and other archives.

How to cite: Peltier, R., velay-Vitow, J., and Chandan, D.: Heinrich Stadials: Globa Climate Impacts and the "Bipolar Seesaw" Phase Relationsip, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1955, https://doi.org/10.5194/egusphere-egu2020-1955, 2020.

EGU2020-5638 | Displays | CL1.12

N2O changes during Heinrich Stadials - Isotopic source deconvolution over HS0, HS1 and HS4 and its implication for the marine and terrestrial nitrogen cycle

Hubertus Fischer, Jochen Schmitt, Michael Bock, Barbara Seth, Fortunat Joos, Renato Spahni, Gianna Battaglia, Benjamin Stocker, Sebastian Lienert, Colin Prentice, Bette Otto-Bliesner, Zhengyu Liu, Adrian Schilt, and Ed Brook

Using high precision and centennial resolution ice core information on atmospheric nitrous oxide concentrations and its stable nitrogen and oxygen isotopic composition enables us to quantitatively reconstruct changes in the terrestrial and marine N2O emissions over the last 21,000 years as well as over Heinrich Stadial (HS) 4.

We show that over the deglaciation N2O emissions from land and ocean increased in parallel by 1.8 ± 0.3 TgN yr-1 and 0.7 ± 0.3 TgN yr-1, respectively. However, close to 50% of the terrestrial increase is accomplished within less than 200 years at the end of HS1 starting essentially in parallel with the co-occurring CH4 increase. A similarly rapid but smaller increase is observed at the end of HS0 and suggested at the end of HS4, showing that terrestrial N2O emissions respond strongly and rapidly to the northward shift in the Intertropical Convergence Zone connected to the resumption of the Atlantic Meridional Overturning Circulation (AMOC). However, little change in terrestrial N2O emissions is observed during the onsets of Heinrich Stadials. Assuming that N2O loss from terrestrial ecosystems is directly connected to nitrogen turnover in soils, the fast increase at the end of Heinrich Stadials suggests that terrestrial ecosystems did not become nitrogen-limited on this relatively short time scales, as also supported by model runs in our LPX-Bern dynamic vegetation/biogeochemical model. However, changes in number of moles of N2O lost to the atmosphere per mole nitrogen turned over in soils (yield factor) may also contribute to the atmospheric N2O changes.

Marine N2O emissions also respond to Heinrich events and AMOC changes, however more gradually and less strongly compared to terrestrial emissions both in our data-based reconstruction and the Bern3D coupled ocean/biogeochemistry model. In fact, reconstructed marine emissions start to slowly increase many centuries before the rapid warmings, connected to a re-equilibration of subsurface oxygen concentrations in response to previous AMOC changes. At the onset of HS1 marine emissions decreased by about 0.5 TgN yr-1, concomitantly with changes in atmospheric CO2 and δ13C(CO2), and started to re-increase after about 1500 years, when also rapid CO2 and CH4 jumps occurred, pointing to Southern Ocean and low-latitude circulation changes. A similar decrease as at the start of HS1 is found after the onset of HS0, but little N2O emission change is suggested by N2O concentrations and their isotopic signature at 39.5 kyr before present when Heinrich Event 4 presumably occurred, as suggested by a co-occurring intermittent CH4 peak and a sudden increase in CO2.

How to cite: Fischer, H., Schmitt, J., Bock, M., Seth, B., Joos, F., Spahni, R., Battaglia, G., Stocker, B., Lienert, S., Prentice, C., Otto-Bliesner, B., Liu, Z., Schilt, A., and Brook, E.: N2O changes during Heinrich Stadials - Isotopic source deconvolution over HS0, HS1 and HS4 and its implication for the marine and terrestrial nitrogen cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5638, https://doi.org/10.5194/egusphere-egu2020-5638, 2020.

EGU2020-18942 | Displays | CL1.12

Dating rapid climate change in the North Atlantic during Heinrich Stadial 1

Andrea Burke, Rosanna Greenop, James Rae, Rhian Rees-Owen, Paula Reimer, and Timothy Heaton

Paleoclimate records from the North Atlantic show some of the most iconic signals of abrupt climate change during the ice ages. Here we use radiocarbon as a tracer of ocean circulation and air-sea gas exchange to investigate potential mechanisms for the abrupt climate changes seen in the North Atlantic over the last deglaciation. We have created a stack of North Atlantic surface radiocarbon reservoir ages over the past 20,000 years, using new synchronized age models from thirteen sediment cores refined with thorium normalization between tie-points. This stack shows consistent and large reservoir age increases of more than 1000 years from the LGM into HS1, dropping abruptly back to approximately modern reservoir ages before the onset of the Bolling-Allerod. We use the intermediate complexity earth system model cGENIE to investigate the potential drivers of these reservoir age changes. We find that sea ice, circulation and CO2 all play important roles in setting the reservoir age. We use these coherently dated records to revisit the sequence and timing of climatic events during HS1 and the last deglaciation, and show that Laurentide Heinrich Events are a response to stadial conditions, rather than their root cause.

How to cite: Burke, A., Greenop, R., Rae, J., Rees-Owen, R., Reimer, P., and Heaton, T.: Dating rapid climate change in the North Atlantic during Heinrich Stadial 1, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18942, https://doi.org/10.5194/egusphere-egu2020-18942, 2020.

During the Last Glacial Maximum, the terrestrially based Connemara ice dome was one of several principal ice accumulation centres in western Ireland, distributing ice radially and terminating along its western margins in the North Atlantic Ocean. Our new beryllium-10 chronology, constrained with surface-exposure ages of erratics on a longitudinal coast-to-interior transect, demonstrates that post-LGM deglaciation of Connemara was rapid and that the ice dome was gone by ~17.5 ka. Coupled with the abundance of landforms in this mountainous region indicative of glacial meltwater production, we interpret the rapid and early deglaciation of Connemara as reflecting pronounced melting during the summer ablation season driven by strong atmospheric warming. While this model contrasts with the traditional view of Heinrich stadials as periods of intense cold in the North Atlantic, we note similarities with glacial records from elsewhere in the Northern Hemisphere and globally, as well as with recent marine-geologic evidence for enhanced melting of European ice sheets during Heinrich stadials.

How to cite: Foreman, A., Hall, B., and Bromley, G.: Glacial deposits in Connemara, dated with cosmogenic 10Be, document melting of terrestrial ice in Western Ireland during Heinrich Stadial 1, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-889, https://doi.org/10.5194/egusphere-egu2020-889, 2020.

EGU2020-742 | Displays | CL1.12

Dynamic environmental response to the Younger Dryas cooling in the sediment record of Lake Gościąż

Daniela Müller, Rik Tjallingii, Birgit Plessen, Mateusz Płóciennik, Arne Ramisch, Ina Neugebauer, Markus J. Schwab, Michał Słowiński, Mirosław Błaszkiewicz, and Achim Brauer

The last deglaciation in the northern hemisphere was interrupted by several short cold setbacks of which the Younger Dryas (YD) was the last and most pronounced. This abrupt and extreme cold period provides valuable insights into regional climate and environmental responses. To decipher the rate of such rapid changes continuous climate archives of annually laminated (varved) sediments are crucial.

Lake Gościąż (central Poland) exhibits an iconic varved lake sediment record that is one of the few European lake records preserving varves throughout the complete YD. To re-investigate this archive, 10 new sediment cores have been obtained along a N-S transect through the deepest part of the lake basin. We used a combination of continuous microfacies analyses, XRF element core scanning, µ-XRF mapping, and high-resolution chironomid-inferred mean July air temperature as well as analyses of stable oxygen and carbon isotopes.

Lacustrine sedimentation begins in the late Allerød, is briefly interrupted by a slump during the early YD and proceeds continuously afterwards. Here, we present a first continuous microfacies investigation of the complete YD in Lake Gościąż. Varve composition during the YD is the most complex and variable one, featuring primarily diatom frustules, calcite, re-worked and re-suspended material. Contrastingly, the simpler structured varves during the early Preboreal and late Allerød are characterized predominantly by calcite, rhodochrosite and dissolved organic matter. The change in microfacies at both YD transitions occurs not simultaneously with the other proxy responses.

Causes of and differences in proxy responses in regard to the dynamics of environmental change during a major change in climate are discussed. Further, we conduct a proxy comparison at both YD transitions and provide a detailed documentation of the transitions through µ-XRF mapping.

This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis (ICLEA) of the Helmholtz Association (grant number VH-VI-415). It is further a contribution to a scientific project financed by the National Science Centre, Poland – No. UMO-2015/19/B/ST10/03039.

How to cite: Müller, D., Tjallingii, R., Plessen, B., Płóciennik, M., Ramisch, A., Neugebauer, I., Schwab, M. J., Słowiński, M., Błaszkiewicz, M., and Brauer, A.: Dynamic environmental response to the Younger Dryas cooling in the sediment record of Lake Gościąż, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-742, https://doi.org/10.5194/egusphere-egu2020-742, 2020.

EGU2020-21845 | Displays | CL1.12

Reconstructing abrupt climate changes of the last deglaciation & Holocene: Pollen & biomarker analyses from the Portuguese Margin

Anna Cutmore, Blanca Ausin, Timothy Eglinton, Mark Maslin, and Chronis Tzedakis

In light of the current rate of anthropogenic climate change, it is becoming increasingly critical to enhance knowledge of past abrupt climate events and subsequent responses of the Earth system. One period that can provide such insight is the last ~28 kyr, with several abrupt changes occurring over the course of the deglaciation. The Portuguese Margin has been an ideal location to study the impacts of these abrupt climate events on marine and terrestrial environments.  The combined effect of the narrow continental shelf and close proximity to the Tagus and Sado rivers, lead to the rapid delivery of a high quantity of sediment, including our pollen and biomarker proxies, to the Tagus Abyssal Plain. Joint terrestrial and palaeoceanographic analyses from the same sediment samples enable an in situ assessment of the relative timing of changes in palaeoceanographic and terrestrial proxies.

 

Here we document the response of western Iberian vegetation to millennial and centennial-scale changes, particularly changes in moisture availability, over the deglaciation and Holocene, by combining (for the first time at a Portuguese Margin site) pollen and leaf-wax isotopic biomarker records (δ13C and δD) from core SHAK06-5K. A high-resolution pollen record (every 2cm) and lower-resolution n-alkane δ13C and δD records spanning 28kya are compared with high-resolution XRF sediment and planktonic foraminiferal d18O analyses from the same core.  The sequence is supported by high-resolution age control, based on 40 Accelerator mass spectrometry (AMS) 14C dates from monospecific samples of the planktonic foraminifera, Globigerina bulloides.

 

Our pollen record indicates the rapid response of regional vegetation to centennial changes and millennial-scale climate events, with forest expansion during the warm interglacial/ interstadial Bølling-Allerød and Holocene, and forest contraction and steppe expansion during cold glacial/ stadial conditions of the Last Glacial Maximum and Younger Dryas. Comparing our pollen and n-alkane biomarker data with the XRF Zr:Sr ratio and planktonic foraminiferal δ18O records, a clear synchroneity can be seen in the timing of millennial-scale changes in all records.  The millennial-scale changes in our leaf wax n-alkane δD and δ13C records can be explained by both vegetation composition and growing season water availability. 

How to cite: Cutmore, A., Ausin, B., Eglinton, T., Maslin, M., and Tzedakis, C.: Reconstructing abrupt climate changes of the last deglaciation & Holocene: Pollen & biomarker analyses from the Portuguese Margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21845, https://doi.org/10.5194/egusphere-egu2020-21845, 2020.

EGU2020-11311 | Displays | CL1.12

The 2.8 BP Event: a high-resolution multiproxy perspective from Diss Mere, Norfolk, UK.

Poppy Harding, Cath Langdon, Amy Walsh, George E. Biddulph, Simon P. E. Blockley, Alice M. Milner, Pete Langdon, and Celia Martin-Puertas

The INTIMATE group has, for a number of years, outlined the most robust approaches for comparing high resolution palaeoclimate archives in order to understand the regional pattern of response to climate change, and hence test models of climate forcing. These have tended to focus on the Last glacial and Early Holocene, until recently. However, in the later Holocene there are similar climatic oscillations with a variety of proposed mechanisms and regional responses. One such climatic oscillation, the 2.8 ka BP event, is a cold spell thought to be driven by a grand solar minimum with potential impacts on atmospheric dynamics and hydrology across parts of Western Europe1. At present there are only a small number of independently-dated, high-resolution records for this event, limiting the extent to which a regional expression of this event can be understood. This is a problem, as there is significant interest in understanding the impact of solar minima on recent and future climates2.

High resolution, multiproxy records of this event are limited in the UK, however, annually laminated sediments from Diss Mere, Norfolk, UK, provide an excellent opportunity to improve our understanding of the environmental impacts of this climatic oscillation on ecosystems of the region. Here we consider multiple proxies including diatoms, chironomids, pollen, ẟ18O and ẟ13C isotopes, integrated through a highly constrained age model based on varve counts, radiocarbon dating, tephrochronology and Bayesian modelling3. Our analyses highlight distinct responses linked to the associated cooling of the 2.8 ka BP oscillation. These include an opening of the landscape around the lake, documented in our pollen record, accompanied by diatom community changes, linked to alterations in temperature, nutrients, turbidity and water clarity. These are potentially a result of increased landscape instability changing the nutrients entering the lake water and its clarity, while increased wind shear due to a more open environment, is linked to the changes in turbulence. Chironomid inferred temperatures also indicate cooling during this period. We compare the Diss palaeorecord with another annually-resolved lake record for this event, Meerfelder Maar, Germany, and with peat bog sites in Ireland, where the event is also associated with tephra layers, to outline the similarities and differences in the regional response to this solar induced event. These results are particularly significant for studies of environmental/ecological impact1 of grand solar minima on future climates in a warming world, through the potential for palaeodata climate model comparisons2.

References:

1.      Martin-Puertas, C. et al. (2012). Nat. Geo. 5, 397-401.

2.      Ineson, E. et al. (2015) Nat. Commun. 6, 7535.

3.      Martin-Puertas, C. et al. (2020) European Geosciences Union.

 

How to cite: Harding, P., Langdon, C., Walsh, A., Biddulph, G. E., Blockley, S. P. E., Milner, A. M., Langdon, P., and Martin-Puertas, C.: The 2.8 BP Event: a high-resolution multiproxy perspective from Diss Mere, Norfolk, UK., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11311, https://doi.org/10.5194/egusphere-egu2020-11311, 2020.

EGU2020-9550 | Displays | CL1.12

Antarctic-like temperature variations in the Tropical Andes recorded by glaciers during the last deglaciation (20 – 10 ka BP)

Léo Martin, Pierre-Henri Blard, Jérôme Lavé, Maarten Lupcker, Julien Charreau, Vincent Jomelli, and Didier Bourles

The paleoclimatic changes that occurred in the Southern and Northern hemispheres during the last deglaciation are thought to have affected the continental tropical regions. However, the respective impact of North and Southern climatic changes in the tropics are still poorly understood. In the High Tropical Andes, the Antarctic Cold Reversal (ACR, 14.3-12.9 ka BP) was reported to be more represented than the Younger Dryas (12.9-11.7 ka BP) among morainic records. However, in the Altiplano basin (Bolivia), two cold periods of the North Hemisphere (Heinrich Stadial 1a (16.5-14.5 ka) and Younger Dryas) are synchronous with (i) major advances or stillstands of paleo-glaciers and with (ii) the highstands of the giant palaeo-lakes Tauca and Coipasa. Therefore, additional results are needed to disentangle between potential North and South Hemisphere climatic influence on the glacial dynamics in the region.

We present new Cosmic Ray Exposure (CRE) ages from glacial landforms of the Bolivian Andes that extend pre-existing datasets for four different sites spreading from 16 to 21°S. We reconstruct the Equilibrium Line Altitudes (ELA) associated with each moraine with the AAR method and use them in an inverse algorithm that combines both the palaeo-glaciers and palaeo-lake budgets to derive temperature and precipitation reconstructions. Our temperature reconstruction (ΔT vs. Present) shows a consistent trend through the four glacial sites with a progressive warming from ΔT= -5°C (17 ka BP) to –2.5°C (15-14.5 ka BP, at the end of the Tauca highstand). This is followed by a return to colder conditions, around -4°C, during the ACR (15.5-12.9 ka BP). The Coipasa highstand is coeval with another warming trend followed by ΔT stabilization at the onset of the Holocene (circa 10 ka BP), around -3°C. Precipitation is mainly characterized by increases during the lake highstands, modulated by the distance from the glacial sites to the center of the paleolakes that are moisture sources (recycling processes).

These new results highlight the decorrelation of the glacier dynamics to the temperature signal in regions that are characterized by high precipitation variability. They also provide a theoretical frame to explain how both regional and global forcings can imprint the paleo-glacial records. Our results strongly suggest that during the last deglaciation (20 – 10 ka BP), in the Tropical Andes, atmospheric temperatures follow the Antarctic variability, while precipitation is driven by the changes occurring in the Northern Hemisphere.

How to cite: Martin, L., Blard, P.-H., Lavé, J., Lupcker, M., Charreau, J., Jomelli, V., and Bourles, D.: Antarctic-like temperature variations in the Tropical Andes recorded by glaciers during the last deglaciation (20 – 10 ka BP), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9550, https://doi.org/10.5194/egusphere-egu2020-9550, 2020.

EGU2020-19591 | Displays | CL1.12

Last Glacial multi-decadal to millennial-scale precipitation variability inferred from Puerto Rican speleothems

Sophie Warken, Rolf Vieten, Amos Winter, Christoph Spötl, Thomas Miller, Norbert Frank, Klaus Peter Jochum, Aaron Mielke, Jonas Schandl, Andrea Schröder-Ritzrau, Augusto Mangini, and Denis Scholz

The high sensitivity of climate variability to the mean position of the intertropical convergence zone at different time scales is well known. However, due to a lack of absolutely dated high-resolution proxy records, the long-term changes in the tropical Atlantic oceanic and atmospheric circulation system prior to the late Holocene are still not well constrained. Paleo climate reconstructions and model studies suggest a very complex response of the northern hemispheric tropical rain belts in the western tropical Atlantic depending on the nature of the forcing, surface type and surrounding continent-ocean configuration.

Here we present a high resolution multi-proxy speleothem record from Cueva Larga (Puerto Rico) covering the last Glacial between 46 and 15 ka BP. Precise 230Th/U-dating reveals growth rates between 50 up to more than 1000 µm/year which allow for the investigation of multi-decadal to millennial scale variability in the stable isotope (δ18O and δ13C) and elemental records.

The analysed proxies document a pronounced response of regional precipitation to abrupt centennial to millennial scale climatic excursions across the last Glacial, such as Heinrich Stadials and Dansgaard/Oeschger oscillations. Here, we observe a strong agreement between our paleo-precipitation reconstruction and climate proxy records which are indicative of the strength of the Atlantic meridional overturning circulation and northern hemispheric temperature changes. The coherence of speleothem δ18O values with sedimentary 231Pa/230Th also on sub-millennial timescales supports a persistent link of regional precipitation variability to ocean circulation variability. Spectral analysis further suggests that multi-decadal to centennial variability persisted in the western tropical Atlantic hydro-climate not only during stadial and interstadial conditions, but also during the last Glacial maximum, supporting the hypothesis that the Atlantic low-latitude regions respond to internal modes of climate variability on these time scales regardless of the global climate state.

The compilation of our dataset from Puerto Rico with other paleo-precipitation records allows for the reconstruction of past changes in position, strength and extent of the intertropical convergence zone in the western tropical Atlantic and reveal the existence of spatio-temporal gradients in response to millennial to orbital climate change.

How to cite: Warken, S., Vieten, R., Winter, A., Spötl, C., Miller, T., Frank, N., Jochum, K. P., Mielke, A., Schandl, J., Schröder-Ritzrau, A., Mangini, A., and Scholz, D.: Last Glacial multi-decadal to millennial-scale precipitation variability inferred from Puerto Rican speleothems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19591, https://doi.org/10.5194/egusphere-egu2020-19591, 2020.

EGU2020-8561 | Displays | CL1.12

Bipartite response in the Black Sea sediment record to Greenland-Interstadial 10

Markus Czymzik, Norbert Nowaczyk, Olaf Dellwig, Antje Wegwerth, Raimund Muscheler, Marcus Christl, and Helge Arz

High-latitude climate variations during Greenland Interstadials (GI) are expected to transfer globally in a complex way through interactions of fast atmospheric as well as slower cryospheric and oceanic processes. Prerequisite for an investigation of the evolution of GI is a climate independent synchronization of the considered paleoenvironmental archives. Measuring and aligning globally common production rate variations of the cosmogenic radionuclide 10Be in different archives provides a tool for such synchronizations and the investigation of environmental gradients in space and time, with minimized uncertainties in the relative timing.

A 10Be time-series at < 40-year resolution was measured along with new proxy records down to sub-mm step size from Black Sea sediment core M72/5-22-GC8 around GI-10 (~41 ka BP). We synchronized our 10Be time-series to that from Central Greenland ice cores based on the globally common production rate variations using the globally optimal fit.

Comparing the synchronized environmental proxy records points to a bipartite response of the Black Sea sediment record at the onset of GI-10. First, synchronous with the abrupt temperature increase in Greenland, costal sea ice decreases on the Black Sea, reflected by reduced sedimentary ice rafted debris contents. Second and with a lag of ~190 years, abrupt increases in the K/Ti proxy point to enhanced regional precipitation causing higher riverine sediment supply into the basin.

This bipartite structure might be connected to both differential thresholds of proxy responses in Black Sea sediments to locally abrupt environmental forcing and/or a bipartite climate transition in the region in response to GI-10. The latter could possibly be explained by an initial fast atmospheric-transmitted warming in the Black Sea region synchronous to the onset of GI-10, followed by a shift from predominantly continental to Mediterranean weather systems ~190 years later, after regional oceanic adjustments. However, further investigations during more GIs are necessary to test the robustness of these results.

How to cite: Czymzik, M., Nowaczyk, N., Dellwig, O., Wegwerth, A., Muscheler, R., Christl, M., and Arz, H.: Bipartite response in the Black Sea sediment record to Greenland-Interstadial 10, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8561, https://doi.org/10.5194/egusphere-egu2020-8561, 2020.

EGU2020-5500 | Displays | CL1.12

Impacts of climatic extremes during MIS 3 on Alpine vegetation: evidence from Nesseltalgraben (SE Germany)

Christoph Mayr, Philipp Stojakowits, Andreas Lücke, Holger Wissel, Lars Hedenäs, Bernhard Lempe, Arne Friedmann, and Volker Diersche

The effects of extreme climatic changes on Alpine ecosystems during the last glacial are poorly understood. The recently discovered Nesseltalgraben site in the northern Alps provides a high-resolution sediment sequence covering the Marine Isotope Stage (MIS) 3 (59-28 ka BP), a period characterized by climatic extremes known as Dansgaard-Oeschger cycles or Greenland interstadials/stadials. The radiocarbon-dated composite profile of 21 m stratigraphic height provided a continuous pollen profile, bryophyte macrofossils, and wood remains. Additional to palaeobotanic studies, stable isotope analyses (δ2H, δ13C, δ18O) of bulk sedimentary cellulose and plant macrofossils (wood, monocots, and bryophytes) complemented the palaeoenvironmental and palaeoclimatic studies. Among the terrestrial pollen, Poaceae and arboreal pollen showed an antithetic behaviour and high variability reflecting interstadial-stadial climatic switches. Arboreal pollen are dominated by Pinus sylvestris-type, with admixtures of Picea, Betula, Alnus, and Salix. The arboreal pollen record exhibits several maxima indicating milder climatic conditions, tentatively attributed to Greenland interstadials 5.1, 6, 8, 11/12 and 14-17. During Heinrich events 4 and 5, arboreal pollen show distinct minima underlining a severe impact of these events on regional climate and vegetation. Bryophyte assemblages show dominant wetland conditions at the site during the entire MIS 3. The sudden occurrence of Drepanocladus turgescens after 31.6 ka cal BP indicates a change from a fen to a frequently drying wetland habitat linked to enhanced glacifluvial action caused by glaciers approaching towards the site. Stable isotope analyses of extracted bulk sedimentary cellulose revealed strongly fluctuating values best interpreted by variable mixtures between a terrestrial end member (lignified plants, monocots) with high δ2H, δ13C, and δ18O values on the one hand, and wetland (bryophyte) cellulose sources with low isotope values on the other. Strong negative isotope excursions in the sedimentary and bryophyte cellulose records between 37.3 and 34.8 ka cal BP are best explained by a change to more humid conditions, possibly related to enhanced permafrost, and are contemporaneous with massive increases of Cyperaceae pollen. We conclude that the vegetation at Nesseltalgraben responded to several Greenland stadials/interstadials and Heinrich events. A straightforward correlation between vegetation oscillations and Greenland ice core records, as has been found in Alpine speleothem isotope records, is, however, not always obvious which could be the result of multiple additional abiotic and biotic factors influencing tree dissemination and growth.

How to cite: Mayr, C., Stojakowits, P., Lücke, A., Wissel, H., Hedenäs, L., Lempe, B., Friedmann, A., and Diersche, V.: Impacts of climatic extremes during MIS 3 on Alpine vegetation: evidence from Nesseltalgraben (SE Germany), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5500, https://doi.org/10.5194/egusphere-egu2020-5500, 2020.

EGU2020-19955 | Displays | CL1.12

Central European vegetation and climate dynamics during the past 130 ka at Füramoos, SW Germany

Oliver Kern, Frederik Allstädt, Andreas Koutsodendris, Bertil Mächtle, Gerd Schukraft, Oliver Heiri, and Jörg Pross

To better understand the response of Central European vegetation to rapid climate change during the late Quaternary, we have revisited the Füramoos peat bog in southwestern Germany. Located between two moraine ridges of Rissian age and comprising a near-complete sedimentary sequence from late Marine Isotope Stage (MIS) 6 to 1, this peat bog represents the longest continuous pollen record from the last glacial-interglacial cycle north of the Alps. The Füramoos site has been in the focus of several palynological studies in the past, showing that it presents an excellent archive to study the impact of Dansgaard-Oeschger (D-O) events on the Central European ecosystems (e.g., Müller et al., 2003). However, these previous studies were only of limited temporal resolution, which has yet precluded detailed insight into the ecosystem response to short-term climate change. We present a new, highly resolved pollen record (temporal resolution: 80–200 yrs) and XRF core scanning data from Füramoos spanning the past ~130 ka based on two new drill cores that consist of peat and lake sediments (Kern et al., 2019).

Our results show that closed temperate forests thrived at Füramoos during full interglacials characterized by Alnus, Corylus, Quercus, and Ulmus. The major difference between the past two interglacials is that Fagus dominates during MIS 1 whereas it is mostly absent during MIS 5e. During MIS 5, the vegetation evolved from closed temperate (MIS 5e) to boreal forests (dominated by Betula, Picea, and Pinus; MIS 5d–5a). The youngest part of the last interglacial (MIS 5d–5a) is marked by six distinct forests contractions (decreases in arboreal pollen by ~30–50%) before the establishment of a steppe vegetation that prevailed throughout the Last Glacial (MIS 2–4). In addition, seven transient increases in tree-pollen percentages document the expansion of boreal forests during MIS 2–4; they are associated with synchronous increases of Si, Ti, K and Fe contents as evidenced in XRF data.

We attribute the forest contractions during MIS 5d–5a to the cooling events C19–C24 known from marine records in the North Atlantic and terrestrial records from southern Europe. Moreover, the forest expansions during MIS 2–4 are associated with warm and moist conditions occurring during D-O events 7–12, and 14. In contrast, D-O events 13 and 15–19 don’t leave an imprint on the vegetation although their presence is clearly documented in the XRF data. Our findings emphasize that the sediments from Füramoos are exceptionally well suited to reconstruct ecosystem dynamics in Central Europe yielding unprecedented insight into the vegetation response to short-term climatic forcing north of the Alps during the past 130 kyrs.

 

Müller, U.C., Pross, J., Bibus, E., 2003. Vegetation response to rapid climate change in Central Europe during the past 140,000 yr based on evidence from the Füramoos pollen record. Quaternary Research 59, 235–245.

Kern, O.A., Koutsodendris, A., Mächtle, B., et al., 2019. X-ray fluorescence core scanning yields reliable semiquantitative data on the elemental composition of peat and organic-rich lake sediments. Science of the Total Environment 697, 134110.

How to cite: Kern, O., Allstädt, F., Koutsodendris, A., Mächtle, B., Schukraft, G., Heiri, O., and Pross, J.: Central European vegetation and climate dynamics during the past 130 ka at Füramoos, SW Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19955, https://doi.org/10.5194/egusphere-egu2020-19955, 2020.

EGU2020-7620 | Displays | CL1.12

Direct dating of marine sediments using optically stimulated luminescence techniques: Insights from ODP cores 658B and 659A.

Simon Armitage, Diana Sahy, Joanna Tindall, and Robyn Pinder

Chronologies for marine sediments are usually constructed by tuning marine proxies for global ice volume (δ18O) to the well understood variations in the Earth's orbit, by the identification of event horizons (e.g. tephra or biostratigraphic markers) and/or by radiocarbon dating. However, these techniques are not universally applicable. Optically stimulated luminescence dating (OSL) is potentially widely applicable to marine cores and may offer significant advantages over more conventional chronometric techniques. However, methodological considerations regarding the application of OSL techniques have yet to be systematically explored. Using material from Ocean Drilling Program (ODP) cores 658B and 659A, we assess the applicability of OSL dating to deep ocean sediments. For these cores, severe uranium-series disequilibrium is found, but the cause and character of this disequilibrium is spatially and temporally variable. Uranium-series disequilibrium causes the environmental dose rate to vary over time, and an iterative dose rate calculation is required to generate accurate ages. For the last glacial-interglacial cycle, these calculations yield OSL ages which are in good agreement with independent age estimates, suggesting that the application of luminescence dating techniques to deep-sea sediments merits further investigation.

How to cite: Armitage, S., Sahy, D., Tindall, J., and Pinder, R.: Direct dating of marine sediments using optically stimulated luminescence techniques: Insights from ODP cores 658B and 659A., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7620, https://doi.org/10.5194/egusphere-egu2020-7620, 2020.

EGU2020-3222 | Displays | CL1.12

Upper-ocean stratification of the NE South China Sea during the last 35 ka: Implications from oxygen isotope records from planktonic foraminifera

Tzu-Chun Wang, Andrew Tien-Shun Lin, Horng-Sheng Mii, Chorng-Shern Horng, and Christophe Colin

The sedimentation rate in the northeastern South China Sea (SCS) is high and it therefore offers an opportunity for a high-resolution paleoceanographic study. This study is based on high-resolution AMS 14C dating on forams and oxygen isotope data of two planktonic foraminifera species (Globigerinoides ruber and Neogloboquadrina dutertrei) from the sediment core, MD18-3568, collected from the northeastern SCS, to reconstruct upper-ocean stratification since 35 ka.

The marine sediment core MD18-3568 is located on the accretionary wedge off SW Taiwan at a water depth of 1,315 m, the whole core is dominated by hemipelagic sediments and is of 20.7 m in length. Samples for AMS 14C dating were selected at roughly 2 ka interval with a total of 16 samples. The ages show a continuously younging-upward trend with bottom of this core around 35,000 years BP. Samples for high-resolution oxygen isotope measurements were selected at a nominal 500-year age interval. The difference in δ18O between G. ruber (mixed layer dwelling species) and N. dutertrei (thermocline dwelling species) is used to reconstruct the upper ocean stratification with large difference indicating significant ocean stratification and vice versa. The results show moderate upper ocean stratification during 35-24 ka, and it became less stratified during the Last Glacial Maximum (LGM, 23-19 ka). During the deglacial stage, the stratification gradually became stronger until the early Holocene (12-9 ka), and it has kept strong upper-ocean stratification since 9 ka. Literature has documented less rainfall intensity during the LGM and heavy rainfall during the Holocene in southern Taiwan. We interpret the upper-ocean stratification in the NE South China Sea near Taiwan is linked to the amount of freshwater inputs from Taiwan. Less Taiwan freshwater input during the LGM led to a weak stratified upper ocean and a large amount of freshwater input from Taiwan led to a strong upper-ocean stratification during the Holocene.

How to cite: Wang, T.-C., Lin, A. T.-S., Mii, H.-S., Horng, C.-S., and Colin, C.: Upper-ocean stratification of the NE South China Sea during the last 35 ka: Implications from oxygen isotope records from planktonic foraminifera, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3222, https://doi.org/10.5194/egusphere-egu2020-3222, 2020.

EGU2020-5011 | Displays | CL1.12

Tracking Late Quaternary ice sheet dynamics by multi-proxy detrital mineral U-Pb analysis: A case study from the Odyssea contourite, Ross Sea, Antarctica

Roland Neofitu, Chris Mark, Michele Rebesco, Renata Giulia Lucchi, Nessim Douss, Caterina Morigi, Sam Kelley, and J. Stephen Daly

Late Quaternary Antarctic ice-sheet instability is recorded by ice-rafted debris (IRD) in mid- to high-latitude marine sediment, especially during marine isotope stages (MIS) 2-3, but drivers of this instability remain enigmatic (Labeyrie et al., 1986). A key step in resolving this puzzle is to determine the location of iceberg calving sites, thus highlighting ice sheet sectors exhibiting repeated instability. Single-grain U-Pb provenance analysis applied to clastic IRD provides a suitable high-resolution tool for this task, and also permits discrimination of continental IRD from volcanic material. The application of multiple proxies (apatite, rutile, and zircon) is critical in order to reduce source area fertility biases: for example, the near exclusive occurrence of zircon in felsic-intermediate igneous rocks (e.g., Hietpas et al., 2010).

Here, we present detrital apatite, zircon, and rutile U-Pb data from samples taken from a gravity core from the Odyssea contourite drift system, located on the margin of the Ross Sea (Rebesco et al., 2018) and deposited during MIS2-3. Contourites are marine clastic sediment deposits forming by along-slope, bottom currents reworking of fine-grained (clay-silt) sediments delivered by down-slope sedimentary processes (e.g. meltwaters, turbidity currents, debris flows). Crucially, contourite targetting eliminates the challenge of distinguishing IRD from coarse (sand-gravel) turbidite material in basin deposits, as ice-sheet instability is also associated with turbidite production at glaciated shelf margins (e.g., Bart et al., 1999).

We couple our analysis with the multi-proxy sediment analyses previously performed by Lucchi et al. (2019). We consider the implications of our data for the advance and retreat of the Antarctic Ice Sheet during MIS 2-3, and discuss the further applicability of our multi-proxy approach around Antarctica.

Bart, P.J, et al., 1999, Journal of Sedimentary Research, v. 69, p. 1276–1289, doi:10.2110/jsr.69.1276.

Hietpas, J, et al., 2010, Geology, v. 38, p. 167–170, doi:10.1130/G30265.1.

Lucchi, R.G, et al., 2019. EGU General Assembly 2019, Vienna April 7th–12th, Geophysical Research Abstracts Vol. 21, EGU2019-10409-1

Rebesco, M, et al., 2018, preliminary results, in POLAR 2018 SCAR/IASC Open Science Conference, v. GG2 Arctic, p. 14133.

Labeyrie, L, et al., 1986, Nature, v. 322, p. 701–706.

How to cite: Neofitu, R., Mark, C., Rebesco, M., Lucchi, R. G., Douss, N., Morigi, C., Kelley, S., and Daly, J. S.: Tracking Late Quaternary ice sheet dynamics by multi-proxy detrital mineral U-Pb analysis: A case study from the Odyssea contourite, Ross Sea, Antarctica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5011, https://doi.org/10.5194/egusphere-egu2020-5011, 2020.

EGU2020-5925 | Displays | CL1.12

Developing a multi-methods dating framework for the Eastern Mediterranean region over the Late Quaternary

Shuang Zhang, Christina Manning, Christopher Satow, Simon J Armitage, and Simon Blockley

The Eastern Mediterranean is an important region for understanding the late Quaternary, as there is evidence for a complex pattern of climatic and environmental change, influenced by orbital forcing and complex feedback mechanisms (Rohling et al., 2013). It is also a key region for examining the dispersal of humans out of Africa. Consequently, it is important to develop robust chronologies for palaeoclimatic, environmental and archaeological records in the region, to allow synchronisation, comparison and hypothesis testing. Tephrochronology is a vital tool for correlating such records, but the fine detail of the Eastern Mediterranean tephra depositional history is not yet well defined. Part of the problem relates to a lack of cryptotephra (non-visible ash) studies on long stratigraphic records. It is well known from the Atlantic and Central Mediterranean that cryptotephra studies can significantly improve tephra inventories, and constrain the relationship between key tephra markers and important environmental transitions. Another key problem for the region is that for distal tephra there is a relatively limited geochemical database from different volcanic centres, especially in terms of trace element compositions. One important method for addressing this problem is to develop detailed tephrostratigraphic records and tephra geochemical inventories from long sediment sequences (e.g. Bourne et al., 2010; Satow et al., 2015).

Here we present the first marine crypto-tephrostratigraphy from the Levantine Sea, covering approximately the last ~200,000 years, from a long marine core (MD81-LC31). The new data for the core include tephra shard concentrations, major and trace element geochemistry, correlations to the eruptive record of the Aegean and Anatolian volcanic centres, and new radiometric age information. Our new data is compared to existing chronological information from LC-31, including sedimentological, geochemical, paleomagnetic and radiocarbon evidence. Our data helps to refine the chronology for this important record and will underpin ongoing studies into the detail of palaeoceanographic and environmental change in the region.

 

Bourne, A.J., Lowe, J.J., Trincardi, F. et al. 2010. Distal tephra record for the last ca 105,000 years from core PRAD 1-2 in the central Adriatic Sea: implications for marine tephrostratigraphy. Quaternary Science Reviews, 29(23-24), 3079-3094.

Rohling, E.J., Grant, K.M., Roberts, A.P. et al. 2013. Paleoclimate variability in the Mediterranean and Red Sea regions during the last 500,000 years: implications for hominin migrations. Current Anthropology, 54(S8), S183-S201.

Satow, C., Tomlinson, E.L., Grant, K.M. et al. 2015. A new contribution to the Late Quaternary tephrostratigraphy of the Mediterranean: Aegean Sea core LC21. Quaternary Science Reviews, 117, 96-112.

How to cite: Zhang, S., Manning, C., Satow, C., Armitage, S. J., and Blockley, S.: Developing a multi-methods dating framework for the Eastern Mediterranean region over the Late Quaternary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5925, https://doi.org/10.5194/egusphere-egu2020-5925, 2020.

EGU2020-6707 | Displays | CL1.12

Tephra-based time-markers from the Last Glacial Period recorded in the North Atlantic: an emerging tool for an east-west synchronization of paleoclimate records

Sunniva Rutledal, Sarah M. P. Berben, Trond M. Dokken, Amandine A. Tisserand, and Eystein Jansen

Geochemically distinct volcanic ash (tephra) deposits have the potential to act as a key geochronological tool to independently synchronize independent paleoclimate archives. Recent advances in the detection of invisible (crypto) tephra have led to the ongoing development of regional tephra frameworks. These frameworks provide an overview of the spatial coverage of existing geochemically distinct tephra horizons attributed to dated eruptions. Hence, these developing frameworks produce an essential tool for precise correlation of different and/or disparate climate archives within a certain region. Here, using cryptotephra analysis, we investigate the potential occurrence of two well-known tephra horizons from the Last Glacial Period (i.e. FMAZ II-1 (26.7 ka b2k) and NAAZ II (II-RHY-1) (55.3 ka b2k)), in five different marine sediment cores from the Denmark Strait, as well as the Nordic, Irminger and Labrador Seas. We have successfully identified FMAZ II-1 in both the Nordic and Irminger Seas. Even more so, this study presents the first identification of an isochronous FMAZ II-1 horizon detected in the Irminger Sea. This clearly demonstrates an increased potential for tephrochronology within this region. In addition, NAAZ II (II-RHY-1) was also recorded in the Denmark Strait, the Irminger Sea and the Labrador Sea. Using those identified tephra time-markers allows us to discuss the synchronization of paleoclimate records retrieved from the in this study and previously investigated marine sediment cores. We focus on both time periods when the tephra time-markers were deposited (i.e. Greenland Stadial-3 (FMAZ II-1) and Greenland Interstadial-15 (NAAZ II (II-RHY-1)) with the aim to provide synchronized records of ocean temperature and salinity changes. Therefore, we use Mg/Ca ratios of benthic foraminifera and stable isotopes (d18O & d13C) of benthic and planktonic foraminifera. By coupling the paleoclimatic information with the identified tephra time-markers, we provide a robust overview of the climatic conditions in the North Atlantic Ocean during these two time periods.

How to cite: Rutledal, S., Berben, S. M. P., Dokken, T. M., Tisserand, A. A., and Jansen, E.: Tephra-based time-markers from the Last Glacial Period recorded in the North Atlantic: an emerging tool for an east-west synchronization of paleoclimate records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6707, https://doi.org/10.5194/egusphere-egu2020-6707, 2020.

EGU2020-8106 | Displays | CL1.12

Disentangling the effects of particles and circulation on 231Pa/230Th during Heinrich Stadials

Jörg Lippold, Finn Süfke, Jens Grützner, and Frerk Pöppelmeier

It has been shown that during Heinrich stadials northern deep water production ceased leading to an enhanced inflow of southern sourced water. Although Heinrich events are not considered to represent the primary trigger of Heinrich stadials the reorganisation of Atlantic ocean dynamics during their occurrences is an active field of research. In particular, Heinrich stadial 2 (HS2) is of high interest, based on the observation that the interplay with the climate system was very different during HS2 compared to HS1, although the magnitude of iceberg and freshwater discharge was similar (Hemming, 2004). During HS2 sea-level was still decreasing while the atmospheric CO­2 content was relatively stable unlike the climatic evolution during Heinrich HS1.

The notion of a reduced Atlantic Meridional Overturning Circulation (AMOC) during Heinrich Stadials is mainly strengthened by the 231Pa/230Th records from the Bermuda Rise. However, other influencing factors, capable of increasing the sedimentary 231Pa/230Th without according decreases in AMOC strength, need to be considered as well. Besides biogenic opal, high dust fluxes may also result in enhanced scavenging rate of both radionuclides and consequently higher sedimentary 231Pa/230Th signals, since another distinct feature that accompanies Heinrich Stadials is the high atmospheric concentration of dust in the northern hemisphere. Furthermore, high dust concentrations might be an indicator of a vigorous wind system and therefore strong ocean mixing, which can lead to the enhanced formation of nepheloid layers These layers are suspected to cause strong bottom scavenging and consequently high sedimentary 231Pa/230Th. Very high dust fluxes were observed e.g. during HS2 and MIS4. Here, we compare 231Pa/230Th with dust records in order to disentangle the effects of scavenging and circulation on the recorded sedimentary 231Pa/230Th from the northwestern Atlantic.

How to cite: Lippold, J., Süfke, F., Grützner, J., and Pöppelmeier, F.: Disentangling the effects of particles and circulation on 231Pa/230Th during Heinrich Stadials, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8106, https://doi.org/10.5194/egusphere-egu2020-8106, 2020.

EGU2020-9051 | Displays | CL1.12

Challenges and opportunities extending the INTIMATE tephra event stratigraphy into the Levant and Arabia.

Simon Blockley, Dustin White, Rhys Timms, Paul Lincoln, Simon Armitage, and Chris Stringer

The nature and expression of climate change in the Eastern Mediterranean, the Levant and further into Arabia is of considerable interest across a range of communities. This is in part due to the need to understand the potential for future climate forcing on environments given the complex range of climatic forcing factors that play out in the region. These include the role of prevailing winds across the Mediterranean, Northerly winds pushing down into the region during cold glacial conditions, and the influence of the Afro-Arabian Monsoon. The last glacial to interglacial period is a critical window to examine such processes, as a range of climatic signals are recorded, many of which have been proposed as correlatives of events seen in the North Atlantic. Dating issues are as ever an issue when trying to precisely compare different climate archives. To address such, the INTIMATE event stratigraphy has been developed for the North Atlantic region, with recent extensions into parts of the Mediterranean. This couples the stratigraphic framework of the Greenland Ice core records as a regional stratotype, with  a number of tephra horizons in the North Atlantic and Europe, aiding the process of correlation. The last INTIMATE event stratigraphy coupled the extended GICC05 timescale for Greenland back to 128 b2k (Blockley et al., 2014). This paper reports on attempts to test the potential for tephrochronology to be extended into the Levant and potentially Arabia, through the identification of tephra layers in sediment focussing archives, such as archaeological cave sequences. We have examined tephra presence in archaeological sites, principally in Israel, that record sediment deposition from ~30ka BP through to >100ka BP. Analyses of these records show that tephra is present in almost all of the studied sites (e.g., Kebara, Tabun, Amud, Shovakh). Moreover, tephra in these sequences can be chemically correlated to known volcanic systems, demonstrating the potential going forward to analyse long lake and marine records around the region for cryptotephra. At the same time clear challenges are emerging. Firstly, there is a range of chemistry in many of the layers and careful analyses is needed to pick apart the geochemical signal and to identify reworking, as opposed to chemically heterogeneous ash layers from a single volcano. This process is complicated by the relatively limited range of published geochemical data from some volcanic centres. This presentation will outline the current state of knowledge of key volcanic centres, particularly in the Aegean and Turkey, alongside the new Levantine data, to consider the steps needed to establish a secure extension of the INTIMATE approach into this region.

Blockley, S., et al., 2014. Quaternary Science Reviews. 106, 88-100. doi:10.1016/j.quascirev.2014.11.002.

How to cite: Blockley, S., White, D., Timms, R., Lincoln, P., Armitage, S., and Stringer, C.: Challenges and opportunities extending the INTIMATE tephra event stratigraphy into the Levant and Arabia., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9051, https://doi.org/10.5194/egusphere-egu2020-9051, 2020.

EGU2020-10124 | Displays | CL1.12

Modes of response of the subsurface western South Atlantic to the last glacial Dansgaard-Oeschger cycles

Thiago Santos, João Ballalai, Daniel Franco, Rômulo Oliveira, Douglas Lessa, Igor Venancio, Cristiano Chiessi, Henning Kuhnert, Heather Johnstone, and Ana Luiza Albuquerque

The last glacial was an interval characterized by a sequence of abrupt millennial-scale events well documented mainly from the Greenland and Antarctica ice-cores. Although the triggers are not fully understood, most of the works agree that they occurred in consonance with oscillations in the strength of the Atlantic Meridional Overturning Circulation (AMOC). Paleoceanographic reconstructions have shown that cold millennial-scale stadials were accompanied by high temperatures in the subsurface to intermediate waters of the Atlantic Ocean that may have acted in both the basal melting of ice-sheets and in the rapid atmospheric warming during the onset of warm interstadials. Assuming that recent transient models indicated an accentuated response of the subsurface western South Atlantic to the millennial-scale disturbances, here we present a paleoceanographic reconstruction in this area based on the deep-dwelling planktic foraminifer Globorotalia inflata. Our high-resolution oxygen isotope (d18O) presents a sequence of millennial-scale variability that strongly resembles the structure of the Greenland Dansgaard-Oeschger cycles, mainly during Marine Isotope Stage (MIS) 5. On the other hand, during MIS 3, this millennial-scale feature is absent or weakly represented. Cross-spectral analyzes indicate a meaningful north-to-south forcing over the western South Atlantic subsurface during early-glacial. Mg/Ca-derived temperature and ice-volume free seawater d18O (d18OIVF-SW) executed for the MIS 5 interval demonstrated that the subsurface western South Atlantic was warmer and saltier (colder and fresher) during early glacial stadial (interstadials). We hypothesized that a wide reorganization of the northward heat transport throughout the last glacial occurred, in which regions so far south as 24 ºS worked as prominent heat reservoirs in periods of weakened AMOC during MIS 5 but not necessarily during MIS 3. Our data suggest that future impacts over the AMOC along the Brazilian margin will likely be recognized in the subsurface layers of the western South Atlantic.

How to cite: Santos, T., Ballalai, J., Franco, D., Oliveira, R., Lessa, D., Venancio, I., Chiessi, C., Kuhnert, H., Johnstone, H., and Albuquerque, A. L.: Modes of response of the subsurface western South Atlantic to the last glacial Dansgaard-Oeschger cycles , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10124, https://doi.org/10.5194/egusphere-egu2020-10124, 2020.

EGU2020-11910 | Displays | CL1.12

Holocene vegetation and climate changes inferred from pollen record of Nordenskiöld Land (West Spitsbergen Island)

Diana Soloveva, Larisa Savelieva, and Sergei Verkulich

Pollen analysis is one of the methods that allow revealing ecological and climatic changes in the
past based on vegetation reconstruction. Spitsbergen (Svalbard) archipelago, as well as other
regions of the Arctic, is difficult for creation of regional models of vegetation and climate
development during the Holocene. This is primarily due to the limited distribution, low thickness
and relative young ages (usually this is the late Holocene) of organogenic deposits, which are
most suitable for palynological studies.
Nordenskiöld Land is located in the central part of the West Spitsbergen Island and different the
most favorable climatic conditions. The largest number of sites suitable for paleobotanical
researches is located here. The Coles valley has length about 12 km, well-developed profile and
situated on the north shore of Nordenskiöld Land. The field campaign with studying of
floodplain peat sediments from Coles River valley was carried out in August 2018. Two sites
(K18-15, K18-16) were studied on the remains of first terrace. Excavated deposits are
represented by leafy peat of varying degrees of decomposition with silt lenses. The laboratory
studies of sediments included radiocarbon dating, pollen and non-pollen palynomorph analyses.
They were carried out in Laboratory of St-Petersburg State University and Russian chemical-
analytical Lab on the Spitsbergen archipelago.
The pollen analysis of two sections from Coles River valley allowed us to reconstruct
paleovegetation changes. Samples from K18-15 site contain more mineral components and more
pollen and spores than samples from K18-16 site. This is probably due to the inflow of pollen
with water. The main components of spore-pollen spectra are Poaceae, Cyperaceae, Salix and
Betula sect. Nanae. The relationship between these taxa shows a different degree of moisture of
the study area under the dominance of the grass - sedge tundra. Thus, a significant influence on
the formation of spores and pollen spectra in the studied deposits is played by the dynamics of
the sedimentation.
Results of radiocarbon dating showed that studied deposits formed during mid and late
Holocene.
A generalization of all available palynological data on the Nordenskjöld land made it possible to
construct a scheme of dwarf birch (Betula sect. Nanae) distribution during the Middle and Late
Holocene. A comparison of received data with our previous data and published data from
Nordenskiöld Land shows the asynchronous of appear and distribution of shrubs on these area
from ~5000 to ~2500 yrs ago.

How to cite: Soloveva, D., Savelieva, L., and Verkulich, S.: Holocene vegetation and climate changes inferred from pollen record of Nordenskiöld Land (West Spitsbergen Island), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11910, https://doi.org/10.5194/egusphere-egu2020-11910, 2020.

EGU2020-12314 | Displays | CL1.12 | Highlight

The Adams Event, a geomagnetic-driven environmental crisis 42,000 years ago

Alan Cooper and Chris Turney and the Adams Event Team

Geological archives record multiple reversals of Earth’s magnetic poles, yet the potential impacts of these events remain unknown. The lack of any obvious association between the last major inversion, the Laschamps Excursion ~41 thousand years ago (ka), and polar ice paleoclimate records has underpinned the view that geomagnetic reversals do not have major environmental consequences. We find this is not the case. Importantly, the weakened geomagnetic field causes rapid production of atmospheric radiocarbon, and the lack of accurate calibration records has complicated dating of environmental and archaeological events in other parts of the world. Here we exploit the first detailed record of radiocarbon levels across the Laschamps Excursion using New Zealand swamp kauri (Agathis australis) trees to precisely align Pacific Basin environmental changes with polar paleoclimate records (via 10Be). Comprehensive radiocarbon-dated and glacial sequences are consistent with global chemistry climate modelling, and show synchronous climate changes across the mid to low latitudes that are concentrated during the geomagnetic field minima (42.2-41.5 ka) in the transitional phase that precedes the Laschamps Excursion. Critically, the revised timing reveals associations with a wide range of extinction events and major changes in the global archaeological record, which we hereby term the Adams Event. The climatic, environmental, and evolutionary impacts of past magnetic reversals now form a critical issue for future investigation.

How to cite: Cooper, A. and Turney, C. and the Adams Event Team: The Adams Event, a geomagnetic-driven environmental crisis 42,000 years ago, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12314, https://doi.org/10.5194/egusphere-egu2020-12314, 2020.

EGU2020-12846 | Displays | CL1.12

The role of volcanism for abrupt climate change during the last glacial period

Anders Svensson, Johannes Lohmann, Sune Olander Rasmussen, and Christo Buizert

During the last glacial period, abrupt climate events known as Dansgaard-Oeschger (DO) and Heinrich events have been observed in various types of Northern Hemispheric (NH) paleoclimate archives. It has been speculated that volcanism may play a role in the abrupt climate variability of the last glacial period, for example as a trigger of abrupt changes. The investigation of a possible link between abrupt climate events and volcanic eruptions has been hampered by the lack of a global volcanic eruption record from the last glacial period. A recent identification of 80 major bipolar volcanic eruptions in Greenland and Antarctic ice core records within the interval 12-60 ka BP now enables us to investigate this link.

Using high-resolution ice-core records of climate (δ18O), atmospheric circulation changes (calcium) and volcanic eruptions (sulfate and other volcanic proxies) we investigate the timing of abrupt climate events and large volcanic eruptions at decadal resolution. We consider possible links between major volcanic eruptions and DO onsets (NH warming), DO terminations (NH cooling), and Heinrich stadials (strong NH cooling). Heinrich stadials are cold Greenland stadial periods during which Heinrich events occurred; large Hudson Strait iceberg discharge events that are characterized by deposition of significant amounts of ice rafted debris in North Atlantic marine sediments.

Significant links of volcanic and climatic events are tested in a statistical framework under the null hypothesis of random and memoryless volcanic activity. Our analysis shows that while certainly not all abrupt climate change of the last glacial period is associated with volcanism, we find that volcanism may have induced some abrupt Greenland warming events and perhaps several of the extreme North Atlantic cold Heinrich stadials; no significant link is found between volcanism and DO terminations. We speculate that volcanic cooling can drive such transitions when the coupled system of Atlantic Ocean circulation and North Atlantic sea ice is close to a tipping point.

How to cite: Svensson, A., Lohmann, J., Rasmussen, S. O., and Buizert, C.: The role of volcanism for abrupt climate change during the last glacial period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12846, https://doi.org/10.5194/egusphere-egu2020-12846, 2020.

EGU2020-13383 | Displays | CL1.12

Sediment record of precipitation and changes in circulation in Bohol Sea area since the Last Glacial Maximum

Sarahmae Buen, Fernando Siringan, and Ronald Lloren

Deep marine sediments may provide insights of past climate and oceanographic events. Knowledge of the past events can aid in scenario setting of future climate and their oceanographic consequences. A deep sea sediment core from the western side of Bohol Sea, a marginal sea located south of the Philippines, was used to reconstruct precipitation and identify the impacts of sea level rise on the circulation of Bohol Sea.  Five radiocarbon dates from bulk organic matter provide age control spanning back to the Last Glacial Maximum. Sedimentological (lithics and carbonate fractions; bulk density; sedimentation rate and mass accumulation rate) and geochemical (Ti, Al, Zr, Ti/Al and Y/Ni) data were used to reconstruct the sediment input for the area. Sediment input was decreasing from 20-15ka, followed by a relatively stable trend until ~9ka. After ~9ka sediment input increased up until the most recent years. Sedimentation trend follows the average winter (DJF) insolation curve at 10oN. This signifies that the sediment input reflects the general changes in precipitation in the area. Lithics and carbonate contents reflect a shift in sediment source that could be attributed to the change in circulation in the basin as the sea level rose to overtop the Surigao Strait located at the northeastern side of the basin. Greater westward transport of suspended material from large rivers to the east would contribute to the sedimentation in the western part of Bohol Sea.

How to cite: Buen, S., Siringan, F., and Lloren, R.: Sediment record of precipitation and changes in circulation in Bohol Sea area since the Last Glacial Maximum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13383, https://doi.org/10.5194/egusphere-egu2020-13383, 2020.

EGU2020-13928 | Displays | CL1.12

Reconstruction of regional humidity variations during the Younger Dryas - Holocene transition in NW Iberia using lipid biomarker stable isotope ratios

Oliver Rach, Oliver Heiri, Castor Muñoz Sobrino, Andrea Vieth-Hillebrand, and Dirk Sachse

The impact of global temperature changes on hydroclimate, especially on regional spatial scales, is difficult to predict with global climate models. These models are generally too coarse in resolution and do not fully constrain complex atmospheric processes. We can study past climatic changes to understand the evolution of hydroclimate and identify its mechanisms on regional scales. The Younger Dryas (YD) cold period ca. 12.000 years ago was the last major abrupt climate change in Earth history and as such provides us with a natural laboratory to better understand impacts of such change on both global and regional scales. Increasingly, high resolution datasets from terrestrial archives throughout Europe are being developed which suggest atmospheric controls on abrupt changes in local ecosystems, such as the southward movement of the jet stream during the YD period. Therefore, regions located at the boundary between major moisture sources are particularly interesting, such as NW Iberia, which is situated between Atlantic and Mediterranean moisture sources and their effects. Here we present terrestrial lipid biomarker (n-alkane) stable hydrogen (δ2Hwax) and carbon (δ13Cwax) isotope records from lake Laguna de la Roya (LR) (NW Iberia), covering the YD. In combination with pollen and chironomid reconstructed temperature data, we aim to identify the evolution of atmospheric conditions during the YD in NW Iberia. Since LR is located close to the Atlantic Ocean and the reconstructed maximum YD sea-ice extent, we are specifically interested in amplitude and variability of local hydroclimatic changes compared to more continental sites during the YD-Holocene transition. During the YD, La Roya δ2Hwax values were characterized by ~6‰ more negative values compared to the preceding Allerød, indicative of colder and drier conditions, which is supported by local temperature reconstruction and pollen analysis. More continental records from western Europe such as Lake Meerfelder Maar (MFM) showed ~12‰ more negative values during YD. This doubling in depletion of MFM samples compared to LR could be, in part, attributed to the stronger temperature drop in continental Europe of about 4-6°C. For the same time at LR, the chironomid data show a drop of only 2.5°C. In general, δ2Hwax from LR were more positive, on average, compared to MFM, by ~27‰ in the Allerød and ~33‰ during the YD. However, in the Holocene both records converge to an average difference of 15‰, which is close to the modern measured 10‰ difference in δ2Hprecipition (source water for δ2Hwax) and consistent with a shared Atlantic moisture origin and subsequent Rayleigh rainout towards the East. Considering possible temperature related depletions in the LR δ2Hwax record during YD, the 27‰ difference in the Allerød implies additional influences on the recorded signal. A different moisture source area (Mediterranean) for LR during Allerød/YD period, and/or increased air mass transport distances from LR to MFM compared to Holocene conditions can explain the δ2Hwax differences. These findings suggest significant changes in the atmospheric circulation at the YD-Holocene transition when the jet stream shifted northward due to lower seasonal sea-ice expansions and intensification of the Atlantic Meridional Overturning Circulation.

How to cite: Rach, O., Heiri, O., Muñoz Sobrino, C., Vieth-Hillebrand, A., and Sachse, D.: Reconstruction of regional humidity variations during the Younger Dryas - Holocene transition in NW Iberia using lipid biomarker stable isotope ratios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13928, https://doi.org/10.5194/egusphere-egu2020-13928, 2020.

EGU2020-13933 | Displays | CL1.12

Sequence of Heinrich Event 1 to the Bølling-Allerød in transient climate model simulations

Yuchen Sun, Xu Zhang, Martin Werner, Gregor Knorr, and Gerrit Lohmann

During the last deglaciation, the North Atlantic was punctuated by evident millennial-scale climate variability – surface cooling during Heinrich Event 1 (H1), followed by abrupt warming during the Bølling-Allerød (BA). Given its abundance of available proxy records, the last deglaciation is thus a perfect testbed for us to assess the triggering dynamics of these abrupt events. Here, a water-isotope enabled, coupled atmosphere-ocean general circulation model COSMOS-wiso (Werner et al., 2016) is applied to test different mechanisms potentially responsible for a BA abrupt warming. First, two sets of experiments are conducted to test the sensitivity to background boundary conditions: one is based on the Last Glacial Maximum (LGM), and the other was 16ka BP background climate. We also consider the spatial distribution of freshwater flux (FWF) forcing. We find that during the LGM a weak freshwater forcing cannot trigger an Atlantic Meridional Overturning Circulation (AMOC) mode transition. However, the same freshwater forcing can rapidly weaken the AMOC at 16ka BP, including an abrupt AMOC resumption in the subsequent one thousand years. Our experiments support the idea that ice volume plays a dominant role in the stability of AMOC during the termination. Furthermore, we explore the impact of different initial fields on the timing of AMOC recovery. Based on the above 16ka hosing experiment mimicking H1, several phases before the AMOC recovery are selected as initial fields, also with different FWF forcing. Our experiments indicate that the larger the FWF forcing, the longer it would take for the AMOC to recover. In all simulations, we detect an overshoot behavior typically for the BA transition. Finally, we implement a transient experiment from H1 to BA with changing GHGs and orbital forcing to explore the mechanisms of the sequence of rapid climate changes during the last termination.

Werner, M., Haese, B., Xu, X., Zhang, X., Butzin, M., and Lohmann, G.: Glacial–interglacial changes in H218O, HDO and deuterium excess – results from the fully coupled ECHAM5/MPI-OM Earth system model, Geosci. Model Dev., 9, 647-670, doi:10.5194/gmd-9-647-2016, 2016.

How to cite: Sun, Y., Zhang, X., Werner, M., Knorr, G., and Lohmann, G.: Sequence of Heinrich Event 1 to the Bølling-Allerød in transient climate model simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13933, https://doi.org/10.5194/egusphere-egu2020-13933, 2020.

EGU2020-16361 | Displays | CL1.12

South American climatic response to changes in the tropical South Atlantic Ocean hydrography during Termination 1

Karl J. F. Meier, Andrea Jaeschke, Julia Hoffmann, Barbara Hennrich, Oliver Friedrich, Cristiano M. Chiessi, Ana Luiza S. Albuquerque, Janet Rethemeyer, Dirk Nürnberg, and André Bahr

Rapid climatic reorganizations during the last Termination (i.e. Heinrich Stadials 0-1) had major impacts on the Atlantic Meridional Overturning Circulation (AMOC) strength and on global atmospheric circulation patterns. However, if and how this high-latitude forcing affected low-latitude climate variability is still poorly constrained. Here we present a high-resolution multi-proxy record from marine sediment core M125-3-35 recovered in the western tropical South Atlantic combining foraminiferal Mg/Ca, Ba/Ca ratios, stable oxygen isotope measurements and organic biomarker-based sea surface temperature (SST) proxies (TEX86 and UK’37). The near-shore core position of M125-3-35 off the Paraíba do Sul river mouth in southeastern Brazil and the means of foraminiferal Ba/Ca ratios, which depends on the quantity of continental freshwater input, enables us to investigate direct coupling of continental hydroclimate and oceanographic changes.

The data show a complex interplay of oceanic and atmospheric forcing dominating the tropical South American climate, which is mainly controlled by the strength and position of the Intertropical Convergence Zone (ITCZ) and South Atlantic Convergence Zone (SACZ). During times of weakest AMOC in Heinrich Stadial 1 (HS1) , a distinct SST peak in the tropical South Atlantic points to an enhanced Brazil Current and strong recirculation of heat within the southern hemisphere. Further, wet conditions prevailed during this time in tropical South America caused by a maximum southward shift of the ITCZ. This happened in coincidence with a temperature drop and weakening of the North Brazil Current (NBC) in the tropical North Atlantic (Bahr et al., 2018) as result of maximum AMOC slowdown. Therefore, for the first time, we reveal a clear seesaw-like pattern of the NBC and BC during times of abrupt AMOC variability.

While HS1 is generally characterized by a warm and wet anomaly in our record, Ba/Ca ratios and SST show a distinct centennial-scale alternation between warmer (colder) and wetter (drier) phases indicating a distinct climate instability during this climatic phase. A distinct offset exists between SST reconstructed using Mg/Ca, TEX86, and UK’37 which points to strong seasonal differences in the oceanographic settings and/or changes in the terrestrial input from the south American continent. These findings illustrate the strong sensitivity of hydroclimate variability in tropical South America to oceanic forcing as expected also during future climate change, in line with recent studies that showed a severe impact on modern South American climate by changes in (tropical) South Atlantic SSTs (Rodrigues et al., 2019, Utida et al., 2018).

 

Bahr, A., Hoffmann, J., Schönfeld, J., Schmidt, M. W., Nürnberg, D., Batenburg, S. J., & Voigt, S. (2018). Low-latitude expressions of high-latitude forcing during Heinrich Stadial 1 and the Younger Dryas in northern South America. Global and Planetary Change, 160, 1-9.

Rodrigues, R. R., Taschetto, A. S., Gupta, A. S., & Foltz, G. R. (2019). Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nature Geoscience, 12(8), 620-626.

UTIDA, Giselle, et al. Tropical South Atlantic influence on Northeastern Brazil precipitation and ITCZ displacement during the past 2300 years. Scientific reports, 2019, 9. Jg., Nr. 1, S. 1698.

How to cite: Meier, K. J. F., Jaeschke, A., Hoffmann, J., Hennrich, B., Friedrich, O., Chiessi, C. M., Albuquerque, A. L. S., Rethemeyer, J., Nürnberg, D., and Bahr, A.: South American climatic response to changes in the tropical South Atlantic Ocean hydrography during Termination 1, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16361, https://doi.org/10.5194/egusphere-egu2020-16361, 2020.

EGU2020-18522 | Displays | CL1.12

Holocene chronology and tephrostratigraphy for the varved record of Lake Diss Mere (UK)

Celia Martin-Puertas, Amy Walsh, Simon P.E Blockley, George E. Biddulph, Adrian Palmer, Arne Ramisch, and Achim Brauer

The lacustrine record of Lake Diss Mere, Norfolk (UK) is 15 m long, and shows 4.2 m of finely-laminated sediments, which are present between 9 and 13 m of core depth. The microfacies analysis identified three major seasonal patterns of deposition (microfacies 1 – 3), which corroborate the annual nature of sedimentation throughout the whole interval. The sediments are diatomaceous organic and carbonate varves with an average thickness of 0.45 mm. Microfacies 1 consists of a pale layer made of authigenic calcite crystals and diatom frustules, and a dark layer composed of a planktonic diatoms and filaments of organic matter. Microfacies 2 is similar to microfacies 1 but includes a mono-specific diatom bloom layer preceding the calcite layer. Microfacies 3 are varves with an occasional very thin calcite layer and mono-specific diatom blooms in spring and autumn.

A total of 8252 varves were counted with an error of up to  27 varves. To tie the resulting floating varve chronology to the IntCal 2013 radiocarbon timescale, we used a Bayesian Deposition model (P_Sequence with outlier detection) on all available chronological data. The data included seven radiocarbon dates, six tephra layers with known radiocarbon ages, and the relative varve counts between dated points. The resulting age uncertainties are decadal in scale (95% confidence) and allow detailed comparisons to other high-resolution Holocene varved lake and ice-core records on absolute timescales. The potential for this record as a palaeoclimate archive for the British Isles is enhanced by the Glen Garry1(2172 ± 107 cal a BP) and OMH-1852(2667 ± 38 cal a BP) volcanic eruptions which lie amongst 3 further late-Holocene cryptotephra layers at ca 2400 cal a BP, 2540 cal a BP, and 3870 cal a BP, and a mid-Holocene cryptotephra layers at ca 6420 cal a BP. Initial investigations and geochemical characterisation suggest Icelandic eruption centres for these cryptotephra layers which are known to be present in sites in the British Isles and elsewhere in Europe.

1 Barber, K., Langdon, P., Blundell, A. Dating the Glen Garry tephra: a widespread late-Holocene marker horizon in the peatlands of northern Britain. The Holocene, 18: 31-43. 2008.

Plunkett, G.M., Pilcher, J.R., McCormac, F.G., Hall, V.A. New dates for first millennium BC tephra isochrones in Ireland. The Holocene, 14: 780-786. 2004

How to cite: Martin-Puertas, C., Walsh, A., Blockley, S. P. E., Biddulph, G. E., Palmer, A., Ramisch, A., and Brauer, A.: Holocene chronology and tephrostratigraphy for the varved record of Lake Diss Mere (UK), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18522, https://doi.org/10.5194/egusphere-egu2020-18522, 2020.

EGU2020-18990 | Displays | CL1.12

A high-resolution ostracod-derived δ18O record of early Holocene abrupt climatic change from N. Scotland.

Joanna Tindall, Jonathan Holmes, Ian Candy, Melanie Leng, Rhys Timms, Christopher Francis, Daniel Petts, Simon Blockley, Ian Matthews, and Adrian Palmer

Oxygen-isotope ratios can be measured on a range of materials (e.g. ostracods, bulk carbonates, diatom silica) and this, alongside their sensitivity to changes in temperature and precipitation has resulted in oxygen-isotope analyses becoming a well-established tool for investigating palaeoclimatic change. We use δ18O of calcite from ostracod shells to reconstruct palaeotemperature and palaeo-precipitation variability during an early Holocene abrupt climatic event in Crudale Meadow, SW Orkney Mainland, Scotland, UK. The research ultimately aims to further our understanding of the driving mechanisms of palaeoclimatic change during the early Holocene by producing a high-resolution palaeoclimate record from Crudale Meadow and comparing this to the existing data of NW Europe. 

Crudale Meadow is an ideal study site for this research. Spatially, it completes a transect of published early Holocene δ18O records that span Western Ireland1, NW England2 and into Scandinavia3. It has a ~3m thick early Holocene carbonate sequence which offers a multi-decadal or multi-centennial scale study resolution and its proximity to the N. Atlantic makes it highly likely to have been influenced by any climatic changes in the region. A previous study4 presented a bulk carbonate δ18O record for Crudale Meadow but the skeletal chronology limits its usefulness for comparing with regional trends. Here, we present an improved chronology using  tephra and pollen stratigraphy, in addition to the ostracod-derived δ18O record. The studied sequence is anchored by the previously identified Saksunarvatn visible tephra layer dated to 10,210 ± 70 cal. years BP5.

Ostracods are micro-crustaceans with low-Mg calcite shells which take on the isotopic signal of the water body they are in, at the time of shell calcification. In this study, we use winter calcifying Candona spp. for isotopic analysis. These were abundant and well preserved throughout the sequence. Members of this genus have a well-characterised vital offset6 so the δ18O curve can be reliably corrected for vital effects. Moreover, the species analysed are probable winter calcifers, thus reducing the impact of isotopic enrichment through lake water evaporation during summer months. The high-resolution study allows us to identify structure within the identified isotopic excursion and suggest palaeotemperature estimates from the ostracod- and chironomid-inferred temperatures.

The new data presents a clear climatic event with internal structure, which with the current chronology, we hypothesise to be the 9.3ka event. The 9.3ka event has fewer detailed records in comparison to other early Holocene abrupt climatic events (e.g. 8.2ka). Consequently, to identify a structured isotopic signal of the 9.3ka event in NW Europe is an important contribution to our early Holocene records. It emphasises the need for high-resolution δ18O studies during the early Holocene across NW Europe in order to be able to fully identify subtle abrupt climatic events. 

References: 1Holmes, J.H. et al. (2016) QSR, p.341-349; 2Marshall, J.D. et al. (2007) Geology, 35, p.639–642; 3Hammarlund, D. et al. (2002) The Holocene, 12, p.339–351; 4Whittington, G. et al. (2015) QSR, 122, p.112–130; 5Timms, R.G.O. et al. (2018) Quat. Geochron. 46, p.28–44; 6Holmes, J.H & Chivas, A. (2002) AGU Geophysical Monograph, p.118-204.

How to cite: Tindall, J., Holmes, J., Candy, I., Leng, M., Timms, R., Francis, C., Petts, D., Blockley, S., Matthews, I., and Palmer, A.: A high-resolution ostracod-derived δ18O record of early Holocene abrupt climatic change from N. Scotland., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18990, https://doi.org/10.5194/egusphere-egu2020-18990, 2020.

EGU2020-20608 | Displays | CL1.12

Fast and slow components of millennial-scale climate changes

Chronis Tzedakis, Vasiliki Margari, Luke Skinner, Laurie Menviel, Emilie Capron, Rachael Rhodes, Maryline Vautravers, Mohamed Ezat, Belen Martrat, Joan Grimalt, and David Hodell

Despite a substantial body of evidence on millennial-scale climate variability during Marine Isotope Stage 3, uncertainty remains over the precise sequence of changes in different parts of the climate system, and ultimately their causes.  Here, we present results of joint marine and terrestrial proxy analyses from the Portuguese Margin, showing the typical succession of cold stadials and warm interstadials over the interval 35-57 ka, with most extreme changes occurring during Heinrich Stadials (HS).  The planktonic and benthic foraminiferal isotope records map onto Greenland and Antarctic temperature variations, respectively, while the pollen record bears a close similarity to changes in the Asian summer monsoon, atmospheric methane and dust concentrations, indicating coupled changes in hydroclimate in middle-to-low latitudes.  Closer inspection of HS4 and HS5 reveals considerable structure, with a relatively fast transition to maximum cooling and aridity associated with a peak in ice-rafted detritus, containing detrital carbonate grains originating from the Hudson Strait.  This was followed by an interval of slowly increasing sea-surface temperatures (SST) and moisture availability, in line with evidence indicating a gradual evolution in low-latitude hydroclimate.  A climate model experiment closely reproduces the gradual increase in SST and precipitation in W. Iberia during the final part of HS4 as a result of the recovery of the Atlantic overturning circulation, but does not capturethe abrupt warming in Greenland.  What emerges is a diversity of response timescales, from centuries in low-to-mid latitude SST and precipitation to decades in Greenland temperatures.

How to cite: Tzedakis, C., Margari, V., Skinner, L., Menviel, L., Capron, E., Rhodes, R., Vautravers, M., Ezat, M., Martrat, B., Grimalt, J., and Hodell, D.: Fast and slow components of millennial-scale climate changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20608, https://doi.org/10.5194/egusphere-egu2020-20608, 2020.

CL1.13 – Carbon cycle changes from the Last Glacial Maximum to the Pre-industrial: new insights?

EGU2020-1338 | Displays | CL1.13 | Highlight

Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice

Alice Marzocchi and Malte Jansen

Palaeo-oceanographic reconstructions indicate that the distribution of global ocean water masses has undergone major glacial–interglacial rearrangements over the past ~2.5 million years. Given that the ocean is the largest carbon reservoir, such circulation changes were probably key in driving the variations in atmospheric CO2 concentrations observed in the ice-core record. However, we still lack a mechanistic understanding of the ocean’s role in regulating CO2 on these timescales. Here, we show that glacial ocean–sea ice numerical simulations with a single-basin general circulation model, forced solely by atmospheric cooling, can predict ocean circulation patterns associated with increased atmospheric carbon sequestration in the deep ocean. Under such conditions, Antarctic bottom water becomes more isolated from the sea surface as a result of two connected factors: reduced air–sea gas exchange under sea ice around Antarctica and weaker mixing with North Atlantic Deep Water due to a shallower interface between southern- and northern-sourced water masses. These physical changes alone are sufficient to explain ~40 ppm atmospheric CO2 drawdown—about half of the glacial–interglacial variation. Our results highlight that atmospheric cooling could have directly caused the reorganization of deep ocean water masses and, thus, glacial CO2 drawdown. This provides an important step towards a consistent picture of glacial climates.

How to cite: Marzocchi, A. and Jansen, M.: Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1338, https://doi.org/10.5194/egusphere-egu2020-1338, 2020.

EGU2020-2920 | Displays | CL1.13

A weaker Atlantic Meridional Overturning Circulation at the Last Glacial Maximum led to a greater deep ocean carbon content

Laurie Menviel, Paul Spence, Luke Skinner, Kazuyo Tachikawa, Tobias Friedrich, Lise Missiaen, and Jimin Yu

While paleoproxy records and modelling studies consistently suggest that North Atlantic  Deep Water (NADW) was shallower at the Last Glacial Maximum (LGM) than during pre-industrial times, its strength is still subject to debate partly due to different signals across the North Atlantic. Here, using a series of LGM experiments performed with a carbon isotopes enabled Earth system model, we show that proxy records are consistent with a shallower and weaker NADW. A significant equatorward advance of sea-ice over the Labrador Sea and the Nordic Seas shifts the NADW convection sites to the south of the Norwegian Sea. While the deep western boundary current in the Northwest Atlantic weakens with NADW, a change in density gradients strengthens the deep southward flow in the Northeast Atlantic. A shoaling and weakening of NADW further allow penetration of Antarctic Bottom Water in the North Atlantic despite its transport being reduced. This resultant globally weaker oceanic circulation leads to an increase in deep ocean carbon of ~500 GtC, thus significantly contributing to the lower LGM atmospheric CO2 concentration.

 

How to cite: Menviel, L., Spence, P., Skinner, L., Tachikawa, K., Friedrich, T., Missiaen, L., and Yu, J.: A weaker Atlantic Meridional Overturning Circulation at the Last Glacial Maximum led to a greater deep ocean carbon content, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2920, https://doi.org/10.5194/egusphere-egu2020-2920, 2020.

EGU2020-4837 | Displays | CL1.13

Climate, Mixing, and Carbon Budgets in a LGM set-up of CESM

Markus Jochum, Guido Vettoretti, Zanna Chase, and Roman Nuterman

We use a free running Last Glacial Maximum (LGM) setup of CESM1 with its full ecosystem model to understand which processes are responsible for the large difference in atmospheric CO2 concentration between the LGM  and 1850 CE.
Just by accounting for the changed orbital forcing  and replacing today's bathymetry and icesheet orography with their Peltier et al. (2015) LGM reconstructions, leads to a 55 ppm difference in atmospheric CO2.  Additional experiments with increased aolian iron fluxes make it plausible that IPCC class ESMs can reproduce the processes that were hypothesized to be important for the observed low LGM CO2 concentration.

A second focus of our study is the connection between sea level, ocean turbulence and the strengths of the various carbon pumps. Including the full amount of the suggested increase in ocean mixing during the LGM would lead to a 20 ppm larger CO2 concentration.This suggests that either mixing during the LGM is not understood yet, or that ESMs may indeed misrepresent one or more aspects of the various carbon pumps.

We conclude with a discussion of uncertainties within the model setup, in particular with regards to the assumed structure of ocean mixing.

How to cite: Jochum, M., Vettoretti, G., Chase, Z., and Nuterman, R.: Climate, Mixing, and Carbon Budgets in a LGM set-up of CESM, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4837, https://doi.org/10.5194/egusphere-egu2020-4837, 2020.

EGU2020-9899 | Displays | CL1.13

Poleward shift in the Southern Ocean westerlies synchronous with the deglacial rise in atmospheric CO2

William Gray, Robert Wills, Elisabeth Michel, and Masa Kageyama

The Southern Ocean westerly winds are hypothesised to play a key role in regulating atmospheric CO2 over glacial-interglacial cycles; constraints on the paleo-latitude of the westerly winds have, however, remained allusive.  Here we use changes in the spatial pattern of planktic foraminiferal ∂18O to track changes in the latitude of the Southern Ocean polar and subtropical fronts over the last deglaciation, which are closely tied to the position of the westerly winds. We find a ~5° equator-ward shift in the position of the fronts (and thus westerlies) during the last glacial maximum relative to their Holocene position. Our reconstruction shows the poleward shift in the westerlies over deglaciation closely mirrors the sub-millennial scale variability seen in the rise in atmospheric CO2. We propose that changes in the position of the westerly winds modulate CO2 via changes in the extent of Southern Ocean sea ice and circulation of the abyssal ocean. Using climate model simulations, we explore the possibility of a feedback loop by which these CO2/climatic changes may lead to further changes in the position of the westerly winds.

How to cite: Gray, W., Wills, R., Michel, E., and Kageyama, M.: Poleward shift in the Southern Ocean westerlies synchronous with the deglacial rise in atmospheric CO2, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9899, https://doi.org/10.5194/egusphere-egu2020-9899, 2020.

EGU2020-1353 | Displays | CL1.13

Northern Sourced Water dominated the Atlantic Ocean during the Last Glacial Maximum

Frerk Pöppelmeier, Patrick Blaser, Marcus Gutjahr, Samuel Jaccard, Martin Frank, Lars Max, and Jörg Lippold

Increased carbon sequestration in the ocean subsurface is commonly assumed to have been one of the main causes responsible for lower glacial atmospheric CO2 concentrations. This carbon must have been stored away from the atmosphere for thousands of years, yet the water mass structure accommodating such increased carbon storage continues to be debated. Here we present new sediment derived bottom water neodymium isotope data that allow fingerprinting of water masses and their mixtures and provide a more complete picture of the Atlantic overturning circulation geometry during the Last Glacial Maximums. These results suggest that the vertical and meridional structure of the Atlantic deep water mass distribution only experienced minor changes since the last ice age. In particular, we find no compelling evidence supporting glacial southern sourced water substantially expanding to shallower depths and farther into the northern hemisphere than today, which has been inferred from stable carbon isotope reconstructions. We argue that depleted δ13C values observed in the deep Northwest Atlantic do not necessarily indicate the presence of southern sourced water. Instead, these values may represent a northern sourced water mass with lower than modern preformed δ13C values that were further modified downstream by increased sequestration of remineralized carbon, facilitated by a more sluggish glacial deep circulation. If proven to be correct, the glacial water mass structure inferred from Nd isotopes has profound implications on our understanding of the deep ocean carbon storage during the Last Glacial Maximum.

How to cite: Pöppelmeier, F., Blaser, P., Gutjahr, M., Jaccard, S., Frank, M., Max, L., and Lippold, J.: Northern Sourced Water dominated the Atlantic Ocean during the Last Glacial Maximum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1353, https://doi.org/10.5194/egusphere-egu2020-1353, 2020.

EGU2020-8652 | Displays | CL1.13

New pH evidence for changes in intermediate South East Pacific carbon storage during the last deglaciation

Romain Euverte, Elisabeth Michel, Franck Bassinot, James Rae, William Gray, and Molly Trudgill

The leading hypotheses proposed to explain the rise in atmospheric CO2 during the last glacial to interglacial transition proposes enhanced carbon transfer from the intermediate and deep oceans to the atmosphere via the intensification of southern ocean upwelling. To test this scenario, we generated a high resolution record of boron isotopes (d11B) and B/Ca (proxies for pH and carbonate ion concentration, respectively) measured on shells of the benthic foraminifera C. wuellestorfi from a marine sedimentary core located at intermediate depth (1536m) on the Chilean margin. Our records confirm the link between changes in ocean circulation and variations in the carbonate chemistry at this site. The data also reveal the increase of intermediate water pH at the very late LGM, before the beginning of the deglaciation and the rise in atmospheric pCO2. To account for this observation, we suggest the existence of an early release of carbon from the intermediate ocean to the atmosphere in response to sea ice retreat occurring at the same time. The lack of any clear increase in atmospheric CO2 suggests that this release of intermediate ocean carbon was compensated by enhanced biological pumping.

How to cite: Euverte, R., Michel, E., Bassinot, F., Rae, J., Gray, W., and Trudgill, M.: New pH evidence for changes in intermediate South East Pacific carbon storage during the last deglaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8652, https://doi.org/10.5194/egusphere-egu2020-8652, 2020.

EGU2020-4241 | Displays | CL1.13

Storage/Release of Geologic Carbon Influenced Pleistocene Glacial/Interglacial Atmospheric pCO2 Cycles

Lowell Stott, Jun Shao, Kathleen Harazin, Bryan Davy, Ingo Pecher, Richard Coffin, Ludovic Reiss, and Jenny Suckale

For over 100 years scientists have puzzled over the mechanisms responsible for the repeated climate changes known as Ice Ages. A breakthrough was achieved when ice cores and marine archives revealed that the Ice Ages were paced at 100kyr intervals in alignment with Earth’s eccentricity cycle for the past million years. A second breakthrough was achieved when ice core records revealed that the Ice Ages were accompanied by ~80-90ppm variations in atmospheric pCO2. But after decades of research the mechanisms responsible for those atmospheric pCO2 variations remains an open and unresolved puzzle.

Here we present new findings that challenge the long-standing paradigm that geologic processes that regulate carbon exchange between the Earth’s interior and exterior act too slowly to have influenced the ocean and atmosphere carbon budgets on glacial time scales. The evidence includes large Δ14C excursions found in biogenic sediments in each of the Ocean basins at the last glacial termination. These excursions point to a sustained release of 14C-dead carbon spanning several thousand years.  In the Atlantic, Pacific and Indian Ocean the excursions are found near seafloor deformation features, including pockmarks that are indicative of gas-rich fluid release from sub-surface reservoirs. In the eastern equatorial Pacific, the Δ14C excursions are associated with enhanced hydrothermal metal concentrations including Fe, and Z that point to a hydrothermal source. Our ongoing research seeks to identify the storage and release mechanisms that operate on these carbon reservoirs on glacial time scales and to put constraints on the amount of carbon released at the last glacial termination. While the amount of carbon released from these geologic sources remains an open question for now, it is clear that geologic processes have affected changes in the global carbon budget on glacial time scales.

How to cite: Stott, L., Shao, J., Harazin, K., Davy, B., Pecher, I., Coffin, R., Reiss, L., and Suckale, J.: Storage/Release of Geologic Carbon Influenced Pleistocene Glacial/Interglacial Atmospheric pCO2 Cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4241, https://doi.org/10.5194/egusphere-egu2020-4241, 2020.

EGU2020-3433 | Displays | CL1.13

Ocean carbon cycle during the last deglaciation in the Max Planck Institute Earth System Model

Bo Liu, Katharina Six, and Tatiana Ilyina

The deglacial atmospheric CO2 increase has been attributed to a combination of mechanisms, many of which relate to the ocean outgassing triggered by changing marine physical and biogeochemical states. To quantify the impact of proposed processes and feedback on the deglacial CO2 rise, previous modelling studies mostly conducted time-slice sensitivity experiments. Here, we present results from a transient deglaciation simulation (24 kB.P. - 1850) using the comprehensive Max Planck Institute Earth System Model (MPI-ESM). We force the model with the deglacial atmospheric greenhouse gases (CO2, CH4, N2O) concentrations, obital parameters, ice sheet reconstruction and transient dust deposition. The ocean biogeochemical component of MPI-ESM is using the same automatical adjustment of bathymetry and land-sea mask in response to deglacial continental runoff and melt water discharge. In and around the areas of changing land-sea mask, we redistribute the marine biogeochemical tracers in accord with the simulated salinity. Terrestrial organic matter is transferred from flooded land areas to the ocean, which guarantees mass conservation with respect to carbon. We also include 13C tracers in the ocean biogeochemical component to evaluate the simulated ocean state against proxy data. The initial marine nutrients and carbon inventories are set the same as those in the present-day ocean. 
During the first 3 kyr, the climate and ocean state show, as expected, only modest variations. Some flooding events of coastal areas bring terrestrial organic matter to the ocean and lead locally to CO2 outgassing for several decades. Terrestrial organic matter has a higher carbon to nutrient stoichiometry as compared to marine organic matter, thus its remineralization favours CO2 outgassing. Additionally, the accumulation of terrestrial organic matter in the top layers of the marine sediment reduces the replenishment of the water-column nutrients by the re-flux of remineralization products from marine sediment. Consequently, the strength of the local biological pump decreases. Further results will be presented and discussed. 

How to cite: Liu, B., Six, K., and Ilyina, T.: Ocean carbon cycle during the last deglaciation in the Max Planck Institute Earth System Model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3433, https://doi.org/10.5194/egusphere-egu2020-3433, 2020.

EGU2020-1370 | Displays | CL1.13

Modelled response of marine ecosystems to Last Glacial Maximum forcing

Himadri Saini, Karin F. Kvale, Katrin J. Meissner, Laurie Menviel, and Lise Missiaen

Marine plankton play a key role in climatic transitions through their ability to transfer atmospheric carbon dioxide (CO2) to the deep ocean via the biological pump. It has been suggested that the lower atmospheric CO2 concentrations during the Last Glacial Maximum (LGM) might have resulted from enhanced export production triggered by higher micronutrient (Fe, Si) availability from continental dust, particularly in the Southern Ocean. Such a scenario is consistent with higher sediment accumulation rates observed during the LGM.

In this study we use a new competition-driven ecosystem model that includes four major plankton types (diazotrophs, coccolithophores, diatoms and other general phytoplankton) to investigate their response to LGM climatic boundary conditions and to reconstructed micronutrient (Fe, Si) availability. We apply different dust fluxes, based on two plausible reconstructions (Mahowald et al., 2006 and Ohgaito et al., 2018). We compare LGM simulations with preindustrial simulations and disentangle the simulated ecosystem response due to climate forcing from the response due to micronutrient availability. We find that the ecosystem responses are complex and spatially heterogenic.

How to cite: Saini, H., Kvale, K. F., Meissner, K. J., Menviel, L., and Missiaen, L.: Modelled response of marine ecosystems to Last Glacial Maximum forcing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1370, https://doi.org/10.5194/egusphere-egu2020-1370, 2020.

EGU2020-13761 | Displays | CL1.13

Transient simulations of the last deglaciation with interactive carbon cycle using CLIMBER-X

Matteo Willeit and Andrey Ganopolski

The processes leading to the observed atmospheric CO2 variations of ~80 ppm between glacial and interglacial times associated with the glacial cycles of the past million years are still not fully understood. Computationally efficient Earth system models are a unique tool to help elucidate the mechanisms behind the CO2 variations. Here we use the newly developed Earth system model of intermediate complexity CLIMBER-X to explore the effect of different processes on the atmospheric CO2 evolution since the last glacial maximum using transient simulations.

CLIMBER-X includes the frictional-geostrophic 3D ocean model GOLDSTEIN coupled to the HAMOCC ocean and sediment carbon cycle model, the semi-empirical statistical-dynamical atmosphere model SESAM and the land model PALADYN. The model also includes the ice sheet model SICOPOLIS, but for in presented experiments the ice sheets are prescribed from reconstructions. CLIMBER-X can simulate ~10,000 model years per day.

In transient experiments of the last 20,000 years we test the sensitivity of simulated atmospheric CO2 to changes in ocean circulation, ocean temperature, sea level, atmospheric dust deposition and the model representation of crucial ocean biogeochemistry and land carbon cycle processes.

How to cite: Willeit, M. and Ganopolski, A.: Transient simulations of the last deglaciation with interactive carbon cycle using CLIMBER-X, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13761, https://doi.org/10.5194/egusphere-egu2020-13761, 2020.

EGU2020-18562 | Displays | CL1.13

Role of sediment in the marine C cycle—insights from a coupled ocean-sediment model

Christoph Völker, Ying Ye, Martin Butzin, Peter Köhler, and Guy Munhoven

Fluxes of particles and solutes between deep ocean and marine sediment are essential in the biogeochemical cycles of carbon and nutrients, such as nitrogen, silicon and iron. On a millennial time scale, sediment accumulation connects the ocean with the surface lithosphere which impacts the climate through weathering. Despite the importance of sediments in the climate system, fluxes between ocean and sediment are poorly constrained and most of the ocean models use very simplified parameterisation based on some measurements on shelves.

Here we like to present the coupling of the marine biogeochemical model REcoM2 (Regional Ecosystem Model, version2) coupled with the sediment model MEDUSA (Model of Early Diagenesis in the Upper Sediment with Adaptable complexity) for a better understanding of the role of sediments in the marine carbon cycle. MEDUSA resolves chemical reactions and physical processes within the marine sediments. As REcoM allows deviations from the Redfield C:N ratio both in phytoplankton production and remineralisation, the molar ratio of carbon and nitrogen in sinking fluxes vary with time and depth. Our MEDUSA set-up is made to be able to deal with flexible stoichiometry in sinking fluxes by resolving two classes of organic matter with different C:N ratios and degradation rates. We performed model-data comparisons of calcite, opal and particulate organic matter in sediment for present-day to constrain the biological productivity and sinking behaviour of particles in water column, and studied the role of the marine carbon cycle for glacial carbon storage and the drawdown of atmospheric CO2 in simulations under glacial climate conditions. 

How to cite: Völker, C., Ye, Y., Butzin, M., Köhler, P., and Munhoven, G.: Role of sediment in the marine C cycle—insights from a coupled ocean-sediment model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18562, https://doi.org/10.5194/egusphere-egu2020-18562, 2020.

EGU2020-13279 | Displays | CL1.13

PMIP-carbon: towards a multi-models comparison of climate-carbon interactions at the Last Glacial Maximum

Nathaelle Bouttes, Ruza Ivanovic, Ayako Abe-Ouchi, Hidetaka Kobayashi, Laurie Menviel, Akira Oka, and Akitomo Yamamoto and the PMIP-carbon members

More and more climate models now include the carbon cycle, but multi-models studies of climate-carbon simulations within the Climate Model Intercomparison Project (CMIP) are limited to present and future time periods. In addition, the carbon cycle is not considered in the simulations of past periods analysed within the Paleoclimate Modelling Intercomparison Project (PMIP). Yet, climate-carbon interactions are crucial to anticipate future atmospheric CO2 concentrations and their impact on climate. Such interactions can change depending on the background climate, it is thus necessary to compare model results among themselves and to data for past periods with different climates such as the Last Glacial Maximum (LGM).

The Last Glacial Maximum, around 21,000 years ago, was about 4°C colder than the pre-industrial, and associated with large ice sheets on the American and Eurasian continents. It is one of the best documented periods thanks to numerous paleoclimate archives such as marine sediment cores and ice cores. Despite this period having been studied for years, no consensus on the causes of the lower atmospheric CO2 concentration at the time (around 180 ppm) has been reached and models still struggle to simulate these low CO2 values. The ocean, which contains around 40 times more carbon than the atmosphere, likely plays a key role, but models tend to simulate ocean circulation changes in disagreement with proxy data, such as carbon isotopes.

This new project aims at comparing, for the first time, the carbon cycle representation at the Last Glacial Maximum from general circulation models and intermediate complexity models. We will explain the protocol and present first results in terms of carbon storage in the main reservoirs (atmosphere, land and ocean) and their link to key climate variables such as temperature, sea ice and ocean circulation. The use of coupled climate-carbon models will not only allow to compare changes in the carbon cycle in models and analyse their causes, but it will also enable us to better compare to indirect data related to the carbon cycle such as carbon isotopes.

How to cite: Bouttes, N., Ivanovic, R., Abe-Ouchi, A., Kobayashi, H., Menviel, L., Oka, A., and Yamamoto, A. and the PMIP-carbon members: PMIP-carbon: towards a multi-models comparison of climate-carbon interactions at the Last Glacial Maximum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13279, https://doi.org/10.5194/egusphere-egu2020-13279, 2020.

EGU2020-11702 | Displays | CL1.13

How well is the deep Tore seamount basin ventilated?

Laura Antón, Susana Lebreiro, Silvia Nave, Luke Skinner, Elizabeth Michel, Claire Waelbroeck, and Francisco Sierro

The Last Glacial Maximum (LGM) was characterized by increased carbon storage in the deep ocean, as well as extremely poorly ventilated southern-sourced deep water (AABW) compared to northern-sourced deep water (NADW).

Here we analyse benthic (Cibicidoides wellerstorfi) d13C, and compare 3 sites sitting on the deep floor at 5 km water depth: MD13-3473 in the Tore inside basin; MD03-2698 in the Iberian margin; and TN057-21 in the South Atlantic. The Tore Seamount is a geological structure 300 km off the West Iberian margin at 40°N latitude. It has a crater-like morphology with a 5500 m deep basin in its middle, where calypso core MD13-3473 was collected, confined from the open ocean by a summit rim at 2200 m water depth (wd). The only connection between the deepest Tore Seamount basin and the Atlantic circulation is a NE gateway down to 4300 mwd.

The results for the LGM show similar values around -1.0 ‰ for the South Atlantic and the Iberian margin, in other words these sites were both bathed by AABW. However, the Tore basin record exhibits values around 0 ‰, similarly to open sites in the Iberian margin at 3.5 km depth. This seems to indicate a remarkable isolation of the Tore inside basin from the Atlantic deep bottom waters influence.

Among other things, we plan to examine the residence time of the Tore basin bottom water by measuring the radiocarbon age difference between benthic and planktonic foraminifera. 

Our results confer to this enclosed environment the status of an in-situ deep ocean laboratory where to test hypotheses of past ocean circulation changes like the role of deep waters in sequestering glacial CO2. Core MD13-3473 covers 430 thousands of years, therefore 5 deglacial cycles (Spanish project “TORE5deglaciations”, CTM2017-84113-R, 2018-2020).

How to cite: Antón, L., Lebreiro, S., Nave, S., Skinner, L., Michel, E., Waelbroeck, C., and Sierro, F.: How well is the deep Tore seamount basin ventilated?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11702, https://doi.org/10.5194/egusphere-egu2020-11702, 2020.

EGU2020-20171 | Displays | CL1.13

Inferring deglacial ventilation ages in Western Mediterranean waters using cold-water corals

Maria de la Fuente, Luke Skinner, Gemma Ercilla, Elia d'Acremont, Luis Somoza, Francisco Javier González Sanz, Claudio Lo Iacono, Guillem Corbera, Leopoldo D. Pena, Aleksey Sadekov, Pete Scott, Pu Zhang, Hai Cheng, and Isabel Cacho

Mediterranean Outflow Water (MOW) acts as a net source of salt and heat into North Atlantic intermediate depths that ultimately contributes to the Atlantic Meridional Overturning Circulation. On this basis, it has been hypothesised that MOW variability might influence global climate. Although several studies have documented major glacial-interglacial changes in deep- and intermediate Mediterranean circulation patterns, little is known about associated impacts on MOW properties, in particular its residence time and geochemical signature. Using a set of cold-water coral samples from along the ‘pre-MOW’ and MOW path, i.e. from the Alboran Sea to the northern Galician Bank including the Strait of Gibraltar and the Gulf of Cadiz, we aim to identify changes in both the ventilation state of the water masses flowing out of the Mediterranean and the distribution of coral growth.With this purpose, paired Uranium-series and AMS radiocarbon ages have been obtained in the same coral samples allowing any potential change in the reservoir age to be inferred accurately, as well as allowing a spatio-temporal ‘coral map’ to be created. Furthermore, these results have been complemented by trace element measurements in benthic foraminifera from the Alboran coral mound sediment core.

Our results show a particular spatio-temporal coral distribution with glacial presence only at the deepest sites of the Gulf of Cadiz (~1000m), followed by ~300m Western Mediterranean (WMed) coral appearance across the deglaciation/mid Holocene (14-4 kyr), to end with a proliferation at the Strait of Gibraltar and Galicia Bank from ~6 kyr towards the present. We hypothesise 1) that ~300m WMed area might have been bathed in Atlantic waters inflow during the glacial due to sea-level drop, returning to LIW (Levantine Intermediate Water) influence over the deglaciation, and 2) that MOW reached deeper areas outside of the Mediterranean Sea in the Gulf of Cadiz during the glacial period. Regarding the reservoir age, little change at the WMed is observed at 150-450m across the deglaciation as compared to the large ventilation excursion detected in the Iberian Margin at ~1000m. However, a ventilation age gradient of ~300 yr related to water depth is observed within WMed corals when appearing at the Bølling-Allerød, in synchrony with significant changes in hydrographical parameters inferred from foraminiferal trace element from the same area. Overall, our results suggest a water mass reorganization at the surface-intermediate layer of the WMed during the deglaciation and early Holocene, but the ultimate nature of these changes needs yet to be explored by further analysis of Nd isotopes as well as of trace elements beyond the deglaciation.

How to cite: de la Fuente, M., Skinner, L., Ercilla, G., d'Acremont, E., Somoza, L., González Sanz, F. J., Lo Iacono, C., Corbera, G., Pena, L. D., Sadekov, A., Scott, P., Zhang, P., Cheng, H., and Cacho, I.: Inferring deglacial ventilation ages in Western Mediterranean waters using cold-water corals, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20171, https://doi.org/10.5194/egusphere-egu2020-20171, 2020.

EGU2020-4230 | Displays | CL1.13

Release of old carbon from the deep South Pacific during the last deglaciation

Yuhao Dai, Jimin Yu, and Patrick Rafter

The release of old carbon via the Southern Ocean has been thought to contribute to the last deglacial atmospheric CO2 rise, but underlying processes are not fully understood, in part, due to insufficient high-fidelity radiocarbon (Δ14C) reconstructions minimally complicated by age models and release of “dead carbon”. Here, we present a new deep-water Δ14C record for a core located at 3.3 km water depth from the Southwest Pacific, based on a robust age model using planktonic Mg/Ca along with co-existing benthic 14C measurements. Our results confirm previous records that suggest enhanced ventilation in the Southern Ocean during Heinrich Stadial 1 and the Younger Dryas. For the first time, our data show a large Δ14C decline during the Antarctic Cold Reversal, indicating strengthened stratification in the deep South Pacific. Our results strongly support that the deep ocean supplied old carbon to the atmosphere during the last deglaciation.

How to cite: Dai, Y., Yu, J., and Rafter, P.: Release of old carbon from the deep South Pacific during the last deglaciation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4230, https://doi.org/10.5194/egusphere-egu2020-4230, 2020.

Atmospheric carbon dioxide (CO2) concentrations during the last glacial period (70,000 – 23,000 years ago) fluctuated on millennial timescales closely following variations in Antarctic temperature. This close coupling has suggested that the sources and sinks driving millennial scale CO2 changes are dominated by processes in the Southern Ocean. However, recent work revealed centennial-scale increases in CO2 during abrupt climate events of the last deglaciation which may represent a second mechanism of carbon cycle variability. 

Here we analyze a high resolution CO2 record from the last glacial period from the West Antarctic Ice Sheet (WAIS Divide) that precisely defines the timing of CO2 changes with respect to Antarctic ice core proxies for temperature, dust delivery, and sea-ice extent down to the centennial-timescale. Although CO2 closely tracks all these proxies over millennia, peak CO2 levels most often lag behind all proxies by a few hundred years. This decoupling from Antarctic climate variability is most prominent during the onset of DO interstadial events when CO2, CH4 and Greenland temperature all increase simultaneously. Regression analysis suggests that the CO2 variations can be explained by a combination of two mechanisms: one operating on the time scale of Antarctic climate variability, and a second responding on the Dansgaard-Oeschger time scale.  

Recent δ13C-CO2 data from the last glacial period support our finding that CO2 variability is the sum of multiple mechanisms.  The Antarctic climate variability is likely associated with the release of respired organic carbon from the deep ocean.  Superimposed on these oscillations are two types of centennial-scale changes: CO2 increases and δ13C-CO2 minima in the middle of Heinrich stadials and ii) CO2 increases and small changes in δ13C-CO2 that at the onset of DO interstadial event.

To provide a comprehensive and quantitative constraint on the mechanisms of CO2 variability during the last glacial period, we run a large suite of transient box model experiments (n = 500) forced with varying combinations of forcings based on proxy time-series (e.g. AABW formation, NADW formation, ocean temperature, dust delivery, and sea-ice extent).  Using data constraints from the ice core records of CO2, δ13C-CO2 and mean ocean temperature, we arrive at an ensemble of scenarios that can explain a large amount of the centennial and millennial-scale variability observed in the ice core record. Parsing this into a series of factorial experiments we find that Southern Hemisphere processes can explain 80% of the observed variability and Northern Hemisphere processes account for the remaining 20%.  A further breakdown on the level of individual mechanisms is marred by the high degree of correlation between carbon cycle forcings likely operating in the Southern Hemisphere.  None-the-less, our results highlight how multiple mechanisms operating over multiple timescales may have interacted during the last glacial period to drive changes in atmospheric CO2

How to cite: Bauska, T., Marcott, S., and Brook, E.: The ice core record of atmospheric CO2 variability during the Last Glacial Period: new insights from timing and isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7292, https://doi.org/10.5194/egusphere-egu2020-7292, 2020.

It has been known since the 1980s that as the Last Glacial Period ended carbon dioxide (CO2) rose from ~190 ppm to 280 ppm, but the source of this carbon is still unknown. Here it is proposed that the reason why this problem is still unsolved is that the current carbon cycle models are based on outdated chemistry. For instance, many geologists and oceanographers believe that CO2 is drawn down out of the atmosphere by silicate weathering. This idea originated in the 19th Century when it was believed that CO2 was an acid.  Now we know that acids are proton donors and that only when CO2 reacts with water does it form weak carbonic acid (H2CO3). Silicate weathering is the result of the protons (H+ ions) from the carbonic acid increasing the solubility of the insoluble silicate rocks, with the carbon (HCO3 and CO32) acting purely as spectator ions in those reactions.

Here a new carbon cycle is presented where:

  • 1) a new reservoir, the ‘aquasphere’, is incorporated in the inorganic carbon system, which is the hydrosphere less the oceans, i.e. freshwater including rainwater;
  • 2) CO2 is drawn down from the atmosphere into the aquasphere by dissolution in rainwater, rather than by silicate weathering;
  • 3) CO2 is also drawn down from the atmosphere by photosynthesis, some of which is respired into the aquasphere;
  • 4) carbonate weathering is a source of dissolved inorganic carbon to the aquasphere and from there to the oceans, rather than being a neutral player in the carbon system;
  • 5) carbonate sediments in the ocean, which provides a major sink for inorganic carbon, are produced by biotic activity, not chemical precipitation, thus no CO2 is generated by their formation;
  • 6) the carbon sediment sink can also become an inorganic carbon source if the lysocline shoals, e.g. when oceanic pH falls or sea level rises.

With this model, it can be shown that the sea-level rise, caused by melting ice sheets, will shoal the lysocline, which explains both the source and the cause of increased atmospheric CO2 during glacial terminations. This implies that there will be a further increase in CO2 from the ocean sediments caused by sea-level rise when the Greenland and West Antarctic ice sheets melt as a result of anthropogenic global warming. Moreover, since ocean acidification also causes the lysocline to shoal, producing more atmospheric CO2 in a positive feedback loop, then we may have a repeat of the PETM (Paleo-Eocene Thermal Maximum) event when runaway global warming was caused by an increase in atmospheric CO2.

How to cite: McDonald, A.: Increase in CO2 during the Last Termination explained by a new inorganic carbon cycle. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19047, https://doi.org/10.5194/egusphere-egu2020-19047, 2020.

EGU2020-10779 | Displays | CL1.13

Revisiting Carbon Storage in Northern Peatlands: Ground-Based Estimates and Top-Down Constraints from Holocene Global Carbon Budget Reconstructions
not presented

Zicheng Yu, Fortunat Joos, Thomas Bauska, Benjamin Stocker, Hubertus Fischer, Julie Loisel, Victor Brovkin, Gustaf Hugelius, Christoph Nehrbass-Ahles, Thomas Kleinen, and Jochen Schmitt3

Northern peatlands store large amounts of carbon (C) and have played an important role in the global carbon cycle since the Last Glacial Maximum. Most northern peatlands have established since the end of the deglaciation and accumulated C over the Holocene, leading to a total present-day stock of 500 ± 100 GtC. This is a consolidated estimate, emerging from a diversity of methods using observational data. Recently, Nichols and Peteet (2019 Nature Geoscience 12: 917-921) presented an estimate of the northern peat C stock of 1055 GtC—exceeding previous estimates by a factor of two. Here, we will review various approaches and estimates of northern peatlands C storage in the literature and consider peat C storage in the context of the Holocene global C budget. We argue that the estimate by Nichols and Peteet is an overestimate, caused by systematic bias introduced by their inclusion of data that are representative for the major peatland regions and of records that lack direct measurements of C density. In particular, some “peatland” sites and data that were included in their synthesis were likely from lacustrine sediments prior to the onset of peat deposits. Furthermore, we argue that their estimate cannot be reconciled within the constraints offered by ice-core and marine records of stable C isotopes and estimated contributions from other processes that affected the terrestrial C storage during the Holocene.

How to cite: Yu, Z., Joos, F., Bauska, T., Stocker, B., Fischer, H., Loisel, J., Brovkin, V., Hugelius, G., Nehrbass-Ahles, C., Kleinen, T., and Schmitt3, J.: Revisiting Carbon Storage in Northern Peatlands: Ground-Based Estimates and Top-Down Constraints from Holocene Global Carbon Budget Reconstructions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10779, https://doi.org/10.5194/egusphere-egu2020-10779, 2020.

EGU2020-18643 | Displays | CL1.13

Sediment archives from the Arctic Ocean provide evidence for massive remobilization of permafrost carbon in Siberia during the last glacial termination

Jannik Martens, Birgit Wild, Tommaso Tesi, Francesco Muschitiello, Matt O’Regan, Martin Jakobsson, Igor Semiletov, Oleg V. Dudarev, and Örjan Gustafsson

Environmental archives and carbon cycle models suggest that climate warming during the last deglaciation (the transition from the last glacial to the Holocene) caused large-scale thaw of Arctic permafrost, followed by the release of previously freeze-locked carbon. In addition to changing oceanic circulation and outgassing of CO2 trapped in the deep glacial ocean, organic carbon (OC) release from thawing permafrost might have contributed to the rise in atmospheric CO2 by 80 ppmv or ~200 Pg C between 17.5 and 11.7 kyr before present (BP). The few Arctic sediment cores to date, however, lack either temporal resolution or reflect only regional catchments, leaving most of the permafrost OC remobilization of the deglaciation unconstrained.

Our study explores the flux and fate of OC released from permafrost to the Siberian Arctic Seas during the last deglaciation. The Arctic Ocean is the main recipient of permafrost material delivered by river transport or collapse of coastal permafrost, providing an archive for current and past release of OC from thawing permafrost. We studied isotopes (Δ14C-OC, δ13C-OC) and terrestrial biomarkers (CuO-derived lignin phenols, n-alkanes, n-alkanoic acids) in a number of sediment cores from the Siberian Shelf and Central Arctic Ocean to reconstruct source and fate of OC previously locked in permafrost.

The composite record of three cores from the Laptev, East Siberian and Chukchi Seas suggest a combination of OC released by deepening of permafrost active layer in inland Siberia and by thermal collapse of coastal permafrost during the deglaciation. Coastal erosion of permafrost during the deglaciation suggests that sea-level rise and flooding of the Siberian shelf remobilized OC from permafrost deposits that covered the dry shelf areas during the last glacial. A sediment core from the Central Arctic Ocean demonstrates that this occurred in two major pulses; i) during the Bølling-Allerød (14.7-12.9 kyr BP), but most strongly ii) during the early Holocene (11-7.6 kyr BP). In the early Holocene, flooding of 80% of the Siberian shelf amplified permafrost OC release to the Arctic Ocean, with peak fluxes 10-9 kyr BP one order of magnitude higher than at other times in the Holocene.

It is likely that the remobilization of permafrost OC by flooding of the Siberian shelf released climate-significant amounts of dormant OC into active biogeochemical cycling and the atmosphere. Previous studies estimated that a pool of 300-600 Pg OC was held in permafrost covering Arctic Ocean shelves during the last glacial maximum; one can only speculate about its whereabouts after the deglaciation. Present und future reconstructions of historical remobilization of permafrost OC will help to understand how important permafrost thawing is to large-scale carbon cycling.

How to cite: Martens, J., Wild, B., Tesi, T., Muschitiello, F., O’Regan, M., Jakobsson, M., Semiletov, I., Dudarev, O. V., and Gustafsson, Ö.: Sediment archives from the Arctic Ocean provide evidence for massive remobilization of permafrost carbon in Siberia during the last glacial termination, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18643, https://doi.org/10.5194/egusphere-egu2020-18643, 2020.

CL1.14 – Past climate reconstructions from ice core records: limits and gaps in the interpretation of proxies embedded in the ice

EGU2020-21734 | Displays | CL1.14

Offsets among ice core derived CO2 reconstructions covering the Holocene and Last Interglacial

Christoph Nehrbass-Ahles, Jochen Schmitt, Bernhard Bereiter, Sarah Eggleston, Lars Mächler, Lucas Silva, Thomas Stocker, and Hubertus Fischer

There is a general consensus in the scientific community that Greenlandic ice cores do not allow for reconstruction of past atmospheric carbon dioxide (CO2) concentrations due to artifacts likely caused by in-situ production of excess CO2 from both organic and inorganic carbon compounds within the ice archive. In the case of Antarctic ice cores such processes are thought to be insignificant, making Antarctic ice cores the only direct archive of past atmospheric CO2 concentrations beyond modern observations. However, with increasing numbers of high-precision CO2 reconstructions from multiple Antarctic ice cores – mostly covering specific time intervals during the last 130 ka – it has become evident that offsets in CO2 are not unique to Greenland ice cores. Over the last decade evidence is mounting that small systematic offsets of typically 2-10 ppm exist among different Antarctic CO2 records covering the same time period. Because CO2 is well-mixed within the atmosphere different ice cores should agree with each other within their measurement uncertainty, independent of the ice core drilling site. The unambiguous detection of such offsets between different ice cores is only possible in the absence of strong atmospheric trends, such as during interglacial periods. Here, we take a closer look at CO2 offsets among records available for the Holocene and the Last Interglacial and investigate their long-term evolution. We present unpublished CO2 data from multiple ice cores, including Talos Dome and EPICA Dome C, and discuss possible offset producing mechanisms. We speculate that Antarctic ice cores are also subject to slowly progressing in-situ production of CO2 over many millennia, similar to Greenlandic ice cores, however to a much smaller extent and limited to about 10 ppm. We further note a tendency for higher offsets in the case of high accumulation sites. Despite all possible mechanisms that have the potential to alter CO2 concentrations within the ice archive, we highlight that the overall integrity of the ice core-based CO2 reconstruction is not in question, as all records generally share the same common signal. However, the absolute CO2 levels should be interpreted with care and in light of such potential offsets.

How to cite: Nehrbass-Ahles, C., Schmitt, J., Bereiter, B., Eggleston, S., Mächler, L., Silva, L., Stocker, T., and Fischer, H.: Offsets among ice core derived CO2 reconstructions covering the Holocene and Last Interglacial, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21734, https://doi.org/10.5194/egusphere-egu2020-21734, 2020.

EGU2020-20586 | Displays | CL1.14

Continuous (CFA) CH4 record of the Elbrus ice core, Caucasus (preliminary results)

Diana Vladimirova, Xavier Faïn, Patrick Ginot, Stanislav Kutuzov, and Vladimir Mikhalenko

Methane (CH4) is the third most powerful greenhouse gas. However, its warming potential is two orders of magnitude higher than of carbon dioxide and its residence time in the atmosphere is only 9.1 ± 0.9 years. It makes CH4 a good indicator of rapid climate variations both under natural conditions and due to the anthropogenic influence.

The Elbrus ice core was drilled in 2009 on the Western Plato (43°20’53.9’’N, 42°25’36.0’’E) at elevation 5115 m a.s.l. It is 182 m long and is dated back to 280 ± 400 CE (Common Era). The CH4 mixing ratios were analyzed using a continuous flow analysis (CFA) system paired with optical-feedback cavity-enhanced absorption spectroscopy. The measurements campaign was organized at Institut des Géosciences de l'Environnement (IGE), Grenoble, France. This is a first high-resolution mid-latitude CH4 record. The record aims to better constrain the past evolution of mid-latitude methane sources.

Here we present preliminary results of the methane concentration measurements of the Elbrus ice core in high-resolution (CFA CH4 record). We observe in situ production (max level 2900 ppb) and a baseline. We inspect a potential origin of the multiple spikes in the high-resolution record. Supposedly, either an in-situ production in the dust-rich layers occurred or a gas dissolution in the melt layers took place. However, the possibility of in-situ production during continuous gas extraction has to be further studied. The identified melt layers can serve as an indicator of interrupted stable water isotopic signal and may be supportive in the regional temperature reconstructions based on the Elbrus ice core record. A cleaned off the spikes record is inspected for the natural variability of the CH4 baseline concentration related to the short-term climate and methane emissions variability.

How to cite: Vladimirova, D., Faïn, X., Ginot, P., Kutuzov, S., and Mikhalenko, V.: Continuous (CFA) CH4 record of the Elbrus ice core, Caucasus (preliminary results), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20586, https://doi.org/10.5194/egusphere-egu2020-20586, 2020.

EGU2020-15202 | Displays | CL1.14

First continuous high-resolution aerosol record from the East Greenland Ice Core Project (EGRIP), covering the last 15,000 years

Camilla Marie Jensen, Tobias Erhardt, Giulia Sinnl, and Hubertus Fischer

Ice sheets are reliable archives of atmospheric impurities such as aerosols and gasses of both natural and anthropogenic origin. Impurity records from Greenland ice cores reveal much information about previous atmospheric conditions and long-range transport in the Northern hemisphere going back more than a hundred thousand years.

Here we present the data from the upper 1,411 m from the EGRIP ice core, measuring conductivity, dust, sodium, calcium, ammonium, and nitrate. These records contain information about ocean sources, transport of terrestrial dust, soil and vegetation emissions as well as biomass burning, volcanic eruptions, etc., covering approximately the past 15,000 years. This newly obtained data set is unique as it provides the first high-resolution information about several thousands of years of the mid-Holocene period in Greenland that none of the previous impurity records from the other deep Greenland ice cores had managed to cover before due to brittle ice. This will contribute to further understanding of the atmospheric conditions for the pre-industrial period.

The ammonium record contains peaks significantly higher than the background level. These peaks are caused by biomass burning or forest fires emitting plumes of ammonia large enough so that they can extend to the free troposphere and be efficiently transported all the way to the Greenland ice sheet. Here we present preliminary results of the wild fire frequency covering the entire Holocene, where the wild fires are defined as outliers in the ammonium record of annual means.

How to cite: Jensen, C. M., Erhardt, T., Sinnl, G., and Fischer, H.: First continuous high-resolution aerosol record from the East Greenland Ice Core Project (EGRIP), covering the last 15,000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15202, https://doi.org/10.5194/egusphere-egu2020-15202, 2020.

EGU2020-14381 | Displays | CL1.14

Representativeness of decadal-scale climate signals in ice-core aerosol records

Tobias Erhardt, Camilla Jensen, Maria Hörhold, and Hubertus Fischer

Records of past aerosol deposition to the polar ice sheets have enabled us to study variability in different parts of the earth system in great temporal detail over past glacial cycles. Furthermore, the high temporal resolution of ice-core aerosol records has been the basis for precise dating of climate records using annual layer counting. Nonetheless, the intermittent character of show deposition and especially the redistribution of snow on the surface of the ice sheet intrinsically affects the preservation of climate signals in the ice. This strongly limits how representative a climate record from a single ice core can be. It has been well established that even though seasonal variability might be preserved in an ice-core aerosol record, the inter annual variability of that record is different from a different core from the same site.

Until now most of the investigations have focused on inter annual representatives. This is mostly due to limited sample availability as multiple long records are needed for investigations on longer time scales. However, with the prospect of new high-resolution records over the Holocene from the EastGRIP ice core, understanding the representativeness of this record on decadal time scales is an important question. To tackle this problem, we use high-resolution aerosol records from multiple closely spaced ice cores from the EastGRIP deep ice core drill site. The records approximately cover the last millennium and are sub-seasonally resolved enabling the study of interannual to decadal variability over multiple aerosol species. All records are dated using annual layer counting and cross dating to the EastGRIP deep ice core using volcanic match points. In the presented pilot study, we focus on records of sea-salt and dust related aerosol species as well as on episodic aerosol signals from volcanos and wildfires.

How to cite: Erhardt, T., Jensen, C., Hörhold, M., and Fischer, H.: Representativeness of decadal-scale climate signals in ice-core aerosol records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14381, https://doi.org/10.5194/egusphere-egu2020-14381, 2020.

EGU2020-16739 | Displays | CL1.14

Diffusion of climatic signals in ice cores by vein migration

Felix S. L. Ng

EGU2020-15986 | Displays | CL1.14

Soluble/insoluble fractionation of elements in mineral dust from Antarctic samples

Elena Di Stefano, Giovanni Baccolo, Paolo Gabrielli, Aja Ellis, Barbara Delmonte, and Valter Maggi

Deposition of dust on the Antarctic continent is controlled by many factors, such as the primary supply of dust particles from the continents [1], the long range transport, the hydrological cycle and the snow accumulation rate [2, 3]. Thus, the study of mineral dust in ice cores gives the possibility to reconstruct past climatic and environmental conditions.

Generally, when an ice core sample is melted, soluble elements dissolve in water, while insoluble elements remain in the solid phase. Other elements, such as iron, calcium, potassium and sulfur, typically partition between the soluble and the insoluble fractions. However recent studies have shown how the dust record may be chemically and physically altered in deep ice cores [4, 5], posing a challenge in the interpretation of the climatic signal that may lie within such samples. In particular, relative abundance of specific elements was shown to be different when comparing shallow and deep dust samples, suggesting that post depositional processes are taking place.

In this study we present a comparison between samples belonging to the Talos Dome ice core analyzed through two different techniques: instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). While the former is used to investigate only the insoluble fraction of dust, as it can only be applied to solid samples, the latter is used to assess the elemental composition of both the total and the soluble fraction of dust. We determined 45 elements through ICP-MS and 39 through INAA, with a good overlapping of the elements between the two techniques. Besides the determination of major elements, the high sensibility of both techniques also permitted the determination of trace elements. Among these, rare earth elements (REE) are of particular importance as they have been widely used as a geochemical tracer of aeolian dust sources [6]. We here present depth profiles for each analysed element, covering discrete portions of the entire ice core.

 

Bibliography

[1] Petit, Jean-Robert, et al. "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica." Nature 399.6735 (1999): 429-436.

[2] Lambert, Fabrice, et al. "Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core." Nature 452.7187 (2008): 616.

[3] Wegner, Anna, et al. "The role of seasonality of mineral dust concentration and size on glacial/interglacial dust changes in the EPICA Dronning Maud Land ice core." Journal of Geophysical Research: Atmospheres 120.19 (2015): 9916-9931.

[4] Baccolo, Giovanni, et al. “The contribution of synchrotron light for the characterization of atmospheric mineral dust in deep ice cores: Preliminary results from the Talos Dome ice core (East Antarctica).” Condensed Matter 3, no. 3 (2018): 25.

[5] De Angelis, Martine, et al. “Micro-investigation of EPICA Dome C bottom ice: Evidence of long term in situ processes involving acid-salt interactions, mineral dust, and organic matter.” Quaternary Science Reviews 78 (2013): 248-265.

[6] Gabrielli, Paolo, et al. “A major glacial-interglacial change in aeolian dust composition inferred from Rare Earth Elements in Antarctic ice.” Quaternary Science Reviews 29, no. 1-2 (2010): 265-273.

 

How to cite: Di Stefano, E., Baccolo, G., Gabrielli, P., Ellis, A., Delmonte, B., and Maggi, V.: Soluble/insoluble fractionation of elements in mineral dust from Antarctic samples, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15986, https://doi.org/10.5194/egusphere-egu2020-15986, 2020.

EGU2020-8537 | Displays | CL1.14

Towards an improved understanding of high-resolution impurity signals in deep Antarctic ice cores

Pascal Bohleber, Marco Roman, Carlo Barbante, Barbara Stenni, and Barbara Delmonte

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers minimally destructive ice core impurity analysis at micron-scale resolution. This technique is especially suited for exploring closely spaced layers of ice within samples collected at low accumulation sites or in regions of highly compressed and thinned ice. Accordingly, LA-ICP-MS promises invaluable insights in the analysis of a future “Oldest ice core” from Antarctica. However, in contrast to ice core melting techniques, taking into account the location of impurities is crucial to avoid misinterpretation of ultra-fine resolution signals obtained from newly emerging laser ablation technologies. Here we present first results from a new LA-ICP-MS setup developed at the University of Venice, based on a customized two-volume cryogenic ablation chamber optimized for fast wash-out times. We apply our method for high-resolution chemical imagining analysis of impurities in samples from intermediate and deep sections of the Talos Dome and EPICA Dome C ice cores. We discuss the localization of both soluble and insoluble impurities within the ice matrix and evaluate the spatial significance of a single profile along the main core axis. With this, we aim at establishing a firm basis for a future deployment of the LA-ICP-MS in an “Oldest Ice Core”. Moreover, our work illustrates how LA-ICP-MS may offer new means to study the impurity-microstructure interplay in deep polar ice, thereby promising to advance our understanding of these fundamental processes.

How to cite: Bohleber, P., Roman, M., Barbante, C., Stenni, B., and Delmonte, B.: Towards an improved understanding of high-resolution impurity signals in deep Antarctic ice cores, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8537, https://doi.org/10.5194/egusphere-egu2020-8537, 2020.

EGU2020-22651 | Displays | CL1.14 | Highlight | Milutin Milankovic Medal Lecture

Astronomical forcing and climate : insights from ice core records

Valérie Masson-Delmotte

Ice cores provide a wealth of insights into past changes in climate and atmospheric composition.

Obtaining information on past polar temperature changes is important to document climate variations beyond instrumental records, and to test our understanding of past climate variations, including the Earth system response to astronomical forcing.

Since the 1960s, major breakthrough in ice core science have delivered a matrix of quantitative Greenland and Antarctic ice core records.

Temperature reconstructions from polar ice cores document past polar amplification, and provide quantitative constraints to test climate models.

Climate information from the air and ice preserved in deep ice cores has been crucial to unveil the tight coupling between the carbon cycle and climate and the role of past changes in atmospheric greenhouse gas composition in the Earth system response to astronomical forcing.

Ice core constraints on past changes in ice sheet topography are also key to characterize the contribution of the Greenland and Antarctic ice sheets to past sea level changes.

The construction of a common chronological framework for Greenland and Antarctic ice core records has unveiled the bipolar sequence of events during the glacial-interglacial cycle, and the interplay between abrupt change and the response of the climate system to astronomical forcing.

International efforts have started to obtain the oldest ice cores (hopefully back to 1,5 million years) from Antarctica, in order to understand the reasons for the major shifts in the response of the climate system to astronomical forcing at that time, leading to more intense and longer glacial periods. 

How to cite: Masson-Delmotte, V.: Astronomical forcing and climate : insights from ice core records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22651, https://doi.org/10.5194/egusphere-egu2020-22651, 2020.

EGU2020-12753 | Displays | CL1.14

Oxygen-to-nitrogen ratios in 1.5-million-year-old ice cores from Allan Hills Blue Ice Areas: implications for the long-term atmospheric oxygen concentrations

Yuzhen Yan, Michael Bender, Edward Brook, Heather Clifford, Preston Kemeny, Andrei Kurbatov, Sean Mackay, Paul Mayewski, Jessica Ng, Jeffrey Severinghaus, and John Higgins

Gases preserved in ice cores provide a potential direct archive for atmospheric oxygen. Yet, oxygen-to-nitrogen ratios in ice cores (expressed as δO2/N2) are modified by a number of processes related to gas trapping and gas losses in the ice. Such complications have long hindered the use of ice core δO2/N2 to derive true atmospheric oxygen concentrations. Recently, a persistent decline in δO2/N2, observed in four different ice cores (GISP2, Vostok, Dome F, and EDC), is interpreted to reflect decreasing atmospheric O2 concentrations over the late Pleistocene (Stolper et al., 2016). The rate of δO2/N2 change is -8.4±0.2 ‰/Myr (1σ). Using new measurements made on EDC samples stored at -50 °C and therefore free from gas loss, Extier et al (2018) confirms the decrease in δO2/N2 with a slope of -7.0±0.6‰/Myr (1σ).

Here, we present new δO2/N2 measurements made on 1.5-million-year-old blue ice cores from Allan Hills Blue Ice Areas, East Antarctica. We use argon-to-nitrogen ratios (δAr/N2) in the ice to correct for the fractionations during bubble close-off and gas losses. In those processes, δAr/N2 is fractionated in a fashion similar to δO2/N2 (Huber et al., 2006; Severinghaus and Battle, 2006). Paired δO2/N2-δAr/N2 values measured from the same sample were classified into three different time slices: 1.5 Ma (million years old), 950 ka, and 490 ka. Between 950 ka and 490 ka, we observe a decline in δO2/N2 similar to that observed in the aforementioned deep ice cores. This observation gives us confidence in the validity of the Allan Hills blue ice δO2/N2 records. Between 1.5 Ma and 950 ka, however, there is no statistically significant trend in ice core δO2/N2. Our results show a surprising lack of variability from 1.5 to 0.95 Ma; even during the past ~0.9 Ma, the rate of decline was very slow.

How to cite: Yan, Y., Bender, M., Brook, E., Clifford, H., Kemeny, P., Kurbatov, A., Mackay, S., Mayewski, P., Ng, J., Severinghaus, J., and Higgins, J.: Oxygen-to-nitrogen ratios in 1.5-million-year-old ice cores from Allan Hills Blue Ice Areas: implications for the long-term atmospheric oxygen concentrations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12753, https://doi.org/10.5194/egusphere-egu2020-12753, 2020.

EGU2020-20166 | Displays | CL1.14

Theoretical limits and new approaches to reconstruct temperature from the isotopic composition of ice cores in low-accumulation regions

Thomas Laepple, Thomas Münch, Mathieu Casado, Maria Hörhold, Johannes Freitag, Martin Werner, and Remi Dallmayr

For several decades, ice-core water-isotope research was focused on retrieving and interpreting single cores, measured on increasingly finer resolution and higher analytic precision. However, not only the sampling resolution or analytical precision limits the ability to recover the climate signal, but also the way the climatic signal is imprinted in the isotopic composition profile obtained from ice cores. Therefore, despite three decades of Antarctic ice-coring and dozens of firn cores, especially the temperature evolution in the low accumulation region of East Antarctica during the last millennium is still barely known.  In the recent years, strong progress has been made in the understanding of the isotopic signal formation based on process studies, snow pits, snow trenches and replicate cores. Using this knowledge, we will review the limits of temperature reconstructions based on theoretical considerations, empirical signal-to-noise ratio estimates and forward models of the signal formation. We will further discuss new avenues for sharpening the ability to recover high-resolution temperature signals from firn and ice cores by optimally combining multiple cores and by combining isotope with impurity records.

How to cite: Laepple, T., Münch, T., Casado, M., Hörhold, M., Freitag, J., Werner, M., and Dallmayr, R.: Theoretical limits and new approaches to reconstruct temperature from the isotopic composition of ice cores in low-accumulation regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20166, https://doi.org/10.5194/egusphere-egu2020-20166, 2020.

EGU2020-19341 | Displays | CL1.14 | Highlight

Quantifying the influence of natural forcing on oxygen isotope variability in alpine and polar ice core sites

Kira Rehfeld, Moritz Kirschner, Max Holloway, and Louise Sime

Stable water isotope ratios are routinely used to infer past climatic conditions in palaeoclimate archives. In particular, oxygen isotope ratios in precipitation co-vary with temperature in high latitudes, and have been established as indicators for past temperature changes in ice-cores. The timescales for which this holds, and the validity of spatial/temporal regression slopes are difficult to constrain based on the observational record.

Here, surface climate and oxygen isotope ratio variability are compared across an ensemble of millennial-long simulations with the isotope-enabled version of the Hadley Centre Coupled Model version 3 (iHadCM3). The ensemble consists, amongst others, of paired experiments. One half were performed as conventional palaeoclimate equilibrium simulations for the Last Glacial Maximum (LGM, orbital and trace gas concentrations of 21kyrs BP), the mid Holocene (conditions 6kyrs BP) and the pre-industrial period (PI, 1850CE) analogously to the simulations in the Palaeoclimate Modeling Intercomparison Project. The second half of the ensemble is additionally perturbed by radiative forcing variations from solar variability and volcanic forcing as for the last millennium. Each simulation is continued for at least 1050 years.

We find that global mean surface temperature and precipitation decrease significantly in all considered climate states (LGM, 6k, PI). Post-volcanic temperature reduction is fairly consistent across the globe, but weak in Antarctica. In the PI state, we find a significant increase in the AMOC strength after eruptions. This does not occur for the LGM state. No significant responses to solar forcing were detectable in the isotopic record. Correlating precipitation-weighted δ18O (δ18Opr) at these locations with surface temperature across the globe shows strong linear relationships and teleconnections. In Greenland, δ18Opr, at the decadal scale, shows high correlations across the Northern hemisphere for the PI simulations, but this spatial representativeness is smaller in the LGM.

We finally examine the detectability of strong interannual volcanic impacts in the climate and isotope record at ice core drill sites in West and East Antarctica, Greenland, the European Alps and the Tibet Plateau. At all locations, modeled isotope and climate variance is higher in the naturally forced simulations. On annual time scales, we find only weak imprints of sub-supervolcanic eruptions in annual δ18Opr at most locations compared to interannual variability, with the exception of the Tibet plateau. We extend this epoch analysis to high-resolution ice core records to assess the consistency between modeled and measured isotope variations for prominent volcanic eruptions over the last millennium.

The inclusion of natural forcing in the simulations alleviates the discrepancy between modeled and observed isotope variability. However, the gap cannot be closed completely. This suggests that improving our understanding of the signal formation process, the dynamical origins of isotope signatures, and model biases at all latitudes is important to constrain the regional to global representativeness of stable water isotopes in ice cores.

How to cite: Rehfeld, K., Kirschner, M., Holloway, M., and Sime, L.: Quantifying the influence of natural forcing on oxygen isotope variability in alpine and polar ice core sites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19341, https://doi.org/10.5194/egusphere-egu2020-19341, 2020.

EGU2020-9013 | Displays | CL1.14

Exploring ice core sea ice proxies through process-based modelling

Rachael Rhodes, Xin Yang, and Eric Wolff

It is important to understand the magnitude and rate of past sea ice changes, as well as their timing relative to abrupt shifts in other components of Earth’s climate system. Furthermore, records of past sea ice over the last few centuries are urgently needed to assess the scale of natural (internal) variability over decadal timescales. By continuously recording past atmospheric composition, polar ice cores have the potential to document changing sea ice conditions if atmospheric chemistry is altered.  Sea salt aerosol, specifically sodium (Na), and bromine enrichment (Brenr, Br/Na enriched relative to seawater ratio) are two ice core sea ice proxies suggested following this premise.

Here we aim to move beyond a conceptual understanding of the controls on Na and Brenr in ice cores by using process-based modelling to test hypotheses. We present results of experiments using a 3D global chemical transport model (p-TOMCAT) that represents marine aerosol emission, transport and deposition. Critically, the complex atmospheric chemistry of bromine is also included. Three fundamental issues will be examined: 1) the partitioning of Br between gas and aerosol phases, 2) sea salt aerosol production from first-year versus multi-year sea ice, and 3) the impact of increased acidity in the atmosphere due to human activity in the Arctic.

How to cite: Rhodes, R., Yang, X., and Wolff, E.: Exploring ice core sea ice proxies through process-based modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9013, https://doi.org/10.5194/egusphere-egu2020-9013, 2020.

EGU2020-801 | Displays | CL1.14

Examining the strength of the link between surface temperature and surface mass balance in ice cores and models over the last centuries in Antarctica

Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T.M. Lenaerts, and Elizabeth R. Thomas

Ice cores constitute an important record of the past surface mass balance (SMB) of the ice sheets, with SMB ultimately modulating the ice sheets’ sea level impact. For the Antarctic Ice Sheet (AIS), SMB is dominated by snow accumulation and strongly controlled by atmospheric circulation. Large-scale atmospheric depressions collect warmth and moisture from further north that they then release over the AIS in the form of widespread accumulation or focused atmospheric rivers. This implies that snow deposited at the surface of the AIS should show strongly coupled SMB and surface air temperatures (SAT) variations. Ice cores do not record SAT directly but their d18O record is often used as a temperature proxy.

 

Here, using the PAGES 2k Network ice core compilations of SMB and d18O of Thomas et al. (2017) and Stenni et al. (2017), we obtain a weak correlation between SMB and d18O over historical timescales, and an equivalently weak correlation between SMB and SAT based on the Nicolas & Bromwich (2014) SAT reconstructions. However, we calculate a strong and positive SMB-SAT correlation in the majority of regions of the AIS using Global Climate Models (GCM) and the regional model RACMO2.3p2.

 

To resolve the discrepancy between measured and modeled signals, we show that averaging the ice core records in close spatial proximity increases their SMB-SAT correlation. This increase in measured SMB-SAT correlation likely results from noise present in the ice core records, but is not enough to match the strong correlation calculated in the models. On the model side, the high spatial resolution of the RACMO2.3p2 model allows us to highlight a number of areas of the AIS where SMB and SAT are not strongly correlated. We describe how wind-driven processes acting on the SMB and SAT locally, through Foehn and katabatic effects, can overwhelm the large-scale atmospheric input that induces the positive SMB-SAT correlations. In particular, we focus on Dronning Maud Land, East Antarctica, where each ice promontory clearly shows this wind-driven snow redistribution. Nevertheless, those regions displaying a low SMB-SAT correlation cover only a small fraction of the AIS and are not sufficient to explain the model-data discrepancy, suggesting a critical role of processes at a scale smaller than the one resolved by the regional model.

 

References:

Thomas, E. R., 2017, Regional Antarctic snow accumulation over the past 1000 years, Climate of the Past, 13, 1491–1513.

Stenni, B. et al., 2017, Antarctic climate variability on regional and continental scales over the last 2000 years, Climate of the Past, 13, 1609–1634.

Nicolas, J. P. & Bromwich, D. H., 2014, New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses, Journal of Climate, 27, 8070–8093.

How to cite: Cavitte, M. G. P., Dalaiden, Q., Goosse, H., Lenaerts, J. T. M., and Thomas, E. R.: Examining the strength of the link between surface temperature and surface mass balance in ice cores and models over the last centuries in Antarctica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-801, https://doi.org/10.5194/egusphere-egu2020-801, 2020.

EGU2020-3583 | Displays | CL1.14

Coupled artefact production of methane, ethane, and propane in polar ice cores

Jochen Schmitt, James Lee, Jon Edwards, Edward Brook, Thomas Blunier, Michaela Mühl, Barbara Seth, Jonas Beck, and Hubertus Fischer

Air inclusions trapped in polar ice provide unique records of the past atmospheric composition ranging from key greenhouse gases to short-lived trace gases like ethane and propane. Provided the analyzed species concentrations and their isotopic fingerprints accurately reflect past atmospheric composition, valuable constraints can be put onto biogeochemical cycles. However, it is already known that not all drill sites or specific time intervals are equally suitable to derive artefact-free gas records; e.g., CO2 data from Greenland ice is overprinted by CO2 ‘in situ’ production due to impurities in the ice, and only the cleaner Antarctic ice allows to reconstruct past atmospheric CO2.

Until recently, CH4 artefacts in polar ice were only detected on melt affected samples or for short spikes related to exceptional impurity deposition events (Rhodes et al 2013). However, careful comparison of CH4 records obtained using different extraction methods revealed disagreements among Greenland CH4 records and initiated targeted experiments.

Here, we report experimental findings of CH4 artefacts occurring in dust-rich sections of Greenland ice cores. The artefact production happens during the melt extraction step (‘in extractu’) of the classic wet extraction technique and typically reaches 20 ppb in dusty stadial ice which causes erroneous reconstructions of the interhemispheric CH4 difference and strongly affects the hydrogen isotopic signature of CH4 (Lee et al. 2020). The measured CH4 excess is proportional to the amount of mineral dust in the ice. Knowing the empirical relation between produced CH4 and the dust concentration of a sample allows a first-order correction of existing CH4 data sets and to revise previous interpretations.

To shed light on the underlying mechanism, we analyzed samples for other short-chain alkanes ethane (C2H6) and propane (C3H8). The production of CH4 was always tightly accompanied with C2H6 and C3H8 production at amounts exceeding the past atmospheric background levels derived from low-dust samples. Independent of the produced amounts, CH4, C2H6, and C3H8 were produced in molar ratios of roughly 16:2:1, respectively. The simultaneous production at these ratios does not point to an anaerobic methanogenic origin which typically exhibits methane-to-ethane ratios of >>100. Such alkane patterns are indicative of abiotic degradation of organic matter as found in sediments.

We found this specific alkane pattern not only for dust-rich samples but also for samples that were affected by surface melting from the last interglacial (NEEM ice core) with low dust concentrations. This implies that the necessary precursor is an impurity also present in low-dust ice and the step leading to the production of the alkanes could then be activated when a sufficient boundary condition is met for the production, e.g. by melt/refreeze of surface snow.

How to cite: Schmitt, J., Lee, J., Edwards, J., Brook, E., Blunier, T., Mühl, M., Seth, B., Beck, J., and Fischer, H.: Coupled artefact production of methane, ethane, and propane in polar ice cores, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3583, https://doi.org/10.5194/egusphere-egu2020-3583, 2020.

EGU2020-9860 | Displays | CL1.14

Variability of gas-trapping characteristics on the central Antarctic Plateau

Patricia Martinerie, Kévin Fourteau, Jérôme Chappellaz, Anaïs Orsi, Xavier Faïn, Geoffrey Lee, Amaëlle Landais, and William Sturges

Central Antarctic Plateau sites display a strong contrast in deep firn gas ages with relatively high accumulation sites (South Pole, EPICA DML) showing very old (about a century) gas ages in the open porosity of deep firn on one side, and very young (few decades) gas ages and an absence of deep firn δ15N plateau (indicative of remaining gas transport) at low accumulation rate sites (Dome C, Dome F, Vostok) on the other side. Multi-tracer results from an intermediate accumulation site named "Lock-in" will be presented. At this fairly low accumulation rate site (~3.6 cm water equivalent / year), very old air ages were obtained in deep firn but the lock-in zone looks narrower than at South Pole. Analytical results, as well as gas transport and densification modelling results will be discussed in terms of variability of gas-trapping characteristics on the central Antarctic Plateau and degree of understanding of the underlying mechanisms.

How to cite: Martinerie, P., Fourteau, K., Chappellaz, J., Orsi, A., Faïn, X., Lee, G., Landais, A., and Sturges, W.: Variability of gas-trapping characteristics on the central Antarctic Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9860, https://doi.org/10.5194/egusphere-egu2020-9860, 2020.

EGU2020-21651 | Displays | CL1.14

Constraining ice core chronologies with 39Ar and 81Kr

Florian Ritterbusch, Yan-Qing Chu, Ilaria Crotti, Xi-Ze Dong, Ji-Qiang Gu, Shui-Ming Hu, Wei Jiang, Amaelle Landais, Volodya Lipenkov, Zheng-Tian Lu, Lili Shao, Barbara Stenni, Taldice Team, Lide Tian, A-Min Tong, Wen-Hao Wang, and Lei Zhao

Paleoclimate reconstructions from ice core records can be hampered due to the lack of a reliable chronology, especially when the stratigraphy is disturbed and conventional dating methods are not readily applied. The noble gas radioisotopes 81Kr and 39Ar can in these cases provide robust constraints as they yield absolute, radiometric ages. 81Kr (half-life 229 ka) covers the time span from 50-1300 ka, which is particularly relevant for polar ice cores, whereas 39Ar (half-life 269 a) with a dating range of 50-1400 a is suitable for high mountain glaciers. For a long time the use of 81Kr and 39Ar for dating of ice samples was hampered by the lack of a detection technique that can meet its extremely small abundance at a reasonable sample size. Here, we report on 81Kr and 39Ar dating of Antarctic and Tibetan ice cores with the detection method Atom Trap Trace Analysis (ATTA), using 5-10 kg of ice for 81Kr and 2-5 kg for 39Ar. Among others, we measured 81Kr in the lower section of Taldice ice core, which is difficult to date by conventional methods, and in the meteoric bottom of the Vostok ice core in comparison with an age scale derived from hydrate growth. Moreover, we have obtained an 39Ar profile for an ice core from central Tibet in combination with a timescale constructed by layer counting. The presented studies demonstrate how the obtained 81Kr and 39Ar ages can complement other methods in developing an ice core chronology, especially for the bottom part.

[1] Z.-T. Lu, Tracer applications of noble gas radionuclides in the geosciences, Earth-Science Reviews 138, 196-214, (2014)

[2] C. Buizert, Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica, Proceedings of the National Academy of Sciences, 111, 6876, (2014)

[3] L. Tian, 81Kr Dating at the Guliya Ice Cap, Tibetan Plateau, Geophysical Research Letters, (2019)

[4] http://atta.ustc.edu.cn

How to cite: Ritterbusch, F., Chu, Y.-Q., Crotti, I., Dong, X.-Z., Gu, J.-Q., Hu, S.-M., Jiang, W., Landais, A., Lipenkov, V., Lu, Z.-T., Shao, L., Stenni, B., Team, T., Tian, L., Tong, A.-M., Wang, W.-H., and Zhao, L.: Constraining ice core chronologies with 39Ar and 81Kr, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21651, https://doi.org/10.5194/egusphere-egu2020-21651, 2020.

EGU2020-13557 | Displays | CL1.14

New data from the 40 year old Dye3 core

Thomas Blunier, Janani Venkatesh, David Aaron Soestmeyer, Jesper Baldtzer Liisberg, Rachael Rhodes, James Andrew Menking, Jeffrey P. Severinghaus, Meg Harlan, Helle Astrid Kjær, and Paul Vallelonga

The Dye3 core was drilled at Dye3 (65°11’N, 43°50’W) in 1979 – 1981. The core has been analyzed for numerous components over the last decades. We measured remaining sections, the Younger Dryas and a larger portion of the last glacial, in a continuous flow setup in fall 2019. Here we focus on gas measurements. We measured methane, δ15N, δ40Ar, and the elemental ratio of Ar and N2. We present the continuous flow setup for measuring those components in parallel and first results with a focus on the exact timing of changes in methane and δ15N and δ40Ar at the Younger Dryas and Dansgaard-Oeschger transitions.

How to cite: Blunier, T., Venkatesh, J., Soestmeyer, D. A., Liisberg, J. B., Rhodes, R., Menking, J. A., Severinghaus, J. P., Harlan, M., Kjær, H. A., and Vallelonga, P.: New data from the 40 year old Dye3 core, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13557, https://doi.org/10.5194/egusphere-egu2020-13557, 2020.

EGU2020-15726 | Displays | CL1.14

Hafnium (and Sr-Nd) isotope analysis of mineral dust: from sample digestions to mass spectrometry

Gabor Ujvari, Urs Klötzli, Monika Horschinegg, Wencke Wegner, Dorothee Hippler, Nathalie Tepe, Gabriella Kiss, Anikó Horváth, and Anders Svensson

Mineral dust in ice cores provides insight into past atmospheric circulation patterns provided that the source(s) of these aerosols can be identified. Isotopes of strontium, neodymium and lead are frequently used for source discrimination in ice cores, while those of hafnium much less so. This is because of the extremely low (1-5 ng) amounts of Hf present in 5-10 mg dust samples usually available for isotopic analyses from the dustiest periods of past glaciations, e.g. the Last Glacial Maximum. The use of 176Hf/177Hf isotopic ratios in dust fingerprinting is crucial in situations when Sr-Nd isotopes are inconclusive in source identification.

The overall Hf budget is dominated by the heavy mineral zircon in silt-sized, wind-blown material, while it is significantly depleted in the finer (<5 µm) fractions and the effects of other minerals (apatite, sphene, monazite, xenotime and clay minerals) become increasingly important. Since the major hosts of Hf are refractory heavy minerals, the complete digestion of dust material is crucial in determining reliable Hf isotope ratios.

Here we introduce a closed vessel ammonium bifluoride (NH4HF2) digestion method (220 °C), which is a fast and low blank (0.5 ng for Sr, 0.2 ng for Nd, and <25 pg for Hf) technique for dust dissolution, prior to column chemistry for combined Hf-Sr-Nd isotope analyses. Repeated measurements of the Hf isotope ratios of USGS geological reference materials (AGV-2, BCR-2 and GSP-2) demonstrate that raw, non fractionation corrected 176Hf/177Hf ratios are accurate within 5-50 ppm, while the JMC-475 fractionation corrected values are accurate to 5-10 ppm, compared to reference values using our ion exchange chemistry setup. This methodology also allows separating Sr and Nd from the same samples, and analysing the 87Sr/86Sr and 143Nd/144Nd isotopic compositions. Here we discuss mass spectrometry issues (including sensitivity) of TIMS and two different MC-ICP-MS instruments, and major limitations on dust sample size for Hf-Sr-Nd isotope analyses. Furthermore, the mineralogical background of Hf isotopic compositions, including zircon depletion effects and clay mineralogy (illite) control will be demonstrated. Hf isotope data obtained from four NorthGRIP ice core samples will be presented.

This study was financially supported by the FWF Austria through a Lise Meitner grant (project nr. M 2503-N29) and the European Regional Development Fund in the project of GINOP-2.3.2.-15-2016-00009 ‘ICER’.

How to cite: Ujvari, G., Klötzli, U., Horschinegg, M., Wegner, W., Hippler, D., Tepe, N., Kiss, G., Horváth, A., and Svensson, A.: Hafnium (and Sr-Nd) isotope analysis of mineral dust: from sample digestions to mass spectrometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15726, https://doi.org/10.5194/egusphere-egu2020-15726, 2020.

EGU2020-19625 | Displays | CL1.14

Setup and first testing of Laser Ablation - ICP-MS measurements for high resolution chemical ice core analyses at University of Cambridge

Helene Hoffmann, Eric Wolff, Jason Day, Mackenzie Grieman, Jack Humby, and Sally Gibson

The ice in the deepest and therefore oldest parts of polar ice cores is highly compressed and therefore annual layers, although potentially preserved, can be thinned to a millimeter level or even below. However, for many palaeoclimate studies these are the most interesting sections. Within the WACSWAIN project we aim to investigate the basal part of an ice core recently drilled to bedrock at the Skytrain ice rise in West Antarctica to obtain unique information on the state of the Filchner-Ronne ice shelf during the last interglacial. To achieve this we have set up a system to perform high resolution laser-ablation ICP-MS measurements using a cryocell stage on selected segments of the deepest parts of the ice cores.

Here we present first results of system performance including assessment of measurement sensitivity and precision with respect to analyses of the most relevant components, namely sodium, calcium and aluminium. We also report on the development and the performance of a matrix matched calibration method using flash-freezed water samples of known composition to convert relative signal intensities into concentrations. This especially focuses on homogeneity and reproducibility of the in-house produced standard. Finally, the results of laser ablation ICP-MS results are compared to parallel low resolution data from continuous flow analysis of the Skytrain core to evaluate the capabilities of the method in terms of improving depth resolution.

How to cite: Hoffmann, H., Wolff, E., Day, J., Grieman, M., Humby, J., and Gibson, S.: Setup and first testing of Laser Ablation - ICP-MS measurements for high resolution chemical ice core analyses at University of Cambridge , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19625, https://doi.org/10.5194/egusphere-egu2020-19625, 2020.

EGU2020-19976 | Displays | CL1.14

Microfluidic device for continuous-flow analysis of organics in oldest ice

Daniele FIlippi and Chiara Giorio

The Beyond EPICA Oldest Ice (BEOI) project will drill an ice core dating back to 1.5 million-years (1.5 Myr) ago. This ice core is of particular interest to the scientific community as it will be the only one covering the climate history of the Mid Pleistocene Transition, when glacial-interglacial cycles changed from a 40 Kyr to 100 Kyr cyclicity, and for which causes are not well understood currently. Obtaining useful climatic information beyond 800 Kyr represents an analytical challenge due to the fact that the deepest section of the ice core is very compact and the amount of sample available is very low.

Current analytical methods for the determination of organics in ice are characterized by a large number of steps that requires large amounts of sample for a single analysis. This results in the loss of the high time resolution desired from ice cores which is particularly problematic for deeper (i.e. older) records where the ice is more compact.

This work aims at combining the growing field of microfluidics with improvements to conventional mass spectrometry to allow for continuous analysis of organics in ice cores, melted in continuous on a melting-head. In fact, microfluidic is a powerful technology in which, only a small amount of liquid (10-9-10-18 liters) is manipulated and controlled with an extremely high precision. The method invokes a three-step process: (1) the melted ice core sample is sent to a nebulizer to produce aerosol, then (2) the aerosol is dried to remove water content and concentrate the sample, and (3) the aerosol is sent to a mass spectrometer for continuous analysis through a modified electrospray ionization (ESI) probe.

This novel system, once operational, can be applied to a range of ice cores but is especially useful for older ice cores given the stratification of deeper segments. It will allow the research community to measure organic compounds with a high time resolution, even in the oldest of ice, to retrieve paleoclimatic information that would otherwise be lost using traditional methods.

How to cite: FIlippi, D. and Giorio, C.: Microfluidic device for continuous-flow analysis of organics in oldest ice, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19976, https://doi.org/10.5194/egusphere-egu2020-19976, 2020.

EGU2020-4179 | Displays | CL1.14

New δ18Oatm, δ18Oice and δDice profiles from deep ice of the TALDICE core

Ilaria Crotti, Carlo Barbante, Massimo Frezzotti, Wei Jiang, Amaelle Landais, Zheng-Tian Lu, Florian Ritterbusch, Barbara Stenni, and Guo-Min Yang

The study of the deep portions of ice cores still represents a poorly explored field due to the presence of processes acting in the lowermost layers and possibly affecting the preservation of the original climatic signal. For the 1620 m TALDICE ice core, drilled at Talos Dome (East Antarctica), the high-resolution climate reconstruction and chronology definition are available only until the depth of ~1450 m (150 kyr BP) (Stenni et al., 2011, Bazin et al., 2013). Our aim is to investigate the portion below 1460 m depth to the bottom of the core, where radargrams show the presence of an unconformity in the ice sheet, to define a preliminary chronology and identify a discernible climatic signal.

Here we present the new TALDICE δ18Oatm record in the air bubbles, in association with the new high-resolution δ18Oice and δDice profiles and an 81Kr radiometric date. New 46 measurements of δ18Oatm  allowed to increase the resolution of the available profile from 1357 to 1553.95 m depth and to extend the record till the bottom of the core at 1617 m depth. The comparison between the δ18Oatm profile of TALDICE and the one of EPICA Dome C (EDC) ice core (Extier et al., 2018) allows to solidly define a preliminary age-depth relationship for the TALDICE core until 1500 m depth, where the gas age is estimated to be ~200 kyr BP. Below 1500 m, supplementary δ18Oatm measurements will be needed to identify older precession cycles and to extend the age-depth relationship further back in time. On the other hand, the high-resolution isotopic profiles in the ice (18O/16O and D/H ratios) obtained below the depth of 1528 m and compared with the EDC ones suggest that the climatic signal in the ice is preserved until to the lower level of 1547.8 m, which is dated back to 343 kyr BP. However, the lack of similarities with the EDC water isotopes record below this depth, in spite of the 81 Kr radiometric age 459 ± 50 kyr BP at the depth of 1574-1578 m, indicates the missing of the MIS 11 in the isotopic profiles. Moreover, the increase of high-frequency variability in the δ18Oice and δDice below 1547.8 m depth implies that this part of the core lays in an area of the ice sheet characterized by different properties in comparison to the ice above.

Additional δ18Oatm, 40Ar, δ18Oice, and δDice measurements will be performed in the lowermost portion of the core and the results will be compared with the new 81Kr radiometric dating at the depth of 1560-1564 m and 1614-1619 m to better constrain the chronology and to investigate the ice properties in the deeper portion of the core.

How to cite: Crotti, I., Barbante, C., Frezzotti, M., Jiang, W., Landais, A., Lu, Z.-T., Ritterbusch, F., Stenni, B., and Yang, G.-M.: New δ18Oatm, δ18Oice and δDice profiles from deep ice of the TALDICE core, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4179, https://doi.org/10.5194/egusphere-egu2020-4179, 2020.

EGU2020-8610 | Displays | CL1.14

A Nine-year series of daily oxygen and hydrogen isotopic composition of precipitation at Concordia station, East Antarctica

Barbara Stenni, Giuliano Dreossi, Mathieu Casado, Claudio Scarchilli, Amaelle Landais, Massimo Del Guasta, Paolo Grigioni, Giampietro Casasanta, Martin Werner, Mauro Masiol, Alexandre Cauquoin, and Virginia Ciardini

The atmospheric processes determining the isotopic composition of precipitation on the Antarctic plateau are yet to be fully understood, as well as the post-depositional processes altering the snow pristine isotopic signal. Improving the comprehension of these physical mechanisms is of crucial importance for interpreting the isotopic records from ice cores drilled in the low accumulation area of Antarctica, e.g., the upcoming Beyond EPICA drilling at Little Dome C.

Up to now, few records of the isotopic composition of precipitation in Antarctica are available, most of them limited in time or sampling frequency. Here we present a 9-year long δ18O and δD record (2008-2016) of precipitation at Concordia base, East Antarctica. The snow is collected daily on a raised platform (1 m), positioned in the clean area of the station; the precipitation collection is still being carried out each year by the winter over personnel.

A significant positive correlation between isotopes in precipitation and 2-m air temperature is observed at both seasonal and interannual scale; the lowest temperature and isotopic values are usually recorded during winters characterized by a strongly positive Southern Annular Mode index.

To improve the understanding of the mechanisms governing the isotopic composition of precipitation, we compare the isotopic data of Concordia samples with on-site observations, meteorological data from the Dome C AWS of the University of Wisconsin-Madison, as well as with high-resolution simulation results from the isotope-enabled atmospheric general circulation models ECHAM5-wiso and ECHAM6-wiso, nudged with the ERA-Interim and ERA5 reanalyses respectively.

How to cite: Stenni, B., Dreossi, G., Casado, M., Scarchilli, C., Landais, A., Del Guasta, M., Grigioni, P., Casasanta, G., Werner, M., Masiol, M., Cauquoin, A., and Ciardini, V.: A Nine-year series of daily oxygen and hydrogen isotopic composition of precipitation at Concordia station, East Antarctica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8610, https://doi.org/10.5194/egusphere-egu2020-8610, 2020.

EGU2020-11774 | Displays | CL1.14

Quantifying the role of post-depositional processes on the isotopic composition of surface snow – new findings from the SNOWISO project

Hans Christian Steen-Larsen, Maria Hörhold, Sonja Wahl, Abigail Hughes, Anne-Katrine Faber, Alexandra Zuhr, Arny Sveinbjørnsdottir, Melanie Behrens, and Sepp Kipfstuhl

The goal of the SNOWISO project is to quantify the role of the post-depositional processes, which are influencing the isotopic composition of the surface snow and hence the ice core water isotope climate signal. Here we are reporting on findings from field campaigns carried out at EastGRIP over the four summers 2016-2019. We have collected a suite of observations containing the isotopic composition of the surface snow and the snowpack, together with direct observations of atmospheric water vapor isotopes and fluxes between the snow surface and the atmosphere. To support the analysis of the isotopic data we also collected meteorological observations comprising of atmospheric temperature and humidity gradients alongside with sub-surface and snow surface temperature along with atmospheric temperature and humidity gradients. With this dataset we are able to document significant changes in the snow isotopic composition, which are driven by post-depositional processes. The changes in the snow surface isotopic composition is observed to occur on time scales ranging from diurnal to several days. The changes in the snow surface isotopic composition is observed to occur on time scales ranging from diurnal to several days. We can show that the changes in the snow surface is consistent with the flux of the isotopologues between the snow surface and the atmosphere. This gives us confidence that we will be able to develop parameterizations of post-depositional effects, and model their influence on the ice core isotopic climate signal.

 
 

How to cite: Steen-Larsen, H. C., Hörhold, M., Wahl, S., Hughes, A., Faber, A.-K., Zuhr, A., Sveinbjørnsdottir, A., Behrens, M., and Kipfstuhl, S.: Quantifying the role of post-depositional processes on the isotopic composition of surface snow – new findings from the SNOWISO project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11774, https://doi.org/10.5194/egusphere-egu2020-11774, 2020.

EGU2020-13653 | Displays | CL1.14

Spatial variability of surface snow isotopic composition on the East Antarctic Plateau and implications for climate reconstructions

Maria Hörhold, Alexander Weinhart, Sepp Kipfstuhl, Johannes Freitag, Georgia Micha, Martin Werner, and Gerrit Lohmann

The reconstruction of past temperatures based on ice core records relies on the quantitative but empirical relationship of stable water isotopes and annual mean temperature. However, its relation varies through space and time. On the East Antarctic Plateau, temperature reconstructions from ice cores are poorly constrained or even fail on decadal and smaller time scales. The observed discrepancy between annual mean temperature and isotopic composition partly relies on surface processes altering the signal after deposition but also, to a great deal, on spatially coherent processes prior to or during deposition. However, spatial coverage over larger areas on the East Antarctic Plateau is challenging. We here present in-situ measurements of the isotopic composition of surface snow with unprecedented statistical quality and coverage. 1m surface snow profiles were collected during an overland traverse between Kohnen station and Plateau Station, covering a 1200km long transect. We explore regional differences of the temperature-isotope relationship and discuss possible mechanisms affecting the isotopic composition in areas with accumulation rates lower than 60mmWEa^-1.

How to cite: Hörhold, M., Weinhart, A., Kipfstuhl, S., Freitag, J., Micha, G., Werner, M., and Lohmann, G.: Spatial variability of surface snow isotopic composition on the East Antarctic Plateau and implications for climate reconstructions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13653, https://doi.org/10.5194/egusphere-egu2020-13653, 2020.

EGU2020-15866 | Displays | CL1.14

Testing the ideal ice-core record for past temperature reconstructions using combined isotope and impurity analyses

Thomas Münch, Maria Hörhold, Johannes Freitag, Melanie Behrens, and Thomas Laepple

Ice cores represent one of the most important palaeoclimate archives, which record, among many other parameters, changes in stable oxygen and hydrogen isotopic composition and soluble ionic impurities. While impurities serve, for example, as proxies for sea ice, marine biological activity and volcanism, records of isotopic composition are the major proxy for the reconstruction of natural polar temperature variability. The latter is based on the temperature-dependent distillation and fractionation of the isotopic composition of water vapour along its atmospheric pathway and empirically determined relationships thereof.

However, temperature is by far not the only driver of isotopic composition changes. A single isotopic ice-core record will comprise variations caused by a multitude of processes, from variable atmospheric circulation and moisture pathways to the intermittency of precipitation and finally to the mixing and re-location of surface snow by wind drift (stratigraphic noise). Taken together, these additional processes constitute a large amount of noise in the single isotope record, which masks the true temperature-related variability. Averaging a sufficient number of records to reduce overall noise is one means to allow for quantitative reconstructions, but its effectiveness depends on the spatial scales of the involved processes. Here, we discuss an alternative approach. Assuming that major impurity species exhibit a seasonal cycle and are mainly also, along with the isotopic composition, deposited by precipitation and redistributed by wind, a large portion of their interannual variability should be linked, which would offer the possibility of using the impurities to correct the variability of the isotopic records.

In this contribution, we present the "ideal" dataset for testing this idea. We sampled and analysed isotopic composition and major impurity species on a four metre deep and 50 metre long trench at Kohnen Station, East Antarctica. This enables us to study the two-dimensional structure and relationship of both proxies to learn about their deposition mechanisms, their seasonality, and to test the ability of a combined isotope–impurity approach to reconstruct local temperatures by comparing so obtained temperature reconstructions with the local weather station data.

 

How to cite: Münch, T., Hörhold, M., Freitag, J., Behrens, M., and Laepple, T.: Testing the ideal ice-core record for past temperature reconstructions using combined isotope and impurity analyses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15866, https://doi.org/10.5194/egusphere-egu2020-15866, 2020.

EGU2020-20679 | Displays | CL1.14

High frequency water isotopes records during glacial/interglacial cycles on EPICA Dome C ice core.

antoine Grisart, Bo Vinther, vasileos Gkinis, Trevor Popp, Barbara Stenni, Katy Pol, Valerie Masson Delmotte, Jean Jouzel, Mathieu Casado, Thomas Laepple, Maria Horhold, Frederic Prie, Benedicte Minster, Elise Fourre, and Amaelle Landais

The iconic curve of D in water showing the 8 glacial/interglacial cycles from the EPICA Dome C ice
core is now a reference in paleoclimate. It shows past temperature variability back to 800 ka over the
3200 m deep ice core with a 55 cm resolution. However, the millennial and centennial scale
variability gets more challenging to observe in the deepest part of the core. Indeed, the time
resolution worsens when going deeper in the ice because of the ice thinning: it is larger than 200
years at 2500 m depth. Furthermore, isotopic diffusion affects the signal at the bottom of the ice
core. Pol et al., (2010) have thus shown that the sub-millennial MIS (Marine Isotopic Stage) 19 signal
(3157-3181 m deep) is erased because of diffusion and high resolution doesn’t add any further
information at this depth. In this study we want to better characterize the increase of the isotopic
diffusion with depth by providing new high resolution water isotopes at several intervals over the
EPICA ice core (EDC).
We present here published high resolution (11 cm) d18O measurements over the EDC ice core as
well as new records of high resolution (11 cm) D over MIS 7;13 and 14). We use spectral analyses to
determine at which depth the isotopic diffusion erases the sub-millennial variability. We also show
that cold periods exhibit a larger variability of water isotopes than interglacial periods.
The information obtained here is crucial for the new project Beyond EPICA oldest ice core, which has
the goal of analyzing a 1.5 Ma old ice core. In the deepest part, 1 m of ice core could represent
10 000 years of climate archive.

How to cite: Grisart, A., Vinther, B., Gkinis, V., Popp, T., Stenni, B., Pol, K., Masson Delmotte, V., Jouzel, J., Casado, M., Laepple, T., Horhold, M., Prie, F., Minster, B., Fourre, E., and Landais, A.: High frequency water isotopes records during glacial/interglacial cycles on EPICA Dome C ice core., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20679, https://doi.org/10.5194/egusphere-egu2020-20679, 2020.

EGU2020-22237 | Displays | CL1.14 | Highlight

ENSO modulates the variability of ice core δ18O in the central Tibetan Plateau

Jing Gao, Tandong Yao, Guangjian Wu, and Camille Risi

The El Nino-Southern Oscillation (ENSO) drives interannual variability of rainfall, ecosystems and floods in many parts of the world. Climates in the Tibetan Plateau (TP) called as the “water tower” may be impacted by ENSO, but the character of ENSO impact and its mechanism are still not well understood. Here we present the isotopic profiles (δ18O) from a new Zangsegangri (ZSGR) ice core drilled in 2013 in the central TP covering 200 years to understand the ENSO impact on the TP climate. The imprint of ENSO is evidenced at annual scale as recorded in ice core. This ice core δ18O record also reveal contributions of south/north moisture sources change with the transition of El nino/La nina events which are triggered by the tropical sea surface temperature, associated with the change of convections along the moisture transport paths. These rapid changes lead to the variation of ZSGR ice core δ18O, namely El Nino events result in lower δ18O in the ZSGR ice core record. The mechanism of ENSO impact on the ZSGR ice core δ18O are quantified with LMDZiso model. The significant impact of ENSO activity on the Tibetan ice core record during the past centuries implies the importance of ENSO in land surface processes in the TP.

How to cite: Gao, J., Yao, T., Wu, G., and Risi, C.: ENSO modulates the variability of ice core δ18O in the central Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22237, https://doi.org/10.5194/egusphere-egu2020-22237, 2020.

EGU2020-9202 | Displays | CL1.14

Evolution in geometry of firn in ice sheets detected by dielectric anisotropy

Shuji Fujita, Kotaro Fukui, Motohiro Hirabayashi, Yoshinori Iizuka, Sumito Matoba, Atsushi Miyamoto, Hideaki Motoyama, Takeshi Saito, and Toshitaka Suzuki

Ice in polar ice sheets once experience a state of firn at near-surface depths. Therefore, it is important to understand physical processes of firn formation, metamorphism and deformation for ice core studies. We investigated firn through measurement of tensorial values of the dielectric permittivity at microwave and millimeter-wave frequencies. This method can detect presence and strength of anisotropic structure in the geometry of pore spaces and ice matrix. We applied the method to many firn cores drilled at both ice sheets. We find that firn that have shorter residence time at the near-surface depths does not form strong vertical anisotropy that is caused by vertical movement of moistures. In contrast, firn that have longer residence time at the near-surface depths tend to form vertical anisotropy. When density exceeds  ~600 kg/m3, a common feature of firn at many polar sites is that there are evolution of vertically elongated features of pore spaces in firn despite growth of vertical compression. We hypothesize an explanation as follows. As firn becomes denser, air within firn needs escape paths to upward directions as compared to sinking firn. In firn, porous structure tend to have vertically elongated structure because of this vertical escape movement of air. The observed phenomena of the grow th of the vertical dielectric anisotropy
can be understood by this vertical movement of the air w ithin firn.

How to cite: Fujita, S., Fukui, K., Hirabayashi, M., Iizuka, Y., Matoba, S., Miyamoto, A., Motoyama, H., Saito, T., and Suzuki, T.: Evolution in geometry of firn in ice sheets detected by dielectric anisotropy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9202, https://doi.org/10.5194/egusphere-egu2020-9202, 2020.

CL1.16 – Polar regions – climate, oceanography, tectonics, and geohazards

For the period between 14.7 and 11.5 cal. (calibrated) kyr B.P, the sediment flux of Bindschadler Ice Stream (BIS; West Antarctica) averaged 1.7 × 108 m3 a−1. This implies that BIS velocity averaged 500 ± 120 m a-1. At a finer resolution, the data suggest two stages of ice stream flow. During the first 2400 ± 400 years of a grounding-zone stillstand, ice stream flow averaged 200 ± 90 m a-1. Following ice-shelf breakup at 12.3 ± 0.2 cal. kyr B.P., flow accelerated to 1350 ± 580 m a-1. The estimated ice volume discharge after breakup exceeds the balance velocity by a factor of two and implies ice mass imbalance of ~40 Gt a-1 just before the grounding zone retreated >200 km. We interpret that the paleo-BIS maintained sustainable discharge throughout the grounding-zone stillstand first due to the buttressing effect of its fringing ice shelf and then later (i.e., after ice-shelf breakup) due to the stabilizing effects of grounding-zone wedge aggradation. Major paleo–ice stream retreat, shortly after the ice-shelf breakup that triggered the inferred ice flow acceleration, substantiates the current concerns about rapid, near-future retreat of major glaciers in the Amundsen Sea sector where Pine Island and Thwaites Glaciers are already experiencing ice-shelf instability and grounding-zone retreat that have triggered upstream-propagating thinning and ice acceleration.

How to cite: Bart, P. and Tulaczyk, S.: A significant acceleration of ice volume discharge preceded a major retreat of a West Antarctic paleo-ice stream, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5875, https://doi.org/10.5194/egusphere-egu2020-5875, 2020.

EGU2020-7493 | Displays | CL1.16 | Highlight

Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition

David Hutchinson, Helen Coxall, Matt O'Regan, Johan Nilsson, Rodrigo Caballero, and Agatha de Boer

The Eocene-Oligocene Transition (EOT), approximately 34 Ma ago, marks a period of major global cooling and inception of the Antarctic ice sheet. Proxies of deep circulation suggest a contemporaneous onset or strengthening of the Atlantic meridional overturning circulation (AMOC). Proxy evidence of gradual salinification of the North Atlantic and tectonically driven isolation of the Arctic suggest that closing the Arctic-Atlantic gateway could have triggered the AMOC at the EOT. We demonstrate this trigger of the AMOC using a new paleoclimate model with late Eocene boundary conditions. The control simulation reproduces Eocene observations of low Arctic salinities. Subsequent closure of the Arctic-Atlantic gateway triggers the AMOC by blocking freshwater inflow from the Arctic. Salt advection feedbacks then lead to cessation of overturning in the North Pacific. These circulation changes imply major warming of the North Atlantic Ocean, and simultaneous cooling of the North Pacific, but no interhemispheric change in temperatures.

How to cite: Hutchinson, D., Coxall, H., O'Regan, M., Nilsson, J., Caballero, R., and de Boer, A.: Arctic closure as a trigger for Atlantic overturning at the Eocene-Oligocene Transition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7493, https://doi.org/10.5194/egusphere-egu2020-7493, 2020.

EGU2020-7943 | Displays | CL1.16

Relating changes in seabed properties and retreating glacier fronts in West-Antarctic fjords.

Katrien Van Landeghem, Kate Retallick, Floyd Howard, Dave Barnes, Stuart Jenkins, Chester Sands, Carlos Muñoz-Ramirez, and James Scourse

Retreating marine terminating glaciers influence the rate at which larger ice mass is lost, and thus the rate at which global sea levels rise. About 90% of the circa 240 glaciers terminating in fjords along the West-Antarctic Peninsula coastline are retreating. This happens at variable rates as these fjords have internal feedback mechanisms with e.g. the oceanographic make-up of the bay and the geology / geomorphology of the local hinterland. The NERC-CONICYT funded “ICEBERGS” project is a UK-Chile research collaboration to assess the effects of ice loss and deglaciation on benthic marine ecosystems in Antarctica. Three West-Antarctic fjords where glaciers have been consistently retreating in the last few decades were investigated: Marian Cove (King George Island), Börgen Bay (Anvers Island) and Ryder Bay (Adelaide Island). As part of this project, we monitored the changes in seabed bathymetry and backscatter intensity as a signature of past and on-going ice flow and ice retreat. Together with sediment analyses, the data provide insights in glacial landscape development and on sediment accumulation / seabed erosion rates. We also managed to insonify parts of the changing glacier ice fronts, detailing the grounding zones at the seabed. At the time of abstract submission, the third of three surveys was just underway. In this presentation we will explore the preliminary search for spatial and temporal relationships between grounded ice advance and retreat, undercutting of the grounded glacier terminus, sediment discharge, ice berg scouring, glacial landscape development and mass waste deposits. Our direct time-lapse observations of the seabed and glacier fronts of different fjord systems will help us understand how the local fjord environments define the dynamics of the retreating glaciers they host, whilst the results help elucidate the impact of that deglaciation on the newly emerged seabed and the fast-growing ecosystem it supports. Understanding the ice-filled fjord dynamics in the present-day and in the recent past will also help interpretations made from data representing these environments in the distant past.

How to cite: Van Landeghem, K., Retallick, K., Howard, F., Barnes, D., Jenkins, S., Sands, C., Muñoz-Ramirez, C., and Scourse, J.: Relating changes in seabed properties and retreating glacier fronts in West-Antarctic fjords., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7943, https://doi.org/10.5194/egusphere-egu2020-7943, 2020.

EGU2020-9948 | Displays | CL1.16 | Highlight

Deglaciation of the Northeast Greenland ice stream and interaction with ocean circulation

Jerry Lloyd, Louise Callard, Colm O'Cofaigh, David Roberts, Kaarina Weckstrom, and Sofia Ribeiro

Large sections of the Greenland Ice Sheet (GrIS) drain directly to the ocean through tidewater glaciers and are, therefore, sensitive to changes in ocean circulation through time. Recent research has identified the dynamic response of many tidewater glaciers draining the GrIS showing thinning, flow acceleration and, in many cases, the break-up and retreat of fringing ice shelves and calving margins. This instability has been linked to incursion of relatively warm Atlantic Water as well as increased air temperatures and sea-ice loss.

The Northeast Greenland Ice Stream (NEGIS) is one of the largest ice streams draining approximately 15% of the GrIS with a sea level equivalent of ~ 1.4 m. Recent observations have identified ice shelf loss and grounding line retreat of Zachariae Isstrom, the southern arm of the NEGIS, post 2010 suggesting this sector of the GrIS might be starting to respond to climate forcing. The primary aim of the ‘NEGIS’ project is to reconstruct the history of NEGIS since the Last Glacial Maximum (LGM) to improve our understanding of the interaction between NEGIS and climate (specifically ocean circulation). A series of sediment cores were collected along with bathymetric and sub-bottom profiler data concentrating on the Westwind and Norske Trough systems, two cross-shelf troughs originating from the present day margin of NEGIS. The data were collected through collaboration with the Alfred Wegener Institute as part of the GRIFF project supported by two cruises of the RV Polarstern in 2016 and 2017.

This presentation will focus on the deglaciation and palaeoceanographic evolution of the inner section of Norske Trough (inner continental shelf) investigating the interaction between ocean circulation and the dynamics of the tidewater margins of NEGIS. We present multiproxy results from a spliced box core and 10 m long gravity core collected from the same location covering the last 11,000 cal years. We use the benthic foraminiferal fauna and stable isotope signature to investigate variability in ocean circulation, specifically the relative strength of the Atlantic Water inflow along Norske Trough to the present day ice margin. We also investigate surface water conditions (including sea ice concentration) based on diatoms, dinoflagellates, IP25 and planktic foraminiferal stable isotopes. Our benthic foraminiferal assemblages record the variability in strength of Atlantic Water flow since deglaciation indicating relatively strong Atlantic Water flux during deglaciation reaching a peak during the early Holocene. Surface water proxies indicate variability in meltwater flux and sea ice concentration from the early Holocene. These results provide the first evidence for a variable ocean circulation with the potential to influence ice margin dynamics during deglaciation and through the Holocene.

How to cite: Lloyd, J., Callard, L., O'Cofaigh, C., Roberts, D., Weckstrom, K., and Ribeiro, S.: Deglaciation of the Northeast Greenland ice stream and interaction with ocean circulation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9948, https://doi.org/10.5194/egusphere-egu2020-9948, 2020.

EGU2020-10880 | Displays | CL1.16

The timing of fjord formation and early glaciations in North and Northeast Greenland
not presented

Vivi Kathrine Pedersen, Nicolaj Krog Larsen, and David Lundbek Egholm

The timing and extent of early glaciations in Greenland, and their co-evolution with the underlying landscape remain elusive. In this study, we explore the timing of fjord erosion in Northeast and North Greenland between Scoresby Sund (70°N) and Independence Fjord (82°N). By determining the timing of fjord formation, we can improve our understanding of the early history of the Greenland Ice Sheet in these regions.

We use the concept of geophysical relief to estimate fjord erosion and calculate the subsequent flexural isostatic response to erosional unloading. The timing of erosion and isostatic uplift is constrained by marine sediments of late Pliocene-early Pleistocene age that are now exposed on land between ~24 and 230 m a.s.l.

We find that the northern Independence Fjord system must have formed by glacial erosion at average rates of ~0.5-1 mm/yr since ~2.5 Ma, in order to explain the current elevation of the marine Kap København Formation by erosion-induced isostatic uplift. In contrast, fjord formation in the outer parts of southward Scoresby Sund commenced before the Pleistocene, most likely in late Miocene, and continued throughout the Pleistocene by fjord formation progressing inland. Our results suggest that the inception of the Greenland Ice Sheet began in the central parts of Northeast Greenland before the Pleistocene and spread to North Greenland only at the onset of the Pleistocene.  

How to cite: Pedersen, V. K., Krog Larsen, N., and Lundbek Egholm, D.: The timing of fjord formation and early glaciations in North and Northeast Greenland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10880, https://doi.org/10.5194/egusphere-egu2020-10880, 2020.

EGU2020-19301 | Displays | CL1.16

A contourite drift succession in north-east Baffin Bay: a high-resolution Pleistocene archive of Greenland ice sheet and ocean variability

Paul C. Knutz, Katrine Juul Andresen, John R. Hopper, Lara F. Perez, Calvin Campbell, Boris Dorschel, Ole Bennike, Henrieka Detlef, Katrine Elnegaard Hansen, Rebecca Jackson, Anne Jennings, Nicolaj Krog Larsen, Niels Nørgaard-Pedersen, Christof Pearce, Hans Røy, and Sofia Ribeiro

The Greenland ice sheet’s response to anthropogenic warming will have major consequences for global sea levels but its behavior and stability during past warm intervals is poorly known. To elucidate the long-term behavior of the Greenland ice sheet, high-resolution marine records in ice proximal settings are required. Here we report the first results of a study of a deep-water contourite system on the north-east slope Baffin Bay based on geophysical and shallow core data obtained during two marine expeditions in 2017 and 2019. The contourite drift is incised by channels extending from the slope that is build up by prograding ice stream deposits (Melville Bugt trough-mouth fan). As a result, the contourite system presents a complex architecture. While the mechanisms for deposition and erosion are not yet clear, it is likely that the drift accumulated as a result of interactions between a deep contour current and downslope transport of sediments, presumably of glacigenic origin and therefore constitutes an example of an intertwined contourite-turbidite system. A preliminary age-depth model of the trough-mouth fan evolution indicates that the contourite system began to form during the late Early Pleistocene, possibly around 1 million years ago. The contourite drift is a key target for IODP proposal 909, aimed at unravelling the late Cenozoic evolution of the northern Greenland ice sheet and associated changes in Arctic paleoclimate. Shallow sediment cores from this target area have been retrieved and will be analyzed to generate high-resolution multi-proxy records of ocean circulation and sea-surface conditions including sea ice and paleoproductivity for the late Quaternary-Holocene.

How to cite: Knutz, P. C., Andresen, K. J., Hopper, J. R., Perez, L. F., Campbell, C., Dorschel, B., Bennike, O., Detlef, H., Hansen, K. E., Jackson, R., Jennings, A., Larsen, N. K., Nørgaard-Pedersen, N., Pearce, C., Røy, H., and Ribeiro, S.: A contourite drift succession in north-east Baffin Bay: a high-resolution Pleistocene archive of Greenland ice sheet and ocean variability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19301, https://doi.org/10.5194/egusphere-egu2020-19301, 2020.

EGU2020-12484 | Displays | CL1.16

Deriving paleo-perspectives on polar systems: Continued results from the 2012 Sawtooth Lake (Ellesmere Island) and 2015 Petermann (North Greenland) Expeditions

Joseph Stoner, Brendan Reilly, Alan Mix, Martin Jakobsson, Maureen Walczak, Mark Abbott, Francois Lapointe, Pierre Francus, Nicholas Balascio, Anne Jennings, Kelly Hogan, and Larry Mayer

Deriving paleo-perspectives on polar systems in so-called “last ice” regions of North Greenland and the High Canadian Arctic have been traditionally challenged by logistical/accessibility issues and paleo proxy (including chronology) limitations. Sea-ice retreat and proxy development are changing this paradigm, allowing the region to be mapped, materials collected, and paleo-records developed that provide new insights on the evolution of the region.  Here we report on continued progress from the joint US/Swedish 2015 Petermann Expedition to North Greenland and the joint US/Canadian 2012 Sawtooth Lake Expedition to Ellesmere Island, where new developments in physical properties and chronology are changing our understanding of the region. Computed tomography, X-Ray fluorescence, ice-rafted debris counts, and the magnetic properties of specific particle size fractions constrain changes in depositional processes and sediment sources providing info on glacial retreat and advance and other environmental changes. While an improved understanding of the geomagnetic field supported by radiocarbon dating enables regional magnetic synchronization allowing Holocene ice sheet and environmental dynamics to be placed in the context of High Arctic climate evolution.

How to cite: Stoner, J., Reilly, B., Mix, A., Jakobsson, M., Walczak, M., Abbott, M., Lapointe, F., Francus, P., Balascio, N., Jennings, A., Hogan, K., and Mayer, L.: Deriving paleo-perspectives on polar systems: Continued results from the 2012 Sawtooth Lake (Ellesmere Island) and 2015 Petermann (North Greenland) Expeditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12484, https://doi.org/10.5194/egusphere-egu2020-12484, 2020.

EGU2020-768 | Displays | CL1.16

Southern Chilean continent-ocean interaction over the last glacial cycle

Julia Rieke Hagemann, Frank Lamy, Kana Nagashima, Naomi Harada, Shinya Iwasaki, Alfredo Martínez-Garcia, Jérôme Kaiser, Helge W. Arz, Norbert Nowaczyk, Carina Lange, and Ralf Tiedemann

Available sea surface temperature (SST) records from the subantarctic SE Pacific reveal large amplitude changes at orbital time-scales. High sedimentation rates along the southern Chilean margin provided higher resolution records back to ~70 ka showing millennial-scale SST variations paralleling temperatures reconstructed in Antarctic ice-cores.

Here we present high-resolution millennial-scale SST and subsurface temperature records based on core MR16-09 PC03 covering a complete glacial/interglacial cycle back to Marine Isotope Stage 6, including a high-resolution record of the Eemian. Located on the Chilean margin at the bifurcation of the Antarctic Circumpolar Current into the Peru-Chile Current to the North and the Cape Horn Current to the South, core MR16-09 PC03 is in an ideal position to study the continent-ocean interactions, including changes in water masses, ice sheet formation, precipitation and vegetation.

We used alkenones and GDGTs to determine SST (UK’37) and subsurface temperatures (TEXH86; 0 - 200 m), and integrated these results with XRF core scanner and planktic δ18O data (G. bulloides). During the Eemian, SSTs and subsurface temperatures were ~2° C and ~4° C, higher than during the Holocene, respectively. The high Eemian temperatures at our site are roughly consistent with the few available subantarctic SST records. The large temperature difference in the subsurface water masses between the Eemian and the Holocene could be explained by a deeper thermocline during the Eemian. During the last glacial period, the strongly fluctuating temperatures averaged ~8° C at the surface and ~6° C in the subsurface. The relative amount of C37:4 alkenone (%C37:4) show a drastic increase during the glacial period, especially in Marine Isotope Stage 3 in concentration. High %C37:4 values suggest increased freshwater supply, which could be related to fluctuations of the Patagonian Ice sheet and/ or precipitation on the adjacent land. The sedimentation rate and other terrigenous proxies, e.g. Titanium, BIT, Iron and Alkanes, confirm such increased and highly variable terrestrial inputs.

How to cite: Hagemann, J. R., Lamy, F., Nagashima, K., Harada, N., Iwasaki, S., Martínez-Garcia, A., Kaiser, J., Arz, H. W., Nowaczyk, N., Lange, C., and Tiedemann, R.: Southern Chilean continent-ocean interaction over the last glacial cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-768, https://doi.org/10.5194/egusphere-egu2020-768, 2020.

EGU2020-782 | Displays | CL1.16

Ocean surface warming in Krossfjorden, Svalbard, during the last 60 years

Harikrishnan Guruvayoorappan, Arto Miettinen, Dmitry Divine, Matthias Moros, Lisa Orme, and Rahul Mohan

A high-resolution marine sediment core NP16-Kro1-MCB from Krossfjorden, Western Svalbard is studied to investigate changes in sea surface conditions in the fjord during the last 60 years (1953-2014). The diatom-based reconstruction of August sea surface temperature (aSST) demonstrates a clear warming trend of 0.6 °C through the record. As inferred from Marginal Ice Zone (MIZ) diatoms, surface warming occurs in parallel with a decline in sea ice extent (SIE) during recent decades. Factor analysis identified variations in diatom assemblages representing different water masses, showing a dominance of Arctic water diatoms throughout the period and decadal variations in the sea ice assemblage during periods of peak sea ice extent. The strong dominance of Arctic water diatoms along with increasing aSST suggest prolonged open water conditions and increased sea ice melting in the region throughout the observed period. The reconstructed ocean surface changes are in line with the background warming occurring over the Arctic region. A comparison with instrumental records from neighboring regions supports the quality of the reconstructions, including the average reconstructed aSST and the magnitude of the warming trend. We suggest that increased CO2 forcing together with ocean-atmospheric interaction have caused the increasing SST trend and decreasing sea ice presence in Krossfjorden rather than an increasing influence from Atlantic Water, which has amplified changes in many regions of Svalbard. 

How to cite: Guruvayoorappan, H., Miettinen, A., Divine, D., Moros, M., Orme, L., and Mohan, R.: Ocean surface warming in Krossfjorden, Svalbard, during the last 60 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-782, https://doi.org/10.5194/egusphere-egu2020-782, 2020.

EGU2020-2301 | Displays | CL1.16

Occurrence of gas hydrate in the Chukchi plateau, Arctic

Young Keun Jin, Seung-Goo Kang, Ugeun Jang, Sookwan Kim, Yeonjin Choi, Ji-Hoon Kim, Young-Gyun Kim, Dong-Hun Lee, and Young-Mi Lee

EGU2020-7552 | Displays | CL1.16

Dynamics of Pliocene East Antarctic Ice Sheet from depositional signatures of the Prydz Bay shelf and Trough Mouth Fan

Xiaoxia Huang, German Leitchenkov, Anne Bernhardt, Graeme Eagles, Karsten Gohl, and Jinyao Gao

The Pliocene saw multiple advances and retreats of the ice-sheet margin in East Antarctica. Amery Ice Shelf (AIS) is the largest ice shelf in East Antarctica and also the largest single ice stream draining from the Antarctic Plateau. It buttresses the Lambert Glacier drainage system, and accounts for 14% of the outflow from the East Antarctic Ice Sheet (EAIS). However, evidence for the state of the EAIS during the Pliocene is sparse and difficult to interpret unequivocally. Marine geological-geophysical data collected from the continental shelf in Prydz Bay, Antarctica, including seismic-reflection data, bathymetry, core records from ODP drilling and gravity coring sites, reveal a complex paleo-subglacial drainage system linked to an offshore depositional regime dominated on a trough mouth fan (TMF). Detailed seismic stratigraphic and facies analysis reveals the glacial evolution of Prydz Bay shelf and its TMF, including several glacial expansions across the shelf indicated by erosional surfaces and stratal bodies with chaotic acoustic character. The geometry of seismic sequences suggests that the glaciers and their associated TMF developed after a major episode of shelf and slope erosion during the Pliocene-Pleistocene.

 The shelf in Prydz Bay is dominated by a wide, south-north trending glacially-eroded trough (the Prydz Channel: -500~-1000 m depth) and shallower banks (-500~0 m depth). Well preserved grounding zone wedges areevidenced by prograding foreset deposits. Evidence for erosion of the wedges and/or lineations that extend across their upper surfaces indifferent water depths ranging from 200 m to 800 m imply their formation during multiple glacial stages or cycles.  Stacked erosional surfaces reveal major cross-shelf glacial expansions and the development of deep channel systems (up to -500 m depth) associated with extensive subglacial meltwater in Prydz Bay. These glacial related features provide good constraints for reconstructing the stability of the Pliocene EAIS.

How to cite: Huang, X., Leitchenkov, G., Bernhardt, A., Eagles, G., Gohl, K., and Gao, J.: Dynamics of Pliocene East Antarctic Ice Sheet from depositional signatures of the Prydz Bay shelf and Trough Mouth Fan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7552, https://doi.org/10.5194/egusphere-egu2020-7552, 2020.

EGU2020-10921 | Displays | CL1.16

New results on the dynamics of the NW part of the Svalbard Ice Sheet during the deglaciation of the Woodfjorden Trough

Tom Arne Rydningen, Amando Lasabuda, Jan Sverre Laberg, Christine Tømmervik Kollsgård, Stine Bjordal Olsen, Matthias Forwick, Monica Winsborrow, and Ólafur Ingólfsson

Present-day warming is most pronounced at high latitudes, raising concern for the stability of modern ice caps such as the ones overlying the Svalbard archipelago. Palaeo-records give us opportunity to understand past behavior of these systems, including the ice retreat from the continental shelf at the end of the last glaciation. In order to evaluate and reconstruct this in a robust way, it is essential that we acquire high-quality data sets covering key areas in the Arctic.

New multi-beam bathymetric data was acquired in July 2019 from the Woodfjorden Trough; an up to 60 km long and 40 km wide transverse trough on the northwestern part of the Svalbard continental shelf. Previous investigations have shown that this trough was occupied by a major ice stream draining the Svalbard Ice Sheet during the last glacial, but the deglacial dynamics of this sector of the Svalbard Ice Sheet are presently not well constrained.

The new data reveal a complex seabed morphology including larger (2 km wide, 50 m high) and smaller (100 m wide, 3 m high) ridges, as well as sediment wedges (1 to 2 km wide, 30 m high), partly showing crosscutting relationships. These ridges and wedges are discontinuous in the outer part of the trough, where they are partly superposed by glacial lineations and small- to larger sized iceberg ploughmarks (up to 1500 m wide and 30 m deep). In the middle part of the trough, more continuous ridges dominate.

The ridges and wedges are interpreted to be glacial landforms formed by grounded ice within the Woodfjorden Trough. Their crosscutting relationships testify to a complex deglaciation, including several advances and still stands of the ice front during overall ice retreat, and their size could indicate that the glacier front was stable for some time. Smaller ridges may be retreat moraines formed during shorter (annual?) still stands of the glacier front. Based on their discontinuous characteristics, the ridges and wedges in the outer part of the trough may pre-date the final Late Weichselian deglaciation, i.e. they may have been overridden by a grounded glacier. The more continuous character of the ridges in the middle part of the trough indicate that these likely date from the Late Weichselian deglaciation.

The glacial landforms identified here are rather atypical for glacial troughs, commonly dominated by mega-scale glacial lineations superposed by one or a few grounding zone wedges and/or smaller retreat moraines. The abundant morainal systems and glacial lineations of the Woodfjorden Trough, instead, testify to highly dynamic grounded ice occupying the trough, and a retreat which was characterized by several periods of ice margin stability, interrupted by readvances. This fits with recent studies from onshore areas, showing that the deglaciation of northern Svalbard was at least partly characterized by glacial readvances during the overall ice retreat.

How to cite: Rydningen, T. A., Lasabuda, A., Laberg, J. S., Kollsgård, C. T., Olsen, S. B., Forwick, M., Winsborrow, M., and Ingólfsson, Ó.: New results on the dynamics of the NW part of the Svalbard Ice Sheet during the deglaciation of the Woodfjorden Trough, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10921, https://doi.org/10.5194/egusphere-egu2020-10921, 2020.

EGU2020-10963 | Displays | CL1.16

The age of surface-exposed ice along the northern margin of the Greenland Ice Sheet

Joseph MacGregor, Mark Fahnestock, William Colgan, Nicolaj Larsen, Kristian Kjeldsen, and Jeffrey Welker

Each summer, surface melting of the margin of the Greenland Ice Sheet exposes a distinctive visible stratigraphy that is related to past variability in subaerial dust deposition across the accumulation zone and subsequent ice flow toward the margin. Here we map this surface stratigraphy along the northern margin of the ice sheet using mosaicked Sentinel-2 multispectral satellite imagery from the end of the 2019 melt season and finer-resolution WorldView-2/3 imagery for smaller regions of interest. We trace three distinct transitions in apparent dust concentration and the top of a darker basal layer. The three dust transitions have been identified previously as representing late-Pleistocene climatic transitions, allowing us to develop a coarse margin chronostratigraphy for northern Greenland. Substantial folding of late-Pleistocene stratigraphy is observed but uncommon. The oldest conformal surface-exposed ice in northern Greenland is likely located adjacent to Warming Land and may be up to ~55 thousand years old. Basal ice is commonly exposed hundreds of meters from the ice margin and may indicate a widespread frozen basal thermal state. We conclude that the ice margin across northern Greenland offers multiple compelling opportunities to recover paleoclimatically valuable ice relative to previously studied regions in southwestern Greenland.

How to cite: MacGregor, J., Fahnestock, M., Colgan, W., Larsen, N., Kjeldsen, K., and Welker, J.: The age of surface-exposed ice along the northern margin of the Greenland Ice Sheet, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10963, https://doi.org/10.5194/egusphere-egu2020-10963, 2020.

EGU2020-12940 | Displays | CL1.16

Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters

Michele Rebesco, Renata Giulia Lucchi, Andrea Caburlotto, Stefano Miserocchi, Leonardo Langone, Yanguang Liu, Caterina Morigi, Patrizia Macrì, Aldo Winkler, Alessio Di Roberto, Paola Del Carlo, Ester Colizza, Davide Persico, Giuliana Villa, Rudy Conte, Nessim Douss, Roland Neofitu, and Chris Mark

The Ross Ice Shelf is the Antarctic region that over the last deglaciation experienced the greatest change in areal ice cover. Today, cold, dense and saline water masses (brines) produced in the Ross Sea polynya, flow from the shelf to the deep ocean providing a significant contribution to the propelling of the global ocean circulation regulating the climate. In particular, the Hillary Canyon in the Eastern Ross Sea is the main conduit through which brines descend the slope to reach the deeper ocean and is thus one of the greatest regions of cold, dense water export in the world.

A Contourite Depositional System (the ODYSSEA CDS) on the western flank of the Hillary Canyon is inferred to have been generated through several hundred-thousand years by along-slope, contour currents that transported and accumulated the sediments brought down the Hillary Canyon by means of brines. A multi-proxy investigation was conducted on the shallowest part of the ODYSSEA CDS depositional sequences, which we expect to contain i) the record of the brine formation, ii) the indication on contour current strength through time, and iii) their interplay and modulation associated to climate change.

Six gravity cores, collected in both the proximal and distal area of the ODYSSEA CDS, were studied through multi-proxy analyses including sediment physical properties (texture, structures, water content, wet bulk density), compositional characteristics (XRF, geochemistry and detrital apatite, zircon, and rutile U-Pb on ice-rafted debris) (Lucchi et al., 2019; Neofitu et al., 2020) and microfossil content (planktonic and benthic foraminifera, calcareous nannofossils and diatoms). An age model has been reconstructed combining palaeomagnetic record, biostratigraphic content, tephrochronology and AMS radiocarbon dating on planktonic foraminifera tests.

Inferred variations in dense water formation, contour current strength and ice sheet dynamics are discussed in the light of our data interpretation.

 

Lucchi, R.G., Caburlotto, A., Miserocchi, S., Liu, Y., Morigi, C., Persico, D., Villa, G., Langone, L., Colizza, E., Macrì, P., Sagnotti, L., Conte, R., Rebesco, M., 2019. The depositional record of the Odyssea drift (Ross Sea, Antarctica). Geophysical Research Abstracts, Vol. 21, EGU2019-10409-1, 2019. EGU General Assembly, Vienna (Austria), 7–12, April, 2019 (POSTER).

Neofitu, R., Mark, C., Rebesco, M., Lucchi, R.G., Douss, N., Morigi, C., Kelley, S., Daly, J.S., 2020. Tracking Late Quaternary ice sheet dynamics by multi-proxy detrital mineral U-Pb analysis: A case study from the Odyssea contourite, Ross Sea, Antarctica. Geophysical Research Abstracts. EGU General Assembly, Vienna (Austria), 3–8, May, 2020 (POSTER for session CL1.11).

How to cite: Rebesco, M., Lucchi, R. G., Caburlotto, A., Miserocchi, S., Langone, L., Liu, Y., Morigi, C., Macrì, P., Winkler, A., Di Roberto, A., Del Carlo, P., Colizza, E., Persico, D., Villa, G., Conte, R., Douss, N., Neofitu, R., and Mark, C.: Multi-proxy analysis of Late Quaternary ODYSSEA Contourite Depositional System (Ross Sea, Antarctica) and the depositional record of contour current and cold, dense waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12940, https://doi.org/10.5194/egusphere-egu2020-12940, 2020.

EGU2020-13950 | Displays | CL1.16

Deglacial sea ice variability at the continental margin off western Dronning Maud Land

Juliane Müller, Catalina Gebhardt, Gesine Mollenhauer, and Ralf Tiedemann

Reconstructions of sea ice conditions proximal to the Antarctic coast are often hampered by a limited preservation potential of diatoms in these areas. While silica frustules are affected by opal dissolution, specific organic molecules, highly branched isoprenoids (HBIs) produced by diatoms, are well preserved in continental margin and shelf sediments and may help to overcome this gap. Here, we present biomarker and geochemical data obtained from a very well 14C-dated gravity core from the continental slope off Atka Bay in the northeastern part of the Weddell Sea. HBIs, the HBI-based PIPSO25 index (Vorrath et al., 2019), glycerol dialkyl glycerol tetraether (GDGT) proxies and phytosterols reveal highly variable sea ice conditions and water temperatures as well as primary productivity changes over the last deglacial. These biomarker records are compared to ice core data and further complemented by physical property and XRF scanning data to estimate potential linkages between oceanic forcing and ice-shelf dynamics.

 

References

Vorrath, M.E., Müller, J., Esper, O., Mollenhauer, G., Haas, C., Schefuß, E., and Fahl, K., 2019. Highly branched isoprenoids for Southern Ocean sea ice reconstructions: a pilot study from the Western Antarctic Peninsula. Biogeosciences, v. 16, no. 15, p. 2961-2981.

How to cite: Müller, J., Gebhardt, C., Mollenhauer, G., and Tiedemann, R.: Deglacial sea ice variability at the continental margin off western Dronning Maud Land, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13950, https://doi.org/10.5194/egusphere-egu2020-13950, 2020.

EGU2020-17953 | Displays | CL1.16

Late glacial and Holocene glacier fluctuations at the Sub-Antarctic Island Kerguelen in the Southern Indian Ocean

Jostein Bakke, Fabien Arnaud, Philip Deline, Charline Guiguet-Covex, Henriette Linge, Ludovic Ravanel, Eivind Støren, and Willem van der Bilt

The Southern Hemisphere`s westerly winds play a critical role in regulating Earth`s climate by shielding Antarctica from low-latitude heat, driving global ocean circulation and regulate the uptake of CO2 in the Southern Ocean. Both strength and position of this globally significant atmospheric pattern are rapidly shifting in the face of ongoing global warming. A string of recent studies links these developments to dramatic coupled changes in temperature, precipitation, sea-ice coverage and glacier extent that unfold across the Southern Ocean region. Critically, a lack of baseline information restricts our ability to understand the causes and patterns of these shifts and represent them robustly in the future projections that underpin climate policies. To help do so, we utilize the sensitivity of glaciers to atmospheric climate change and the potential of glacier-fed lake sediments to record this signal through time. For this purpose, we integrate emerging sedimentological, geochemical and glacier modelling tools in a new method framework to reconstruct changes in glacier extent, temperature and precipitation on human-relevant timescales. To do so, we rely on a number of novel sedimentological and geochemical approaches. These include biomarker-based temperature reconstructions, exposure dating of moraines and the use emerging non-destructive scanning techniques (e.g. Computed Tomography – CT) to fingerprint depositional pathways. Our study area in this cross-disciplinary project is the poorly investigated sub-Antarctic Kerguelen Archipelago, well-situated in the core southern westerly wind belt. During an extensive 2019 field campaign, we collected 130 meters of sediment cores from six lakes, 110 rock samples for exposure dating and numerous catchment samples. 

How to cite: Bakke, J., Arnaud, F., Deline, P., Guiguet-Covex, C., Linge, H., Ravanel, L., Støren, E., and van der Bilt, W.: Late glacial and Holocene glacier fluctuations at the Sub-Antarctic Island Kerguelen in the Southern Indian Ocean , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17953, https://doi.org/10.5194/egusphere-egu2020-17953, 2020.

EGU2020-18143 | Displays | CL1.16

Geological, geochemical and cosmogenic nuclides constraints from the NEEM core basal sediments, Greenland

Marie Protin, Pierre-Henri Blard, Jean-Louis Tison, Dorthe Dahl-Jensen, Jørgen Steffensen, Vinciane Debaille, François Fripiat, Philippe Claeys, Marc Caffee, Paul Bierman, Lee Corbett, and Andrew Christ

As the melting of the Greenland Ice Sheet (GrIS) accelerates, it is critical to improve our knowledge of its Pleistocene history in order to better understand its sensitivity to different climate states. The study of sediment from the base of the ice sheet offers valuable insights, since this material holds useful information about its history and origin. Here, we present various mineralogical and geochemical analysis from basal sediments of the NEEM ice core from northwestern Greenland (NEEM community, 2013), a complement to the first analysis of the basal ice made by Goossens et al. (2016).

In an effort to specify the provenance and characterize the sediments in the basal ice of the NEEM ice core, strontium and neodymium isotopic ratios were measured in 7 bulk till samples located into the deepest part of the core. Laser granulometry and shape characterization by SEB images of the grains suggest a mixed origin of this material. The deepest sample yield in situ cosmogenic 10Be and 26Al concentrations lower than 104 at.g-1 and 21Ne concentration in the 107-108 at.g-1 range. These preliminary cosmogenic nuclides data suggest that several cycles of waning and waxing of the GrIS had occurred over the last 10 million years. Additional sample material is being processed to reduce the uncertainty of 26Al and 10Be measurements and refine this chronology.

To better characterize the origin of the basal sediment and the duration of pre-burial exposure, measurements of meteoric cosmogenic 10Be in 7 samples distributed along the basal part of the core are currently in progress. These data will be combined with the measurement of total organic carbon and nitrogen in the same samples. C and N concentrations and isotopes bring useful information about the type of soil and till material in these basal sediments (Bierman et al., 2016).

 

Bierman, P.R., Shakun, J.D., Corbett, L.B., Zimmerman, S.R., Rood, D.H., 2016. A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years. Nature 540, 256–260. https://doi.org/10.1038/nature20147

Goossens, T., Sapart, C.J., Dahl-Jensen, D., Popp, T., El Amri, S., Tison, J.-L., 2016. A comprehensive interpretation of the NEEM basal ice build-up using a multi-parametric approach. The Cryosphere 10, 553–567. https://doi.org/10.5194/tc-10-553-2016

NEEM community, 2013. Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 493. doi:10.1038/nature11789

How to cite: Protin, M., Blard, P.-H., Tison, J.-L., Dahl-Jensen, D., Steffensen, J., Debaille, V., Fripiat, F., Claeys, P., Caffee, M., Bierman, P., Corbett, L., and Christ, A.: Geological, geochemical and cosmogenic nuclides constraints from the NEEM core basal sediments, Greenland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18143, https://doi.org/10.5194/egusphere-egu2020-18143, 2020.

EGU2020-18455 | Displays | CL1.16

Stratigraphy, environment and climate of the mid Cretaceous succession from the Arctic region (Baffin Bay)

Kasia K. Sliwinska, Jørgen Bojesen-Koefoed, David Naafs, Henrik Nøhr-Gansen, Gunver Krarup Pedersen, Jussi Hovikovski, and Paul C. Knutz

The super greenhouse climate of the middle Cretaceous represents an analogue for an extreme CO2 induced (run-away) climate system. In order to improve the understanding of how the high northern latitudes responded to the escalating middle Cretaceous warmth we analysed dinocysts, palynofacies, δ13C and various biomarker proxies through a unique mid Cretaceous succession from the northern Baffin Bay. Our study is based on a several sites that were cored during the IODP Expedition 344S.
The composite section represents a nearly complete Albian - Turonian succession deposited during the syn-rift phase separating Greenland from Canada/North America. Depositional environments range from anoxic outer shelf and pro-delta fringe to oxygen-restricted lower delta front. The organic geochemical proxies are focusing on the OAE 2 and will investigate changes in the sea surface temperature and water column oxygenation related with this event.

How to cite: Sliwinska, K. K., Bojesen-Koefoed, J., Naafs, D., Nøhr-Gansen, H., Krarup Pedersen, G., Hovikovski, J., and Knutz, P. C.: Stratigraphy, environment and climate of the mid Cretaceous succession from the Arctic region (Baffin Bay), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18455, https://doi.org/10.5194/egusphere-egu2020-18455, 2020.

EGU2020-19076 | Displays | CL1.16

Glendonites from Mesozoic succession of eastern Barents sea: distribution, genesis and paleoclimatic implications

Kseniya Mikhailova, Victoria Ershova, Mikhail Rogov, Boris Pokrovsky, and Oleg Vereshchagin

Glendonites often used as paleoclimate indicator of cold near-bottom temperature, as these are calcite pseudomorphs of ikaite, a metastable calcium carbonate hexahydrate, precipitates mostly under low temperature (mainly from 0-4oC) and may be stabilized by high phosphate concentrations that occurs due to anaerobic oxidation of methane and/or organic matter; dissolved organic carbon, sulfates and amino acid may contribute ikaite formation as well.  Therefore, glendonites-bearing host rocks frequently include glacial deposits that make them useful as a paleoclimate indicator of near-freezing temperature.

Our study is based on material collected from five wells drilled in eastern Barents Sea: Severo-Murmanskaya, Ledovaya – 1,2; Ludlovskaya – 1,2. The studied glendonites, mainly represented by relatively small rhombohedral pseudomorphs (0,5-2 cm) and rarely by stellate aggregates, collected from Middle Jurassic to Lower Cretaceous shallow marine clastic deposits. They scattered distributed throughout succession. Totally 18 samples of glendonites were studied. The age of host-bearing rocks were defined by fossils: bivalves or ammonites, microfossils or dinoflagellate. Bajocian-Bathonian glendonites were collected from Ledovaya – 1 and Ludlovskaya – 1 and 2 wells; in addition to these occurrences Middle Jurassic glendonites are known also in boreholes drilled at Shtockmanovskoe field. Numerous ‘jarrowite-like’ glendonites of the Middle Volgian (~ latest early Tithonian) age were sampled from Severo-Murmanskaya well. Unique Late Barremian glendonites were found in Ledovaya – 2 well.

δ18O values of Middle Jurassic glendonite concretions range from – 5.4 to –1.7 ‰ Vienna Pee Dee Belemnite (VPDB); for Upper Jurassic – Lower Cretaceous δ18O values range from – 4.3 to –1.6 ‰ VPDB; for Lower Cretaceous - δ18O values range from – 4.5 to –3.4 ‰ VPDB. Carbon isotope composition for Middle Jurassic glendonite concretions δ13C values range from – 33.3 to –22.6 ‰ VPDB; for Upper Jurassic – Lower Cretaceous δ13C values range from – 25.1 to –18.4 ‰ VPDB; for Lower Cretaceous - δ13C values range from – 30.1 to –25.6 ‰ VPDB.

Based on δ18O data we supposed that seawater had a strong influence on ikaite-derived calcite precipitation. Received data coincide with δ18O values reported from other Mesozoic glendonites and Quaternary glendonites formed in cold environments. Values of δ13C of glendonites are close to bacterial sulfate reduction and/or anaerobic oxidation of methane or organic matter. Glendonites consist of carbonates forming a number of phases which different in phosphorus and magnesium content. Mg-bearing calcium carbonate and dolomite both include framboidal pyrite, which can indicate (1) lack of strong rock transformations activity and (2) presence of sulfate-reduction bacteria in sediments.

To conclude, Mesozoic climate was generally warm and studied concretions indicate cold climate excursion in Middle Jurassic, Upper Jurassic-Early Cretaceous and Early Cretaceous.

 

The study was supported by RFBR, project number 20-35-70012.

How to cite: Mikhailova, K., Ershova, V., Rogov, M., Pokrovsky, B., and Vereshchagin, O.: Glendonites from Mesozoic succession of eastern Barents sea: distribution, genesis and paleoclimatic implications, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19076, https://doi.org/10.5194/egusphere-egu2020-19076, 2020.

EGU2020-19216 | Displays | CL1.16

Reconstruction of Holocene glacier fluctuations at Kongsbreen based on sediments deposited in lake Sarsvatnet, Ossian Sarsfjellet, Svalbard

Eivind W. N. Støren, Ane Brun Bjerkås, Jostein Bakke, Henriette Linge, William D`Andrea, Willem van der Bilt, Torgeir Røthe, Nicholas L. Balascio, Raymond S. Bradley, Oliver Grant, Derek Fabel, and Sheng Xu

The Arctic is warming twice as fast as the global average, and the melting of mountain glaciers and ice caps has accelerated over the last two decades accompanied by reduced sea ice in the Arctic Ocean. Here we combine sedimentological and geochemical approaches to reconstruct changes in glacier extent at the marine terminating glacier Kongsbreen in order to put present-day climate changes into a longer time perspective. Glaciers are highly sensitive climate indicators as they rapidly respond to variations in summer temperature and precipitation, two parameters that are closely linked to atmospheric dynamics. This climate response is recorded by variations in glacier extent and moraine formation and by variations in glacial erosion and hence sedimentation rates in distal glacier-fed lakes. Lake Sarsvatnet is a threshold-lake that only receive glacial derived sediments when the surface of Kongsbreen crosses a local threshold. When the catchment is ice-free, lake sedimentation rate is lower and dominated by material weathered from the immediate proximity and organic-rich sediments. Based on seismic surveying seven coring sites were selected in three different sub-basins in lake Sarsvatnet. Laboratory analyses, including geochemical measurement by XRF scanning and XRD, CT scanning, grain size and measurements of magnetic proxies, were preformed in order to fingerprint the inorganic sediments. Chronological control is based on radiometric dating (14C, 210Pb, and 10Be). Erratics (n=3, 125-306 m a.s.l.) indicate ice-free conditions since 13.0±1.1 ka (2σ), overlapping with the oldest organic material found in the lake which is 11 860±80 cal. yr BP. Until around 7400 cal. yr BP lake Sarsvatnet is dominated by organic sedimentation. From around 7400 – 6900 cal. yr BP there is evidence for glacial input into the lake indicating the expansion of Kongsbreen and corresponding to the decline in temperature after the HTM. In the following millennia, and entering the Neoglacial period, there is evidence for mulitiple (~20) decadal to centennial-scale periods of glacier expansion, the most recent dated to AD 1650 marking the onset of glacier build-up towards the LIA maximum. This indicate that the Kongsbreen glacier had short lived expansion periods reaching LIA-like extension already during the middle Holocene, as well as multiple times during the Neoglacial.

 

 

How to cite: Støren, E. W. N., Brun Bjerkås, A., Bakke, J., Linge, H., D`Andrea, W., van der Bilt, W., Røthe, T., Balascio, N. L., Bradley, R. S., Grant, O., Fabel, D., and Xu, S.: Reconstruction of Holocene glacier fluctuations at Kongsbreen based on sediments deposited in lake Sarsvatnet, Ossian Sarsfjellet, Svalbard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19216, https://doi.org/10.5194/egusphere-egu2020-19216, 2020.

EGU2020-19312 | Displays | CL1.16

Plio-Pleistocene glacial history of the Melville Bugt Ice Stream

Andrew Newton, David Cox, Mads Huuse, and Paul Knutz

In this work we use high-resolution seismic reflection surveys collected across the northeast Baffin Bay region to investigate the glacigenic Melville Bugt Trough Mouth Fan (MB-TMF). The MB-TMF stratigraphy is characterised by over 100 km of progradation since ~2.7 Ma and the heterogeneous truncation or subsidence of topset strata. Variation in topset character is thought to relate to the waxing and waning of the northwest sector of the Greenland Ice Sheet across the shelf since ~2.7 Ma. 3D seismic reflection data reveal the preservation of multiple sets of mega-scale glacial lineations, suggesting that grounded ice extended across the shelf a number of times since the onset of the Middle Pleistocene Transition. Seismic geomorphology and facies analysis of the prograding clinoforms show repeated observations of debrites and gully systems. These features, when considered with other evidence of adjacent glacial landforms and strata, are taken to infer gravity-driven processes and the presence of meltwater-related hyperpycnal flows in areas proximal to the ice sheet on the outer shelf. Bottomset contourites at the base of the continental slope also provide insights into the evolution of the West Greenland Current in Baffin Bay through the Pleistocene, with deposition estimated to have started in the latest Calabrian, based on the current age model. Regional stratigraphic mapping shows that the MB-TMF can be summarised into four stages that were primarily controlled by variations in ice sheet erosion patterns, topographic forcing of ice flow, and changes in accommodation that are related to glacigenic deposition and tectonic subsidence. 

How to cite: Newton, A., Cox, D., Huuse, M., and Knutz, P.: Plio-Pleistocene glacial history of the Melville Bugt Ice Stream, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19312, https://doi.org/10.5194/egusphere-egu2020-19312, 2020.

EGU2020-21591 | Displays | CL1.16

Detrital mineral composition and provenance of the Camp Century basal ice sediments

Tonny B. Thomsen, Paul C. Knutz, Julie C. Fosdick, Sidney R. Hemming, Andrew Christ, Paul R. Bierman, Nico Perdrial, John Hughes, Joerg Schaefer, Jean-Louis Tison, Pierre-Henri Blard, Marie Protin, Dorthe Dahl-Jensen, and Jørgen P. Steffensen

The Camp Century Ice core, NW Greenland, recovered a 4.5 m basal section consisting of frozen sediments and debris-rich ice. This material was recently re-discovered in Danish ice core storage and visually logged. As part of a multi-disciplinary effort to unlock the climatic and paleo-environmental signal of this unique record, we have analysed detrital mineral composition and metamorphic ages. Bulk mineral analyses were performed at the Geological Survey of Denmark and Greenland on grain mounts from 2 core intervals using a SEM automated quantitative mineralogy (AQM) approach coupled to laser ablation ICP-MS analyses. This setup allows us to gain a full mineral description together with single-grain U-Pb dates for a large population of metamorphic components, e.g. apatite, rutile, titanite and zircon. In addition, amphibole grains were picked for 40Ar-39Ar dating performed at the LDEO Argon Isotope Lab. Mineralogical characterization was completed by X-Ray diffraction analysis of the fine fraction to determine the presence and nature of potential clay weathering products, and single-crystal X-ray diffraction was utilized to characterize the atomic arrangements of minerals that occur in solid solutions. The AQM results indicate that metamorphic minerals are present in sufficient amounts (100’s) for gaining statistically valid provenance data. Preliminary results show ages in the 1900 – 1700 Ma range (amphibole, rutile) and around 2700 Ma (zircon). This, along with the presence of swelling clays in the sediments, is consistent with weathering of the local bedrock, and/or sediments transported from the Inglefield orogenic belt north of the site. To gain information on the youngest thermal events of sediment sources, potentially revealing deep glacial incision, (U-Th-Sm)/He dating of single apatite grains is underway. Preliminary work on the 125-250 µm size fraction yield abundant subhedral-to-subrounded, euhedral apatite suitable for thermochronology. Here we report the results from the different methods and discuss the implications for understanding erosional processes and potential transport pathways of the Camp Century basal ice sediments. 

How to cite: Thomsen, T. B., Knutz, P. C., Fosdick, J. C., Hemming, S. R., Christ, A., Bierman, P. R., Perdrial, N., Hughes, J., Schaefer, J., Tison, J.-L., Blard, P.-H., Protin, M., Dahl-Jensen, D., and Steffensen, J. P.: Detrital mineral composition and provenance of the Camp Century basal ice sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21591, https://doi.org/10.5194/egusphere-egu2020-21591, 2020.

CL1.18 – Studying the climate of the last two millennia

EGU2020-8982 | Displays | CL1.18

Comparison of isotopic signatures in speleothem records and model simulations for the past millennium

Janica Buehler, Moritz Kirschner, Carla Roesch, Max D. Holloway, Louise Sime, and Kira Rehfeld

Global changes in climate, especially in mean temperature, receive increasing public as well as scientific attention under the current warming trend. However, the probability of extreme events and their societal impact is also governed by changes in climate variability. Improving the understanding of changes in both and their relationship is crucial for projecting reliable climate change scenarios. Model-data comparisons between general circulation models and speleothem paleoclimate archives, with δ18O as a temperature and precipitation proxy, have been suggested to test and validate the capability of different climate models.

Speleothems are precisely date-able and provide well preserved (semi-)continuous climate signals in the lower and mid-latitudes, providing a suitable archive to assess a model’s capability to simulate climate variability on time scales longer than those observable. However, the δ18O measured in speleothem calcite does not directly represent temperature or precipitation but results from multivariate, non-linear processes on top of the dominant meteoric controls on δ18O in precipitation.

Here, we evaluate correlations and networks between different records and power spectral densities across a speleothem database for the past millennium (850-2000CE), testing for representativity of individual records for the time period. Similarity measures are applied to proxy records and to the local climate variables obtained from three isotope-enabled HadCM3 simulations to evaluate simulation biases across different parameters and to distinguish main climate drivers for individual records or regions. The proxy records show strong damping of variability on shorter time scales compared to simulations down-sampled to record-resolution, acting like simple filter processes with realistic time scales for karst transit times.

Based on the evidence from proxies and models for the past 1000 years, we test for realistic parameter constraints and sufficient complexity of a speleothem proxy system model to represent low-latitude changes in climate variability on interannual to centennial timescales.

How to cite: Buehler, J., Kirschner, M., Roesch, C., Holloway, M. D., Sime, L., and Rehfeld, K.: Comparison of isotopic signatures in speleothem records and model simulations for the past millennium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8982, https://doi.org/10.5194/egusphere-egu2020-8982, 2020.

EGU2020-525 | Displays | CL1.18

Multiproxy climate and sea ice reconstruction of the industrial era at the Western Antarctic Peninsula

Maria-Elena Vorrath, Paola Cárdenas, Lorena Rebolledo, Xiaoxu Shi, Juliane Müller, Carina B. Lange, Gesine Mollenhauer, Praxedes Muñoz, Gema Martínez Méndez, Walter Geibert, and Oliver Esper

Recent changes and variability in climate conditions leave a significant footprint on the distribution and properties of sea ice, as it is sensitive to environmental variations. We investigate the rapidly transforming region of the Western Antarctic Peninsula (WAP) focusing on the conditions and development of sea ice in the pre-satellite era. For this study on past sea ice cover we apply the novel proxy IPSO25 (Ice Proxy for the Southern Ocean with 25 carbon atoms; Belt et al., 2016). Three sampling sites were selected to cover areas near the Antarctic mainland, in the Bransfield Basin (2000 m depth) and the deeper shelf under an oceanographic frontal system. Analysis of short cores (multicores) resolving the last 200 years (based on 210Pbex dating) focused on geochemical bulk parameters, biomarkers (highly branched isoprenoids, GDGTs, sterols) and diatoms. These results are compared to multiple climate archives and modelled data. This multiproxy based approach provides insights on changes in spring sea ice cover, primary production regimes, subsurface ocean temperature (SOT based on TEXL86) and oceanographic as well as atmospheric circulation patterns. While environmental proxies preserved in two cores near the coast and in the Bransfield Basin reflect the properties of water masses from the Bellingshausen Sea and Weddell Sea, respectively, data from the third core at the deeper shelf depict mixed signals of both water masses. Our study reveals clear evidence for warm and cold periods matching with ice core records and other marine sediment data at the WAP. We observe a general decrease in SOT and an increase in sea ice cover overprinted by high decadal fluctuations. Trends in SOT seem to be decoupled from atmospheric temperatures in the 20th century, and this is supported by previous studies (e.g. Barbara et al., 2013), and may be related to the Southern Annual Mode. We consider numerical modelling of sea ice conditions, sea surface temperature and SOT for further support of our findings.

 

References:

Barbara, L., Crosta, X., Schmidt, S. and Massé, G.: Diatoms and biomarkers evidence for major changes in sea ice conditions prior the instrumental period in Antarctic Peninsula, Quat. Sci. Rev., 79, 99–110, doi:10.1016/j.quascirev.2013.07.021, 2013.

Belt, S. T., Smik, L., Brown, T. A., Kim, J. H., Rowland, S. J., Allen, C. S., Gal, J. K., Shin, K. H., Lee, J. I. and Taylor, K. W. R.: Source identification and distribution reveals the potential of the geochemical Antarctic sea ice proxy IPSO25, Nat. Commun., 7, 1–10, doi:10.1038/ncomms12655, 2016.

How to cite: Vorrath, M.-E., Cárdenas, P., Rebolledo, L., Shi, X., Müller, J., Lange, C. B., Mollenhauer, G., Muñoz, P., Martínez Méndez, G., Geibert, W., and Esper, O.: Multiproxy climate and sea ice reconstruction of the industrial era at the Western Antarctic Peninsula, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-525, https://doi.org/10.5194/egusphere-egu2020-525, 2020.

EGU2020-6218 | Displays | CL1.18

An annually dated Interdecadal Pacific Oscillation reconstruction spanning the last two millennia

Tessa Vance, Anthony Kiem, Jason Roberts, Lenneke Jong, Chris Plummer, Mark Curran, Andrew Moy, and Tas van Ommen

The Interdecadal Pacific Oscillation (IPO) is a nominally 15-30 year climate mode that has been identified through analysis of tropical and extratropical Pacific sea surface temperatures over the past 150 years. It is still unclear whether the IPO is a true oscillation or whether it is simply the low frequency response of the climate system to forcing (natural and potentially anthropogenic), principally ENSO. Regardless of this, the IPO as it is currently known has clear climate impacts, one example being hydroclimate variability in Australia. In positive phases of the IPO, drought risk is heightened due to a reduction in the likelihood of large, recharging La Nina-derived rainfall events. Conversely, in IPO negative phases, flood risk in Australia is greatly increased due to an increased likelihood of such rain events.

Previous work derived a 1000 year, accurately dated reconstruction of the IPO from multiple palaeoclimate archives from the Law Dome ice core in East Antarctica. This reconstruction provided a long-term reconstruction with which to assess the true risk of drought- and flood-prone epochs in Australia. Subsequently, an entirely independent reconstruction of the IPO was developed using SE Asian tree rings by Buckley et al. in 2019, also spanning most of the last millennium. The fidelity the two reconstructions display with respect to the instrumental IPO record and with each other suggests both are faithfully representing IPO variability. Here we present an IPO reconstruction that doubles the temporal span of existing reconstructions to cover the last 2000 years using newly analysed and dated material from the Law Dome ice core. This new, longer reconstruction identifies important features of Pacific decadal variability that have significant implications for understanding hydroclimate epochs across not only Australasia, but the Pacific region as a whole.

How to cite: Vance, T., Kiem, A., Roberts, J., Jong, L., Plummer, C., Curran, M., Moy, A., and van Ommen, T.: An annually dated Interdecadal Pacific Oscillation reconstruction spanning the last two millennia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6218, https://doi.org/10.5194/egusphere-egu2020-6218, 2020.

EGU2020-12476 | Displays | CL1.18

Cooling and freshening of the eastern equatorial Pacific over the last 2000 years

Gerald Rustic, Athanasios Koutavas, and Thomas Marchitto

Sea surface temperatures in the eastern equatorial Pacific exert powerful influence on the climate beyond the tropics through strong atmosphere-ocean coupling. Records of eastern Pacific sea surface temperatures are of vital importance for identifying the linkages between short-term climate variability and long-term climate trends. Here we reconstruct eastern equatorial Pacific sea surface temperature and salinity from paired trace metal and stable isotope analyses in foraminifera from a sediment core near the Galápagos Islands. Sea surface temperatures are correlated with reconstructed Northern and Southern hemisphere temperature records suggesting a common origin. We propose that this temperature signal originates in the extra-tropics and is transmitted to the eastern Pacific surface via its source waters. We find exceptions to this cooling during the Little Ice Age and during the last century, where notable sea surface temperature increases are observed. We calculate δ18Osw from paired stable isotope and trace element analyses and derive salinity, which reveals a significant trend toward fresher surface waters in the eastern equatorial Pacific. The overall trend toward cooler and fresher sea surface conditions is consistent with longer-term trends from both the Eastern and Western Pacific.

How to cite: Rustic, G., Koutavas, A., and Marchitto, T.: Cooling and freshening of the eastern equatorial Pacific over the last 2000 years , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12476, https://doi.org/10.5194/egusphere-egu2020-12476, 2020.

EGU2020-11844 | Displays | CL1.18

A 1300-year reconstruction of the South Pacific Convergence Zone using a Pacific-wide tree-ring network

Philippa Higgins, Jonathan Palmer, Christian Turney, Martin Andersen, and Edward Cook

The South Pacific Convergence Zone (SPCZ) is the largest driver of precipitation variability over South Pacific island communities during the austral warm season influencing the severity and duration of drought and the frequency of tropical cyclones. The SPCZ is known to exhibit variability on a range of timescales, from intra-seasonal to multidecadal variations, modulated by the Interdecadal Pacific Oscillation (IPO). Despite its climatic and societal importance, determining the causes of low frequency variability in the SPCZ has been hampered by the short instrumental data record, with most comprehensive analyses since the satellite era. Here we report the first paleoclimate reconstruction of the SPCZ, allowing climate variability in the South Pacific region to be explored back to 700 CE. Our 1300-year reconstruction of the SPCZI (South Pacific Convergence Zone Index; the difference between mean sea level pressure between Apia, Samoa and Suva, Fiji) is based on a trans-Pacific network of precisely dated tree-ring proxies. Capturing SPCZ teleconnections from both sides of the Pacific has produced a robust, unbiased reconstruction with excellent reconstruction skill over the entire period. El Niño-Southern Oscillation periodicities (∼3-7 years) are pervasive throughout the SPCZI reconstruction. Multidecadal periodicities wax and wane, apparently coinciding with the timing of the Medieval Climate Anomaly (c. 1000-1200 CE) and Little Ice Age (1300-1700 CE). We discuss some of the drivers of SPCZI variability including global dimming events. Our reconstruction helps improve our understanding of past hydroclimatic behaviour in the southwest Pacific and can be used to validate general circulation model projections for Pacific Island communities in the twenty-first century.

How to cite: Higgins, P., Palmer, J., Turney, C., Andersen, M., and Cook, E.: A 1300-year reconstruction of the South Pacific Convergence Zone using a Pacific-wide tree-ring network, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11844, https://doi.org/10.5194/egusphere-egu2020-11844, 2020.

EGU2020-19795 | Displays | CL1.18

Setting the tree-ring record straight

Josef Ludescher, Armin Bunde, Ulf Büntgen, and Hans Joachim Schellnhuber

Tree-ring chronologies are the main source for annually resolved and absolutely dated temperature reconstructions of the last millennia and thus for studying the intriguing problem of climate impacts. Here we focus on central Europe and compare the tree-ring based temperature reconstruction with reconstructions from harvest dates, long meteorological measurements, and historical model data. We find that all data are long term persistent, but in the tree-ring based reconstruction the strength of the persistence quantified by the Hurst exponent is remarkably larger (h = 1.02) than in the other data (h = 0.52 − 0.69), indicating an unrealistic exaggeration of the historical temperature variations. We show how to correct the tree-ring based reconstruction by a mathematical transformation that adjusts the persistence and leads to reduced amplitudes of the warm and cold periods. The new transformed record agrees well with both the observational data and the harvest dates-based reconstructions and allows more realistic studies of climate impacts. It confirms that the present warming is unprecedented.

How to cite: Ludescher, J., Bunde, A., Büntgen, U., and Schellnhuber, H. J.: Setting the tree-ring record straight, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19795, https://doi.org/10.5194/egusphere-egu2020-19795, 2020.

EGU2020-12153 | Displays | CL1.18

Be-10 measurements and modeling results from the South Pole ice core – here comes the sun!

Joerg M. Schaefer, Eric J. Steig, and Qinghua Ding

The production of 10Be in the atmosphere in the high latitudes is modulated by solar variability. Time-series records of 10Be from ice cores therefore provide important information on variations in solar activity through time, which is fundamental to understanding climate variability. However, deposition of 10Be to the ice surface is also influenced by variability in atmospheric circulation and deposition processes, and thus, many 10Be ice core records remain difficult to interpret.

South Pole is arguably the best available location for minimizing the influence of variable atmospheric circulation on 10Be deposition. The single existing 10Be record from South Pole covers the last millennium and ends in CE 1982.

We present a new South Pole 10Be record from the late Holocene, together with examplary measurements from the last glacial period, complemented by climate modeling experiments of atmospheric 10Be production, transport and deposition physics. Our continuous one-meter resolution record covers so far the last three millennia. The data from the last millennium agree well with the existing 10Be record by Raisbeck et al. (1990). The 10Be data from the South Pole ice core matches the historic sunspot records strikingly, providing a robust calibration between sunspot number and 10Be deposition. The coincident timing of major shifts in sunspot number and 10Be provides an independent confirmation of the South Pole ice core timescale.

Independently, our model simulations of both internannual variablity and glacial vs. interglacial 10Be production, transport and deposition indicate that 10Be in South Pole snow is robust even to significant climate changes, suggesting that the measured 10Be primarily reflect changes of solar activity over that period. In turn, our model-data comparison allows to evaluate potential shifts in solar activity through the late Holocene, and during the glacial-interglacial transition.

How to cite: Schaefer, J. M., Steig, E. J., and Ding, Q.: Be-10 measurements and modeling results from the South Pole ice core – here comes the sun!, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12153, https://doi.org/10.5194/egusphere-egu2020-12153, 2020.

EGU2020-6120 | Displays | CL1.18

Placing the east-west United States aridity gradient in a millennial context

Daniel Bishop, Park Williams, Richard Seager, Edward Cook, Dorothy Peteet, Benjamin Cook, and Mukund Rao

Global climate change is projected to exacerbate regional droughts across much of the globe by the end of the 21stcentury, while increases in precipitation extremes are projected to increase regional flood risk. Trends consistent with these changes have already been observed across the contiguous United States (US). Instrumental records indicate a 20th-century trend towards drier soil moisture conditions over a large portion of the western US and wetter conditions over the eastern US, termed here as the east-west US aridity gradient. If these trends continue through the end of the 21st century, there would be significant consequences for human and ecological health, socioeconomics, water resources, and agriculture in both the semi-arid southwestern and flood-prone eastern US. A greater understanding of the spatiotemporal nature of terrestrial water variability across the US is critical to mitigate its impacts and inform policy decisions in the coming decades.

Using empirical orthogonal functions (EOFs) of instrumental summer (JJA) drought and soil moisture indices with a normalized Varimax rotation, we identify multiple independent regional soil moisture modes across the contiguous US. Modes in the northeastern and midwestern US contribute to wetting in the eastern US and a mode in the southwestern US contributes to drying in the western US, collectively increasing the east-west aridity gradient during the 20th century. The gradient has been studied previously, but its recent observed trend has not been contextualized within the natural range of variability in the paleoclimate record. Such a contextualization would improve our understanding of the underlying drivers of the modern trend and help benchmark future climate change projections. Here, we seek to (1) determine the timescales that the aridity gradient has been most active, (2) contextualize and evaluate the spatial characteristics and physical mechanisms of the aridity gradient trend within its natural range of climate variability, and (3) evaluate the relative roles of anthropogenic climate change and natural climate variability on the recent gradient trend.

The modes impacting the observed US aridity gradient are also apparent in multiple paleoclimate data products that span the past millennium (e.g., tree ring-reconstructed North American Drought Atlas, multi-proxy Paleo Hydrodynamics Data Assimilation product), although spatial characteristics of these modes vary through time. Using these products, we find that the recent observed multidecadal trend toward wetting in the east and drying in the west was abnormal relative to the last millennium. During 1956-2005, the mean soil-moisture difference between the east and west US was larger than during any other 50-year period since the end of the Medieval Warm Period (1201-1250 CE). Additional work will decompose the effects of temperature and precipitation on soil moisture trends and variability through time and relate the reconstructions to last-millennium CMIP5/CMIP6 climate simulations to assess model ability to simulate the reconstructed range of multi-annual to decadal hydroclimatic variability across the US. We will also assess climate projections to investigate the potential contribution of anthropogenic climate trends to the strengthened aridity gradient observed over the past century, providing insights into how this gradient may trend in future decades.

How to cite: Bishop, D., Williams, P., Seager, R., Cook, E., Peteet, D., Cook, B., and Rao, M.: Placing the east-west United States aridity gradient in a millennial context, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6120, https://doi.org/10.5194/egusphere-egu2020-6120, 2020.

EGU2020-22649 | Displays | CL1.18

Unraveling South American spatial precipitation patterns, intensity and variability through a multi-proxy approach for the past 2 kyr

Francisco J. Briceño-Zuluaga, Juliana Nogueira, Heitor Evangelista, James Apaéstegui, Abdelfettah Sifeddine, Jhan Carlo Espinosa, Raphael Neukom, Lucien Von Gunten, Catalina Gonzalez Arango, Myriam Khodri, Hugo Leonardo Monteiro, Alan Prestes, Mariza Pereira de Souza Echer, Marie-Pierre Ledru, Jorge Valdez, Francisco W. Cruz, Nicolas Strikis, and Pedro Dias

South America hydrological cycle is highly dependent on the water vapor transport advected from tropical-equatorial Atlantic, Southern Pacific as well as the polar advections. While the Pacific contribution in the continental water budget is basically restricted to the western Andes region, the Atlantic Ocean and others mechanism – as advection in Amazonas basin – play a great role in modulating precipitation over the continent. Besides, modes of climatic variability, such as ENSO, have an important role in pluviosity distribution patterns and respectively intensity, influencing the availability of water resources from mountainous regions, vital to ecosystems and to economy and human wellbeing. Intense droughts and floods observed continentally during the modern epoch have pointed to the need of better understanding the regional climate related issue. Recent paleoclimate advances, especially the creation of high-standard regional proxy record databases, allow describing the South American climate from a new perspective. Here we present an effort of the South American PAGES 2k paleo-community LOTRED-SA to build a South America hydrology robust and unique multiproxy database. We present a spatial and temporal approach of the South American hydro-climate reconstruction based on more than 360 available databases in an attempt to unravel their changes and impacts. Following a multi-proxy approach, we expect to better describe duration and location of wet and dryer climate regimes at most important climate spatial domains, and modes patterns on South America, during each period; as well as their predominant variability base on high resolution records (tree rings, speleothems, lake, marine and ice cores). we combine here the use of different proxy records and spatial-temporal approach, owing to consolidate interpretations of the hydrological cycles in South America.

How to cite: Briceño-Zuluaga, F. J., Nogueira, J., Evangelista, H., Apaéstegui, J., Sifeddine, A., Carlo Espinosa, J., Neukom, R., Von Gunten, L., Gonzalez Arango, C., Khodri, M., Monteiro, H. L., Prestes, A., Pereira de Souza Echer, M., Ledru, M.-P., Valdez, J., Cruz, F. W., Strikis, N., and Dias, P.: Unraveling South American spatial precipitation patterns, intensity and variability through a multi-proxy approach for the past 2 kyr, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22649, https://doi.org/10.5194/egusphere-egu2020-22649, 2020.

EGU2020-20153 | Displays | CL1.18

Influences of the seasonal Indian monsoons, 1790-1993 CE: Sub-annual sea surface temperature and precipitation reconstructed from laminated Pakistan Margin sediments

Tiffany J. Napier, Lars Wӧrmer, Jenny Wendt, Andreas Lückge, and Kai-Uwe Hinrichs

Sub-decadal to annual climate oscillations are particularly relevant to human climate perception, including such well-known phenomena as the seasonal monsoons and El Niño-Southern Oscillation (ENSO). To assess the variability of these oscillations in the past, proxies for climate parameters that are influenced by these oscillations (e.g., temperature, precipitation) and geologic materials with a temporal resolution able to record them are both needed. However, even in settings where these two criteria are met, the sample size needed for laboratory analysis can limit temporal resolution.

We utilize a novel mass spectrometry imaging technique to measure and map distributions of climate-relevant biomarkers (e.g., GDGTs, alkenones) from intact sediment core surfaces in sub-mm increments, unlocking the ability to reconstruct sub-annual paleoclimate. These same sediment sample surfaces are analyzed with micro-XRF mapping to enable congruent examination of complementary elemental- and biomarker-derived paleoenvironmental proxies at ultra-high spatial resolution, both down-core and along-lamination.

We applied our biomarker and elemental mapping techniques to annually-laminated Pakistan Margin (northeastern Arabian Sea) sediment core SO90-58KG, spanning 1790-1993 CE. Laminated Pakistan Margin marine sediments are excellent archives of past climate and oceanographic conditions that are influenced by the summer (Southwest) and winter (Northeast) monsoons of India. We measured alkenones and GDGTs at 200 µm resolution, and elemental abundances at 50 µm resolution. Reconstructed sea surface temperatures (SSTs) were calculated from alkenone (UK'37) and GDGT (CCaT) ratios, respectively, with sample resolution up to four points per year. Principal component analysis was applied to the elemental measurements. The first principal component (PC1) is associated with siliciclastic elements (Al, Si, K, Ti, Fe), and is used as a proxy for sub-annual precipitation-driven river runoff.

Reconstructed SSTs for both biomarker proxies contain congruent trends, and align with the annual range of instrumental measurements (23 to 30 °C). The annual cycles in SST, with low temperatures driven by mixing during the winter monsoon, are prominent in the time series and highly significant in their power spectra. Using this annual cycle in SST and our paired elemental measurements, we determine the season(s) of river runoff. PC1 is typically highest when SST is low, suggesting runoff/deposition usually occurs during the winter monsoon, consistent with precipitation from westerly storms. However, some years contain PC1 peaks that occur in-phase with warm SSTs, suggesting expansion of summer monsoon rainfall west of Karachi during these years. This work demonstrates the cutting edge of high-resolution paleoclimate science, and provides new insights into the variability of the Indian monsoon from its sensitive western edge.

How to cite: Napier, T. J., Wӧrmer, L., Wendt, J., Lückge, A., and Hinrichs, K.-U.: Influences of the seasonal Indian monsoons, 1790-1993 CE: Sub-annual sea surface temperature and precipitation reconstructed from laminated Pakistan Margin sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20153, https://doi.org/10.5194/egusphere-egu2020-20153, 2020.

EGU2020-19571 | Displays | CL1.18

Variability of the Azores High and regional hydroclimate over the past millennium

Caroline Ummenhofer, Nathaniel Cresswell-Clay, Diana Thatcher, Alan Wanamaker, and Rhawn Denniston

The subtropical dry zones, including the broader Mediterranean region, are likely to experience considerable changes in hydroclimate in a warming climate. An expansion of the atmosphere’s meridional overturning circulation, the Hadley circulation, over recent decades has been reported, with implications for regional hydroclimate. Yet, there exists considerable disagreement in magnitude and even sign of these trends among different metrics that measure various aspects of the Hadley circulation, as well as discrepancies in trends between different analysis periods and reanalysis products during the 20th century. In light of these uncertainties, it is therefore of interest to explore variability and trends in subtropical hydroclimate and its dominant driver, the Hadley Circulation. We focus on the North Atlantic sector and explore variability in the Azores High, the manifestation of the Hadley Circulation’s downward branch, and hydroclimate across the Iberian Peninsula using a combination of observational/reanalysis products, state-of-the-art climate model simulations, and hydroclimatically-sensitive stalagmite records over the past 1200 yr. The Last Millennium Ensemble (LME) with the Community Earth System Model provides thirteen transient simulations covering the period 850 to 2005 A.D. with prescribed external forcing (e.g. greenhouse gas, solar, volcanic, land use, orbital, and aerosol) and smaller subsets with individual forcing only. The LME is shown to accurately simulate the variability and trends in the Azores High when compared to observational records from the 20th century. We evaluate variability in the Azores High (e.g., size, intensity, position) in relation to other key metrics that measure different aspects of the Hadley circulation throughout the course of the last millennium, as well as during key periods, such as the Little Ice Age or Medieval Climate Anomaly. The smaller subsets of LME simulations with individual forcing factors (e.g., solar, volcanic) allow for an attribution of past changes in regional hydroclimate to external drivers. Results from the climate model simulations are compared with hydroclimate reconstructed from stalagmites from Portuguese caves.

How to cite: Ummenhofer, C., Cresswell-Clay, N., Thatcher, D., Wanamaker, A., and Denniston, R.: Variability of the Azores High and regional hydroclimate over the past millennium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19571, https://doi.org/10.5194/egusphere-egu2020-19571, 2020.

EGU2020-19963 | Displays | CL1.18

European drought during the last two millennia from reconstructions and model simulations

Fidel González-Rouco, María Angeles López-Cayuela, Jorge Navarro, Elena García-Bustamante, Nuria García-Cantero, Camilo Melo-Aguilar, and Norman Steinert

The spatial and temporal variability of droughts in the Euro-Mediterranean area during the last two millennia has been analyzed by comparing the Old World Drought Atlas (OWDA) dentrochronological based reconstruction and 13 simulations including a complete set of natural and anthropogenic forcings from the Community Earth System Model- Last Millennium Ensemble (CESM-LME). The OWDA represents scPDSI estimates, whereas for the CESM-LME soil moisture is used. A clustering into regions of objectively different behavior is achieved through rotation of principal components and the resulting regionalizations of the OWDA and the CESM-LME are compared.

The resulting regions from the reconstructions and model are overall consistent. Some regions are coincident in both and in some cases model regions are a combination of the reconstructed ones. The resulting classification is also robust across the model ensemble, although It is found that the definition of some hydroclimatic regions shows some sensitivity to internal variability.

The temporal variability of drought within each region is analyzed. Differences are found in the level of low frequency variability among regions with implications for the probability of having long intense droughts in different areas. Megadroughts have been found to exist both in the reconstructions and in the simulations and their occurrence suggest rather internal variability dependances rather than responses to external forcing.

How to cite: González-Rouco, F., López-Cayuela, M. A., Navarro, J., García-Bustamante, E., García-Cantero, N., Melo-Aguilar, C., and Steinert, N.: European drought during the last two millennia from reconstructions and model simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19963, https://doi.org/10.5194/egusphere-egu2020-19963, 2020.

EGU2020-11257 | Displays | CL1.18

The significance of climate and solar variability on historical European grain prices

Fredrik Charpentier Ljungqvist, Peter Thejll, Bo Christiansen, Andrea Seim, Claudia Hartl, and Jan Esper

Grain was the most important food source for a majority of the population in early modern Europe (c. 1500–1800). The price level and volatility had huge societal effects: high prices tended to increase mortality, decrease fertility as well as affect overall consumption patterns. To what extent climate variability influenced the long-term grain price evolution in early modern Europe has for a long time been a matter of debate. Recent advances in high-resolution palaeoclimatology and historical climatology have made it possible to reassess the grain price–climate relationship in time and space with unprecedented detail (Esper et al. 2017). We analyse the climate signal in 56 multi-centennial long series of annual prices of barley, oat, rye, and wheat across Europe. The grain price–climate relationship in regional clusters of grain price data is analysed using both tree-ring based temperature reconstructions, documentary-based temperature reconstructions, tree-ring based drought reconstructions, and early temperature and precipitation instrumental data, considering possible different climate responses in each grain type and different seasonal targets. In addition, we systematically investigate whether, and to what extent, the imprints of variations in solar forcing, including possible lag effects, can be detected in the grain prices.

We find a highly significant and persistent negative temperature–price relationship (i.e., cold = high prices and vice versa) across all of Europe and for all four grain types using both temperature reconstructions and instrumental temperature data. Excluding the Thirty Years’ War (1618–1648) and the period following the French Revolution (1789), this relationship is as strong as r = –0.41 between the annual average of all the 56 included European grain price series and the reconstructed June–August temperature for the previous year. The correlations to drought and precipitation are, on the other hand, mainly insignificant and inconsistent in time and space. The evidence for the existence of the effect of solar forcing variations on early modern European grain prices is not strong, although we can detect statistically significant grain price–solar forcing relationships for certain regions. In conclusion, we find much stronger evidence than hitherto reported for long-term temperature imprints on historical grain prices in Europe, implying that temperature variability and change have been a more important factor in European economic history, even in southern Europe, than commonly acknowledged.

 

Reference:

Esper J., et al., 2017. Environmental drivers of historical grain price variations in Europe. Clim. Res. 72: 39–52.

How to cite: Charpentier Ljungqvist, F., Thejll, P., Christiansen, B., Seim, A., Hartl, C., and Esper, J.: The significance of climate and solar variability on historical European grain prices, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11257, https://doi.org/10.5194/egusphere-egu2020-11257, 2020.

EGU2020-4141 | Displays | CL1.18

Climate, volcanism and human impact on Iceland’s landscape during the last two millennia.

Áslaug Geirsdóttir, David Harning, John Andrews, Gifford Miller, Yafang Zhong, and Alexandra Jahn

Biogeochemical proxy records from Icelandic lake sediment reflect large-scale shifts in North Atlantic Holocene climate and highlight the impact that North Atlantic Ocean- and atmospheric circulation has on Iceland’s local climate. Following Early Holocene warmth, millennial-scale cooling has been modulated by centennial-scale climate change, culminating in the transition to the Little Ice Age (ca. 1300-1900 CE). Although the long-term cooling trend is presumably driven by variations in Earth’s orbit and the concomitant decline in Northern Hemisphere summer insolation, the centennial-scale variability has been linked to variations in solar irradiance, the strength of the Atlantic Meridional Overturning Circulation, volcanism coupled with sea ice/ocean related feedbacks and internal modes of atmospheric variability. One manifestation of these regional climate changes on Iceland is the intensification of soil erosion, resulting in the degradation of its eco-systems and landscape. In recent millennia, persistent and severe soil erosion has also been linked to human impact on the environment following the settlement ~874 CE, rapid population growth and the poorly consolidated nature of tephra dominated soils. However, against the argument that the onset of severe soil erosion coincided with human settlement are composite landscape stability proxies extracted from the high-resolution, precisely-dated lake sediment cores. These data suggest event-dominated landscape instability and soil erosion began in the Middle to Late Holocene with an intensification of landscape instability around ~500 CE, several centuries before the acknowledged settlement of Iceland, after which soil erosion continue to increase. In order to statistically identify abrupt and persistent changes within our landscape stability proxy records, we performed an analysis that targets mean regime shifts in individual time series. The first clear regime shift occured around ~500 CE, with a second large shift ~1200 CE. In order to provide a causal explanation for these regime shifts, we looked to a new 2 ka fully coupled climate transient simulation using CESM1, with forcing data from PMIP4, including insolation, volcanic aerosols, land-cover, and GHG. The CESM results show a ~0.5°C reduction in summer temperature in the first millennium CE, consistent with increased landscape instability and soil erosion in Iceland.  A second phase of persistent summer cooling in the model occurs after 1150 CE, with stronger cooling after 1450 CE, reaching a minimum shortly after 1850 CE, ~1°C lower than at the start of the experiment. Orbitally driven declines in summer insolation appear to be the dominant forcing early in the first millennium CE, with volcanism and solar irradiance reductions increasingly important after 500 CE and in the second millennium CE, but positive feedbacks from sea ice and the overturning circulation are necessary to explain the magnitude of peak LIA cooling when soil erosion is at its greatest in Iceland. Collectively, our initial results suggest that natural variations in regional climate and volcanism are likely responsible for soil erosion prior to human impact, with intensification of these processes following settlement particularly during the cooling associated with the Little Ice Age.

How to cite: Geirsdóttir, Á., Harning, D., Andrews, J., Miller, G., Zhong, Y., and Jahn, A.: Climate, volcanism and human impact on Iceland’s landscape during the last two millennia., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4141, https://doi.org/10.5194/egusphere-egu2020-4141, 2020.

EGU2020-89 | Displays | CL1.18

Indian Monsoon Rainfall Variability and associated Climatic forcings in the last two millennia inferred by a Stalagmite from the peninsular India

Naveen Gandhi, Phannindra Reddy A., Raghavan Krishnan, and Madhusudan G. Yadava

We present high temporal (near-annually) resolved δ18O values from absolutely dated stalagmite record that represents the Indian Summer Monsoon (ISM) rainfall variations for the Indian subcontinent spanning from 207 AD to 2014 AD. This rainfall reconstruction shows ISM varaitions for four major global climatic periods viz., Roman Warm Period (RWP), Dark Ages Cold Period (DACP), Medieval Warm Period (MWP) and Little Ice Age (LIA). Cave records from different patrs of the sub-continent synchronously show enhanced precipitation during DACP. This wet period was forced by Solar-induced El-NiNo Southern Oscillation (ENSO) and Tibetan Plateau Temperature. Cliamtic conditions were wetter during LIA than that during MWP, as the former witnessed more number of wet monsoon years. However, MWP witnessed the strongest and the weakest monsoon years in the last two millennia. The direct influence of Soalr activity on the position of Inter Tropical Convergance zone (ITCZ) might have caused the observed ISM variability of MWP. Altough ISM shows largest variability during MWP, the overall monsoon state was moving towards wetter conditions, forced by ENSO. Solar induced forcings on ENSO influenced ISM during LIA. Our results suggest of non-stationary dynamical forcings over ISM during different periods in the last two millennia.

How to cite: Gandhi, N., Reddy A., P., Krishnan, R., and Yadava, M. G.: Indian Monsoon Rainfall Variability and associated Climatic forcings in the last two millennia inferred by a Stalagmite from the peninsular India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-89, https://doi.org/10.5194/egusphere-egu2020-89, 2020.

EGU2020-903 | Displays | CL1.18

2000 years of marine primary productivity in the Eastern Tropical North Pacific

Christina Treinen-Crespo, Jose Carriquiry, Julio Villaescusa, and Elisabet Repiso-Terrones

Changes in marine primary productivity (MPP) over the 21st century are expected to occur under the prevailing climate change scenario. For better understanding of past climate variability, we reconstructed MPP at high resolution (~1-2 years) for the past 2000 years analyzing biogenic silica and total organic carbon (TOC %) on a sediment core collected from Soledad Basin (25°N, 112°W), Baja  California, Mexico. Located in the Eastern Tropical North Pacific, this suboxic basin is ideal for palaeoceanographic reconstructions due to its high sedimentation rate (2 mm/year), which allow us to reconstruct past changes in the ocean and climate at high resolution. Our results show an increasing trend in the variability of MPP for the past 2000 years: biogenic silica content does not show a well-defined trend, but rather it is dominated by strong multidecadal and prominent centennial-scale cycles while TOC (%) shows a slight increasing trend towards the present, starting at least 2000 years ago. Spectral analysis confirms the presence of multidecadal to centennial cycles. These results will be discussed in the context of the Anthropocene and natural climate variability.

How to cite: Treinen-Crespo, C., Carriquiry, J., Villaescusa, J., and Repiso-Terrones, E.: 2000 years of marine primary productivity in the Eastern Tropical North Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-903, https://doi.org/10.5194/egusphere-egu2020-903, 2020.

EGU2020-941 | Displays | CL1.18

Beach-foredune ridges as proxies for climate-induced wave direction changes in South Atlantic during Late Holocene

Ana Paula Da Silva, Antonio Henrique da Fontoura Klein, Antonio Fernando Harter Fetter Filho, Christopher Hein, Fernando Mendez, Micael Broggio, and Charline Dalinghaus

Variability in global wave climate has been observed to occur in response to climate changes influencing the wave-generating zones. This highlights the need for an improved understanding of long-term wave-climate cycles, considering the multi-decadal variability of the atmospheric patterns and large-scale climate drivers. In this study, a novel use of the morphology of former shorelines preserved in beach-foredune ridges was applied to reconstruct changes in predominant wave directions in the Subtropical South Atlantic during the Late Holocene. A 3km wide semi-continuous sequence of beach-foredune ridges preserved within the Pinheira Strandplain (Santa Catarina State, Brazil) was mapped in order to extract the orientation of the former shorelines and derive a 3000-year record of inferred mean wave direction. The mean wave direction series was compared to ~1000 years of decadal means of mid-latitude mean sea-level pressure gradients (∆MSLP) and zonal westerly wind velocities estimated from the CESM1-CAM5 “Last Millennium Ensemble (LME)”, and to 2000 years of air-surface temperature anomalies for Southern Hemisphere. Results showed that multi-centennial cycles of oscillation in predominant wave direction occurred in accordance with stronger (weaker) South Atlantic mid-latitude mean sea-level pressure and zonal westerlies winds, favouring wave generation zones in higher (lower) latitudes and consequent southerly (easterly) wave climate dominance. It was identified the Southern Annular Mode as the main climate driver responsible for these changes, responding for 43% of the variance in the Subtropical South Atlantic atmospheric patterns in the last 1000 years. Long-term variations in interhemispheric air-surface temperature offsets, coincident with oscillations in wave direction, may have influenced wave-generation patterns similarly to the seasonal behaviour observed over recent decades. Periods of relatively warmer Southern Hemisphere (SH) as compared with Northern Hemisphere (NH) (e.g., during 400–800 CE and the Little Ice Age) favours the predominance of easterly wave energy flux along the eastern South American coast, whereas periods with equivalent NH-SH temperature anomalies (e.g., Medieval Warm Period) or with colder relative SH (last ~150 years) support an increase in the influence of the southerly wave energy flux over the South Atlantic. These results provide a novel geomorphic proxy for paleoenvironmental reconstructions and present new insights into the role of multi-decadal to multi-centennial climate variability on controlling coastal ocean wave climate.

How to cite: Da Silva, A. P., Klein, A. H. D. F., Fetter Filho, A. F. H., Hein, C., Mendez, F., Broggio, M., and Dalinghaus, C.: Beach-foredune ridges as proxies for climate-induced wave direction changes in South Atlantic during Late Holocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-941, https://doi.org/10.5194/egusphere-egu2020-941, 2020.

EGU2020-2477 | Displays | CL1.18

Resolving the differences in the simulated and reconstructed climate response to volcanism over the last millennium

Feng Zhu, Julien Emile-Geay, Greg Hakim, Jonathan King, and Kevin Anchukaitis

Explosive volcanism imposes impulse-like radiative forcing on the climate system, providing a natural experiment to study the climate response to perturbation. Previous studies have identified disagreements between paleoclimate reconstructions and climate model simulations (GCMs) with respect to the magnitude and recovery from volcanic cooling, questioning the fidelity of GCMs, reconstructions, or both. Using the paleoenvironmental data assimilation framework of the Last Millennium Reanalysis, this study investigates the causes of the disagreements, using both real and simulated data. We demonstrate that the disagreement may be resolved by assimilating tree-ring density records only, by targeting growing-season temperature instead of annual temperature, and by performing the comparison at proxy locales. Our work suggests that discrepancies between paleoclimate models and data can be largely resolved by accounting for these features of tree-ring proxy networks.

How to cite: Zhu, F., Emile-Geay, J., Hakim, G., King, J., and Anchukaitis, K.: Resolving the differences in the simulated and reconstructed climate response to volcanism over the last millennium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2477, https://doi.org/10.5194/egusphere-egu2020-2477, 2020.

EGU2020-2926 | Displays | CL1.18

Data assimilation of oceanic proxies in the North Atlantic over the Common Era

Hugues Goosse, Gaelle Gilson, François Klein, Guillaume Lenoir, Anne de Vernal, Michael N. Evans, and Casey Saenger

The mismatch between oceanic proxy data and climate model results over the past millennia has been a long-lasting challenge. Although both are valuable sources of paleoclimate information, there is a strong discrepancy in variance between models and proxies, so that they cannot be compared directly. In addition, local sea-surface temperature (SST) reconstructions are often inconsistent among proxy types. We first performed several offline data assimilation experiments with different standardized SST proxy datasets using the climate models LOVECLIM and CESM in order to investigate the effect of proxy selection on local and regional reconstructions over the Common Era (0-2000 CE). All experiments work technically at the local scale, but the spatial pattern of the reconstructions vary with the type(s), number and density of proxies, and, where there is no proxy, the choice of the model. We then developed empirical scaling factors based on independent SST observations to correct for the discrepancy between model and proxy amplitude. While it is essential to scale proxies, scaling the model leads to complications because of the biases in the sea ice extent. Data assimilation of scaled proxies results in coherent SST reconstructions at the scale of the North Atlantic, with timing and amplitude that are in agreement with those given by forced models. Finally, results are compared to online data assimilation experiments.

How to cite: Goosse, H., Gilson, G., Klein, F., Lenoir, G., de Vernal, A., Evans, M. N., and Saenger, C.: Data assimilation of oceanic proxies in the North Atlantic over the Common Era, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2926, https://doi.org/10.5194/egusphere-egu2020-2926, 2020.

EGU2020-3138 | Displays | CL1.18

Long-Term Global Ground Heat Flux and Continental Heat Storage from Geothermal Data

Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante

Energy exchanges among climate subsystems are of critical importance the climate sensitivity of the Earth's system to greenhouse gases, to quantify the magnitude and evolution of the Earth's energy imbalance, and to project the evolution of future climate. Thus, ascertaining the magnitude and change of the Earth's energy partition within climate subsystems has become urgent in recent years.

Here, we provide new global estimates of changes in ground surface temperature, ground surface heat flux and continental heat storage derived from geothermal data using an expanded database and new techniques. Results reveal markedly higher changes in ground heat flux and heat storage within the continental subsurface than previously reported, with land temperature changes of 1K and continental heat gains of around 12 ZJ during the last part of the 20th century relative to preindustrial times. Half of the heat gain by the continental subsurface since 1960 occurred in the last twenty years.

How to cite: Cuesta-Valero, F. J., García-García, A., Beltrami, H., González-Rouco, J. F., and García-Bustamante, E.: Long-Term Global Ground Heat Flux and Continental Heat Storage from Geothermal Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3138, https://doi.org/10.5194/egusphere-egu2020-3138, 2020.

EGU2020-4028 | Displays | CL1.18

Stalagmite geochemical proxy-inferred precipitation records over the past 800 years in northern Italy

C.-C. (River) Shen, Hsun-Ming Hu, Véronique Michel, Patricia Valensi, Horng-Sheng Mii, Christoph Spötl, Elisabetta Starnini, Marta Zunino, Takaaki Watanabe, Tsuyoshi Watanabe, Hsien-Chen Tsai, Wen-Hui Sung, and Wei-Yi Chien

We here present new 230Th-dated stalagmite multi-proxy records from Toirano cave (44˚ N, 8˚E), northern Italy, characterized by a semi-arid Mediterranean climate with humid winters and dry summers. Eleven U-Th ages was used to build the regional hydroclimate evolution over the past 800 years. Sr/Ca and Ba/Ca records show a similar pattern with an increasing trend at the end of Medieval Warm Period (MWP; 950-1250 C.E.) and a decreasing trend at the inception of Little Ice Age (LIA; 1300 to 1800 C.E). The temperature effect on the Sr partition coefficient in calcite is negligible and no significant influence of deposition rate on Sr/Ca and Ba/Ca is observed. The high degree of co-variation between the two records (r = 0.91; n = 212) suggest the variation should be mainly governed by prior calcite precipitation (PCP). Dry conditions lead to a longer water residence time in the epikarst, enhanced CO2 degassing and decreasing drip rate, resulting in high Sr/Ca and Ba/Ca ratios due to the preferential removal of Ca during PCP. Our results suggest a dry period during the transition of MCA and LIA in our region.

How to cite: Shen, C.-C. (., Hu, H.-M., Michel, V., Valensi, P., Mii, H.-S., Spötl, C., Starnini, E., Zunino, M., Watanabe, T., Watanabe, T., Tsai, H.-C., Sung, W.-H., and Chien, W.-Y.: Stalagmite geochemical proxy-inferred precipitation records over the past 800 years in northern Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4028, https://doi.org/10.5194/egusphere-egu2020-4028, 2020.

Extreme precipitation in Europe over summer time is one type of climate extreme with strongest impact on societies, at present and over the past centuries. In contrast to mean and extreme temperatures, it is still unclear to what extant the external forcing may modulate the intensity and frequency of this type of hydrological extremes. This contribution focuses on the identification of the impact of external forcing on European extreme precipitation over the past millennium in one small ensembles of simulations with the Earth System model MPI-ESM-P and in the Large Millennium Ensemble with the model CESM.

Both models realistically simulate the meteorological conditions that give rise to sustained (over several days) strong precipitation, compared to present conditions. The analysis of both ensembles indicates that the role of the external forcing over the past millennium has been weak at most, with individual members of the ensemble providing different timings for period with high and low probability of extreme summer precipitation in this region. This conclusion is also valid for mean summer precipitation.

This result confirms the evidence obtained from analysis of proxy records, mostly palaeoclimatological records but also historical evidence. This analysis indicates that the frequency and intensity of extreme summer precipitation has been so far independent of the mean climate state.

How to cite: Zorita, E.: Extreme summer precipitation in Central Europe over the past millennium: role of external forcing in enseble of simulations with Earth System models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4191, https://doi.org/10.5194/egusphere-egu2020-4191, 2020.

EGU2020-5232 | Displays | CL1.18

SST Variability in the Southeastern Caribbean Sea over the Past 1800 Years

Anastasia Zhuravleva, Henning Bauch, Mahyar Mohtadi, and Kirsten Fahl

Sea surface temperature (SST) of the Caribbean Sea exerts a strong control on the amount of precipitation on the adjacent land. However, a clear understanding of the regional climate development on centennial timescales is missing due to scarcity of SST records. To fill this gap, we generated a new high-resolution proxy dataset of the last 1800 years from the Tobago Basin, a region that is presently affected by both Atlantic and Pacific climate variability on one hand, and by the South Atlantic circulation on the other hand. Our dataset is comprised of Mg/Ca and alkenone-derived SSTs, stable isotopes, element composition of bulk sediment and planktic foraminiferal assemblages. Our Mg/Ca-based reconstruction suggests significant SST variability over the past 1800 years CE, particularly during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). The MCA encompasses an abrupt 2 °C SST reduction between 1050-1100 years CE, which coincided with a distinct episode of precipitation minima in the region and was followed by a century of warm and wet MCA conditions. A 1 °C cooling also characterized the onset of the LIA between 1400-1550 years CE, which was associated with a reduction in water column stratification inferred from stable isotopes and foraminiferal assemblage data. The initial LIA cooling was followed by a robust 1 °C SST rise between 1550-1750 years CE. This warming trend is also supported by alkenone-derived SSTs. Our reconstructed SST variability across the LIA may help to explain the occurrence of alternating dry and wet conditions on the Caribbean islands.

How to cite: Zhuravleva, A., Bauch, H., Mohtadi, M., and Fahl, K.: SST Variability in the Southeastern Caribbean Sea over the Past 1800 Years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5232, https://doi.org/10.5194/egusphere-egu2020-5232, 2020.

EGU2020-6484 | Displays | CL1.18

Paleoclimate drivers of the Indonesian and South China Sea throughflows, the curious case of the IOD

Ankitha Kannad, Nathalie F. Goodkin, Sujata A. Murty, Riovie D. Ramos, Dhrubajyoti Samanta, and Arnold L. Gordon

The Indonesian and South China Sea throughflows play an important role in global ocean circulation as the only low-latitude pathway for the exchange of heat and salt between the Pacific and Indian oceans. This transport is modulated by different climate systems including the El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the East Asian Monsoon. The interactions of these climate systems across the Southeast Asian region are still being understood, particularly the role of sea surface salinity (SSS) in inhibiting flow from the Makassar Strait into the Indian Ocean.

Reconstructions of SSS from corals provide an opportunity to study long-term trends in climate and ocean circulation. Coral records from north and south of the Luzon Strait, the Makassar Strait, and Lombok Strait for the period 1926 to 2010 are examined to evaluate their shared variability. Principal component analysis synthesizes these records for the boreal winter (December to March) and boreal summer (June to September). The first and second principal components or empirical orthogonal functions (EOF) describe over 55% of the shared variance in both seasons. In the winter, the EOF of both modes correlates to PDO and the first EOF correlates to the Indian Ocean Dipole (IOD). A high-pass filter of the first EOF for <10 years per cycle for the winter and summer significantly correlates to ENSO and IOD respectively. While several sites individually correlate with ENSO and PDO, no individual SSS record correlates to the IOD. This consistent relationship of the IOD to the winter EOF indicates a regional influence on salinity variance that is not identified locally. One hypothesis to explain IOD’s regional influence is that the interaction of the IOD and ENSO through the atmospheric bridge or the Madden Julian Oscillation (MJO) is influencing the region. Spectral analysis, and climatic and oceanographic models will be used to further investigate this connection.

How to cite: Kannad, A., Goodkin, N. F., Murty, S. A., Ramos, R. D., Samanta, D., and Gordon, A. L.: Paleoclimate drivers of the Indonesian and South China Sea throughflows, the curious case of the IOD, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6484, https://doi.org/10.5194/egusphere-egu2020-6484, 2020.

EGU2020-7159 | Displays | CL1.18

Components of past cold mega-droughts and modern warm dry events in central Europe could interfere constructively in the future

Monica Ionita-Scholz, Mihai Dima, Viorica Nagavciuc, Patrick Scholz, and Gerrit Lohmann

Mega-droughts are notable manifestations of the American Southwest, but not so much of the European climate. By using long-term hydrological and meteorological observations, as well as paleoclimate reconstructions, we show that central Europe has experienced much longer and severe droughts during the Spörer Minimum (~AD 1400 – 1500) and Dalton Minimum (~AD 1770 – 1850), than the ones observed during the 21st century. These two mega-droughts appear to be linked with a weak state of the Atlantic Meridional Overturning Circulation (AMOC) and enhanced winter atmospheric blocking activity over the British islands and western part of Europe, associated with reduced solar forcing and explosive volcanism. In contrast with these mega-droughts, present-day extreme dry events in Europe are mainly related to high temperature levels. Since numerical simulations indicate a future slowdown of AMOC in a globally warming world, we argue that these two forcing factors for droughts, weakening ocean circulation and temperature increase, could interfere constructively in the future. Consequently, this will potentially lead to an increase in the frequency of hot and dry summers, especially over the central part of Europe, posing enormous challenges to governments and society.

How to cite: Ionita-Scholz, M., Dima, M., Nagavciuc, V., Scholz, P., and Lohmann, G.: Components of past cold mega-droughts and modern warm dry events in central Europe could interfere constructively in the future, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7159, https://doi.org/10.5194/egusphere-egu2020-7159, 2020.

Ice cores are key archives in the quest to reconstruct and understand past climate variability. They are generally found in polar and high latitude regions, but caves in the Carpathian Mountains (East-central Europe) host several glaciers thousands of years old. Here, we present a reconstruction of summer and winter air temperatures during the last millennium based on the d18O and d2H values measured in ice cores drilled in the glaciers hosted by Focul Viu (FV) and Scărișoara Ice Caves (SIC), both in the Western Carpathians (East-Central Europe, Romania). In order to understand the climatic signal locked in the two cores, we analyzed the stable isotope composition of the rainfall water, which was subsequently compared with that of the cave ice. Accordingly, d18O in ice in SIC is a proxy for late-autumn through early winter air temperature, while that in FV for summer air temperatures. The analysis of d18O values indicate that on centennial scales, air temperature variability during the last 1000 years was controlled by changes during the winter season, summer temperatures being relatively constant (on these time scales). Contrary, short-term variability (decadal to multi-decadal) was well expressed in both seasons. In summer, the main controlling factors seem to be changes in solar radiation and possibly in the strength of the Atlantic Multidecadal Oscillation, while in winter, the strength of the Siberian High could have acted as the main forcing factor.

How to cite: Bădăluță, C.-A. and Perșoiu, A.: Late Holocene climate variability in the Western Carpathians (East-Central Europe) reconstructed from ice cores records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7411, https://doi.org/10.5194/egusphere-egu2020-7411, 2020.

EGU2020-8744 | Displays | CL1.18

Global monthly sea surface temperature and sea ice reconstruction for historical simulations

Eric Samakinwa and Stefan Brönnimann

Variability in Sea Surface Temperature (SST) is one of the prime sources of intra-annual variability, and also an important boundary condition for Atmospheric General Circulation Models (AGCMs). In many AGCM simulations, SST and Sea Ice Concentration (SIC) are prescribed. While SSTs are specified according to observations available in recent period of instrumental records (1850 – present), SIC depends on climatological averages with less variability prior to the inception of satellite measurements. This limits our understanding of large-scale climate variations in the past.

In this study, we augment multi-proxy reconstructed annual mean temperature of Neukom et al. (2019) with intra-annual variability from HadISST (v2.0), for 850 years (1000 – 1849). Intra-seasonal variability, such as the phase-locking of El-Nino Southern Oscillation, Indian Ocean Dipole and Tropical Atlantic SST indices to annual-cycle, are utilized. The intra-annual component of HadISST and SST indices estimated from the multi-proxy reconstructed annual mean, are used to develop grid-based multivariate linear regression models using the Frisch-Waugh-Lovell theorem, in a monthly stratified approach. Furthermore, we introduce a scaling technique to ensure homogeneous mean and variance, similar to that of the target. SST observations obtained from ship measurements by ICOADS before 1850, will be integrated in an off-line data assimilation approach.

Similarly, we reconstruct SIC via analogue resampling of HadISST SIC (1941 – 2000), for both hemispheres. We pool our analogues in four seasons, comprising of 3 months each, such that for each month within a season, there are 180 possible analogues. The best analogues are selected based on correlation coefficients between reconstructed SST and its target.

How to cite: Samakinwa, E. and Brönnimann, S.: Global monthly sea surface temperature and sea ice reconstruction for historical simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8744, https://doi.org/10.5194/egusphere-egu2020-8744, 2020.

EGU2020-10616 | Displays | CL1.18

Volcanic fluxes over the last millennium as recorded in the GV7 ice core (Northern Victoria Land, Antarctica)

Rita Traversi, Silvia Becagli, Mirko Severi, Raffaello Nardin, Laura Caiazzo, Alessandra Amore, Massimo Frezzotti, and Barbara Stenni

Explosive volcanic eruptions are able to affect significantly the atmosphere for 2‐3 years. During this time, volcanic products (mainly H2SO4) with high residence 
time are stored in the stratosphere/troposphere, and eventually deposited onto polar ice caps; snow layers may thus record signals providing a history of past 
volcanic events. A high resolution sulphate concentration profile along a 197 m long ice core drilled at GV7 (Northern Victoria Land) was obtained by Ion Chromatography. The relatively high accumulation rate (241±13 mm we yr-1) and the 5‐cm resolution allowed a preliminary counted age scale. The obtained stratigraphy covers roughly the last millennium and 24 major volcanic eruptions were identified, dated and 
ascribed to a source volcano. The deposition flux of volcanic sulfate was calculated and the results were compared with data from other Antarctic ice cores at regional and continental scale. Our results show that the regional variability is of the same order of magnitude 
of the continental scale.

How to cite: Traversi, R., Becagli, S., Severi, M., Nardin, R., Caiazzo, L., Amore, A., Frezzotti, M., and Stenni, B.: Volcanic fluxes over the last millennium as recorded in the GV7 ice core (Northern Victoria Land, Antarctica), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10616, https://doi.org/10.5194/egusphere-egu2020-10616, 2020.

EGU2020-10959 | Displays | CL1.18

Establishing past firn accumulation records from ice caves of the European Alps

Tanguy Racine, Christoph Spötl, and Paula Reimer

Mid-latitude, cave-hosted temperate ice is increasingly scrutinised for its palaeoclimatic potential. Findings of dendrochronologically dated wood trunks and radiometrically dated woody macrofossils demonstrate that underground ice accumulations records may locally span several millenia. The cave geometries conducive to underground firn accumulation were additionally shown to favour the preservation of a winter signal, making cave-hosted ice an attractive and complementary archive to existing and largely summer-biased proxy records. Proxy derivation from these ice accumulations first requires the establishment of firn accumulation/ablation chronologies from stratigraphic mapping and radiometric dating of organic inclusions. Decadal to centennial trends in accumulation/ablation recorded by the ice stratigraphy thus provide insight in past variations of solid precipitation .

Preliminary results from several well-dated ice caves of the Northern Calcareous Alps in Austria suggest local preservation of ice since ca. 3600-3300 BC. Inclusion-rich unconformities in the ice stratigraphy from these alpine caves mark short breaks in firn accumulation between 250 BC and 250 AD and longer hiatuses during Late Antiquity and the 8th and 9th century AD. The majority of dated ice sequences testify the onset of rapid ice accumulation from the 11th and 12th century AD onwards and build up throughout the 'Litte Ice Age'.

How to cite: Racine, T., Spötl, C., and Reimer, P.: Establishing past firn accumulation records from ice caves of the European Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10959, https://doi.org/10.5194/egusphere-egu2020-10959, 2020.

EGU2020-11271 | Displays | CL1.18

The impact of global warming on the upwellings and primary productivity at the southern limb of the California Current, Baja California, Mexico

Jose Carriquiry, Christina Treinen-Crespo, Julio Villaescusa, Ann Pearson, and Loic Barbara

Although most simulation models published have concluded that coastal upwelling will intensify in three of the most productive marine ecosystems of the world, the results seem contradictory for the California Current System (CCS). These contradictory results may be due to the fact that instrumental records are too short to yield reliable predictions. Because of this, we opted to test this hypothesis by studying the sedimentary record of Soledad basin, in Baja California, Mexico, using geochemical proxies to reconstruct at ultra-high resolution the history of productivity and sea surface temperature during the last two millennia, with particular emphasis on the Anthropocene. Our results indicate that SST (alkenones and TEX-86) do not show a cooling trend during the Anthropocene, but rather multidecadal cycles related to PDO. Likewise, primary productivity organic biomarkers [i.e., alkenone concentration (C37 Total) as a proxy for phytoplankton productivity, etc] show an increasing trend that started 2000 years ago with prominent multidecadal cycles, but without any observable trend taking place during the Anthropocene. An interesting feature of the organic matter record is the increasing amplitude of the cycles towards the present, starting 2000 years ago. Primary productivity is probably controlled by large scale mesoscale eddies developing at the southern Baja California margin.

How to cite: Carriquiry, J., Treinen-Crespo, C., Villaescusa, J., Pearson, A., and Barbara, L.: The impact of global warming on the upwellings and primary productivity at the southern limb of the California Current, Baja California, Mexico, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11271, https://doi.org/10.5194/egusphere-egu2020-11271, 2020.

EGU2020-13378 | Displays | CL1.18

Global climate changes during the most recent two millennia

Sarah S. Eggleston, Oliver Bothe, Nerilie Abram, Bronwen Konecky, Hans Linderholm, Belen Martrat, Helen McGregor, Steven Phipps, and Scott St. George

The past two thousand years is a key interval for climate science because this period encompasses both the era of human-induced global warming and a much longer interval when changes in Earth's climate were governed principally by natural drivers. This earlier 'pre-industrial' period is particularly important for two reasons. Firstly, we now have a growing number of well-dated, climate sensitive proxy data with high temporal resolution that spans the full period. Secondly, the pre-industrial climate provides context for present-day climate change, sets real-world targets against which to evaluate the performance of climate models, and allows us to address other questions of Earth sciences that cannot be answered using only a century and a half of observational data. 

Here, we first provide several perspectives on the concept of a 'pre-industrial climate'. Then, we highlight the activities of the PAGES 2k Network, an international collaborative effort focused on global climate change during the past two thousand years. We highlight those aspects of pre-industrial conditions (including both past climate changes and past climate drivers) that are not yet well constrained, and suggest potential areas for research during this period that would be relevant to the evolution of Earth's future climate.

How to cite: Eggleston, S. S., Bothe, O., Abram, N., Konecky, B., Linderholm, H., Martrat, B., McGregor, H., Phipps, S., and St. George, S.: Global climate changes during the most recent two millennia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13378, https://doi.org/10.5194/egusphere-egu2020-13378, 2020.

EGU2020-14384 | Displays | CL1.18

Vegetation history of Western Russia (Upper Dnieper, Smolensk region): Climate and human impact on landscape in last two millennia

Nikita Lavrenov, Ekaterina Ershova, Margarita Zhuravkova, and Nikolay Krenke

Climate and vegetation history of Upper Dnieper region (Western Russia) is investigated poorly while archaeological studies provide evidences of human activities during last 3 millennia. Our study presents vegetation reconstruction based on pollen analysis of sediments extracted from two sites in Smolensk region. The first site is located in Katynka river bassin and pollen analysis of extracted buried soil, alluvium and peat sediments demonstrates vegetation dynamics in archaeologically rich area over 5 millennia. The second site is located in 50 km from to the west from Smolensk and in 15 km to east from the Russian-Belarus state border. The analysis of extracted peat sediments presents regional history of vegetation. The aim of our study is to compare data obtained from both sites and to estimate climate and human influence on vegetation during last two millennia when activities associated with agriculture changed Dnieper valley landscape significantly.

The first results of pollen analysis data of the first site allow to register significant human impact on vegetation 2.0-0.8 ka BP. Before that period pollen of indigenous forest trees dominates in spectra while since 2.0 ka BP pollen compassion changes dramatically and pollen of Betula and Pinus is in majority in so-called “Gnezdovo soil” lay. Medieval lays of sapropel contains mostly pollen of Pinus with admixture of Betula and Alnus. Taxonomic diversity and presence of meadow herbs, weeds and cultivated taxa pollen increases significantly (up to 30%). Dynamics of pollen composition in specimens from the second site allows us to register slow processes of indigenous vegetation recovery over last 3 centuries approximately. Modern analogue technique applied on pollen data and analysis of historical data makes possible to separate impacts of climate and human on vegetation of the past and to reconstruct the climate of last two millennia.

The study was funded by RFBR, project number 19-34-90172.



How to cite: Lavrenov, N., Ershova, E., Zhuravkova, M., and Krenke, N.: Vegetation history of Western Russia (Upper Dnieper, Smolensk region): Climate and human impact on landscape in last two millennia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14384, https://doi.org/10.5194/egusphere-egu2020-14384, 2020.

EGU2020-17966 | Displays | CL1.18

Subdaily instrumental data from Graz, Austria, starting in 1795

Ulrich Foelsche, Erik Kraml, and Bruno Besser

The meteorological station at University of Graz, Austria has been recently recognised as WMO "Centennial Station", with measurements taken at
the same location going back to the year 1891. Combined with data from nearby downtown stations (in particular at the former location of the University) the record extends back to the year 1836 - in this form the data are currently used in the HISTALP dataset. This record can, however, be extended at least four decades back in time:

Mr. Rospini, a man of great interest in natural sciences (and later his son and grandsons) measured  temperature and pressure three times per day (morning, noon and evening) in the historic center of Graz - close to the former location of the University. Measurements apparently started as early as 1781, and have been continuously published in the "Grätzer Zeitung" from 1795 onwards. So far, we have been able to compile an almost uninterrupted
record since 1797 (with just a few weeks missing in total), and we are trying to fill the remaining gaps for the two previous years. Temperatures are given in Réaumur, recorded at 7, 15 and 22 (confirmed for 1823, very likely for the time before). For the year 1837 we performed a consistency check, comparing our recently retrieved data with those from the University (which are used in the HISTALP dataset), yielding an annual mean offset of just +0.2 °C.

With those subdaily measurements, we cannot only extend the climate record, but we can also attempt to analyse particularly interesting years. Using the temperature recorded at 15:00 as proxy for the maximum temperature, we could identify the extremely warm Summer of 1834, with at least 35 days, where the temperature maximum was 30 °C or higher. Since we slightly underestimate the true number of “Hot Days” with this approach, we can assume that this summer was not too different from the record Summer of 2003, where our meteorological station recorded 41 “Hot Days” (with actual maximum temperature measurements). The second highest value in the “official” time series was obtained in 2015 with 34 “Hot Days”. The year 1816, on the other hand, was indeed a "year without summer" - also in Graz, with just 11 days reaching a temperature of 25 °C or more.

How to cite: Foelsche, U., Kraml, E., and Besser, B.: Subdaily instrumental data from Graz, Austria, starting in 1795, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17966, https://doi.org/10.5194/egusphere-egu2020-17966, 2020.

EGU2020-19746 | Displays | CL1.18

Influence of external forcings on the hydroclimate conditions in the Europe-Mediterranean Region over the Common Era : a model/data approach

Myriam Khodri, Yang Feng, Laurent Li, Marie-Alexandrine Sicre, and Nicolas Lebas

The climate system has been largely influenced by emerging anthropogenic forcing effects during the last decades of the historical period. Hence, the historical simulations may not be the most appropriate ones to constrain the internal climate variability at such long time scales. The last 2000 years provide a promising time frame constrained by climate reconstructions to explore the interactions between external forcings and the internal dynamics of climate. The Common Era is indeed relatively long and forcing are reasonably well reconstructed and physical processes modelled. In this contribution, we use IPSL-CM6A-LR model simulations covering the last 1500 years (500AD to Present Day) and available paleo-proxy reconstructions to study the influence of the internal variability and external forcing on climate variability in the North Atlantic at decadal-to-multi-decadal time scales and the impacts on the hydro-climate conditions evolution over Europe-Mediterranean sector.

How to cite: Khodri, M., Feng, Y., Li, L., Sicre, M.-A., and Lebas, N.: Influence of external forcings on the hydroclimate conditions in the Europe-Mediterranean Region over the Common Era : a model/data approach , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19746, https://doi.org/10.5194/egusphere-egu2020-19746, 2020.

EGU2020-19943 | Displays | CL1.18

Impact of the 536/540 CE double volcanic eruption event on the 6th-7th century climate using model and proxy data

Evelien van Dijk, Claudia Timmreck, Johann Jungclaus, Stephan Lorenz, Manon Bajard, Josh Bostic, and Kirstin Krüger

The mid of the 6th century is an outstanding period and started with an unusual cold period that lasted several years to decades, due to the 536/540 CE double eruption event, with the strongest decadal volcanic forcing in the last 2000 years. Evidence from multiple tree ring records from the Alps to the Altai Mountains in Russia identified a centennial cooling lasting from 536 up to 660 CE. A previous Earth System Model (ESM) study with reconstructed volcanic forcing covering 535-550 CE like conditions already found that the double eruption led to a global decrease in temperature and an increase in Arctic sea-ice for at least a decade. However, the simulations were too short to fully investigate the multi-decadal cooling event and the atmospheric forcing from this double volcanic eruption alone may not be enough to sustain such a prolonged cooling. To better understand forced versus internal decadal climate variability in the first millennium we have performed mid 6th century ensemble simulations with the MPI-ESM1.2 for the 520-680 CE period. The ensemble consists of 10 realizations, which were branched of the MPI-ESM1.2 PMIP4 Past2k run, including the evolv2k volcanic forcing.

Here, we present results of this new set of the 6th-7th century MPI-ESM simulations in comparison to paleo-proxies. Summer surface temperatures are analyzed and compared with available tree-ring data, which fits very well for the entire 160 year period. As part of the VIKINGS project, special focus is placed on the impact of the 536/540 CE double volcanic eruption event on the surface climate in the Northern Hemisphere, in particular Scandinavia, Northern Europe and Siberia. The goal is to also compare the model data with new tree-ring and lake sediment proxies from southeastern Norway. Detailed comparison with proxy data will allow us to better understand the regional and seasonal climate variations of the 6th-7th century. Duration, strength and the possible mechanism for a long lasting volcanic induced cooling will be discussed.

How to cite: van Dijk, E., Timmreck, C., Jungclaus, J., Lorenz, S., Bajard, M., Bostic, J., and Krüger, K.: Impact of the 536/540 CE double volcanic eruption event on the 6th-7th century climate using model and proxy data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19943, https://doi.org/10.5194/egusphere-egu2020-19943, 2020.

EGU2020-20483 | Displays | CL1.18

Analysis of methodological and physical bias on borehole temperature reconstructions from a pseudo-proxy approach.

Camilo Melo Aguilar, Fidel González Rouco, Elena García Bustamante, Norman Steinert, Jorge Navarro, Pedro Roldan Gómez, and Johann Jungclaus

The analysis of subsurface temperature measurements from boreholes is a well established approach for reconstructing last millennium (LM) surface air temperature (SAT). It is based on the assumption that SAT variations are strongly coupled to ground surface temperature (GST) variations and transferred to the subsurface by thermal conduction. We have evaluated the long-term SAT-GST coupling over the LM using an ensemble of both full- and single-forcing simulations form the Community Earth System Model-Last Millennium Ensemble (CESM-LME). Such a premise is explored by investigating the evolution of the long-term SAT–GST relationship. The results indicate that SAT–GST coupling is strong at global and above multi-decadal timescales in CESM-LME. However, at local to regional scales this relationship experiences considerable long-term changes mostly after the end of the 19th century. Land use land cover (LULC) changes stand as the main driver for locally and regionally decoupling SAT and GST, due to the changes in the energy fluxes at the surface. Snow cover feedbacks due to the influence of GHG forcing are also important for corrupting the long-term SAT–GST coupling. These processes may represent a source of bias for SAT reconstructions from GST borehole profiles. In light of these findings, we subsequently assessed the potential effects on SAT reconstructions from the borehole method in pseudo-proxy experiments that make use of the same set of simulations from the CESM-LME. First, a heat-conduction forward model has been used to estimate subsurface temperature-anomaly profiles using simulated GST as boundary conditions. Subsequently, singular value decomposition inversion (SVD) has been applied to reconstruct LM GST variations from the simulated profiles. We implemented and ideal scenario in which it is assumed the existence of borehole logs at every model grid point. Further, this scenario considers that all boreholes are logged homogenously at the same time. In addition, we implemented a more realistic approach in which the real-world spatio-temporal distribution of the global borehole network is considered. Results show that the SVD inversion is able to retrieve the long-term GST variations over the LM when an appropriated coverture of borehole logs is available. However, due to the limited spatio-temporal distribution of the actual borehole network, there is a lost in the accuracy to retrieve the simulated GST 20th century trends, with the temporal logging of the BTPs as the main sampling issue. Furthermore, in the surrogate reality of the CESM-LME the SAT-GST decoupling, due to the influence of LULC and GHG forcings, leads to a slightly underestimation of SAT warming during the industrial period across the CESM-LME. The level of impact is, however, highly depended on the realization of internal variability.

How to cite: Melo Aguilar, C., González Rouco, F., García Bustamante, E., Steinert, N., Navarro, J., Roldan Gómez, P., and Jungclaus, J.: Analysis of methodological and physical bias on borehole temperature reconstructions from a pseudo-proxy approach., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20483, https://doi.org/10.5194/egusphere-egu2020-20483, 2020.

EGU2020-20714 | Displays | CL1.18

Millennial-scale variations in atmospheric N2O during the past 2000 years

Yeongjun Ryu, Jinho Ahn, Ji-Woong Yang, Ed Brook, Axel Timmermann, Thomas Blunier, Soondo Hur, and Seong-Joong Kim

Improved knowledge of greenhouse gas-climate feedbacks is required to understand past and future climate changes. Atmospheric nitrous oxide (N2O) is of concern for its potential role in global warming and future stratospheric ozone destruction. Existing ice core N2O records for the Holocene have not been sufficiently consistent to allow an examination of small changes on sub-millennial time scales. Here, we present new high-resolution and high-precision N2O records obtained from the Greenland NEEM (North Greenland Eemian Ice Drilling) and Antarctic Styx Glacier ice cores. Our reconstruction shows, for the first time, a centennial-scale variability of ~10 ppb during the last 2000 years.  Comparisons with proxy records suggest that centennial- to millennial-scale variations in N2O are driven, to a large extent, by changes in tropical and subtropical land hydrology and marine productivity.

How to cite: Ryu, Y., Ahn, J., Yang, J.-W., Brook, E., Timmermann, A., Blunier, T., Hur, S., and Kim, S.-J.: Millennial-scale variations in atmospheric N2O during the past 2000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20714, https://doi.org/10.5194/egusphere-egu2020-20714, 2020.

CL1.20 – Historical climatology and hydrology: the role of documentary evidence in the reconstruction of past (hydro)climate and its variabilities

EGU2020-586 | Displays | CL1.20

A critical evaluation of present flood hazard maps in Southwest Germany using epigraphic marks and historical written data

Annette Sophie Bösmeier, Iso Himmelsbach, and Rüdiger Glaser

Engraved in stone or attached as metal plates to bridges or house walls, flood marks are mostly publicly accessible symbols of high-water level and form part of the cultural heritage. They serve as tangible representations of the extent of past floods and are thus regarded a medium which can raise public risk awareness and contribute to a collective risk memory. Moreover, epigraphic marks are often regarded a valuable source of information on the frequency and magnitude of historical extreme events. However, a flood mark´s informational value may be considered too rudimentary, and the large number of potential error sources is a challenge that often cannot be fully resolved. We therefore conducted a multi-temporal study in the Kinzig catchment, Southwest Germany, in order to, firstly, test for the credibility and the temporal continuity of flood marks. Secondly, we used the knowledge gathered to verify the current flood hazard maps (FHM). For this study, more than 60 flood marks corresponding to 14 events since the beginning of the 19thcentury were checked and/or mapped in three communities in the upper and middle catchment. A detailed historical survey of flood marks dating back to the early 20th century provided a unique opportunity to assess the preservation of marks as well as the extent of relocation since that time. The flood mark heights were then compared with the flooding depths of the modelled FHM for floods between HQ10 and HQextreme at the respective locations. The gauge record was additionally included to assign return periods to the more recent events. Altogether, a high relative agreement between flood marks and the FHM was found in this systematic study, particularly for events during the 20th century. The extreme extents of some events within headwater catchments documented both by epigraphic marks and further documentary sources however appear to be underestimated by the FHM.

How to cite: Bösmeier, A. S., Himmelsbach, I., and Glaser, R.: A critical evaluation of present flood hazard maps in Southwest Germany using epigraphic marks and historical written data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-586, https://doi.org/10.5194/egusphere-egu2020-586, 2020.

EGU2020-5087 | Displays | CL1.20

The forgotten drought of 1765-1768: Reconstructing and re-evaluating historical droughts in the British and Irish Isles

Conor Murphy, Robert Wilby, Tom Matthews, Csaba Horvath, Arlene Crampsie, Francis Ludlow, Simon Noone, Jordan Brannigan, Jamie Hannaford, Robert MacLeman, and Eva Jobbova

Historical precipitation records are fundamental for the management of water resources, yet rainfall observations typically span 100 – 150 years at most, with considerable uncertainties surrounding earlier records. Here, we analyse some of the longest available precipitation records globally, for England and Wales, Scotland and Ireland. To assess the credibility of these records and extend them further back in time, we statistically reconstruct (using independent predictors) monthly precipitation series representing these regions for the period 1748-2000. By applying the Standardised Precipitation Index at 12-month accumulations (SPI-12) to the observed and our reconstructed series we re-evaluate historical meteorological droughts. We find strong agreement between observed and reconstructed drought chronologies in post-1870 records, but divergence in earlier series due to biases in early precipitation observations. Hence, the 1800s decade was less drought prone in our reconstructions relative to observations. Overall, the drought of 1834-1836 was the most intense SPI-12 event in our reconstruction for England and Wales. Newspaper accounts and documentary sources confirm the extent of impacts across England in particular. We also identify a major, ‘forgotten’ drought in 1765-1768 that affected the British-Irish Isles. This was the most intense event in our reconstructions for Ireland and Scotland, and ranks first for accumulated deficits across all three regional series. Moreover, the 1765-1768 event was also the most extreme multi-year drought across all regional series when considering 36-month accumulations (SPI-36). Newspaper and other sources confirm the occurrence and major socio-economic impact of this drought, such as major rivers like the Shannon being fordable by foot. Our results provide new insights into historical droughts across the British Irish Isles. Given the importance of historical droughts for stress-testing the resilience of water resources, drought plans and supply systems, the forgotten drought of 1765-1768 offers perhaps the most extreme benchmark scenario in more than 250-years.

How to cite: Murphy, C., Wilby, R., Matthews, T., Horvath, C., Crampsie, A., Ludlow, F., Noone, S., Brannigan, J., Hannaford, J., MacLeman, R., and Jobbova, E.: The forgotten drought of 1765-1768: Reconstructing and re-evaluating historical droughts in the British and Irish Isles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5087, https://doi.org/10.5194/egusphere-egu2020-5087, 2020.

EGU2020-8058 | Displays | CL1.20

The weather diary of Felipe de Zúñiga (1775-1786): A key documentary source to understand the hunger year in Mexico

Fernando Domínguez-Castro, María Cruz Gallego, José M. Vaquero, Ricardo García Herrera, and Sergio M. Vicente-Serrano

The weather diary of Felipe de Zúñiga y Ontiveros (FZO) (Oaxtepec, 1717–Mexico City, 1793) provides daily meteorological information for rain frequency, temperature, frost, hail, thunderstorms, and windy days, from January 1775 to December 1786. It is the earliest obser­vational data collection with daily resolution retrieved in the region so far and it has higher time resolution than any other climate proxy available for this period. Some of the meteorological information provided by FZO could be compared with current meteorological records i.e. frequency of rain, hail, and thunderstorm. The seasonal distribution of these variables corresponds well during the FZO period and the present climate. 1781 was the warmest year in the FZO record while 1785 and 1778 were the coldest. FZO also identified a wet period (1782/1783) and two dry periods (1780/1781 and 1785/1786). The later coincides with the hunger year. It is considered the worst famine in Mexico during the colonial period (1521–1821).  A combination of adverse climate, lack of food, and an outbreak of typhus epidemic killed around 300,000 people. During these years a drought event extended over almost all the Mexican territory and was particularly severe over the central and northeastern regions. During the period 1785/86 FZO only recorded 188 rainy days. A similar record of low rainy days only occurred two times in the instrumental period: i) 1909/10 (188 days) and ii) 2010/11 (189 days). Both episodes with harmful consequences to the country e.g. water shortages, important loses in agriculture, farming, and forest fires. However, the climate during the hunger year was worse than during the instrumental droughts due to the high frequency of early killing frost. During 1785, frost events happened on April, August and September. FZO describes the impact of the frost and the attempt of the government to alleviate the famine “the frosts since August 28th have been so general that the fruits have been lost throughout the Kingdom, with the excep­tion of the warm lands; the government has asked them to sow corn, beans and other seeds in the irri­gated lands immediately so that they can be harvested by March 1786 and partially remedy the hunger that threatens”. Nevertheless, this decision was no useful because 1786 was driest than the 1785 impeding the growing of any crop. The annual summary of FZO for 1786 was, “It has been an unfortunate year due to scarcity of rain, supplies and everything needed for life, also in misfortune and public diseases”. The FZO´s diary is a good example of a documentary source that allows understanding the climate situation and the socio-economic response in detail during an extreme event.

How to cite: Domínguez-Castro, F., Gallego, M. C., Vaquero, J. M., García Herrera, R., and Vicente-Serrano, S. M.: The weather diary of Felipe de Zúñiga (1775-1786): A key documentary source to understand the hunger year in Mexico, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8058, https://doi.org/10.5194/egusphere-egu2020-8058, 2020.

EGU2020-9647 | Displays | CL1.20

North Atlantic Oscillation, East Atlantic pattern and jet variability since 1685

Javier Mellado-Cano, David Barriopedro, Ricardo García-Herrera, Ricardo Trigo, and Armand Hernández

Instrumental records of the leading patterns of variability are short, hampering a proper characterization of the atmospheric circulation beyond the mid-19th century. In this work, recently published in Mellado-Cano et al. (2019), we present the longest (1685-2014) observational-based records of winter NAO and East Atlantic (EA) indices as well as estimates of the North Atlantic eddy-driven jet stream for the same period. They are inferred from wind direction observations over the English Channel assembled in monthly indices of the persistence of the wind in the four cardinal directions. Our NAO and EA series are significantly correlated with traditional indices, showing comparable skill to that obtained between some instrumental indices, and capture their main signatures on European temperature and precipitation.

By identifying winters with different combinations of NAO/EA phases in the 20th century, our results highlight the additional role of EA in shaping the North Atlantic action centers and the European climate responses to NAO. The joint effects of NAO and EA cause European surface climate anomalies that can substantially differ from their canonical signatures, meaning that a proper characterization of regional climates cannot be achieved by the NAO alone. The EA interference with the NAO signal is stronger in precipitation than in temperature and affects areas with strong responses to NAO such as Greenland and the western Mediterranean.

The time series display large variability from interannual to multidecadal time scales, with e.g. positive (negative) EA (NAO) phases dominating before 1750 (during much of the 19th century). The last three centuries uncover multidecadal periods characterized by specific NAO/EA states and substantial variability in the North Atlantic jet stream, thus providing new evidences of the dynamics behind some outstanding periods. Transitions in the NAO/EA phase space have been recurrent and pin down long-lasting anomalies, such as the displacement of the North Atlantic action centers in the late 20th century, besides some disagreements between historical NAO indices.

Mellado-Cano, J., D. Barriopedro, R. García-Herrera, R.M. Trigo, 2019: Examining the North Atlantic Oscillation, East Atlantic pattern and jet variability since 1685. Journal of Climate. doi: https://doi.org/10.1175/JCLI-D-19-0135.1

How to cite: Mellado-Cano, J., Barriopedro, D., García-Herrera, R., Trigo, R., and Hernández, A.: North Atlantic Oscillation, East Atlantic pattern and jet variability since 1685, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9647, https://doi.org/10.5194/egusphere-egu2020-9647, 2020.

EGU2020-11506 | Displays | CL1.20

The impacts of spring-summer droughts in England, 1200-1700

Kathleen Pribyl

This paper studies the occurrence and impacts of spring-summer droughts in pre-industrial England from 1200 to 1700. The study is based on documentary data, and the types of records and source availability are described, and an overview of droughts in those 500 years is provided. The focus lies on identifying the meteorological, hydrological and agricultural aspects of late medieval and early modern droughts, and on highlighting the structural impacts on the agricultural and pastoral economy, transport, energy supply and health. Due to the specific characteristics of wheat cultivation in medieval and early modern England, the grain production was comparatively resilient to drought. However, livestock farming was under threat, when rainfall levels fell noticeably below average. The most important problem in warm and dry summers was the risk to health. Partly steeply raised mortality levels were associated with these conditions during the study period, because malaria, gastrointestinal disease and plague showed an affinity to heat and drought. Adaptation strategies adopted by the people of pre-industrial England to reduce the stress posed by summer droughts will be discussed.

How to cite: Pribyl, K.: The impacts of spring-summer droughts in England, 1200-1700, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11506, https://doi.org/10.5194/egusphere-egu2020-11506, 2020.

EGU2020-14388 | Displays | CL1.20

Historical droughts in the Qing dynasty (1644-1911) of China and the role of human interventions

Kuan-Hui Elaine Lin, Pao K. Wang, Pi-Ling Pai, and Yu-Shiuan Lin

This study presents a new epistemology to analyze drought chronology through a clear-cut methodology for reconstructing past drought series as well as series for other associated ecological and societal variables. Instead of building grading system based on mixed criteria, this method can facilitate transparency in the reconstruction process and can enable statistical examinations of all variables when building the series. The data used is from the REACHES database, however other archival documentary and index data from independent sources are also applied to understand drought narratives and to cross check and validate the analysis derived from the REACHES. From time series analysis, six severe drought periods are identified in the Qing dynasty, and then spatial analysis is performed to demonstrate spatial distribution of drought and other variables in the six periods as well as social network analysis to reveal connections between drought and other ecological and societal variables. Research results clearly illustrate the role of human intervention to influence the impacts of drought on societal consequences. Particularly, the correlation between drought and socioeconomic is not strong; crop failure and famine are important intermediate factors, meanwhile ecological factor such as locust and disaster relief measures are all imperative to intervene between crop production and famine. Implications of the study on drought impact are provided as well as the significance of historical climate reconstruction studies.

How to cite: Lin, K.-H. E., Wang, P. K., Pai, P.-L., and Lin, Y.-S.: Historical droughts in the Qing dynasty (1644-1911) of China and the role of human interventions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14388, https://doi.org/10.5194/egusphere-egu2020-14388, 2020.

EGU2020-17417 | Displays | CL1.20

Reconstructing the climate of Ancient Babylonia

Rhonda McGovern, Conor Kostick, Laura Farrelly, and Francis Ludlow

Ancient Babylonia is a kingdom / province in the Fertile Crescent in south-central Mesopotamia (modern day Iraq). It has a rich textual and archaeological history and is the origin of many scientific and cultural advances, such as the definition of the seven-day week, the invention of zero, and many legal principles still underlying modern contract, tort, criminal, property, and family law.

The Irish Research Council-funded “Climates of Conflict in Ancient Babylonia” (CLICAB) project aims to investigate climatic changes in Babylonia during the final eight centuries BCE and assess for linkages to patterns of violence and conflict, through the application of methods from historical climatology to the wealth of data available. Although there are gaps in the recorded observations, and potentially more tablets yet to be found and translated, the 209 precisely dated, transliterated and translated tablets presently available will provide for many years a sub-daily window into the weather, and therefore the climate of this key historical region. This is a far greater resolution than is currently available for any region or period in the Ancient world, and indeed unprecedented in the world of historical climatology before the Early Modern Period.

Key to the project’s broader aims is the reconstruction of the climate for the region based on the information held in the Babylonian Astronomical Diaries. This paper thus examines the process of mining information from the detailed record maintained by Ancient Babylonian scribes in the Astronomical Diaries and presents an overview of the findings. These diaries are a collection of cuneiform tablets spanning 652-61BC, housed in the British Museum. They are rich in systematic weather observations (even down to an hourly resolution), astronomical phenomena, price data, and river heights for the Euphrates. Much work has been undertaken to examine the economic, astronomical and fluvial data, but until now the weather observations have remained relatively untouched, despite their unparalleled temporal resolution for this period, the systematic methodology applied in their recording, and the sheer breadth of information provided. This ranges from wind direction and intensity, to the level of cloud cover and references to atmospheric clarity (clear vs. dusty skies), to the general conditions (temperature and precipitation), for all seasons. This project will see the reconstruction of the climate for the region of Babylonia, and therefore provide one of the oldest weather records in the world. This paper presents high-resolution weather data from the Astronomical Diaries. Specifically, the authors will present the frequency of meteorological extremes over the period, alongside a discussion into the mitigation methods the Babylonians employed to reduce their vulnerability to these extremes. 

KEYWORDS: Ancient Babylonia, Climate, Conflict

How to cite: McGovern, R., Kostick, C., Farrelly, L., and Ludlow, F.: Reconstructing the climate of Ancient Babylonia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17417, https://doi.org/10.5194/egusphere-egu2020-17417, 2020.

Japan has plenty of diaries in the 17th to 19th centuries, which include records of daily weather conditions ("fine", "cloudy", "rainy", etc.) It is well known that they have been used for reconstructing climate variation and events, although it provided qualitative data, not instrumental observations.

We estimate global solar radiation from weather conditions. Global solar radiation is an important factor for the energy balance of the Earth, and is also fundamental to the hydrological cycle and agricultural productivity. Our method is effective for all seasons and which could produce reconstruction with higher temporal resolution than other proxy data, for example tree rings.

Weather descriptions are classified into 3 categories and weather categories convert to solar radiation. The parameters of conversion are calculated by using JMA observations from 1995 to 1999.

We reconstructed monthly mean global solar radiation from 1821 to 1850 based on the weather records described in 11 historical diary documents. We focused on the years of Tempo Famine from 1833 to 1839.

In 1836, monthly solar radiation in summer in the east-west zone of Japan including Kanto, Kinki, and northern Kyushu was smaller than the provisional normal (average of 1821-1850). It was 10% or more smaller than the normal in July and August. However, it was not particularly small in Tohoku to the north of the zone and in southern Kyushu to the south of the zone. The characteristic of reconstruction in 1836 is that lower solar radiation prolonged from May to September in the central area of Japan. This suggests that climatic condition similar to Baiu was prolonged, and that it was cold in Tohoku. On the other hand, in 1833 and 1838, when famines also occurred, the reconstructed solar radiation was low in Tohoku.

We also checked the effect on market economy by observing the daily price of rice, the main crop at that time. For 1836, we can observe the sharp rise of the price in July. It suggests that the market had reacted to the bad climate condition before the harvest season. After this sharp rise, four times higher than usual, rice price reached a plateau then fell in September 1837.

While the rice price in 1833 and 1838 also rose up in summer, they were only two or three times higher than usual and, more importantly, they quickly bounced back.

Cross check between the reconstructed solar radiation and the rice price data support thus enables us to conclude that there existed a big difference even among the years recorded as “famine years” on the historical documents.

How to cite: Ichino, M., Masuda, K., Mikami, T., and Takatsuki, Y.: Reconstruction of solar radiation based on historical weather records in Japan - Climatic condition and market economy in the famine of 1830s -, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12300, https://doi.org/10.5194/egusphere-egu2020-12300, 2020.

Humid weather conditions of the sixteenth century enabled the introduction of aqua crops to Southeastern European landscapes. The Ottoman government employed a group of experts for the cultivation of rice to implement and rehabilitate rice production. Rice plantations, as an anthropogenic intrusion in the region between Tigris to the Danube, had a fundamental social and environmental impact. Organization of human resources on a large scale; land reclamations, deforestation, and kilometres-long irrigation work changed the landscape, produced seasonal miasma and aquatic pests. Ottoman rice plantations transformed the Southeastern European socio-ecological landscapes in early modern times. Historical data about the Ottoman rice plantations open new insights for improving our knowledge about climate history, the history of riverbeds and the history of malaria in this landscape. The study presents a monography of the plantations with historical drawings and maps, showing the farms on river beds, delineates the responsiveness of the rice harvest to precipitation and temperature changes and maps the triggered aquatic pests due to climate change and deforestation. The presentation aims at opening a historical perspective to today's questions on climate change, hydrology and vector caused diseases.

How to cite: Sert, Ö.: Effects of Ottoman Rice Plantations in South-eastern European Landscape: Climate Change, Hydrology and Disease, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22271, https://doi.org/10.5194/egusphere-egu2020-22271, 2020.

EGU2020-648 | Displays | CL1.20

Documentary evidence of historical floods in lowland Romania during the last millennium

Gheorghe Badaluta, Carmen - Andreea Badaluta, Monica Ionita, and Marcel Mindrescu

Floods are among the most destructive natural hazards which affect socio-economical systems. Flood occurrence is considered to be a sensitive indicator of climate variability and is related in particular with changes in atmospheric circulation modes. One of the best archive of the floods evidence are historical documents. In this study we present 1000 years of floods reconstruction, which are some of the most frequent and well documented hazards in lowland areas of Romania. Our investigation spans over three distinct periods: the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the Modern Period (MD), respectively, and it’s the longest one, on record, over this area. In total, we extracted 191 flood events which occurred in 167 years. Of 191 flood events, 16 occurred in winter, 34 in spring, 76 in summer, 18 in autumn, whereas for 47 flood events the season was not specified. The results show three periods of increasing floods activity during the Late Medieval Warm Period, middle part of LIA (between AD 1550-1750) and the entire Modern Period. A small increase in the number of flood events was observed during the MWP with an occurrence rate slightly higher than 0.15/year. The highest flood occurrence rates have been documented during LIA (i.e. 16th and 17th centuries) with an increasing trend of up to ~ 0.4/year. The majority of these events were recorded in summer and were typically generated by heavy thunderstorms. Moreover, the rising temperatures of MD were reflected in the increasing flood occurrence rates of up to 0.39/year. In conclusion, our 1000-year long reconstruction of past flood events could bring a major contribution to the knowledge of hydro-meteorological events of Central Eastern Europe and may be used as an indicator for assessment of floods hazards and for predicting the influence in future, in the context of ongoing climatic changes.

How to cite: Badaluta, G., Badaluta, C.-A., Ionita, M., and Mindrescu, M.: Documentary evidence of historical floods in lowland Romania during the last millennium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-648, https://doi.org/10.5194/egusphere-egu2020-648, 2020.

EGU2020-5133 | Displays | CL1.20

Documentary data in the study of fatalities caused by meteorological and hydrological events: the Czech Republic, 1964–2019

Kateřina Chromá, Rudolf Brázdil, Lukáš Dolák, Jan Řehoř, and Ladislava Řezníčková

Reports from the newspaper “Rudé právo/Právo”, complemented by chronicles, epigraphic evidence, systematic meteorological/hydrological observations, media (including internet), professional reports and papers were used to create a database of fatalities taking place in the course of hydrological and meteorological events over the territory of the Czech Republic during the 1964–2019 period. The spatiotemporal variability of fatalities arising out of floods, flash floods, windstorms, convective storms, lightning, frosts, snow/glaze-ice calamities, avalanches, heats and other events is shown, with particular attention to closer characterisation of fatalities (gender, age, cause of death, place, type of death and behaviour). In the classification of fatalities, males and adults clearly prevail, while indirect victims and hazardous behaviour are strongly represented. Examples of two outstanding events with the highest numbers of fatalities during a flash flood on 9 June 1970 (34 fatalities) and a rain-induced flood in July 1997 (60 fatalities) are described in detail. Discussion of results includes the problem of data uncertainty, factors influencing the numbers of fatalities, and the broader context. The study emphasises the significance of documentary data and reveals its new utilisation in the study of fatalities in the Czech Republic.

How to cite: Chromá, K., Brázdil, R., Dolák, L., Řehoř, J., and Řezníčková, L.: Documentary data in the study of fatalities caused by meteorological and hydrological events: the Czech Republic, 1964–2019, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5133, https://doi.org/10.5194/egusphere-egu2020-5133, 2020.

EGU2020-5149 | Displays | CL1.20

Towards a better assessment of the historical climate of Extremadura region (SW Spain)

José Manuel Vaquero, María Cruz Gallego, Víctor M. S. Carrasco, Nieves Bravo-Paredes, María Ángeles Obregón, and Carlos Lara

Our efforts to a better understanding of the historical climate of the region of Extremadura (interior of the SW Iberia) have been directed in two main aspects. First, we have tried to recover all the meteorological data of the pre-instrumental period. Second, we have been working on the localization and analysis of proxy data, including “pro-pluvia” rogation ceremonies and a chronology of catastrophic floods in this region.

The recovery of historical meteorological data from libraries and archives and the subsequent digitization to obtain readable-machine version has been a main task in our research. Meteorological data from different sources (manuscripts, books, newspapers, etc.) and eight different locations in Extremadura have been recovered and digitized. The oldest data were read in 1824 (Fernández-Fernández et al., 2014). Other important meteorological series can be highlighted as the actinometric measurements in Cáceres for the period 1913-1920 (Bravo-Paredes et al., 2019).

“Pro-pluvia” rogations were celebrated during dry conditions to ask God for rain. In our case, 35 “pro-pluvia” rogations were retrieved for the period 1824-1931 from different locations in Extremadura. The winter climate of this region is strongly dominated by the North Atlantic Oscillation (NAO) and, therefore, these pro-pluvia rogations were associated to the NAO index to analyze this relationship. The results of our analysis show that the rogation ceremonies in Extremadura can be considered a good proxy for the NAO index. Also, it is important to know the magnitude and the impact of the catastrophic floods occurred in Extremadura. In total, 40 floods occurred in Badajoz were recovered from different documentary sources for the period 1545-1989.

All these research efforts will allow for a better understanding of the past climate in the region of Extremadura, where such studies have been very scarce.

References

Bravo-Paredes, N. et al. (2019) “Analysis of actinometric measurements under different sky conditions in Cáceres (Spain) for the period 1913-1920” Tellus B 71, 1663597. DOI: 10.1080/16000889.2019.1663597

Fernández-Fernández, M.I. et al. (2014) "The climate of Zafra from 1750 to 1840: History and description of weather observations" Climatic Change 126, 107–118. (doi: 10.1007/s10584-014-1201-5)

How to cite: Vaquero, J. M., Gallego, M. C., Carrasco, V. M. S., Bravo-Paredes, N., Obregón, M. Á., and Lara, C.: Towards a better assessment of the historical climate of Extremadura region (SW Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5149, https://doi.org/10.5194/egusphere-egu2020-5149, 2020.

Climate disasters such as droughts and floods are becoming very important in 21st century India especially in the semi-arid tracts of rain-shadow regions of peninsular India – stretching from Maharashtra in the west to Tamil Nadu in the south. The role of climate variability in these climate disasters and the climate forcings working behind these needs a special attention. Here we present new data, pertaining to climate disasters, impacts and adaptive strategies, from a review of 60 volumes of archival institutional documents from the British Colonial Period pertaining to administration of districts of peninsular India. The documents span ~ 220 years (1729-1947 AD) and encompass the two phases of the British colonial period, the Company period (before 1858) and the Crown period (1858-1947) respectively. We found archival institutional documents to be excellent archives for reconstructing a chronology of climate disasters, studying the effects of these disasters and assessing the efficacy of adaptive strategies and policies at local scales, often at the level of districts (<30 kms). Vivid accounts describe impacts of climate disasters e.g crop failure, price hike, farmer migration, riot, starvation, epidemic diseases, death during droughts, and colossal destruction, migration and death due to heavy rainfall (and associated floods). Farmers being the most affected group. In 19th century famines due to droughts continued to occur every 5-10 years if the rainfall fell below 14% of the average annual rainfall, consistent with decadal and sub-decadal modes of rainfall variability. This data is comparable with the tree ring data found in this area. Climate variability is to some extent at par with ENSO events but land atmosphere interaction especially due to anthropogenic activities such as deforestation can be a major climate forcing that acted in this area. During the Crown period protective measures were very similar even though governance changed. But British government had to change their policies when sudden huge fall in rainfall occurred in 1876 and 1899 causing major famines (Great Famine 1876-1877, Indian Famine1899-1900). Formation of Famine Codes and Famine Commissions (1880-1901) after these two major famines made situation better, changes were done in grass root level. We see no major famine caused by droughts in peninsular India after that.

How to cite: Ray, R. and Bhattacharya, A.: Assessing the impacts of climate variability - a study of institutional archival data spanning 1700-1947 (British Colonial Period) pertaining to semi-arid tracts of peninsular India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5350, https://doi.org/10.5194/egusphere-egu2020-5350, 2020.

EGU2020-6740 | Displays | CL1.20

Analysis of Subdaily Meteorological Measurements by Louis Morin in the Late Maunder Minimum 1665 – 1713 in Paris

Thomas Pliemon, Ulrich Foelsche, Christian Rohr, and Christian Pfister

Based on copies of the original data (source: Oeschger Center for Climate Change Research) we perform climate reconstructions for Paris. The focus lies on the following meteorological variables: temperature, cloudiness, moving direction of clouds and precipitation. We assess the early instrumental temperature dataset with state of the art statistical methods to get further knowledge of inhomogeneities. There are already several studies showing monthly and yearly means of the temperature, but a detailed statistical analysis based on the original measurements has not been done yet. Due to the lack of metadata, we do a qualitative analysis. With rare contemporary time series, like the CET (Central England Temperature), and proxydata, like grape harvest dates, we attempt to make a quantitative statement. We analyse and discuss the documentary datasets of the cloudiness and the moving direction of the clouds relating to the cooling in the Late Maunder Minimum. Because of the subjective character of documentary records, we compare these results with available data from former publications. Precipitation is given in terms of intensity and duration. We calculate indices like rainfall frequency and average rainfall per year/season/month.

How to cite: Pliemon, T., Foelsche, U., Rohr, C., and Pfister, C.: Analysis of Subdaily Meteorological Measurements by Louis Morin in the Late Maunder Minimum 1665 – 1713 in Paris, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6740, https://doi.org/10.5194/egusphere-egu2020-6740, 2020.

EGU2020-6803 | Displays | CL1.20

Chronology of strong winds based on documentary evidence in the Czech Republic from AD 1510

Lukáš Dolák, Rudolf Brázdil, Petr Dobrovolný, Hubert Valášek, Ladislava Řezníčková, Kateřina Chromá, and Oldřich Kotyza

To develop an understanding of recent variability in strong winds, it is necessary to analyse their past behaviour. While relatively short series of wind-speed measurement in the Czech Lands (recent Czech Republic) started mostly in the first half of the 20th century, documentary evidence represents a valuable source of information helping extend the knowledge of strong winds to the pre-instrumental period. In this study, we analyse strong winds on the basis of chronicles, weather diaries, early journalism, economic and financial sources, as well as old academic journals, newspapers, professional papers and recent scientific papers. The created dataset presents a chronology of strong winds in the Czech Lands from AD 1510 to present. The dataset contains more than 5000 events, which are classified on duration, location, extent, severity and type of damage on squalls (convective storms), tornadoes, blizzards, gales and windstorms. Gales, often accompanied by loss of human lives, damage to buildings and forests (windthrows), are the most frequently recorded type of strong winds (44%), followed by blizzards (26%), squalls (18%), and tornadoes (7%). Strong winds detected are concentrated 1820s to late-1840s, 1900s to late-1930s and in the 2000s. Seasonal distribution of strong winds is relatively equal throughout the chronology with the highest frequency in July (10.0%), January (8.6%), and December (8.1%). Uncertainties in results emerge from a different spatiotemporal density of documentary data and from the ambiguous nature of some records in determining the classification of strong winds or attribution of damage caused to particular events. Our results highlight the importance of documentary evidence in the analysis of strong winds and contribute to a better understanding of their spatiotemporal variability in the past.

How to cite: Dolák, L., Brázdil, R., Dobrovolný, P., Valášek, H., Řezníčková, L., Chromá, K., and Kotyza, O.: Chronology of strong winds based on documentary evidence in the Czech Republic from AD 1510, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6803, https://doi.org/10.5194/egusphere-egu2020-6803, 2020.

EGU2020-10147 | Displays | CL1.20

Climate of the Reformation: droughts and anomalous weather in the 1500s-1510s in Europe

Andrea Kiss, Mariano Barriendos, Rudolf Brázdil, Chantal Camenisch, Silvia Enzi, Piotr Olinski, Kathleen Pribyl, and Dag Retsö

In the 1500s-1510s an unusually high number of significant droughts in Central and Western, and partly in Southern Europe; the years 1502-1504, 1506-1507, 1513-1514 and 1516-1518 were dry particularly in Central and Western Europe. Droughts, interspersed with wet years marked even by significant floods and other weather-related extremes, and frequent hard winters were mainly responsible for the reduced or poor crop and hay harvests in multiple years. These circumstances, in combination with other socio-economic factors, contributed to the increased social tension of the period, manifesting itself in major peasant uprisings, and might have acted as a catalyst in the timing and rapid spread of the Reformation.

The first part of the presentation is concentrated on the reconstruction and spatial-temporal analysis of the droughts (and hard winters) using documentary evidence – in comparison with the tree-ring based hydroclimate reconstruction (OWDA: Cook et al. 2015) and the multiproxy-based reconstruction of Central European precipitation (Pauling et al. 2006).

The most significant groups of socio-economic consequences are analysed in the second part of the presentation, with special emphasis on discussing the possible cumulative effects of the anomalous weather conditions during the period on the ongoing transformation of the late-medieval society and economy and the Reformation itself.

How to cite: Kiss, A., Barriendos, M., Brázdil, R., Camenisch, C., Enzi, S., Olinski, P., Pribyl, K., and Retsö, D.: Climate of the Reformation: droughts and anomalous weather in the 1500s-1510s in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10147, https://doi.org/10.5194/egusphere-egu2020-10147, 2020.

EGU2020-17698 | Displays | CL1.20

Rescue of Ukrainian early historical climatological data

Dmytro Boichuk, Jürg Luterbacher, Rob Allan, Olesya Skrynyk, Vladyslav Sidenko, Angelika Palarz, Dmytro Oshurok, Elena Xoplaki, Oleg Skrynyk, and Volodymyr Osadchyi

Modern climate applications and climate services are seeing the need for more data and information (including its historical part) on climate variability at high temporal and spatial resolution. Therefore, daily or even sub-daily meteorological data are required increasingly to feel this gap and provide the basis for climate research, extreme events analysis and impact studies.

The main objective of our work is to present information on results of data rescue (DARE) activity conducted recently in the Ukrainian Hydrometeorological Institute (UHMI, Kyiv, Ukraine) in close collaboration with several national and international partners. Our DARE activity was concentrated mainly on the original sub-daily, pre-1850 meteorological observations conducted at eight meteorological stations located in the territory of modern Ukraine, namely Kyiv, Kharkiv, Poltava, Kamyanets-Podilsky, Lugansk, Dnipro, Kherson and Odesa. These eight stations are the only ones, whose pre-1850 data have been found in an archive of the Central Geophysical Observatory (CGO), an observation institution of the Ukrainian Weather Service.

The data are contained in 38 special hard copy books. Before digitization, the book pages were photocopied to create a database of the images of all the paper sources. Its two copy versions are now stored at the UHMI and CGO, respectively. After the creation of the images database, the data were digitized manually by the authors. In total 291 103 values were digitized. These include 165 980 air temperature records (~57% of the total), 124 376 atmospheric pressure measurements (~42.7%) and 747 precipitation totals (~0.3%).

Quality control of the digitized data was conducted, including intercomparisons between the stations as well as comparisons with monthly temperature data that were digitized previously from other sources. The quality control procedures revealed a fairly good agreement among the rescued time series on the monthly time scale as well as a good accordance with the monthly data from other sources. However, several periods at some stations should be used with caution, due to relatively large discrepancies revealed. The rescued digital dataset can be used for different meteorological and climatological purposes, including the analysis of extreme events for the pre-1850 period in comparison with today’s climate, regional climatological studies, etc. The dataset is an important supplement to existing digitized archives of meteorological measurements that were performed in the first half of the 19th century.

How to cite: Boichuk, D., Luterbacher, J., Allan, R., Skrynyk, O., Sidenko, V., Palarz, A., Oshurok, D., Xoplaki, E., Skrynyk, O., and Osadchyi, V.: Rescue of Ukrainian early historical climatological data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17698, https://doi.org/10.5194/egusphere-egu2020-17698, 2020.

EGU2020-19767 | Displays | CL1.20

The October 1940 extreme flood in the Pyrenees revisited: validation of some hypotheses based on hydraulic simulations

Eric Gaume, Maryse Charpentier-Noyer, and Olivier Payrastre

One of the most impressive flash floods of the last century in France, as in Spain, occurred in the Eastern part of the Pyrenees on the 17th and 18th of October 1940. 47 people died in France during this extraordinary event and more than 100 in Catalunia. This flood caused considerable damages to buildings and, in particular, destroyed the center of the thermal town of Vernet-les-Bains on the slopes of the mount Canigou. The maximum observed 24-hour rainfall amount was close to one meter and remains until now one of the French record values. This flooding has already been widely documented both by the state technical services and by scientists of the time. Much of this documentation, which has been archived and is still available, makes it possible to propose new evaluations in the light of the recent advancements in flash floods studies. The conclusions of this work of flood reanalysis are presented, and are supplemented here by hydraulic simulations in order to test different hypotheses concerning the timing and magnitude (i.e. discharge values) of the flood. The Basilisk software (finite volume method for shallow water equations with adaptive mesh refinement) is used to conduct the 2D-hydraulic simulations. The initial reanalysis of the flood revealed that (1) the peak discharge values estimated in 1940, on which local risk assessment studies are based, had probably been largely over-estimated; (2) a sudden increase of local water levels, described by eye-witnesses in the town of Elne, was due to the breach of a railway embankment in the floodplain upstream the town. The hydraulic simulations, carried out both with the peak discharge estimated in 1940 and with the re-evaluated one, show that the former values are not compatible with the flood witnesses’ accounts - which retrace the chronology of the episode - or with the surveyed water levels. The revised and reduced peak discharge appears to be more realistic according to the data retracing the event. Moreover, the presence of the breach in the railway line embankment appears to explain the maximum water levels observed in the town of Elne. This work illustrates that major past-flood events may be re-interpreted at the light of our increased scientific knowledge provided that they have been well documented at the time of their occurrence, which is often the case for major devastating floods.

How to cite: Gaume, E., Charpentier-Noyer, M., and Payrastre, O.: The October 1940 extreme flood in the Pyrenees revisited: validation of some hypotheses based on hydraulic simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19767, https://doi.org/10.5194/egusphere-egu2020-19767, 2020.

EGU2020-613 | Displays | CL1.20

A Quantitative Hydroclimatic Context for the European Great Famine of 1315-1317

Seung Hun Baek, Jason Smerdon, George-Costin Dobrin, Jacob Naimark, Edward Cook, Benjamin Cook, Richard Seager, and Mark Cane

One of the most severe floods that has ever been registered in the catchment of the Upper Danube River in Central Europe is the one that took place in June/July 1572. This flood was caused by a prolonged precipitation event related to a so-called Vb cyclone. Such cyclones develop either over the Bay of Biscay or the Mediterranean (Genoa region), move eastward via Italy and the Adriatic Sea, and subsequently turn northeast. Vb cyclones bring extreme weather conditions with sustained precipitation over the northern side of the European Alps and Central Europe.

The impacts of the Vb cyclone in 1572 severely affected transport routes and local economies as indicated for instance by salt transport data from the Salzach River, one tributary stream (via the Inn River) of the Danube River. Different means of remembrance as historical flood level markers or memorial stones at several cities in Central Europe suggest that contemporaries considered the outcome of the cyclone as catastrophic. The modern quantification of the effects of such an extreme meteorological event helps to increase the understanding of the human-nature relationship in a period when manmade, modern changes of riverbeds and protection structures against floods or debris flows did not exist or did so only to a very limited extent. However, quantifying the effects of a historical regional-scale flood event in terms of degree of devastation at local-sale is normally outright impossible due to lack of detailed data.

In the Styrian Provincial Archive in Graz, Austria, a detailed damage inventory referring to the cyclone of 1572 exists. The purpose of the inventory was to reduce taxes for the Benedictine Abbey of Admont. The interdisciplinary analysis (historian, geographer) of the source enabled a local-scale insight into the effects of the cyclone at Admont. The inventory contains a list of 355 subjects of the abbey distributed over 12 administrative units that suffered minor to severe (complete destruction) damage related to flooding (main river or tributary creeks), debris-flows or landslides.

Further historical sources and geographical data such as land registers and cadastres allowed the localization of 150 damaged buildings at cadastral scale in the valley surrounding the abbey. Our analyses show that most of the properties were located near watercourses at alluvial fans or at slopes above the Enns valley bottom. A significantly greater amount of damage was revealed for properties, which would be nowadays located in moderate- and high-risk hazard zones (according to the Austrian Federal Service for Torrent and Avalanche Control). However, only 18.7% of the properties damaged in 1572 are located inside modern hazard zones. Modern hazard zone maps are commonly based on runoff modelling using design flood events. Our analysis suggests, nevertheless, that previously undetected or unconsidered sources might contribute substantially to the understanding of the spatial pattern of potential damage in an entire valley region during an exceptional cyclone at a local and even cadastre scale. This achievement is possible despite obvious changes in geomorphological, hydrographical, building structure and protective measure conditions since 1572. 

How to cite: Eulenstein, J. and Kellerer-Pirklbauer, A.: 448 years after the event: quantifying the local-scale effects of a Vb cyclone hitting Central Europe in 1572 using a detailed historical damage inventory, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6961, https://doi.org/10.5194/egusphere-egu2020-6961, 2020.

Flood historical records are important to place current flooding events into a long-term perspective. With these data sets it is possible to identify patterns in past recent floods and use these to characterize and model future floods. In what concerns to Portugal, some studies had already used some documentary evidence in order to reconstruct flood events, in particular centered in the year 1786 that was the rainiest in Portugal, triggering floods in northwestern and central Portugal, followed by a extremely wet and rainfall 1788 year that caused floods along the largest Iberian rivers: Douro, Mondego and Tagus. However, very little is known about the characteristics of these events prior to the beginning of regular meteorological/hydrological observations (late 19th century in Portugal).

Within this framework, we aim to reconstruct a high-resolution history of floods occurred on the estuary of the Douro River (near the city of Porto, Portugal, Iberian’ Northwest) during the 19th century. The Douro River is the third-longest river in the Iberian Peninsula (after the Tagus and the Ebro rivers) and it drains an area of 97.600 square kilometers (the most largely in the Iberian Peninsula). To achieve our main aim, early instrumental observations and documentary evidence from multiple archival sources were collected. Further, the flooding archive was used to make a serial analysis of the years of floods, their chronological distribution, frequency, duration and intensity, associated with meteorological phenomena and their impacts.

How to cite: Amorim, I., Sousa Silva, L., and Garcia, J. C.: High-resolution reconstruction of extreme hydrological events occurred in the Douro River estuary (Portugal, Iberian Northwest) during the 19th century, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18752, https://doi.org/10.5194/egusphere-egu2020-18752, 2020.

EGU2020-17284 | Displays | CL1.20

Validation of reconstructed hydroclimate variables for past drought assessment

Martin Hanel, Sadaf Nasreen, Mijael Vargas, Ujjwal Singh, Petr Máca, Oldřich Rakovec, Rohini Kumar, and Yannis Markonis

In present paper we compare the reconstructed gridded seasonal precipitation (P) and temperature (T) for Europe [1,2] to the available station data from the GHCN [3,4] network going back to 1800. The basic statistical properties at various time-scales ranging from 1/4 to 30 years are examined. It is shown, that there are significant biases in the reconstructed P and T and the bias in mean and variability considerably vary over the time-scales. The same applies for considered drought indices. We further investigate how the simulation of hydrological model driven by reconstructed data compares to that based on station data and runoff from GRDC database. In addition, a set of data-driven methods is used to link the reconstructed and observed P and T data to observed runoff, the results are validated and a reconstruction back to 1500 is provided. Finally, we check to what extent the raw proxy data can be used for drought reconstruction.

[1] https://doi.org/10.1007/s00382-005-0090-8
[2] https://doi.org/10.1126/science.1093877
[3] https://doi.org/10.1175/JCLI-D-18-0094.1
[4] doi:10.7289/V5X34VDR

How to cite: Hanel, M., Nasreen, S., Vargas, M., Singh, U., Máca, P., Rakovec, O., Kumar, R., and Markonis, Y.: Validation of reconstructed hydroclimate variables for past drought assessment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17284, https://doi.org/10.5194/egusphere-egu2020-17284, 2020.

In China, historical documents record a large quantity of information related to climate change and grain harvest. This information can help to explore the impacts of extreme drought or flood on crop production, which can provide implications for the adaptation of agriculture to higher-probability extreme climate in the context of global warming. In this paper, reported extreme drought/flood chronologies and reconstructed grain harvest series derived from historical documents were adopted in order to investigate the association between the reported frequency of extreme drought/flood in eastern China and reconstructed poor harvests during 801–1910. The results show that extreme droughts were reported more often in 801–870, 1031–1230, 1481–1530, and 1581–1650 over the whole of eastern China. On a regional scale, extreme droughts were reported more often in 1031–1100, 1441–1490, 1601–1650, and 1831–1880 in the North China Plain, 801–870, 1031–1120, 1161–1220, and 1471–1530 in Jianghuai, and 991–1040, 1091–1150, 1171–1230, 1411–1470, and 1481–1530 in Jiangnan. The grain harvest was reconstructed to be generally poor in 801–940, 1251–1650, and 1841–1910, but the reconstructed harvests were bumper in 951–1250 and 1651–1840, approximately. During the entire period from 801 to 1910, the frequency of reporting of extreme droughts in any subregion of eastern China was significantly associated over the long term with lower reconstructed harvests. The association between reported frequency of extreme floods and reconstructed low harvests appeared to be much weaker, while reconstructed harvest was much worse when extreme drought and extreme flood in different subregions were reported in the same year. The association between reconstructed poor harvests and reported frequency of regional extreme droughts was weak during the warm epoch of 920–1300 but strong during the cold epoch of 1310–1880, which could imply that a warm climate could weaken the impact of extreme drought on poor harvests; yet other historical factors may also contribute to these different patterns extracted from the two datasets.

How to cite: Hao, Z.: Patterns in data of extreme droughts/floods and harvest grades derived from historical documents in eastern China during 801–1910, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12820, https://doi.org/10.5194/egusphere-egu2020-12820, 2020.

EGU2020-8394 | Displays | CL1.20

Validating the French hYdrometeorological REanalysis (FYRE) with documentary evidence

Jean-Philippe Vidal, Alexandre Devers, Claire Lauvernet, Olivier Vannier, Laurie Caillouet, Eric Sauquet, and Benjamin Graff

The recently developed French hYdrometerological Reanalysis (FYRE) covers the period 1871-2012 and provide high-resolution ensemble reconstructions of both climate and hydrology over France. FYRE Climate combines a statistical downscaling of the global Twentieth Century reanalysis (Caillouet et al., 2019) with in-situ station observations through Ensemble Kalman filter (EnKF) data assimilation (Devers et al., 2020). FYRE Climate is composed of 25 members of daily temperature and precipitation fields on a 8~km grid over France. It served as forcings for a conceptual hydrological model over 661 near-natural catchments to build streamflow reconstructions spanning 142 years. These reconstructions have then been combined with historical streamflow observations, again through EnKF data assimilation, to build the FYRE Hydro 25-member daily hydrological reanalysis over the 661 catchments.

FYRE Hydro is here validated with various types of documentary evidence (poem, complaint letter, and photograph), focusing on extreme low-flow events and their spatial and temporal fingerprint. They serve as examples of naturally extreme hydrological events that are exacerbated through human interventions, the magnitude of which has yet to be consistently quantified over the course of the Anthropocene.

 

References

Caillouet, L., Vidal, J.-P., Sauquet, E., Graff, B., Soubeyroux, J.-M. (2019) SCOPE Climate: a 142-year daily high-resolution ensemble meteorological reconstruction dataset over France. Earth System Science Data, 11, 241-260. https://doi.org./10.5194/essd-11-241-2019

Devers, A., Vidal, J.-P., Lauvernet, C., Graff, B., Vannier, O. (2020) A framework for high-resolution meteorological surface reanalysis through offline data assimilation in an ensemble of downscaled reconstructions. Quarterly Journal of the Royal Meteorological Society. https://doi.org./10.1002/qj.3663

How to cite: Vidal, J.-P., Devers, A., Lauvernet, C., Vannier, O., Caillouet, L., Sauquet, E., and Graff, B.: Validating the French hYdrometeorological REanalysis (FYRE) with documentary evidence, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8394, https://doi.org/10.5194/egusphere-egu2020-8394, 2020.

EGU2020-6864 | Displays | CL1.20

The summers of 1531–1540 in Central Europe: The driest decade of the past five centuries?

Rudolf Brázdil, Petr Dobrovolný, Andrea Kiss, Piotr Oliński, and Ladislava Řezníčková

The summers of 15311540 in the Czech Lands were, according to three drought indices (SPI, SPEI, Z-index) reconstructed from the Czech documentary evidence and instrumental records (Brázdil et al., Clim. Res., 2016), the driest decade during the past five centuries. Based on documentary data, dry patterns of different intensity (represented e.g. by dry spells, low number of precipitation days, drying rivers and lack of water sources, frequent fires) for central Europe (Germany, Switzerland, Austria, Czech Republic, Poland, Slovakia and Hungary) were well expressed for summers in 1532, 1534–1536, 1538 and particularly in 1540. Summer droughts derived from documentary data in central Europe were confronted with gridded summer precipitation totals reconstructed from instrumental, documentary and selected natural proxies (Pauling et al., Clim. Dyn., 2006) and further with summer scPDSI reconstructed from tree-ring widths in the Old World Drought Atlas – OWDA (Cook et al., Sci. Adv., 2015). While in precipitation reconstruction summers of 1531–1540 represented the driest decade of the past 500 years in central Europe, according to scPDSI from OWDA it was the ninth driest decade, despite quite important spatial differences in the occurrence of drier and wetter areas between both reconstructions. From the analysis it follows that particularly the summers of 1534, 1536, 1538 and 1540 were dry not only in central Europe, but also over greater parts of western Europe.

How to cite: Brázdil, R., Dobrovolný, P., Kiss, A., Oliński, P., and Řezníčková, L.: The summers of 1531–1540 in Central Europe: The driest decade of the past five centuries?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6864, https://doi.org/10.5194/egusphere-egu2020-6864, 2020.

CL1.23 – Novel and quantitative methods for reconstructing continental palaeoenvironments and palaeohydrology

EGU2020-12712 | Displays | CL1.23

Changes in biogeochemistry recorded in the Lisan formation and the Dead Sea Basin

Alexandra Turchyn, Harold Bradbury, and Adi Torfstein

Terrestrial climate archives provide a rich array of information on regional climate dynamics that often can link to global climate change.  A range of new metal and coupled isotope proxies is helping to unlock the most information from terrestrial archives and this paleoclimate information. The Jordon-Arava valley, tectonically active since the early Neogene, is one of the world’s largest pull-apart basins.  Throughout the Pleistocene to the Holocene, the valley contained a series of lacustrine water bodies.  As the valley is located on the boundary between the African-Arabian deserts and the Mediterranean regional climatic zone, studies of past conditions in these lacustrine bodies allows the reconstruction of changes in the regional hydrological cycle.  Lacustrine sediments, such as those found in the Jordon-Arava valley, record paleoclimatic information similar to that found within marine sedimentary archives and often at much higher resolution, from millennial to even annual timescales. The Lisan Formation is a 40-80m thick Pleistocene marl, which was deposited in Lake Lisan, which existed over the last glacial cycle in the Jordan-Arava Valley. The Lisan Formation contains a significant quantity of annually-precipitated primary aragonite, which has not recrystallised to calcite, allowing for direct U-Th dating, which has led to an exceptional age model for the Lisan Formation.

Here we discuss the measurement of the sulfur and oxygen isotopic composition of gypsum in the Lisan formation, as well as the generation of sulfur nodules within the formation that are not found in the sediment cores of the Dead Sea. We use this data to explore how sediment diagenesis, relating to changes in biogeochemistry, changes as a function of climate change over the last glacial cycle. We then present the calcium isotopic composition of the gypsum and interbedded aragonite, and show how the aragonite calcium isotopic composition covaries with lake level, and thus offers profound insight into the regional hydrological cycle in the Jordon-Arava Valley.

How to cite: Turchyn, A., Bradbury, H., and Torfstein, A.: Changes in biogeochemistry recorded in the Lisan formation and the Dead Sea Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12712, https://doi.org/10.5194/egusphere-egu2020-12712, 2020.

EGU2020-12189 | Displays | CL1.23

New palaeoclimate record from ancient river channels in the eastern Sahara: Implications for climate impact on human dispersals during the late Quaternary

Abdallah S. Zaki, Georgina E. King, Negar Haghipour, Frédéric Herman, Robert Giegengack, Mathieu Schuster, Sanjeev Gupta, Stephen E. Watkins, Hossam Khairy, Salah Ahmed, Saleh A. Eltayeb, Mostafa El-wakil, and Sébastien Castelltort

Throughout the last 65,000 years, there have been several brief periods of increased temperatures and precipitation over the eastern Sahara.  These periods have been constrained by numerous proxies including: palaeodischarge and sediment-load estimates of the Nile River, cave speleothems, dust fluxes, fossil groundwater, marine sediments, and reconstructed palaeolake level fluctuations. These climate disturbances are widely considered to have affected both the migration patterns of anatomically modern humans and Holocene human settlements.

However, these proxies can not be directly translated into precipitation intensity which would have had a profound impact on human activities, as intense precipitation events would make settlements next to rivers hazardous places to live. Here we reconstruct the paleoenvironmental conditions of six palaeoriver channel systems preserved over a ca 40’000 km2 area in southern Egypt using geochronological, palaeohydrological and sedimentological techniques. These palaeorivers deposits are currently topographically inverted due to wind deflation. Despite previous attempts at dating these river channels using Acheulean artifacts and pottery shards collected from within the channel bodies, their age remains contentious between the middle Pleistocene to Holocene. Here we provide refined age constraints using Optically Stimulated Luminescence (OSL) coupled with Carbon-14 dating. Our results show that these rivers record at least 8 episodes of fluvial deposition distributed between 53 ± 7 ka and 1 ± 0.25 ka ago.

In addition, we estimate, using channel geometry (width and height) and median grain size (D50), the palaeoslope, palaeovelocity, and palaeodischarge of these ancient inverted channels. Combining these parameters with estimates of palaeodrainage areas (based on digital elevation models (derived from ALOS PALSAR data) and Hack’s law) allows us to assess palaeoprecipitation rates in the range of 50 ± 10 mm/h during the incision of these palaeorivers. These rates indicate relatively intense periods of precipitation and important sediment transport periods during the early to mid-Holocene pluvial period in the Sahara compared with previous pluvial periods. Our results show that during these warmer and wetter periods the precipitation occurred in intense periods, which we suggest created hazardous environments close to the rivers and thus causing forcing human migration away from the rivers into the West and North. This, therefore, gives a plausible mechanism for the dispersal of human settlements from the South of Egyptian Sahara to the North-West 8,500 to 5,300 years ago.

How to cite: Zaki, A. S., King, G. E., Haghipour, N., Herman, F., Giegengack, R., Schuster, M., Gupta, S., Watkins, S. E., Khairy, H., Ahmed, S., Eltayeb, S. A., El-wakil, M., and Castelltort, S.: New palaeoclimate record from ancient river channels in the eastern Sahara: Implications for climate impact on human dispersals during the late Quaternary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12189, https://doi.org/10.5194/egusphere-egu2020-12189, 2020.

EGU2020-18100 | Displays | CL1.23 | Highlight

A 1,600 year record of paleoseasonality from the neotropics of Central America and its implications for rainfall predictability in agricultural societies

Keith Prufer, Sebastian Breitenbach, James Baldini, Tobias Braun, Erin Ray, Lisa Baldini, Victor Polyak, Franziska Lechleitner, Norbert Marwan, Douglas Kennett, and Yemane Asmerom

For millions of people living in the humid neotropics seasonally predictable rainfall is crucial for agricultural success and food security.  Understanding long-term stability and volatility of seasonal rainfall distributions should be of concern to researchers and policy makers. However, reconstructions of paleorainfall seasonality in the neotropics have been constrained by a lack of precisely dated and sub-annually resolved records. We present a 1,600-year rainfall paleoseasonality reconstruction from speleothem sample Yok G, from Yok Balum Cave located in southern Belize, Central America. Yok G grew continuously from 400 C.E. to 2,006 C.E. and its age is constrained by 52 U-series dates with a mean error of ~7 years. The isotope record consists of 7,151 δ18O and δ13C measurements at ~0.22-year resolution allowing us to detect the presence and amplitude of annual wet-dry cycles. In Belize rainfall distribution and seasonality controls are currently dominated by the annual migration of the intertropical convergence zone (ITCZ) with marked meridional contrast.  The Yok G record suggest distinct changes in seasonality at multi-centennial intervals.  The earliest portion of the record (400-~850 C.E.) shows little intra-annual seasonal variation, the period from ~850-1400 C.E. has highly variable annual oscillations and periods of low seasonality, while the period from 1,400-2,006 C.E. shows well developed seasonal signals.  Element ratios (Mg/Ca, Sr/Ca, and U/Ca) are used to assess Prior Carbonate Precipitation in the epikarst system.  We review these changes and the isotopic record from Yok G and discuss tools for interpreting the stability and volatility in seasonal rainfall distributions and possible implications for past and modern agricultural societies. 

How to cite: Prufer, K., Breitenbach, S., Baldini, J., Braun, T., Ray, E., Baldini, L., Polyak, V., Lechleitner, F., Marwan, N., Kennett, D., and Asmerom, Y.: A 1,600 year record of paleoseasonality from the neotropics of Central America and its implications for rainfall predictability in agricultural societies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18100, https://doi.org/10.5194/egusphere-egu2020-18100, 2020.

EGU2020-12049 | Displays | CL1.23 | Highlight

Changing winter conditions in the Alps during the Younger Dryas cold period

Gabriella Koltai, Christoph Spötl, and Hai Cheng

The Younger Dryas (YD, GS-1) is the latest of the canonical millennial-scale stadials of the last glacial period. Proxy data from terrestrial archives point to a climate dominated by extreme seasonality and continentality across Europe. YD summers were characterised by large meridional temperature gradients and remained quite warm despite the prominent slowdown of the Atlantic Meridional Overturning Circulation. The few available winter proxy records point to cold and dry winters.

In the Alps, the YD was characterised by the last major glacier advance and the development of rock glaciers. Dating these cryogenic geomorphological features, however, is associated with substantial uncertainties. A new type of secondary carbonate archive (coarsely crystalline cryogenic cave carbonates, or CCCcoarse) has received increasing attention as a promising quantitative cryogenic indicator for the shallow subsurface environment. CCCcoarse are found in karst caves and their formation is directly linked to thawing of perennial cave ice and U-series disequilibrium methods allow to date these events at high precision.

CCCcoarse formed during the YD were found in three caves covering an approximately 170 km-long SW-NE transect. The entrance of Cioccherloch cave is located at 2245 m in the Dolomites; Frauenofen opens in the Tennengebirge at 1635 m, while the third cave, Großes Almbergloch, is situated in Totes Gebirge at an elevation of 1475 m. The thermal regime in Cioccherloch reflects the ambient mean annual air temperature, while the cave microclimate of Frauenofen and Großes Almbergloch is partially influenced by cold air intrusions in winter.

230Th dating of twenty-two CCCcoarse samples demonstrates that perennial ice was present in these caves during the first part of the YD, and Großes Almbergloch, Cioccherloch and Frauenofen warmed to 0°C at 12.32 ±0.09, 12.20 ±0.09, and 12.01 ±0.04 ka BP (weighted means), respectively, initiating slow thawing of cave ice bodies. Due to the partial cold trap behaviour of Frauenofen and Großes Almbergloch, a delay in cave ice demise and thus CCCcoarse formation is likely. This and the higher elevation could explain the centennial lag observed in CCCcoarse deposition in Frauenofen compared to Großes Almbergloch.

The change in the thermal condition of these caves commencing at ~12.3 ±0.1 ka BP is attributed to a change in the winter climate in the Alps, from dry to snow-rich and/or from extremely cold to milder winters. A snowpack could effectively insulate the shallow subsurface from the YD winter coldness, allowing the subsurface to slowly warm. The timing of this warming of the subsurface coincides with the mid-YD transition recorded in other archives across Europe (e.g., Meerfelder Maar, central Germany; El Soplao cave, northern Spain) and corroborates the hypothesis of a northward movement of the Westerlies during the mid-YD, bringing warmer air and moisture to the Alps. Our study also demonstrates that the interpretation of CCCcoarse data requires a sound understanding of the cave geometry and the resulting mode of air exchange, since both the onset of perennial ice build-up and the eventual thawing may lag the atmospheric forcing outside the cave.

How to cite: Koltai, G., Spötl, C., and Cheng, H.: Changing winter conditions in the Alps during the Younger Dryas cold period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12049, https://doi.org/10.5194/egusphere-egu2020-12049, 2020.

EGU2020-21994 | Displays | CL1.23

Holocene climate in Northern Urals (Komi Republic, Russia): a multi-proxy approach based on pollen and brGDGTs

Chéïma Barhoumi, Sébastien Joannin, Adam A. Ali, Guillemette Ménot, Yulia Golubeva, Dmitri Subetto, Alexander Kryshen, Igor Drobyshev, and Odile Peyron

The Holocene climate and its thermal optimum (HTM) are poorly studied in the boreal forests of the northwestern Urals region, particularly in the Republic of Komi. The objective of this study is to provide robust reconstructions of the Holocene climate (temperatures and precipitation) of the Vychegda River basin. The temperature reconstruction is based on pollen assemblages and GDGTs (Glycerol Dialkyl Glycerol Tetraethers). This first study of GDGTs in this area corresponds to a preliminary step for the calibration of this proxy in peats. Higher temperatures and precipitation are recorded between 7000 and 4000 cal. yr BP (mean annual temperatures around 3°C and precipitation between 600 and 700 mm per year. This climatic optimum is in agreement with previous pollen-based climate reconstructions, and climate patterns in the neighboring Russian and Fennoscandia (Komi Republic - previous study-, Arctic Russia, Siberia and Northern Europe, Andreev and Klimanov, 2000; Golubeva, 2008; Seppä et al., 2009a; Novenko et al., 2019). These results, in conjunction with the reconstruction of fire activity and vegetation dynamics in this region, led to a better understanding of the crossed influences of these factors. In particular, vegetation is mainly controlled by climate during the first part of the Holocene, while a threshold is reached on fire frequency after 3500 cal. yr BP and this parameter has a greater impact on vegetation than climate. Over the past 600 years, the intensification of human activities led to overexploitation of the forest and an increase in its fire activity.

How to cite: Barhoumi, C., Joannin, S., Ali, A. A., Ménot, G., Golubeva, Y., Subetto, D., Kryshen, A., Drobyshev, I., and Peyron, O.: Holocene climate in Northern Urals (Komi Republic, Russia): a multi-proxy approach based on pollen and brGDGTs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21994, https://doi.org/10.5194/egusphere-egu2020-21994, 2020.

EGU2020-1150 | Displays | CL1.23

Primary production in a kettle lake (Canada) was not driven by effective moisture over the last ~900 years

Rebecca Doyle, Zijun Liu, Jacob Walker, Ryan Hladyniuk, Katrina Moser, and Fred Longstaffe

Globally, lakes and reservoirs are vital sources of fresh water. In temperate zones like the Great Lakes region, Canada, it is not known if climate warming will increase or decrease effective moisture, or affect water availability. The links between effective moisture and primary production are also unclear. To test for possible linkages, we have reconstructed the ~900-year history of effective moisture and primary production in a small, kettle lake (Barry Lake, Ontario, Canada). To reconstruct the history of effective moisture at Barry Lake, we measured the carbon (δ13C) and oxygen (δ18O) isotope ratios of marl and shelly fauna in two ~900-year sediment core records, tightly constrained by radiocarbon and lead-210 dates. To reconstruct primary production, we analyzed the carbon (δ13CTOC) and nitrogen (δ15NTN) isotope ratios, total organic carbon to total nitrogen (TOC:TN) ratios and chlorophyll-a concentrations of the sediments. Analyses of n-alkane relative abundances further refined our understanding of the history of primary production in Barry Lake and confirmed the predominately autochthonous origin of the sediment organic matter.  

Relative to present conditions, we determined that effective moisture was lower during the Medieval Warm Period (MWP: AD 1000- 1300) and higher during the Little Ice Age (LIA: AD 1450- 1650). Despite these differences, primary production remained unchanged until AD ~1917. After AD ~1917, primary production accelerated, reaching levels unprecedented across the entire record. A 4 ‰ increase in δ15NTN is coincident with this rise in primary production. This change may be related to the introduction of organic fertilizer from nearby agricultural fields. A rise in the relative abundance of nC17 at AD ~1917 suggests that the proliferation of algae was responsible for the increase in primary production. Our findings suggest that primary production was insensitive to climate change on the scale of the LIA and MWP, but highly sensitive to nutrient loading. The fact that modern indicators of effective moisture are within the natural range of variation observed over the last ~900 years suggests that modern climate warming has not altered the hydrologic regime of Barry Lake beyond baseline conditions. Comparisons of our hydroclimatic record with similar records from the region confirm this finding. In short, our research demonstrates that, in small lakes like Barry Lake, primary production is primarily driven by nutrient loading rather than changes in effective moisture related to moderate oscillations in hydroclimate.  

 

How to cite: Doyle, R., Liu, Z., Walker, J., Hladyniuk, R., Moser, K., and Longstaffe, F.: Primary production in a kettle lake (Canada) was not driven by effective moisture over the last ~900 years , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1150, https://doi.org/10.5194/egusphere-egu2020-1150, 2020.

EGU2020-19247 | Displays | CL1.23

Global hydroclimate of the Last Interglacial: precipitation, river discharge, floods

Paolo Scussolini and the Last Interglacial Floods

Reconstructing precipitation, hydrology and flooding under different climatic states has multiple benefits: it informs us on the history of the climate system and its subcomponents; it allows assessing the capacity of current modeling tools to capture key features of climate and the hydrological cycle under a set of different forcings; in the case of warmer past periods, it can offer a perspective of possible changes in a future warmer climate. We present our study of the hydroclimate of the Last Interglacial (LIG; ca. 125,000 years ago), a period that was slightly warmer than the present. We show that an ensemble of climate models of the latest generation (PMIP4/CMIP6) is broadly able to reproduce a wetter LIG climate (compared to the pre-industrial) in vast areas of the boreal hemisphere, as reconstructed from existing proxies from different types of archive. Based on the results of those climate simulations, we forced a global hydrological model (PCR-GLOBWB), and therefore a global river routing model (CaMa-Flood), to reconstruct the hydrology and river hydrodynamics of the Last Interglacial. We show that runoff and river discharge anomalies of the LIG are generally larger where precipitation is higher, but that in many regions the warmer temperatures imply decreased runoff and discharge also where precipitation is higher. Many main river basins show changes in the seasonality of discharge, and a slight anticipation in the day of the year when half of the water mass is discharged. Unfortunately, comparison to geological evidence of discharge is limited by the low availabilty of proxy data. Finally, we report changes in the global patterns of flooding for several return periods, and suggest mechanisms by which the LIG climate impacted those patterns.

How to cite: Scussolini, P. and the Last Interglacial Floods: Global hydroclimate of the Last Interglacial: precipitation, river discharge, floods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19247, https://doi.org/10.5194/egusphere-egu2020-19247, 2020.

EGU2020-495 | Displays | CL1.23

A great response from small ecosystem – the last 500 years of history of a kettle hole mire in W Russia

Agnieszka Mroczkowska, Piotr Kittel, Katarzyna Marcisz, Ekaterina Dolbunova, Emilie Gauthier, Yuri A. Kublitsky, Mariusz Lamentowicz, Andrey Mazurkevich, Mateusz Płóciennik, Rik Tjallingii, Mateusz Kramkowski, Dominika Łuców, and Michał Słowiński

Peatlands are natural geoarchives which record within organic deposits a picture of the past environmental changes. Depending on the preserved proxy, we are able to reconstruct various aspects of palaeoenvironmental changes, e.g. using pollen (vegetation composition), plant macrofossils (local vegetation changes), testate amoebae and zoological remains (hydrological changes) or XRF scanning (geochemical changes). Here, we investigated changes in land use and climate of western Russia using a range of biotic and abiotic proxies. This part of Europe is characterized by a continental climate, which makes this region very sensitive to climate change, in particular to precipitation fluctuations. Furthermore, in the last two centuries strong human impact in that area has been noticed.  

The Serteya kettle hole mire (55°40'N 31°30'E) is situated in the Smolensk Oblast in Western Dvina Lakeland. Study site is located close to the range of plant communities belonging to the hemiboreal zone, making it an ideal position to trace the plant succession of Eastern Europe. Preliminary dating of the material proves that the average rate of biogenic deposits in the reservoir was approx. 1 m per 600 years. The majority of the European peatlands was in some sense transformed as a result of drainage and land use practices in their basins. Serteya kettle hole mire allowed us to accurately track how a small ecosystem responds to palaeoenvironmental changes. Preliminary results will show the major fluctuations of the mire hydrology accompanied by the changes in the land use in the region. Our goal is also to determine the resistance and resilience of peat bogs to disturbances.

How to cite: Mroczkowska, A., Kittel, P., Marcisz, K., Dolbunova, E., Gauthier, E., Kublitsky, Y. A., Lamentowicz, M., Mazurkevich, A., Płóciennik, M., Tjallingii, R., Kramkowski, M., Łuców, D., and Słowiński, M.: A great response from small ecosystem – the last 500 years of history of a kettle hole mire in W Russia , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-495, https://doi.org/10.5194/egusphere-egu2020-495, 2020.

EGU2020-5311 | Displays | CL1.23

Paleoclimatic reconstruction studies in lake sediments: major proxies, technical evolution and database

Paula Bianchini, Elder Yokoyama, and Luciana Prado

Paleoclimate studies in different temporal and spatial scales provide important information on long-term statistics required to test hypotheses about climate changes. Comprehensive high-quality data sets and a solid understanding of dynamic climate processes in different temporal variations are essential to evaluate the sensitivity of the climatic system. Moreover, these data sets and dynamic analyses can help to distinguish the variability of natural and anthropogenic factors, reducing uncertainties about the magnitude and impact of future global climate changes. A common way to conduct paleoclimatic studies is through high resolution multiproxy lake sediments. Lake environments have been increasingly used in recent years to infer past fluctuations in climate, and many studies that comprise different locations and timescales demonstrate the great value of lakes as paleoclimatic archives. Because lake sediments are continental indicators sensitive to environmental changes, they can be used to reconstruct climate parameters, such as past rainfall, area management and environmental or limnological lake conditions. Changes of rainfall quantity can be recorded in lake archives by the variation of sedimentary input, which is related to changes in drainage basin and erosion rate. Beside of sedimentary input, lake sediments also exhibit physical and chemical changes in water bodies which, in turn, induce transformation in geochemical composition caused by changes in runoff or other allocated components. Thus, there is a variation in the proxies used in the studies, both in relation to the type of proxy used and the relationship used. In this context, we made a compilation of paleoclimatic studies on lake sediments (about 350 lakes), focusing on the main proxies used. Our study shows that there has been a change in the major proxies used along decades and with the emergence of new analysis techniques. In addition, we notice that lake characteristics (e.g., shape, geomorphological context, formation, etc.) have directly influence the proxies used and the quality of the information obtained. This compilation provides a database with an analysis of several lakes around the world, which can help future works and enable the identification of commonly used proxies according to the different variables that should be used, promoting more objective analyzes.

How to cite: Bianchini, P., Yokoyama, E., and Prado, L.: Paleoclimatic reconstruction studies in lake sediments: major proxies, technical evolution and database, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5311, https://doi.org/10.5194/egusphere-egu2020-5311, 2020.

EGU2020-11938 | Displays | CL1.23

Calibration of multiple paleotemperature proxies in modern lacustrine carbonate and lipids, Green Lake, New York, USA

Micah Wiesner, Greg Hoke, Tripti Bhattacharya, Chris Junium, Katharine Huntington, and Andrew Schauer

The application of novel paleotemperature proxies such as the carbonate clumped isotope (∆47) paleothermometer and GDGT-derived TEX86 temperature index offer insight into the continental record of ancient temperatures. While standardizing laboratory protocols has enhanced each methodology, the modern calibrations necessary to fully exploit their application in ancient environments lag. As the application of clumped isotopes and GDGTs in ancient lacustrine deposits expands, it is essential to describe the limitations and utility of each technique in modern environments. 

This study employs biweekly monitoring and water sampling of a temperate lake, Green Lake, Fayetteville, NY, USA, for water, lipids, and calcite, to explore how isotope- and GDGT-based proxies record seasonal changes in temperature. In addition to monitoring water temperature, we analyzed samples collected at depths between 0.5 and 15 m below the lake surface from May to October 2019 for carbon and oxygen isotopes, clumped isotopes, and GDGTs. Water samples were analyzed for hydrogen, oxygen isotopes, and ionic chemistry. The results allow for a comparison of the water column-derived lacustrine record of the clumped isotope paleothermometer of calcite, oxygen isotope paleothermometer of calcite, and GDGT-derived temperature indices. 

Previous work shows the majority of calcite precipitated annually in the water column grows rapidly during summer warming, so we expected proxy temperatures to reflect summer water temperatures at the depth of sampling. Over the May to October sampling period surface water temperatures were 14 to 25 °C, with the highest temperatures measured July 11. At 15 m below the surface water temperature ranged from 10 to 13°C. Temperatures calculated using the fractionation relation from Kim and O’Neil (1997), and preliminary calcite and water ẟ18O values from various depths are within uncertainty but 0 to 5°C cooler than measured water column temperatures at the time and depth of sampling. Carbonate ∆47 proxy temperatures, though the majority fall within uncertainty, suggest systemic temperature offset 6 to 19 °C hotter than the water column. It is currently unclear if calcite sampled from a given depth is locally formed or if it settles from higher in the water column, where temperatures are higher. Additional data are needed to test the hypothesis that higher ẟ18O and lower ∆47 values for carbonate reflect disequilibrium effects. 

Future work will extend the dataset and make proxy temperature comparisons to sediment cores to create an empirical temperature transfer function between seasonal information and recorded core temperatures.  A suite of soxhlet extracted lipid samples await HPLC analysis to confirm the existence of GDGTs in these samples. With the ensemble of data, we will clarify: 1) how seasonality of the proxy record relates to mean annual air temperature; 2) the correspondence between T(∆47) values and observed water column temperatures; and 3) which GDGT-temperature indices, TEX86, TEX86’, along with the BIT index, accurately describe temperature within the water column. The results of this study will provide constraints on how to interpret temperature signals recovered from the lacustrine record, and the utility of a multi-proxy approach.

How to cite: Wiesner, M., Hoke, G., Bhattacharya, T., Junium, C., Huntington, K., and Schauer, A.: Calibration of multiple paleotemperature proxies in modern lacustrine carbonate and lipids, Green Lake, New York, USA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11938, https://doi.org/10.5194/egusphere-egu2020-11938, 2020.

EGU2020-13592 | Displays | CL1.23

Multi-proxy approach to reconstruct Middle and Late Holocene paleoenvironment and climate in the eastern Carpathians.

Maria J. Ramos-Roman, Heikki Seppä, Eniko Magyari, Cindy De Jonge, Daniel Veres, Volker Heyd, Timothy I. Eglinton, and Anne-Lise Develle

Sediments from lakes are a useful climate archive that provides information about past climate changes and human impact. It is well-known that abrupt climate change can be the trigger of the collapse or migrations of past civilizations. To have a better understanding of the migration of the Yamnaya civilization, located west of the Black Sea at ~5.5-5 cal kyr BP, we hypothesize that past climate changes acts as a driver of this migration. To test this we focus on a sedimentary record retrieved from the Mocearu lake that is located at 780 m a.s.l. in the Buzau mountains (eastern Carpathians, Romania). The record has a length of 7 m and covers the last ~6.5 cal kyr BP based on AMS radiocarbon dates. To reconstruct vegetation, environment and climate during the Middle and Late Holocene, we use complementary techniques: pollen, inorganic (XRF-analysis) and organic geochemistry based on lipid biomarkers (brGDGTs). The reconstruction has been carried out with higher resolution during the Middle Holocene, with the objective of finding evidence of the climatic changes that may have occurred around 5 cal kyr BP. Based on preliminary radiocarbon dating, the climatic reconstruction (based on brGDGTs) shows an increase in temperature from ~6 to 5.5 cal kyr BP, followed by a prominent decrease ~5.3-5 cal kyr BP.

How to cite: Ramos-Roman, M. J., Seppä, H., Magyari, E., De Jonge, C., Veres, D., Heyd, V., Eglinton, T. I., and Develle, A.-L.: Multi-proxy approach to reconstruct Middle and Late Holocene paleoenvironment and climate in the eastern Carpathians., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13592, https://doi.org/10.5194/egusphere-egu2020-13592, 2020.

3-hydroxy or beta-hydroxy fatty acids produced by Gram-negative bacteria are a novel proxy for assessment of the environmental changes. These compounds composed of lipopolysaccharide (LPS) of Lipid A, a core polysaccharide region, and an O-antigen polysaccharide chain. The improved method for the 3-hydroxy fatty acids extraction was proposed in this study. The 12 soil samples collected from the eastern US border along the coastline from Maine to Florida were generally processed by acid hydrolysis, methylation, total lipid extraction, and solid-phase chromatography, respectively. Fatty acids eventually can be separated from the main part of LPS and combined with a methyl group. However, in the stage of acid hydrolysis, the temperature was decreased to 55 °C, and heating time was extended in order to prevent the broken of volatile compounds and diminish the relative abundance of 3-OH fatty acids. The higher abundance of interested 3-OH fatty acids for the environmental reconstruction can potentially be extracted by this improvement than the classical protocol. This research will be further compared in terms of cost, experimental time and completeness of data between these two methods.

How to cite: Panbut, C.: An improved extraction method of 3-oh fatty acids for environmental reconstruction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4018, https://doi.org/10.5194/egusphere-egu2020-4018, 2020.

EGU2020-12592 | Displays | CL1.23

Biomarker (brGDGT) degradation and production in lacustrine surface sediments: Implications for paleoclimate reconstructions.

Cindy De Jonge, Annika Fiskal, Xingguo Han, and Mark Lever

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are a class of biomarker lipids that can be conserved over long timescales in lake sediments. Produced throughout the lake water column before settling and incorporation in the sedimentary archive, they are used to reconstruct lake water temperature changes through time. However, it is not clear how degradation and/or production of these compounds in the surface sediments influences the brGDGT signal and the reconstructed temperature record.

Here we present the core lipid (“fossil”) and intact polar lipid (“recently produced”) signal of brGDGT lipids in 8 short cores collected in 4 Swiss lakes, covering a eutrophic gradient. In eutrophic conditions (Lake Baldegg), a clear subsurface (20-35 cm blf) maximum in intact polar lipids is observed (15-20%), whereas the most surficial sediments (0-2 cm blf) show the lowest percentage of IPL lipids (<5%). Our data indicates that tetramethylated brGDGT lipids are produced in the subsurface. As the bacterial community has been reconstructed in all cores, using 16S rRNA gene distribution, we observe that this production is coeval with an increase in the relative abundance of OTUs in the phyla Acetothermia, Aminicenantes, Caldiserica and Spirochaetes. Hexamethylated brGDGTs are encountered in increased amounts in most surficial sediments (0-2 cm bsf), but are degraded further downcore. Both degradation and in-situ production cause the reconstructed temperatures based on the surface sediments to be 2 ℃ colder than those from the subsurface.

In sediments where degradation and subsurface production of brGDGT lipids occurs, this has the potential to impact paleoclimate reconstructions. A colder MBT’5ME signal in surface sediments has indeed been observed in several studies (i.e. Tierney et al., 2012; Miller et al., 2018, Martin et al., 2020). Furthermore, a distinct brGDGT signal in surface sediments has a possible impact on existing lacustrine calibration datasets, as these are based on surface sediments.

References:

Tierney et al. (2012), GCA 77, p561-581. Miller et al. (2018), CoP 14 (11), p1653-1667. Martin et al. (2020), QSR 228, 106109.

How to cite: De Jonge, C., Fiskal, A., Han, X., and Lever, M.: Biomarker (brGDGT) degradation and production in lacustrine surface sediments: Implications for paleoclimate reconstructions. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12592, https://doi.org/10.5194/egusphere-egu2020-12592, 2020.

EGU2020-12894 | Displays | CL1.23

Organic geochemical characteristics of coal deposits in Mae Than coal mine, Lampang Province, Thailand

Patthapong Chaiseanwang and Piyaphong Chenrai

Fifteen samples were collected from coal mines Mae Than basins located in Lampang Province, Northern Thailand to investigate organic geochemical characterization which can provide organic matter input, thermal maturity and depositional environment. The total organic carbon (TOC) content of the coal samples ranges from 30.12 to 73.71 wt. %, while shales and mudstones value between 5.98 – 24.87 wt. %. The extractable organic matter (EOM) content of all samples, which is yielded from bitumen extraction, values in the range of 1,256 and 16,421 ppm indicating good to excellent hydrocarbon generation potential. The organic geochemical data were studied by using Gas-chromatography Mass-spectrometry (GC-MS) providincg biomarker and non-biomarker data. The thermal maturity of studied samples is represented as immature stage due to ratio of Ts/(Ts+Tm) and homohopane isomerization. The distribution of normal alkanes is predominantly long-chain normal alkanes with odd-numbered carbon. The high Carbon Preference Index (CPI) value of samples indicates terrestrial organic matter input. The depositional environment of the study area can be interpreted that the coal formation is occurred within an oxidizing condition with the majority of higher plant input, whereas shale and mudstone is slightly more anoxic-aquatic environment.

How to cite: Chaiseanwang, P. and Chenrai, P.: Organic geochemical characteristics of coal deposits in Mae Than coal mine, Lampang Province, Thailand, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12894, https://doi.org/10.5194/egusphere-egu2020-12894, 2020.

EGU2020-16577 | Displays | CL1.23

Calibration and paleohydrological application of compound-specific isotope analyses (δ13Cwax, δ2Hwax and δ18Osugar) in semi-arid/arid Mongolia

Julian Struck, Marcel Bliedtner, Paul Strobel, Gerhard Daut, Jens Schumacher, Lucas Bittner, Birgit Plessen, Bruno Glaser, Björn Klaes, Enkhtuja Bazarradnaa, Gary Salazar, Sönke Szidat, Michael Zech, and Roland Zech

Several lake sediment studies have investigated the Holocene climate history in Mongolia using pollen, organic and inorganic elemental analyses. However, these studies come to very different conclusions. Isotope analyses, particularly compound-specific carbon, hydrogen and oxygen isotopic composition of leaf wax n-alkanes (δ13Cwax, δ2Hwax) and hemicellulose sugars (δ18Osugar) are increasingly used for paleoenvironmental and -hydrological reconstructions and might have great potential to address the controversies in Mongolia.

Here we present a regional calibration of δ13Cwax, δ2Hwax and δ18Osugar on topsoils along a distinct climate gradient in semi-arid/arid Mongolia. δ13Cwax significantly correlates with aridity indicating variations in water use efficiency. The apparent fractionation (Ɛapp) of δ2Hwax and δ18Osugar is nearly constant at -131 ± 13‰ for Ɛn-C29/p, -148 ± 11‰ for Ɛn-C31/p and 40.8 ± 1.9‰ for Ɛsugar/p, respectively. δ2Hwax (n-C29 and n-C31) and δ18Osugar thus, reflect the isotopic composition of precipitation, which in turn is controlled by atmospheric circulation systems bringing moisture to continental Mongolia, i.e. the interaction between the Westerlies and the Asian Summer Monsoon. Therefore, we applied regionally calibrated δ13Cwax, δ2Hwax and δ18Osugar isotopes, as well as well-established sedimentological and geochemical proxies and δ13Corg, δ13Ccarb, δ18Ocarb on a 160 cm long gravity core from Lake Telmen (Central Mongolia) that covers 4,110 +350/‑340 cal. a BP.

Low terrestrial input (e.g. low Al, Fe, K, Sr) suggests decreased runoff and points to overall dryer conditions in the area around Lake Telmen between 4,110 +350/‑340 and 3,040 +610/‑400 cal. a BP. Those findings are in line with positive δ2Hn-C23, δ18Osugar and δ18Ocarb, which indicate enhanced lake water evaporation. From 3,040 +610/‑400 to 1,360 +230/‑220 cal. a BP, high terrestrial input and more negative δ2Hn-C23, δ18Osugar and δ18Ocarb values indicating more humid conditions. This is in line with seismic results which reveal distinct subaqueous cliffs and an extreme lake level rise beginning at ~ 2,000 cal. a BP. Drier conditions and low lake levels occurred between 1,360 +230/‑220 and 700 +210/‑180 cal. a BP and are indicated by low Ca/Mg ratios and a distinct enrichment in 13Cwax, 2Hwax,18Osugar and 18Ocarb. From 700 +210/‑180 cal. a BP onwards, drier conditions continue but the terrestrial input increases possibly reflecting anthropogenic impact.

How to cite: Struck, J., Bliedtner, M., Strobel, P., Daut, G., Schumacher, J., Bittner, L., Plessen, B., Glaser, B., Klaes, B., Bazarradnaa, E., Salazar, G., Szidat, S., Zech, M., and Zech, R.: Calibration and paleohydrological application of compound-specific isotope analyses (δ13Cwax, δ2Hwax and δ18Osugar) in semi-arid/arid Mongolia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16577, https://doi.org/10.5194/egusphere-egu2020-16577, 2020.

EGU2020-18370 | Displays | CL1.23

Quantification of past temperature variability during the last 36 kyr using organic-derived proxies in the Padul wetland, southern Iberia

Marta Rodrigo-Gámiz, Antonio García-Alix, Gonzalo Jiménez-Moreno, Jon Camuera, María J. Ramos-Román, Jaime L. Torney, Dirk Sachse, and R. Scott Anderson

The study of climate variability in especially sensitive areas is crucial for a better understanding of the response of Earth’s different components to abrupt changes and envisage future climate responses. In this regard, the southern Iberian and western Mediterranean regions have demonstrated hemispheric-scale teleconnections during the last glacial period. Long-records from continental sedimentary archives are scarce, and the Padul wetland represents one of the longest and most continuous continental record in this area, detecting climate variability at centennial to millennial-scale from the Pleistocene to the Holocene. The applicability of organic-based proxies in this organic rich continental archive is a promising tool because the variations in different biomarkers are closely related to biological sources and environmental factors such as temperature. Particularly interesting from a paleoclimatic point of view are glycerol dialkyl glycerol tetraethers (GDGTs), which are membrane lipids from Bacteria and Archaea, ubiquitous in a range of natural archives, including wetlands. Previous works have demonstrated their applicability as a significant past continental air temperature proxy, where the distribution of bacterial branched GDGTs (brGDGTs) is correlated with mean annual air temperature (MAAT) and soil pH. Here we present a first quantification of past temperatures using brGDGTs in the Padul sedimentary record. Preliminary results have evidenced substantial variations in derived-MAAT and distribution of the different brGDGTs during the last 36 kyr that are consistent with abrupt climate periods, such as Henrich Stadial 1 and the Holocene onset. Nevertheless, different absolute MAAT values using the peat-specific calibration and the mineral soil calibration have been obtained and they need to be evaluated.

How to cite: Rodrigo-Gámiz, M., García-Alix, A., Jiménez-Moreno, G., Camuera, J., Ramos-Román, M. J., Torney, J. L., Sachse, D., and Anderson, R. S.: Quantification of past temperature variability during the last 36 kyr using organic-derived proxies in the Padul wetland, southern Iberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18370, https://doi.org/10.5194/egusphere-egu2020-18370, 2020.

EGU2020-19361 | Displays | CL1.23

Drought does not affect hydrogen isotope fractionation during lipid biosynthesis by the tropical plant Pachira aquatica

S. Nemiah Ladd, Daniel B. Nelson, Ines Bamberger, Erik Daber, Ansgar Kahmen, Carsten J. Schubert, and Christiane Werner

Hydrogen isotope ratios (2H/1H) of plant waxes and other lipids preserved in sediments are increasingly used as a paleohydrologic proxy for past water isotopes. The relationship between precipitation 2H/1H ratios and those of plant waxes in surface sediments is linearly correlated at a global scale. However, there are large residuals in this relationship, and the offsets in 2H/1H ratios for the same compound produced by different species growing at the same site, as well as for different compounds produced within the same plant, can approach the magnitude of continental scale variability in precipitation isotopes. This indicates that lipid 2H/1H ratios are influenced by significant factors besides the 2H/1H ratios of local precipitation. One possibility is that plant metabolic responses to stresses such as drought cause changes in 2H/1H fractionation during lipid synthesis.

 

In order to assess the effects of drought on 2H/1H fractionation during plant lipid synthesis, we grew Pachira aquatica seedlings in controlled growth chamber conditions, with half of the individual plants experiencing drought conditions (soil moisture content reduced to ~10%) and half serving as well-watered controls (soil moisture content ~25%). We used position-specific 13C-pyruvate labeling to assess if there were changes in lipid production under drought, and focused on a diverse range of compounds including palmitic acid, n-C29 and n-C31-alkanes, phytol, squalene, and sitosterol. We also measured natural abundance 2H/1H ratios from the same compounds and from cryogenically extracted leaf water to quantify biosynthetic H isotope fractionation (εBio).

 

Biosynthetic 2H/1H fractionation spanned a 150‰ range among compounds, with palmitic acid being the least 2H-depleted compound (εBio = -140 ± 10‰) and phytol being the most 2H-depleted compound (εBio = -317 ± 7‰). These fractionation factors did not change under drought, although 13C-pyruvate labeling indicated that the compounds were being actively produced. There was no change in the production rate of any compound under drought, however. Differential incorporation of 13C depending on whether the 1st or 2nd carbon in pyruvate was labeled showed clear distinctions among compound classes, with the acetogenic compounds only becoming enriched from the C2 label, and isoprenoids using roughly equal proportions of carbon from each position. These results suggest that under this level of drought stress, Pachira aquatica did not make any changes to its lipid metabolism, and lipid 2H/1H ratios were therefore unperturbed. If replicated in additional plants types and under more severe drought, this result is encouraging for the use of plant lipid 2H/1H ratios as robust paleohydroclimate tracers.  

How to cite: Ladd, S. N., Nelson, D. B., Bamberger, I., Daber, E., Kahmen, A., Schubert, C. J., and Werner, C.: Drought does not affect hydrogen isotope fractionation during lipid biosynthesis by the tropical plant Pachira aquatica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19361, https://doi.org/10.5194/egusphere-egu2020-19361, 2020.

EGU2020-992 | Displays | CL1.23

Structural ecosystem change in Holocene chironomid assemblages

Roseanna Mayfield, Peter Langdon, John Dearing, Patrick Doncaster, and Rong Wang

There is a growing trend in using structural analyses to investigate temporal changes in ecosystem system architecture. System architecture defines the organisation of taxa within a system and how this may affect system response to stress. Over the Holocene, in areas with little/no human impact, the climate has been a key driver of ecosystem change, including post-glacial to early/mid-Holocene warming, subsequent neoglacial cooling, and rapid climate change events such as the 8.2 kyr event. This study aims to investigate whether Holocene climate change is a driver for structural change in temperature-sensitive organisms, such as chironomids, in high latitude lakes. These areas are at risk from rapidly rising global temperatures, with warmer temperatures already recorded and predicted to continue rising in high latitude areas. Increased temperatures can create stress on ecologically sensitive environments where many organisms are adapted to cooler temperatures. Three sets of analyses - beta diversity, compositional disorder, and network skewness - are applied to Norwegian chironomid sequences to investigate ecosystem structural change during the Holocene.

How to cite: Mayfield, R., Langdon, P., Dearing, J., Doncaster, P., and Wang, R.: Structural ecosystem change in Holocene chironomid assemblages, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-992, https://doi.org/10.5194/egusphere-egu2020-992, 2020.

EGU2020-8457 | Displays | CL1.23

A theory of palaeoclimate reconstruction

Mengmeng Liu, Iain Colin Prentice, Cajo ter Braak, and Sandy Harrison

Past climate states can be used to test climate models for present-day changes and future responses. Past states can be reconstructed from fossil assemblages, and WA-PLS (weighted averaging–partial least squares) is one of the most widely used statistical methods to do this. However, WA-PLS has a marked bias. Whatever biotic indicator is being used, reconstructed climate values are artificially compressed and biased towards the centre of the range used for calibration.

Here we developed an improvement of the method, derived rigorously from theory. It makes three assumptions:

a) the theoretical abundance of each taxon follows a Gaussian (unimodal) curve with respect to each climate variable considered;

b) the abundances of taxa are compositional data, so they sum to unity and follow a multinomial distribution;

c) the best estimate of the climate value at the site to be reconstructed maximizes the log-likelihood function – in other words, it minimizes the difference between theoretical and actual abundances as assessed by the likelihood criterion.

The best estimate of the climate value is approximated by a tolerance-weighted version of the weighted average in which the abundances of taxa are weighted by the inverse square of their tolerances (a measure of the range of environments in which a taxon is found). WA-PLS thus corresponds to the special case when all taxon tolerances are equal. The fact that this special case is far from reality generally is part of the the cause of the “compression and bias”. The new method can be applied using the existing functions for WA-PLS in the R package rioja. We show that it greatly reduces the compression bias in reconstructions based on a large modern pollen data set from Europe, northern Eurasia and the Middle East.

How to cite: Liu, M., Prentice, I. C., Braak, C. T., and Harrison, S.: A theory of palaeoclimate reconstruction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8457, https://doi.org/10.5194/egusphere-egu2020-8457, 2020.

EGU2020-20282 | Displays | CL1.23

Switches of Holocene temperature-precipitation correlations in northern Hemisphere extra-tropics comparing proxy and model data

Ulrike Herzschuh, Thomas Boehmer, Raphael Herbert, Thomas Laepple, Richard Telford, Xianyong Cao, Anne Dallmeyer, and Stefan Kruse

Switches of temperature-precipitation correlation in northern Hemisphere extra-tropics

Future precipitation response to warming remains uncertain because climate models poorly reproduce observed changes of temperature-precipitation correlations. However, restricting model validations to the observational period may yield to misleading conclusions due to the complexity of the involved processes. Our analyses of Holocene proxy-based temperature-precipitation correlations from 1500 northern Hemisphere extratropic pollen records portrayed significant latitudinal dependance, temporal changes from the early to late Holocene as well as differences between short and long time-scales. These observed variations were found to be mostly consistent with patterns simulated by Holocene transient climate simulations. Our results suggest that the strength of positive temperature-precipitation correlations in high-latitudes is sensitive to the background temperature while monsoonal subtropics reflect spatial shifts of circulation systems; and correlation sign switches in mid-latitudes relate to changes of westerlies strength. We conclude that regional and continental climate change on land is more complex than the expected “wetter climate in a warmer world” assumption which holds well at the global scale. On the other hand, long-term projections of precipitation may be better than previously thought as major processes seem to be already implemented correctly in general circulation models.

How to cite: Herzschuh, U., Boehmer, T., Herbert, R., Laepple, T., Telford, R., Cao, X., Dallmeyer, A., and Kruse, S.: Switches of Holocene temperature-precipitation correlations in northern Hemisphere extra-tropics comparing proxy and model data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20282, https://doi.org/10.5194/egusphere-egu2020-20282, 2020.

Speleothems are secondary mineral deposits found in caves. They can grow continuously over 1,000-10,000 years and the 230Th/U method allows accurate dating back to 500,000 years.[1] Stable conditions in caves preserve organic matter, making speleothems highly valuable climate archives. The high interest in expanding the range of organic proxies in speleothems requires highly sensitive analytical techniques. Novel trace analysis methods for lignin and levoglucosan in speleothems were established according to principles of "Green Chemistry" [2] and applied to flowstone samples from different caves in New Zealand during the Holocene.

Lignin is the second most abundant biopolymer after cellulose. It consists of three monomers, which are included into the polymer in different ratios, depending on the type of vegetation. It is found in speleothems and quantification in timely consecutive layers allows drawing conclusions on changing types and amount of vegetations above the caves, which are influenced by climate conditions like temperature and rainfall.[3] To analyse the monomeric composition, lignin has to be degraded by an alkaline oxidation. Thereby the monomers are oxidized into lignin oxidation products which are then analysed by uHPLC-ESI-HRMS. To date, lignin degradation was conducted using Cu(II)O as a catalyst, which was replaced by CuSO4, eliminating the solid, toxic Cu(II)O waste, and highly reducing the amount of artefacts and used chemicals during sample preparation. The new method was successfully applied to the flowstone samples but posed further questions on the transport of lignin through the soil into the speleothem.[4],[5]   

The other proxy of interest was levoglucosan, an anhydrosugar formed by cellulose combustion. For temperature studies in speleothems carbon isotopes are used which can be influenced by e.g. fire events. Therefore, it is necessary to introduce a proxy, which prevents falsely positive or negative temperature trends. Extraction of levoglucosan was conducted using graphitized carbon black and chromatographic separation by a hydrophilic interaction liquid chromatography, using a post-column flow to increase the ionization efficiency in the ESI ion source. Levoglucosan analysis was introduced into the existing workflow, without interfering with lignin analysis, and thereby a multi-proxy approach was developed. This work showed that levoglucosan is present in speleothems in quantifiable amounts. It was detected in two of the study sites, showing no correlation to lignin. A plant-based origin of levoglucosan was ruled out, suggesting a fire-related entry into the speleothem.

 

[1] Baker, A., et al. (2008). International Journal of Speleology, 37 (3), 193-206; [2] Anastas, P., Eghbali, N. (2010), Chemical Society Reviews, 39, 301-312; [3] Hedges, J., Mann, D. (1979). Geochimica et Cosmochimica Acta, 43 (11), 1803-1807; [4] Heidke, I., Scholz, D., Hoffmann, T. (2018). Biogeosciences, 15 (19), 5831-5845; [5] Yan, G., Kaiser, K. (2018). Analytical Chemistry , 90 (15), 9289-9295

How to cite: Beschnitt, A. and Hoffmann, T.: Application of novel trace analysis methods for lignin and levoglucosan in flowstone samples from New Zealand during the Holocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2397, https://doi.org/10.5194/egusphere-egu2020-2397, 2020.

EGU2020-2413 | Displays | CL1.23

Trace analysis of levoglucosan and lignin-phenols in speleothems by HILIC-UHPLC-ESI-HRMS: A new method

Julia Homann, Anja Beschnitt, and Thorsten Hoffmann

Secondary mineral deposits in caves like stalagmites, stalactites, or flowstones are valuable paleoclimate archives. Advantages of organic trace analysis in such deposits are stable conditions in a cave, protecting compounds from external influences, as well as the possibility to precisely date samples up to 600,000 years using the uranium/thorium method.[1]

Lignin, a biopolymer, is one of the main constituents of higher plants and consists of three monomeric units: sinapyl-, coniferyl-, and coumaryl alcohol. Lignin can be degraded into its monomeric units by alkaline CuSO4-oxidation. The oxidized monomer units can be analysed by UHPLC-ESI-HRMS with limits of quantification in the ng/g range. By determination of the ratios among different oxidation products in a speleothem, conclusions can be drawn on the type of vegetation above the cave. [2,3]

Levoglucosan, an anhydrosugar, naturally only originates from the combustion of cellulose and can thus be used as a biomass burning marker. Analysis of levoglucosan in sediments shows good correlation with traditional burning markers like black charcoal. [4] Mannosan and galactosan, stereoisomers of levoglucosan, are formed during the combustion of hemicellulose. Literature suggests that the ratio of levoglucosan to its isomers rather than absolute levoglucosan concentrations should be considered when characterizing burning events. [5] To date, no data on levoglucosan or its isomers in speleothems is published.

As the anhydrosugars are highly polar molecules, extraction and analysis with traditional reversed phase systems proved difficult. An optimized sample preparation to access both lignin and levoglucosan in speleothems is presented. Furthermore, a HILIC-UHPLC-ESI-HRMS method was developed to analyze the lignin oxidation products (LOPs) and anhydrosugars.

The methods were applied to a flowstone from a cave of the Dolomites in Southern Tyrol.

[1] D. Scholz, D. Hoffmann, Quat. Sci. J. 57 (2008) 52–76 [2] C.N. Jex et al. Quat. Sci. Rev. 87 (2014) 46–59. [3] G. Yan, K. Kaiser, Anal. Chem. 90 (2018) 9289–9295. [4] V. O. Elias et al. Geochim. et Cosmochim. Acta 65 (2001) 267-272. [5] D. Fabbri et al. Atmos. Env. 43 (2009) 2286–2295

How to cite: Homann, J., Beschnitt, A., and Hoffmann, T.: Trace analysis of levoglucosan and lignin-phenols in speleothems by HILIC-UHPLC-ESI-HRMS: A new method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2413, https://doi.org/10.5194/egusphere-egu2020-2413, 2020.

EGU2020-11105 | Displays | CL1.23

Speleothem record from Pentadactylos cave (Cyprus): high-resolution insight into climatic variations during MIS 6 and MIS 5

Carole Nehme, Sophie Verheyden, Tobias Kluge, Therese Weissbach, Fadi Nader, Salih Gucel, Iris Charalambidou, Hai Cheng, Lawrence Edwards, and Philippe Claeys

An improved understanding of medium and short-term changes in temperature and rainfall in the East Mediterranean is necessary for a comprehensive description of the regional climate regime. In particular, it can help advancing current climate models and predictions. A new paleoclimate record from Cyprus gives new insights into climatic variations during MIS 6 and 5 for this region. A 66 cm long speleothem from Pentadactylos cave in the Kyrenia range (800 m asl) was extensively dated with the U/Th method and investigated for petrography, fluid inclusions, stable and clumped isotopes. The stalagmite grew from 174.6 ± 0.7 to 112.2 ± 0.5 ka BP. The growth rate varies from 31 to 5 mm/ka during the early-MIS6 and evolving from 123 to 18 mm/ka at the end-MIS6. The onset of MIS5e is marked by a high growth rate (125 mm/ka) until growth decreased drastically after 122 ka. Growth rate and stalagmite diameter as well as δ18O and δ13C curves are positively correlated. We interpret the δ18Oc signal as being controlled by effective infiltration and thus rainfall amount. Climate conditions during early-MIS6 were highly variable (δ18Oc) on a millennial-scale with several short-lived wet episodes during sapropel 6. From 141 to 132 ka, δ18Oc suggests general dry/cold conditions with low bio-pedological activity, followed by a growth stop during H11. The δ18O values during the Eemian wet period in Cyprus are driven by the source effect (sapropel 5). Stable conditions during MIS 5e were rather short: ~2 ka, as shown in the δ13C signal. After 122 ka, a slow deterioration of the soil cover coupled with low rainfall amounts during the glacial inception period show rather a regional decoupling phase. Fluid inclusions show a clear shift (4-5‰) in δ18Ow between end-MIS 6 and MIS 5e. Clumped isotopes measurements indicate kinetic effects between calcite and water of up to ~1‰. After correction for kinetics using Δ47, an estimate for the MIS6-5 temperature shift in the East-Mediterranean is >10°C.

How to cite: Nehme, C., Verheyden, S., Kluge, T., Weissbach, T., Nader, F., Gucel, S., Charalambidou, I., Cheng, H., Edwards, L., and Claeys, P.: Speleothem record from Pentadactylos cave (Cyprus): high-resolution insight into climatic variations during MIS 6 and MIS 5, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11105, https://doi.org/10.5194/egusphere-egu2020-11105, 2020.

EGU2020-16898 | Displays | CL1.23

Rainfall seasonality changes in northern India across the 4.2 ka event

Alena Giesche, Sebastian F.M. Breitenbach, Norbert Marwan, Adam Hartland, Birgit Plessen, Jess F. Adkins, Gerald H. Haug, Amanda French, Cameron A. Petrie, and David A. Hodell

Despite intensive research efforts by archaeologists, geomorphologists, and palaeoclimatologists, the climatic and environmental changes accompanying the societal changes in the wider Indus/Thar region c. 4000 years ago remain puzzling. In particular, rainfall seasonality might be an important determinant for societal well-being. A major hurdle to a more detailed understanding of climate-human interaction is the relative scarcity of well-dated and highly resolved proxy records.

We present a multi-proxy record from aragonitic stalagmite DHAR-1 collected in Dharamjali Cave, Uttarakhand, India, that spans c. 1600 years between c. 4.25 and 2.6 ka BP.  The stalagmite has been dated with 13 U/Th dates with average uncertainties of <18 years (2σ). In addition to c. 1600 oxygen and carbon isotope samples, element ratios (X/Ca) were measured using high resolution μXRF and laser ablation ICPMS at 25 μm resolution.  

The DHAR-1 record represents the most precisely dated speleothem record to date from northern India, covering the mid-Holocene 4.2 ka BP event and the millennium thereafter. The attained sub-decadal to seasonal resolution allows robust assessment of both regional and local hydrological changes, and changes in amount and temporal distribution of summer and winter rainfall. 

The speleothem record reveals decadal-scale trends that can be related to changes in seasonality. The δ18O record reveals a 220-year period of weakened ISM from 4.2 to 3.98 ka BP. A contemporaneous increase in δ13C, and decrease in U/Ca, Ba/Ca, and Sr/Ca point to increased prior aragonite precipitation (PAP) resulting from increased aridity above the cave extending throughout the dry season. The ISM intensified after c. 3.7 ka BP while dry seasons remained dry, with a resultant increase in seasonality. Lower PAP after c. 3.4 ka BP can be interpreted as sign of reduced rainfall seasonality.

We compare the results with available records from the wider region, and discuss potential implications of the suggested changes in seasonality for agriculture-based societies.

How to cite: Giesche, A., Breitenbach, S. F. M., Marwan, N., Hartland, A., Plessen, B., Adkins, J. F., Haug, G. H., French, A., Petrie, C. A., and Hodell, D. A.: Rainfall seasonality changes in northern India across the 4.2 ka event, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16898, https://doi.org/10.5194/egusphere-egu2020-16898, 2020.

EGU2020-3527 | Displays | CL1.23

Controls of Li incorporation in aragonite

Vasileios Mavromatis, Jean-Michel Brazier, and Katja Goetschl

The cation-to-Ca ratio in natural carbonate minerals is routinely used by the geoscientific community in order to reveal information about the conditions occurred during mineral formation in the geological past. Environmental reconstruction, however, relies on our understanding on the mechanisms controlling mineral growth but also on the physico-chemical properties of cations. In this respect experimental studies and laboratory calibrations of elemental ratios in synthetic carbonates provide important insights on the interpretation of the chemical signatures in natural samples. This holds especially truth for the chemical and isotopic signals of carbonates forming in continental environments that are characterized by the absence of bio-induced precipitation, low concentration of solutes in the forming fluid and slow growth rates (e.g. speleothems). In this study, we examine the incorporation of Li in aragonite, owing to its use as a temperature proxy and its importance in paleo-weathering reconstruction. Our preliminary results suggest that aragonite growth rate is likely the most important parameter controlling Li content in the forming phase. This finding comes in excellent agreement with the recent study by Füger et al. (2019). In addition, the experimental work suggest that temperature is also affecting the distribution of Li in aragonite but to a lesser extent than growth rate. It is anticipated that once completed this work will provide the fundamental knowledge needed for adequate interpretation of Li partitioning in aragonite and significantly improve our ability to interpret Li signatures in natural carbonates.

 

References: Füger et al. 2019. Effect of growth rate and pH on lithium incorporation in calcite, Geochim. Cosmochim. Acta., 248, 14-24.

How to cite: Mavromatis, V., Brazier, J.-M., and Goetschl, K.: Controls of Li incorporation in aragonite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3527, https://doi.org/10.5194/egusphere-egu2020-3527, 2020.

EGU2020-3603 | Displays | CL1.23

Parameters controlling the incorporation of Cu in calcite

Jean-Michel Brazier, Katja Götschl, Martin Dietzel, and Vasileios Mavromatis

Carbonate minerals record, through their chemical and isotopic composition, the environmental conditions occurring at the time of their formation. Thus, the incorporation of traces/impurities in CaCO3 minerals calcite and aragonite, have been widely studied over the last five decades in order to provide the fundamental knowledge needed for the use of these traces in paleoenvironmental reconstructions. The processes controlling the uptake of traces in natural samples, however, are manifold and hard to distinguish from each other. Thus, experimental co-precipitation studies on synthetic material under strictly controlled abiotic conditions can provide fundamental understanding on the effect of each process involved in the chemical signatures of natural carbonates. In this study, we explore the incorporation of Cu in calcite and its potential as proxy of reactive fluid composition. This transition metal commonly occurs complexed with organic ligands in natural waters, however, it exhibits very high affinity for calcite. Our experiments were performed at pH 6.3 and 8.3, with varying growth rate ranging between 10-8.5 and 10-7.6 (mol/m2/s). Our first results highlight that the partitioning coefficient of Cu is positively correlated to the calcite growth rate at both pH conditions, indicating an increase of Cu entrapment at higher growth rate. These new preliminary findings could bring fundamental understanding of Cu incorporation in calcite and highlight the potential of Cu partitioning coefficient as a proxy of mineral growth rate.

How to cite: Brazier, J.-M., Götschl, K., Dietzel, M., and Mavromatis, V.: Parameters controlling the incorporation of Cu in calcite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3603, https://doi.org/10.5194/egusphere-egu2020-3603, 2020.

EGU2020-4240 | Displays | CL1.23

What we talk about when we talk about seasonality?

Ola Kwiecien

The concept of seasonal changes is traditionally understood as a consecutive follow-up of four seasons, spring, summer, autumn, and winter (in the mid-latitudes); or wet/ dry season alteration (in low latitudes). Intuitively, the term ‘seasonality’ usually refers to temperature or moisture gradients throughout a year. These gradients determine the composition and dynamics of natural ecosystems and agricultural strategies; as such seasonality is a key parameter when describing modern and past climatic and environmental conditions. Consequently, changes in seasonality are often called for as the ultimate driving force of observed changes, but there is more to them than meets the eye. Most importantly there is an essential and often overlooked aspect of external, orbitally-driven seasonality, and internal, regional-to-local responses to these changes.

What does ‘increased’ or ‘decreased’ seasonality actually mean? Can we quantify this change? And is the amplitude all that matters? What about temporal distribution? Does temperature and precipitation always respond symmetrically and harmonically? My contribution is aimed at raising awareness, caution and precision when referring to seasonality changes. Come to my poster and let’s discuss it!

How to cite: Kwiecien, O.: What we talk about when we talk about seasonality? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4240, https://doi.org/10.5194/egusphere-egu2020-4240, 2020.

EGU2020-5177 | Displays | CL1.23

Groundwater modelling for time periods of up to hundreds of thousands of years.

Gerrit H. de Rooij and Thomas Mueller

Occasionally, there is an interest in groundwater flows over many millennia. The input parameter requirement of numerical groundwater flow models and their calculation times limit their usefulness for such studies.

Analytical models require considerable simplifications of the properties and geometry of aquifers and of the forcings. On the other hand, they do not appear to have an inherent limitation on the duration of the simulated period. The simplest models have explicit solutions, meaning that the hydraulic head at a given time and location can be calculated directly, without the need to incrementally iterate through the entire preceding time period like their numerical counterparts.

We developed an analytical solution for a simple aquifer geometry: a strip aquifer between a no flow boundary and a body of surface water with a prescribed water level. This simplicity permitted flexible forcings: The non-uniform initial hydraulic head in the aquifer is arbitrary and the surface water level can vary arbitrarily with time. Aquifer recharge must be uniform in space but can also vary arbitrarily with time.

We also developed a modification that verifies after prescribed and constant time intervals if the hydraulic head is such that the land surface is covered with water. This excess water then infiltrates in areas where the groundwater level is below the surface and the remainder is discharged into the surface water. The hydraulic head across the aquifer is modified accordingly and used as the initial condition for the next time interval. This modification models the development of a river network during dry periods. The increased flexibility of the model comes at the price of the need to go through the entire simulation period one time step at a time. For very long time records, these intervals will typically be one year.

Given the uncertainty of the aquifer parameters and the forcings, the models are expected to be used in a stochastic framework. We are therefore working on a shell that accepts multiple values for each parameter as well as multiple scenarios of surface water levels and groundwater recharge rates, along with an estimate of their probabilities. The shell will generate all possible resulting combinations, the number of which can easily exceed 10000, then runs the model for each combination, and computes statistics of the average hydraulic head and the aquifer discharge into the surface water at user-specified times.

A case study will tell if this endeavor is viable. We will model the aquifer below the mountain range north of Salalah in Oman, which separates the desert of the Arabian Peninsula from the coastal plain at its southern shore. Rainfall estimates from the isotopic composition of stalactites in the area indicate distinct dry and wet periods in the past 300 000 years. In combination with estimated sea level fluctuations over that period, this provides an interesting combination of forcings. We examine the dynamics of the total amount of water stored in the aquifer, and of the outflow of water from the aquifer into the coastal plain.

How to cite: de Rooij, G. H. and Mueller, T.: Groundwater modelling for time periods of up to hundreds of thousands of years., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5177, https://doi.org/10.5194/egusphere-egu2020-5177, 2020.

EGU2020-18227 | Displays | CL1.23

Reconstructing past hydrology from drift sand archives: possibilities and limitations

Koen Beerten, Wouter van der Meer, Koen Hebinck, Miel Schurmans, and Jan Bastiaens

Palaeohydrological studies usually focus on extreme events and long-term changes as observed from floodplain archives. As a consequence, the information that is obtained inheritely reflects palaeohydrological conditions from a specific compartment of the hydrological system only, namely the discharge area which acts as a drain for runoff and groundwater. In contrast, palaeohydrological conditions in recharge areas, outside the floodplains, are less well understood and documented.

Aeolian drift sands are a typical feature in the European sand belt, and reflect phases of human induced and climatically modulated Holocene landscape instability. As the European sand belt is characterised by shallow phreatic groundwater tables in climates with a precipitation surplus, we might theoretically expect aeolian activity to interfere with a fluctuating groundwater table and/or precipitation events. The aim of this presentation is to explore the possibilities and limitations of four types of palaeohydrological proxy that were retrieved from a variety of different sites in drift sand landscapes in NE Belgium (Campine area): (1) soil horizon morphology of buried podzols, (2) deflation surfaces, (3) drift sand depositional facies and (4) palaeobotanical remains in organic-rich sediment.

The palaeohydrological information that these proxies contain will be discussed according to various characteristics. These include the continuity of the archive (continuous or discontinuous), the resolution (high resolution or integrated proxy), and whether the proxy is indicative for outcropping groundwater or precipitation events.

Podzol soil horizon morphology is an indicator of the average highest groundwater table position over a time period of several thousands of years prior to landscape instability and sand drifting, and can thus be qualified as an integrated proxy. Overblown deflation surfaces can only be used as an upper limit of the highest palaeo-groundwater table in between podzolisation and drift sand deposition, and can be qualified as a discontinuous low-resolution proxy. Drift sand depositional facies is a highly discontinuous proxy but can be used to verify whether deposition took place in dry, wet or standing water environments, with or without the influence of significant precipitation events and/or running water. Undoubtedly, palaeobotanical remains (macrobotanical and pollen) in overblown peat and peaty sand from the deepest parts of the drift sand landscape offer the highest resolution in terms of chronology (century to decades) and highest reliability in terms of water source tracing (outcropping groundwater vs precipitation).

Proxy verification mainly relies on fragmentary historical information derived from maps covering the last 250 years. Most importantly, when different proxies are available at the same site, they usually show strong internal consistency. A good example is the presence of peat with aquatic palaeobotanical remains in the deepest parts of the landscape where the underlying podzol soil also shows hydromorphic features and the overlying drift sand contains elements that are typical for deposition in wet environments.

We conclude that the above outlined complementary set of palaeohydrological proxies is a promising tool to reconstruct past hydrology in drift sand landscapes from the European sand belt.

How to cite: Beerten, K., van der Meer, W., Hebinck, K., Schurmans, M., and Bastiaens, J.: Reconstructing past hydrology from drift sand archives: possibilities and limitations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18227, https://doi.org/10.5194/egusphere-egu2020-18227, 2020.

EGU2020-4887 | Displays | CL1.23

Reconstructions of past sediment and water discharges from fluvial-fill terraces in the southern Central Andes of NW Argentina

Stefanie Tofelde, Taylor Schildgen, Andrew Wickert, Manfred Strecker, and Ricardo Alonso

Alluvial river long profiles continually adjust to their water discharge (Qw) and sediment supply (Qs). Qw and Qs are in turn functions of local climatic and tectonic conditions. Hence, changes in the prevailing tectonic or climatic conditions will trigger adjustments to channel long profiles, either by channel incision into previously deposited sediments or by sediment deposition. Because fluvial terraces are abandoned floodplains that preserve ancient river elevation profiles formed from past Qs and Qw, they store information on past climatic or tectonic conditions. 

In NW Argentina, reconstructions of Pleistocene climate are sparse due to the limited availability of paleo-climatic records, such as stable isotope data from speleothems or lake cores. However, many intermontane basins within the Southern Central Andes of NW Argentina are characterized by multiple generations of fluvial-fill terraces, some of which date back several tens to hundreds of thousands of years. Here, we show that these geomorphic units provide an opportunity to extract information about paleo-climatic conditions. 

A combination of several geochronological techniques has revealed the history of a >200-m-thick fluvial-fill terrace sequence within the Quebrada del Toro. The terrace sequence experienced alternating episodes of incision and aggradation since at least 500 ka. Subsequent terrace surfaces appear to have formed following a cyclicity of ca. 100 kyr. From detrital sediment within those fill terraces, past Qs could be reconstructed for times of sediment aggradation based on cosmogenic 10Be concentrations. The analyses revealed that over the last ~500 kyr Qs has varied at most by a factor of 4, but overall has been relatively constant. As the slope of a river channel (and likewise, the slope of a well preserved terrace surface) is a function of incoming Qs and Qw, combining data of terrace slope and past Qs allowed us to reconstruct past Qw for the times represented by the ages of the terrace surfaces, which mark the onset of river incision. The analyses revealed that during these times, Qw was 10 to 80% higher than today. The results are in line with the few existing quantitative estimates of past precipitation changes in the Central Andes, but have the advantage of extending further back in time. Moreover, the widespread occurrence of fluvial-fill terraces throughout the Central Andes offers the opportunity to reconstruct past Qw with high spatial resolution, offering a new perspective regarding the impact of past climate changes on the sediment-routing system through space and time.

How to cite: Tofelde, S., Schildgen, T., Wickert, A., Strecker, M., and Alonso, R.: Reconstructions of past sediment and water discharges from fluvial-fill terraces in the southern Central Andes of NW Argentina, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4887, https://doi.org/10.5194/egusphere-egu2020-4887, 2020.

CL1.24 – Interdisciplinary Tree-ring research

As a consequence of recent climatic changes, many studies have reported an increase in tree growth, forest ecosystem net primary productivity, and terrestrial biosphere carbon up-take, making forests one of the largest carbon sink on Earth. Direct and remote observations, as well as eco-physiological models, have suggested that it is mainly the rise in temperature and the resulting extended period of growth that is responsible for forest enhanced productivity. However, up to now, there is no comprehensive observation-based study deciphering the respective roles of the length of the growing season versus its intensity, to confirm this interpretation. Based on a large wood-formation-monitoring dataset, encompassing numerous sites from Mediterranean to Boreal conifer forests, we tested the hypothesis that the length of the growing period is more important than the rate of growth to explain tree-ring width. Moreover, we explored the influence of the environmental conditions on the variation in both timings and rates of xylem cell production.

We collected data from more than 50 sites spread at various altitudes and latitudes, on three continents (America, Europe, Asia), in the extra tropical parts of the Northern Hemisphere (Boreal, Temperate and Mediterranean bioclimatic zones). Wood formation was monitored at a weekly time-step using histological sections of forming xylem collected from the stems of more than 15 conifer species. The critical dates of xylem phenology were assessed at tree level using logistic regressions, while the rates of cell production were computed using Gompertz models. A basic physical model was developed relating the total number of xylem cells with the rate and duration of its production. A sensitivity analyses was performed to reveal the global ecological patterns of tree-ring formation, while mixed effect models were used to quantify the influences of the environmental factors.

The basic physical model of xylem cell production was applied successfully to the whole dataset (including Mediterranean sites) explaining more than 80 % of the observed variability. The sensitivity analysis showed that the rate of xylem cell production contributed a bit more than the duration to the variation in the final number of cells. Trees presented contrasted strategies according to the bioclimatic zone they belong to: while Boreal trees grew at a high speed during a short time; Mediterranean trees proceeded slowly, but for an extended period of time. Nevertheless, even for Mediterranean trees, the rate of growth remained the first driver of the final number of cells. Moreover, we showed that xylem phenology was consistently explained by the change in thermal conditions occurring with altitude or latitude, while growth rate was more related to species effect and site conditions.

Our results confirm that recent global warming may have resulted in extended period of growth explaining the recent increase in forest productivity. However, we also showed that the rate of xylem cell production is indeed the first driver of tree radial growth, therefore species behavior and site conditions should be considered in vegetation models to assess the impact of climate changes on forest productivity.

How to cite: Rathgeber, C.: Global ecological trends in wood cell production of coniferous trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22283, https://doi.org/10.5194/egusphere-egu2020-22283, 2020.

EGU2020-5572 | Displays | CL1.24

Multi-Century Spring Flood Reconstruction in Eastern Boreal Canada from Novel Application of Wood-Cell Anatomy

Alexandre Florent Nolin, Jacques C. Tardif, France Conciatori, David M. Meko, and Yves Bergeron

The streamflow regimes of eastern boreal Canada are snow-melt and ice-melt driven with the highest flows occurring in spring. Over the last few decades, a positive streamflow trend has been observed, with increasing severity and frequency of spring flooding. Further changes in flood dynamics are projected as a consequence of global climate change. The validity of projections is restricted by the lack of long and spatially well-replicated observations. High-resolution proxy records are needed to better understand the natural range of variability in spring runoff and associated atmospheric controls.

Recent research has shown that riparian black ash trees (Fraxinus nigra Marsh.) exposed to periodic submersion produce “flood rings” whose earlywood cross-sectional vessel area is linearly associated with the severity of flooding. Twelve continuous chronologies of ring width and earlywood vessel anatomy were developed for Lake Duparquet to extend the record of Harricana River mean spring flow. A visually determined index of flood rings was also developed to determine i) the spatial coherency of the spring flood signal and ii) the coherency of the flood signal among natural, regulated and unflooded rivers.

The reconstruction spans the period 1770-2016 and captures more than 65% of the variance of Harricana river spring flow. Trend analysis indicates an increase in both magnitude and frequency of the major floods starting at the end of the Little Ice Age (LIA, 1850-1890), with highest peaks after 1950. Time-frequency analysis shows non-stationarity: a stable 30-year periodicity during the LIA is replaced by a decadal pattern starting around 1850, and evolves into a more high-frequency pattern after 1930. The signal is strongly coherent between watersheds for natural rivers and weaker for regulated basins. Field correlations with gridded climate data indicate the broad spatially coherent pattern of spring high flows across much of central/eastern north Canada is positively associated with April-May precipitation and snow cover, and negatively associated with March-April maximum temperature.

These large-scale associations support atmospheric forcing of inter-annual hydroclimatic variability. While the Artic and North Atlantic Oscillations have previously been found to influence winter and spring climate conditions in eastern Quebec, our results contrast with a significant negative association with El-Niño Southern Oscillation from January to May, and the Pacific Decadal Oscillation from December to February. In Lake Duparquet, warm and wet air from Pacific-South Ocean (El-Niño) are associated with early spring and small floods, while cold and dry air masses (La-Niña) correlate to late thaw and high floods in spring. The association with sea surface temperature and 200mb geopotential field heights reveal a clear atmospheric connection between eastern north boreal Canada and the tropical Pacific Ocean.

The novel application of wood-cell anatomy to hydroclimatology underscores an increase in flood frequency and severity since the end of the 18th century in northeastern Canada. More broadly, the application highlights how analysis of tree rings from riparian trees can be used to extend the flood history of boreal rivers.

How to cite: Nolin, A. F., Tardif, J. C., Conciatori, F., Meko, D. M., and Bergeron, Y.: Multi-Century Spring Flood Reconstruction in Eastern Boreal Canada from Novel Application of Wood-Cell Anatomy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5572, https://doi.org/10.5194/egusphere-egu2020-5572, 2020.

EGU2020-21137 | Displays | CL1.24

Comparison between Blue Intensity (BI) and Maximum Latewood Density (MXD) tree-ring chronologies from the North American Boreal forests

Laia Andreu-Hayles, Rosanne D'Arrigo, Rose Oelkers, Kevin Anchukaitis, Greg Wiles, Rob Wilson, David Frank, and Nicole Davi

Tree ring-width (TRW) and Maximum Latewood Density (MXD) series have been largely used to develop high-resolution temperature reconstructions for the Northern Hemisphere. The divergence phenomenon, a weakening of the positive relationship between TRW and summer temperatures, has been observed particularly in northwestern North America chronologies. In contrast, MXD datasets have shown a more stable relationship with summer temperatures, but it is costly and labor-intensive to produce. Recently, methodological advances in image analyses have led to development of a less expensive and labor-intensive MXD proxy known as Blue Intensity (BI). Here, we compare 6 newly developed BI tree-ring chronologies of white spruce (Picea glauca [Moench] Voss) from high-latitude boreal forests in North America (Alaska in USA; Yukon and the Northwestern Territory in Canada), with MXD chronologies developed at the same sites. We assessed the quality of BI in relation to MXD based on mean correlation between trees, chronology reliability based on the Expressed Population Signal (EPS), spectral properties, and the strength and spatial extent of the temperature signal. Individual BI chronologies established significant correlations with summer temperatures showing a similar strength and spatial cover than MXD chronologies. Overall, the BI tree-ring data is emerging as a valuable proxy for generating high-resolution temperature spatial reconstructions over northwestern America.

How to cite: Andreu-Hayles, L., D'Arrigo, R., Oelkers, R., Anchukaitis, K., Wiles, G., Wilson, R., Frank, D., and Davi, N.: Comparison between Blue Intensity (BI) and Maximum Latewood Density (MXD) tree-ring chronologies from the North American Boreal forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21137, https://doi.org/10.5194/egusphere-egu2020-21137, 2020.

EGU2020-21434 | Displays | CL1.24

Does permafrost matter? Permafrost related studies of conifer tree-ring growth in northern Siberia

Alexander Kirdyanov, Anatoly Prokushkin, Anastasia Knorre, Olga Churakova (Sidorova), Marina Fonti, Matthias Saurer, Rolf Siegwolf, Frederick Reinig, Anatoly Nikolaev, Alexey Kolmogorov, Vladimir Shishov, Alma Piermattei, Paul Krusic, and Ulf Büntgen

The world’s largest terrestrial biome, Boreal forest, is prone to the greatest rates of recent and predicted warming. Much of this circumpolar vegetation belt is underlain by permafrost, which further challenges our understanding of the direct and indirect consequences of increasing temperature on the functioning and productivity of these northern latitudinal forests.

Here, we present the results of an on-going study of tree-ring growth of conifers in Russia’s continuous permafrost zone in northern Siberia, from 61-72°N and 90-148°E. Tree-ring data from a variety of habitats between 20 and 600 m asl with different climate and thermo-hydrological regimes of soils are analyzed. While in some cases up to 60-70% of the year-to-year tree-ring width and maximum latewood density variability can be explained by summer temperature variations alone, we find that the seasonal dynamics of permafrost also plays an important role in defining the overall rate of radial tree growth. Wider rings are generally formed on sites with a deeper active soil layer, which itself depends on the geographical location of a site, as well as its ground vegetation, stand parameters and fire history. Waterlogged permafrost may further act as a source of water for trees under exceptionally dry summer seasons.

Our study indicates that the growth response of conifers to temperature and precipitation across the continuous permafrost zone of Siberia is both, site- and species-specific. This implies a range of possible scenarios of further development of northern forests under projected climate change. Seasonal dynamics of the active soil layer and possible permafrost degradation must be taken into account when modelling tree growth variability and forest productivity.

How to cite: Kirdyanov, A., Prokushkin, A., Knorre, A., Churakova (Sidorova), O., Fonti, M., Saurer, M., Siegwolf, R., Reinig, F., Nikolaev, A., Kolmogorov, A., Shishov, V., Piermattei, A., Krusic, P., and Büntgen, U.: Does permafrost matter? Permafrost related studies of conifer tree-ring growth in northern Siberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21434, https://doi.org/10.5194/egusphere-egu2020-21434, 2020.

EGU2020-8783 | Displays | CL1.24

Disentangling the effects of micro-site ecology on Fennoscandian tree growth

Claudia Hartl, Elisabeth Düthorn, Ernesto Tejedor Vargas, Andreas Kirchhefer, Mauri Timonen, Steffen Holzkämper, Ulf Büntgen, and Jan Esper

The long tradition in dendroclimatological studies across Fennoscandia is mainly due to the exceptional strong temperature sensitivity of tree growth, as well as the existence of well-preserved subfossil wood in shallow lakes and extent peat bogs. Although some of the world’s advanced multi-millennial-long ring width and density based climate reconstructions have been developed in northern Fennoscandia, it is still unclear if differences in micro-site ecology have been considered sufficiently in previous studies. In order to assess the effects of moist lakeshores versus drier inlands on forest productivity, we present a Fennoscandia-wide network of 44 Scots pine ring width chronologies from 22 locations between 59°-70°N and 16°-31°E. Clustering into coastal settings in northern Norway, continental sites in the lee of the Scands north of the polar circle, and locations south of the polar circle, our network reveals a general dependency of pine growth rates on latitude and July temperature. Differences between moist and dry sites are likely caused by associated effects on soil temperature. While trees at moist micro-sites at western locations exhibit higher growth rates, this pattern inverses under the more continental conditions of the east, where increased ring widths are found at drier sites. In addition to the latitudinal increase in growth sensitivity to July temperature, pines at moist sites tend to show a higher dependency to summer warmth. The highest temperature sensitivity and growth coherency is found in those regions where July temperatures range between 11.5 and 13.5°C and May precipitation totals fall below 100mm. This study not only emphasizes the effects of micro-site ecology on Fennoscandian tree growth, but also provides guidance for the selection of sampling sites for climate reconstructions.

How to cite: Hartl, C., Düthorn, E., Tejedor Vargas, E., Kirchhefer, A., Timonen, M., Holzkämper, S., Büntgen, U., and Esper, J.: Disentangling the effects of micro-site ecology on Fennoscandian tree growth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8783, https://doi.org/10.5194/egusphere-egu2020-8783, 2020.

EGU2020-7641 | Displays | CL1.24

Parameterization of multidimensional process-based tree-ring models: Why it is important?

Vladimir Shishov, Victor Il'in, Ivan Tychkov, Margarita Popkova, and Daria Belousova

Improvement of our understanding of tree-growth processes and accurate interpretations of climatic signals in tree rings have recently become possible through the application of process-based models, e.g., Biome3, MAIDEN,  ASTANEA, CAMBIUM, PRYSM, VS-lite and others, which simulate tree growth based on non-linear effects of environmental conditions. The process-based Vaganov–Shashkin model (VS-model) is one such model which describes tree-ring formation as a result of multivariate affects of local climate (temperature, soil moisture and solar irradiance). As with most of the process-based models, the VS-model is a complex tool that requires a considerable number of model parameters that should be reasonably estimated for each forest stand. This leads to problem of accurate model parameterization, namely estimations of optimal values of the model parameters necessary to guarantee: (1) the best fit to the observed tree-ring measurements; (2) identification of the specific seasonal cell production and enlargement; (3) reasonable ecological interpretation in terms of processes involved in the model.

Based on differential evolution (DE) approach adopted to the model parameterization using the supercomputer facilities it was shown:

(1) a significant spatial variability of adjusted VS-parameter values (with corresponded ecological interpretation) that provide the best fit to the actual tree-ring chronologies from climatically contrasted sites distributed in the vast territories of Eurasia and as a result, the models ability to capture a significant diversity in non-linear tree-ring growth responses that are climatically induced,

(2) the high sensitivity of the models even for forest stands where mixed climatic signal affects on tree-ring growth during growing season,

(3) the high probability to obtain a "correct" model parameterization which explains up to 60% tree-ring variance by the climate forcing even for randomly generated "chronologies"  in case of incorrect usage of the calibration-verification strategy for multidimensional models.

How to cite: Shishov, V., Il'in, V., Tychkov, I., Popkova, M., and Belousova, D.: Parameterization of multidimensional process-based tree-ring models: Why it is important?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7641, https://doi.org/10.5194/egusphere-egu2020-7641, 2020.

Trees are one of the main archives to reconstruct the climate of the last millennium at high resolution. The links between tree-ring proxies and climate have usually been estimated on the basis of statistical approaches, assuming linear and stationary relationships. Both assumptions can be inadequate and this issue can be overcome by ecophysiological models such as MAIDEN (Modeling and Analysis In DENdroecology), which simulates tree-ring growth starting from temperature and precipitation daily inputs. A protocol for the application of MAIDEN to potentially any site with tree-ring width data in the extratropical region has been developed in Rezsöhazy et al. (2019) (in review). In this study, the applicability of the model has been tested over the twentieth century using as a test case tree-ring observations from twenty-one Eastern Canadian taiga sites and three European sites. The paper highlights the potential of MAIDEN as a complex mechanistic proxy system model to analyse the links between tree growth and climatic conditions in paleoclimatic applications. Following on from this recent work, MAIDEN is here applied to the PAGES2k tree-ring width database over the last century using the protocol developed in Rezsöhazy et al. (2019) (in review). We show how this larger network allows refining our protocol. We identify the regions and sites where MAIDEN can be successfully applied, as well as estimate the uncertainty associated with the use of MAIDEN for a wide range of sites.

 

Rezsöhazy, J., Goosse, H., Guiot, J., Gennaretti, F., Boucher, E., André, F., and Jonard, M.: Application and evaluation of the dendroclimatic process-based model MAIDEN during the last century in Canada and Europe, Clim. Past Discuss., https://doi.org/10.5194/cp-2019-140, in review, 2019.

How to cite: Rezsöhazy, J., Goosse, H., and Guiot, J.: Evaluation of a dendroclimatic process-based model (MAIDEN) over the last century using the PAGES2k tree-ring width database, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8247, https://doi.org/10.5194/egusphere-egu2020-8247, 2020.

EGU2020-12400 | Displays | CL1.24 | Highlight

Eight Hundred Years of North Atlantic Jet Stream Variability and its Influence on European Climate Extremes

Valerie Trouet, Matthew Meko, Lara Klippel, Flurin Babst, Jan Esper, Paul Krusic, Momchil Panayotov, and Rob Wilson

A recent increase in mid-latitude extreme weather events has been linked to anomalies in the position, strength, and waviness of the Northern Hemisphere polar jet stream. The latitudinal position of the North Atlantic Jet (NAJ) in particular drives climatic extremes over Europe, by controlling the location of the Atlantic storm track and by influencing the occurrence and duration of atmospheric blocking. To put recent NAJ trends in a historical perspective and to investigate non-linear relationships between jet stream position, mid-latitude extreme weather events, and anthropogenic climate change, long-term records of NAJ variability are needed. Here, we combine two tree-ring based summer temperature reconstructions from Scotland and from the Balkan Peninsula to reconstruct inter-annual variability in the latitudinal position of the summer NAJ back to 1200 CE. We find that over the past centuries, a northward summer NAJ position has resulted in heatwaves in northwestern Europe, whereas a southward position has promoted wildfires in southeastern Europe and floods in northwestern Europe. The great famine of 1315-1317 in northwestern Europe, for instance, was associated with prolonged flooding and cold summers that resulted in failed grain harvest and were related to a southern NAJ position. We further find an unprecedented increase in NAJ anomalies since the 1960s, which supports more sinuous jet stream patterns and quasi-resonant amplification as potential dynamic pathways for Arctic warming to influence midlatitude weather.

How to cite: Trouet, V., Meko, M., Klippel, L., Babst, F., Esper, J., Krusic, P., Panayotov, M., and Wilson, R.: Eight Hundred Years of North Atlantic Jet Stream Variability and its Influence on European Climate Extremes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12400, https://doi.org/10.5194/egusphere-egu2020-12400, 2020.

EGU2020-19951 | Displays | CL1.24

North Atlantic Jet position induces latitudinal decouplings in forest productivity in Europe

Isabel Dorado-Liñán and Valerie Trouet and the European Beech Tree-ring Network

Dynamically-driven extreme weather events have large ecological, social and economic consequences including large tree-growth reductions and forest mortality. These events are likely to become globally more frequent and intense in the near future with increased anthropogenic forcing and associated changes in couple atmosphere-ocean circulation. The European continent is under the control of different atmospheric circulation patterns leading to geographical climatic gradients caused by their eventual position and strength, being the North Atlantic Oscillation (NAO) and the East Atlantic Pattern (EA) the main modes of North Atlantic climate variability (Barnston and Levezey 1987; Folland et al. 2009). Both, NAO and EA reflect jet stream changes as a consequence of variations in the eddy forcing, being the North Atlantic Jet (NAJ) the pattern connecting the large-scale atmospheric variability over the North Atlantic basin (Woollings, Hannachi, and Hoskins 2010). Thus, the identification and characterization of the links between forest productivity and the precursors of large-scale dynamics inducing extreme events may boost our capacity of assessing their predictability and enhancing forecasting skills.
Here, we scale forest response to climate to higher atmospheric levels by establishing the connection between extreme positive and negative anomalies in productivity of European forests to the latitudinal position of the NAJ. For that, we use a network of 344 European beech tree-ring chronologies extending from the Iberian Peninsula to the Carpathians and from Greece to northern UK.
Our results show a geographical gradient on tree growth across Europe explained either by the asymmetric forest response to homogeneous summer climate over Europe or to a distinct summer climate dipole leading to diverging climatic conditions in northeaster and southwestern Europe. In both cases, the continental-scale European-beech growth patterns are linked to the NAJ latitudinal position and its determinant influence on summer climate over Europe. The projected increase in the frequency of northward migrations of the NAJ for the next century may enhance the differences in forest productivity across Europe by inducing subcontinental-wide beech forest growth reduction.


Barnston, Anthony Gaston, and Robert E. Levezey. 1987. "Classification, seasonality and persistence of low-frequency atmospheric circulation patterns" Mon. Weather Rev. 115: 1083-1126.
Folland, Chris K, Jeff Knight, Hans W Linderholm, David Fereday, Sarah Ineson, and James W Hurrell. 2009. “The Summer North Atlantic Oscillation: Past, Present, and Future.” Journal of Climate 22 (5): 1082–1103. https://doi.org/10.1175/2008JCLI2459.1.
Woollings, Tim, Abdel Hannachi, and Brian Hoskins. 2010. “Variability of the North Atlantic Eddy-Driven Jet Stream.” Quarterly Journal of the Royal Meteorological Society 136 (649): 856–68. https://doi.org/10.1002/qj.625.

 

How to cite: Dorado-Liñán, I. and Trouet, V. and the European Beech Tree-ring Network: North Atlantic Jet position induces latitudinal decouplings in forest productivity in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19951, https://doi.org/10.5194/egusphere-egu2020-19951, 2020.

Affecting a multitude of ecological and agricultural systems, the Asia summer monsoon (ASM) is essential for biodiversity and the food security of billions of people. Understanding past changes of the ASM is important for the detection and attribution of its recent evolution and future projection in the context of global warming. However, proxy-based, high-resolution reconstructions of the ASM prior to the period of instrumental measurements that started in the 1950s in China are still missing. Here, we use an ensemble of ten tree-ring width chronologies from the northern margin of the ASM to estimate ASM strength back to 1566 AD. The reconstruction not only reveals severe large-scale droughts in 1586/87 and 1759, but also negative anomalies during persistent locus plagues in the 1860s. The record also shows an unprecedented decrease in ASM since the mid-20th century. Simulations from a coupled climate model suggest that the recent ASM decline could have been induced by increased anthropogenic aerosol emissions over the Northern Hemisphere.

How to cite: Liu, Y. and Cai, W.: Recent pronounced weakening of Asia summer monsoon over the past 450 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6332, https://doi.org/10.5194/egusphere-egu2020-6332, 2020.

EGU2020-11768 | Displays | CL1.24

The use of multiple dendrochronological techniques to develop a 200-year drought record for subtropical Southeast Queensland, Australia

Heather A Haines, Jonathan G Palmer, Nathan B English, Quan Hua, Patricia S Gadd, Justine Kemp, and Jon M Olley

In Australia the majority of tropical and subtropical regions lack any long-term (multi-decadal to centennial scale) instrumental climate records highlighting a need for alternatives such as proxy climate reconstructions. Despite this need, only a limited number of terrestrial proxy sources are available. Tree-rings provide one of the few options for climate reconstructions yet very little dendrochronological investigation has been undertaken as early assessments of tropical Australian species in the 1970s and 1980s indicated most species had short life-spans, poorly preserved timbers, or were compromised by having many ring anomalies. There has also been limited effort into understanding the growth-climate relationships of these trees with only a few studies undertaken targeting specific species that have unfortunately been heavily cleared from the region (eg. Toona ciliata). One exception noted in the early species assessment suggested that trees in the Araucariaceae family, a common tree family along the tropical Australian east coast, is longer lived than many other species in the region, contains growth rings which are annual in nature, and grows in response to climatic conditions.

Here we describe the results from a stand of Araucaria cunninghamii trees located in Lamington National Park, a World Heritage listed rainforest in subtropical Southeast Queensland, Australia (a region known for experiencing extreme hydroclimatic events). Our assessment discovered the presence of false, faint, locally absent, and pinching rings. By combining traditional dendrochronological analysis (eg. crossdating) with more recent techniques such as age validation by bomb-pulse radiocarbon dating and tree-ring density analysis, a robust ring-width chronology from 1805-2014 was developed. Dendrometers installed on four trees at the Lamington site confirmed that tree growth was annual and that moisture sensitivity was driving growth. Further growth-climate analysis indicated that the strongest correlation to the tree-ring chronology was specifically related to drought conditions in the region. The strength of this response was compared to both local and regional spatial areas and to drought indices such as the self-calibrating Palmer Drought Severity Index (scPDSI), the Standardized Precipitation Evaporation Index (SPEI), and the long-term drought conditions shown by the Australian and New Zealand Drought Atlas (ANZDA). The combined analysis led to the development of a 200-year drought reconstruction for the region and demonstrates influences from both the El Niño Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO).

How to cite: Haines, H. A., Palmer, J. G., English, N. B., Hua, Q., Gadd, P. S., Kemp, J., and Olley, J. M.: The use of multiple dendrochronological techniques to develop a 200-year drought record for subtropical Southeast Queensland, Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11768, https://doi.org/10.5194/egusphere-egu2020-11768, 2020.

EGU2020-12240 | Displays | CL1.24

Global trends of tree-ring carbon isotope discrimination under rising atmospheric CO2 and changing climate

Soumaya Belmecheri, Paul szejner, David Frank, Steve Voelker, and Alienor Lavergne

Rising atmospheric CO2 concentrations are expected to stimulate plant carbon uptake (A) while also reducing transpiration via a decrease in stomatal conductance (gs), resulting in an increase in the intrinsic water use efficiency (iWUE, i.e. the ratio of A to gs). While there is overwhelming evidence of a secular iWUE increase in response to rising CO2 over the 20th-21st century, the magnitude of changes in iWUE reported so far in the literature strongly varies across climatic regions and biomes. Moreover, increasing iWUE has not systematically been translated into tree growth increment at many forested ecosystems, challenging the CO2 fertilization theory. There is thus a need to track down the key physiological and environmental mechanisms driving changes in iWUE.

Here we estimate the carbon isotopic discrimination (Δ13C) - defined as the difference between the stable carbon isotopic compositions (δ13C) measured in atmospheric CO2 and in tree rings – from 147 tree-ring δ13C chronologies to: 1) investigate the physiological responses of woody C3 plants to increasing atmospheric CO2 and, 2) disentangle climate vs CO2 effects on A and gs. We specifically study deviations of tree-ring Δ13C from the predicted Δ13C response to CO2 as reconstructed from a recent meta-analysis of paleo and elevated CO2 data. We identify the following: 1) negative deviations from the expected Δ13C for most records; 2) no apparent deviation from expected Δ13C or; 3) positive deviations, both in a small minority of records ; and 4) an apparent non-linear response with a switch from a more negative Δ13C deviations to a Δ13C-response consistent with predicted CO2-effects. The widespread negative Δ13C  deviations are consistent with gs having been reduced or A having not increased as much as expected for a given CO2-driven stimulation of A. The presented global tree-ring data analyses suggest that a warmer and often drier climate have had a stronger effect on Δ13C compared to that of rising CO2, and a substantial modulation of recent rises in iWUE by climate effects across the globe.

How to cite: Belmecheri, S., szejner, P., Frank, D., Voelker, S., and Lavergne, A.: Global trends of tree-ring carbon isotope discrimination under rising atmospheric CO2 and changing climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12240, https://doi.org/10.5194/egusphere-egu2020-12240, 2020.

EGU2020-8104 | Displays | CL1.24

High frequency stable isotope signals as proxy for physiological responses to climate - Dual isotope approach at a European scale

Valentina Vitali, Rosemarie Weigt, Stefan Klesse, Kerstin Treydte, Rolf Siegwolf, and Matthias Saurer

Picea abies and Fagus sylvatica, are two of the most important tree species in Europe, and their responses to climate are being extensively investigated, especially at the limits of their distribution. However, their physiology at temperate sites is not yet fully understood. In a European tree-ring network, 10 sites along a climate gradient were sampled throughout Central Europe, and tree-ring width and stable isotope chronologies (C and O) were measured. The year-to-year variability of the isotopes time series for the last 100 years was analyzed in relation to tree-ring growth, spatial distribution, and seasonal climate.

Climate sensitivity of radial growth of both species was rather variable and site-dependent, and was strongest at the driest sites. On the contrary, variability in the isotopic ratios consistently responded to summer climate, particularly to vapor pressure deficit. The high δ18O coherence of the short-term variability between sites and species highlights the strength of the environmental signal in the O chronology also across long distances. On the contrary, δ13C shows lower correlations between sites and species, showing a stronger site-dependency, and a lower intra-annual variability. The generally positive correlation between the year-to-year differences in δ13C and δ18O across most sites demonstrates the strong role of stomatal conductance in controlling leaf gas exchange for these species. However, in the last decades, sites showed a dissimilar shift in the isotopes relationships, with the warmer sites showing an increase of either or both δ13C and δ18O and consequent decrease of photosynthetic rates and stomatal conductance, highlighting their dependency to atmospheric moisture demand and soil water availability.

Understanding the underlying physiological mechanisms controlling the short-term variation in tree-ring records will help with defining the performance of these ecologically and economically important tree species under future climate conditions.

How to cite: Vitali, V., Weigt, R., Klesse, S., Treydte, K., Siegwolf, R., and Saurer, M.: High frequency stable isotope signals as proxy for physiological responses to climate - Dual isotope approach at a European scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8104, https://doi.org/10.5194/egusphere-egu2020-8104, 2020.

EGU2020-16223 | Displays | CL1.24

A new conceptual framework for the use of hydrogen isotopes in tree rings

Marco M. Lehmann, Velentina Vitali, Philipp Schuler, and Matthias Saurer

Carbon and oxygen stable isotopes in tree-rings are successfully used in climate and environmental research, for instance for the reconstruction of past climatic conditions and corresponding physiological responses of trees to local climate. In contrast, hydrogen isotope ratios (δ2H), available also in the cellulose molecule of tree-rings, have been largely neglected. Mostly due to methodological reasons, but also because various studies found a rather poor climate information in the δ2H of tree rings. Recent studies show that the latter might be caused by isotope fractionation mechanisms that are related to plant physiological and biochemical processes rather than to climate or hydrological changes. These results also suggest that a relative use of carbon reserves and photosynthetic assimilates may explain δ2H variations in tree-rings. We therefore investigated the literature and observed strong relationships between δ2H and tree growth chronologies across various species in Switzerland, Germany, Norway, China, and India. The relationships between tree-ring growth and δ2H show a dependence to site-specific factors, climatic conditions (e.g. temperature, precipitation), and competition/light effects. Based on our findings we set up a novel conceptual framework that may allow the reconstruction of physiological responses such as carbon use strategies under varying environmental conditions. This new tool may find widespread application to identify and date, with high resolution, stressful conditions or stress-release phases that a tree or a forest ecosystem has experienced in the past.

How to cite: Lehmann, M. M., Vitali, V., Schuler, P., and Saurer, M.: A new conceptual framework for the use of hydrogen isotopes in tree rings, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16223, https://doi.org/10.5194/egusphere-egu2020-16223, 2020.

EGU2020-22325 | Displays | CL1.24

Hotspots of change in major tree species under climate warming

Flurin Babst, Richard L. Peters, Rafel O. Wüest, Margaret E.K. Evans, Ulf Büntgen, Andrew J. Hacket-Pain, Christoforos Pappas, Alexander V. Kirdyanov, Stefan Klesse, Volodymyr Trotsiuk, Jesper Björklund, Jodi Axelson, Jill Harvey, Dan Smith, Christian Zang, Dirk N. Karger, and Niklaus E. Zimmermann

Warming alters the variability and trajectories of tree growth around the world by intensifying or alleviating energy and water limitation. This insight from regional to global-scale research emphasizes the susceptibility of forest ecosystems and resources to climate change. However, globally-derived trends are not necessarily meaningful for local nature conservation or management considerations, if they lack specific information on present or prospective tree species. This is particularly the case towards the edge of their distribution, where shifts in growth trajectories may be imminent or already occurring.

Importantly, the geographic and bioclimatic space (or “niche”) occupied by a tree species is not only constrained by climate, but often reflects biotic pressure such as competition for resources with other species. This aspect is underrepresented in many species distribution models that define the niche as a climatic envelope, which is then allowed to shift in response to changes in ambient conditions. Hence, distinguishing climatic from competitive niche boundaries becomes a central challenge to identifying areas where tree species are most susceptible to climate change.

Here we employ a novel concept to characterize each position within a species’ bioclimatic niche based on two criteria: a climate sensitivity index (CSI) and a habitat suitability index (HSI). The CSI is derived from step-wise multiple linear regression models that explain variability in annual radial tree growth as a function of monthly climate anomalies. The HSI is based on an ensemble of five species distribution models calculated from a combination of observed species occurrences and twenty-five bioclimatic variables. We calculated these two indices for 11 major tree species across the Northern Hemisphere.

The combination of climate sensitivity and habitat suitability indicated hotspots of change, where tree growth is mainly limited by competition (low HSI and low CSI), as well as areas that are particularly sensitive to climate variability (low HSI and high CSI). In the former, we expect that forest management geared towards adjusting the competitive balance between several candidate species will be most effective under changing environmental conditions. In the latter areas, selecting particularly drought-tolerant accessions of a given species may reduce forest susceptibility to the predicted warming and drying.

How to cite: Babst, F., Peters, R. L., Wüest, R. O., Evans, M. E. K., Büntgen, U., Hacket-Pain, A. J., Pappas, C., Kirdyanov, A. V., Klesse, S., Trotsiuk, V., Björklund, J., Axelson, J., Harvey, J., Smith, D., Zang, C., Karger, D. N., and Zimmermann, N. E.: Hotspots of change in major tree species under climate warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22325, https://doi.org/10.5194/egusphere-egu2020-22325, 2020.

Anthropogenic land use and landscape change has dramatically decreased the presence of hardwood floodplain forests (HFF) globally. In Germany, it is estimated that only 1% of the former HFFs still exist today. Natural HFFs provide an abundance of ecosystem services such as the mitigation of climate change through the sequestration of atmospheric carbon. In order to confidently quantify global carbon fluxes, local in-situ investigations are required. This research aims to quantify and compare carbon sequestration rates (CSRs) of temperate HFFs at a local scale. Traditional dendrochronological methods are applied to tree cores collected from oak (Quercus robur) and elm (Ulmus laevis) trees located within 35 HFF plots differing in age classes and hydrological situations along 100 km of the Middle Elbe river. Tree ring widths (TRW) from both tree species are measured and used to estimate basal area increments (BAI) and CSRs. Preliminary results show that CSRs are higher in oaks than in elms. While CSRs seem not to differ between hydrological situations in trees with ages between 60 and 150 years, we found pronounced effects of hydrological conditions on CSRs in the oldest trees (> 180 years). Interestingly, highest mean CSRs were found for old trees in regularly flooded HFF with a dense canopy cover. These results are in agreement with recent research that have overturned the old paradigm that old forests are less productive than young forests. We conclude that HFFs remain active carbon sinks as they age and that the preservation or even expansion of HFFs can contribute to other global strategies for climate change mitigation.

How to cite: Shupe, H., Jensen, K., and Ludewig, K.: Using tree rings to estimate the annual carbon sequestration of hardwood floodplain forests along the Middle Elbe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10554, https://doi.org/10.5194/egusphere-egu2020-10554, 2020.

EGU2020-20535 | Displays | CL1.24

MAIDENiso: a mechanistic approach to the reconstruction of past climate from tree chronologies

Etienne Boucher, Ignacio Hermoso de Mendoza, and Fabio Gennaretti

The ecophysiological forest model MAIDENiso (Modeling and Analysis In + isotopes) uses a set of mechanistic rules to simulate the production, allocation and growth of virtual trees. MAIDENiso is adapted to the boreal tree species Picea mariana Mill. (Black spruce), but lacks a hydrological module adapted for boreal meteorological conditions. With the recent addition of a snow/ice module, MAIDENiso is now capable of realistically simulating snow cover and discharge in high latitude regions, while at the same time capturing climate-sensitive processes such as the enrichment of heavy water isotopes due to snow sublimation. The more realistic outputs of the model can be compared to tree ring records (ring widths and stable isotopes). This allows us to use an inversion algorithm (based on a Metropolis Hastings random walk) to estimate past hydroclimate conditions that are in line with physiological and hydrological processes of high boreal regions. We apply this methodology to a millennial chronology of tree ring width and cellulose isotopes from sub-fossil tree remains in North-Quebec, and produce an updated hydroclimate reconstruction of the last 1000 years in this region.

 

How to cite: Boucher, E., Hermoso de Mendoza, I., and Gennaretti, F.: MAIDENiso: a mechanistic approach to the reconstruction of past climate from tree chronologies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20535, https://doi.org/10.5194/egusphere-egu2020-20535, 2020.

EGU2020-19868 | Displays | CL1.24

Maximum latewood density records of the oldest trees in the world: Great Basin Bristlecone pine (Pinus Longaeva)

Tom De Mil, Matthew Salzer, Charlotte Pearson, Valerie Trouet, and Jan Van den Bulcke

Great Basin Bristlecone pine (Pinus longaeva) is known for its trees that attain old age. The longest chronology is more than 9000 years long, and the temperature-sensitive upper treeline chronology extends back to 5000 years. The ring width pattern of upper treeline bristlecone pine trees are strongly influenced by temperature variability at decadal to centennial scales. To infer a climate signal on annual scales, MXD is shown to be a better temperature proxy. Here, we present a preliminary Maximum Latewood Density (MXD) chronology of bristlecone pine to investigate the temperature signal in upper treeline and below. Maximum latewood density (MXD) from 24 dated cores (from various sites ranging from the upper treeline and below, oldest sample dates back to 776 AD) was determined with an X-ray CT toolchain. Ring and fibre angles were corrected and a MXD chronology was constructed. The resulting MXD chronology will be correlated to summer temperature. Future scanning will allow constructing a + 5000 year MXD chronology and could reveal the cooling effect of volcanic eruptions through this period.

How to cite: De Mil, T., Salzer, M., Pearson, C., Trouet, V., and Van den Bulcke, J.: Maximum latewood density records of the oldest trees in the world: Great Basin Bristlecone pine (Pinus Longaeva), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19868, https://doi.org/10.5194/egusphere-egu2020-19868, 2020.

EGU2020-3927 | Displays | CL1.24

A millennium-length temperature reconstruction for the eastern Mediterranean

Jan Esper, Lara Klippel, Paul J. Krusic, Oliver Konter, Christoph Raible, Elena Xoplaki, Jürg Luterbacher, and Ulf Büntgen

The Mediterranean has been identified as particularly vulnerable to climate change, yet a high-resolution temperature reconstruction extending back into the Medieval Warm Period is still lacking. Here we present such a record from a high-elevation site on Mt. Smolikas in northern Greece, where some of Europe’s oldest trees provide evidence of warm season temperature variability back to 730 CE. The reconstruction is derived from 192 annually resolved, latewood density series from ancient living and relict Pinus heldreichii trees calibrating at r1911-2015 = 0.73 against regional July-September (JAS) temperatures. Although the recent 1985-2014 period was the warmest 30-year interval (JAS Twrt.1961-90 = +0.71°C) since the 11th century, temperatures during the 9-10th centuries were even warmer, including the warmest reconstructed 30-year period from 876-905 (+0.78°C). These differences between warm periods are statistically insignificant though. Several distinct cold episodes punctuate the Little Ice Age, albeit the coldest 30-year period is centered during high medieval times from 997-1026 (-1.63°C). Comparison with reconstructions from the Alps and Scandinavia shows that a similar cold episode occurred in central Europe but was absent at northern latitudes. The reconstructions also reveal different millennial-scale temperature trends (NEur = -0.73°C/1000 years, CEur = -0.13 °C, SEur = +0.23°C) potentially triggered by latitudinal changes in summer insolation due to orbital forcing. These features, the opposing millennial-scale temperature trends and the medieval multi-decadal cooling recorded in Central Europe and the Mediterranean, are not well captured in state-of-the-art climate model simulations.

How to cite: Esper, J., Klippel, L., Krusic, P. J., Konter, O., Raible, C., Xoplaki, E., Luterbacher, J., and Büntgen, U.: A millennium-length temperature reconstruction for the eastern Mediterranean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3927, https://doi.org/10.5194/egusphere-egu2020-3927, 2020.

EGU2020-20524 | Displays | CL1.24

Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania

Viorica Nagavciuc, Cătălin-Constantin Roibu, Monica Ionita, Andrei Mursa, Mihai-Gabriel Cotos, and Ionel Popa

The aim of this study was to compare the climatic responses of three tree rings proxies: tree ring width (TRW),
maximum latewood density (MXD), and blue intensity (BI). For this study, 20 cores of Pinus sylvestris covering
the period 1886–2015 were extracted from living non-damaged trees from the Eastern Carpathian Mountains
(Romania). Each chronology was compared to monthly and daily climate data. All tree ring proxies had a
stronger correlation with the daily climate data compared to monthly data. The highest correlation coefficient
was obtained between the MXD chronology and daily maximum temperature over the period beginning with the
end of July and ending in the middle of September (r=0.64). The optimal intervals for the temperature signature
were 01 Aug – 24 Sept for the MXD chronology, 05 Aug – 25 Aug for the BI chronology, and both 16 Nov
of the previous year – 16 March of the current year and 15 Apr – 05 May for the TRW chronology. The results
from our study indicate that MXD can be used as a proxy indicator for summer maximum temperature, while
TRW can be used as a proxy indicator for just March maximum temperature. The weak and unstable relationship
between BI and maximum temperature indicates that BI is not a good proxy indicator for climate reconstructions
over the analysed region.

How to cite: Nagavciuc, V., Roibu, C.-C., Ionita, M., Mursa, A., Cotos, M.-G., and Popa, I.: Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20524, https://doi.org/10.5194/egusphere-egu2020-20524, 2020.

EGU2020-21983 | Displays | CL1.24 | Highlight

Integrating tree-ring and wine data from the Palatinate (Germany)

Oliver Konter and Jan Esper

Tree-ring growth of conifer trees originating from central European low mountain ranges often reveal indistinct growth-climate relationships. Temperature variations can play a crucial role, whereas water availability can also control the annual growth and become the main dominating factor. The low mountain range Pfälzerwald in the Palatinate region represents the largest contiguous forested area in Germany and features at its most eastern limitation a unique ecological setting due to its sandy soils and reduced water availability. In addition, its north-south orientation and associated lee-effects due to predominating westerlies together with altitudinal differences of more than 300 m lead to higher temperatures, lower precipitation amounts, and, as a forest management consequence, to a proportion of up to 80 % of pine trees. Despite these exceptional ecological and climatological prerequisites, calibrating tree-ring width data from 487 Pinus sylvestris core samples against regional meteorological stations (1950-2011) and gridded data (1901-2011) confirm alternating climate control mechanisms. Comparison with drought-related indices (scPDSI), combining precipitation and temperature, unfolds highest correlations with May-July conditions (r1901-2011=0.34, p<0.05), however, lacking temporal robustness in the early 20th century.

The vegetation outside the forested areas in the plain can be characterized as agricultural croplands with vineyards, representing one of the largest wine-growing regions in Germany. We collected and analyzed a 24 datasets of 57 consecutive years (1959-2015) of must sugar content, acidity, alcohol content, and sugar-free extracts in Riesling, Pinot Gris, Pinot Blanc, and Silvaner wines, originating from 15 wineries adjoining the forested area into the plain. Correlation of Riesling must sugar content against regional April-August temperature data reveals a highly significant signal (r1981-2015=0.73, p<0.01; high-pass filtered r=0.49, p<0.01). Sugar-free extract variations of Pinot Gris are significantly controlled by March-September precipitation (r2004-2014=0.76, p<0.01; high-pass filtered r=0.77, p<0.01).

In this low mountain range, tree-ring growth from conifers is not solely controlled by one climatic variable, though it is that combining tree-rings with must sugar content and sugar-free extract data from Riesling and Pinot Gris wine can further elucidate our understanding of longer-term climate variability in the Palatinate region.

How to cite: Konter, O. and Esper, J.: Integrating tree-ring and wine data from the Palatinate (Germany), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21983, https://doi.org/10.5194/egusphere-egu2020-21983, 2020.

EGU2020-11379 | Displays | CL1.24

First Amburana cearensis (Fabaceae) tree-ring chronology in Brazil in a dry forest shows great potential for climate reconstruction

Milena Godoy-Veiga, Giuliano Locosselli, Lior Regev, Elisabetta Boaretto, and Gregório Ceccantini

Tree-ring chronologies are an excellent climate archive for their spatial and temporal resolution. While networks of chronologies have been built outside the tropics helping to understand past regional climate trends, tropical regions still lag behind in terms of spatial coverage. Dendrochronological studies, however, may succeed in seasonally dry tropical forests where the growing season is well defined. Amburana cearensis, found in both dry and wet forests in South America, is poorly explored for dendrochronological purposes, with no previous study in Brazil. Therefore, we sampled trees growing in a seasonally dry forest in a karstic area in Central-Eastern Brazil, under the South American Monsoon domain, in order to explore this species potential for dendroclimatological studies in the region. We build a tree-ring width chronology using 26 trees. We found a strong common growth signal among trees, with an r-bar of 0.51 and an average mean sensitivity of 0.50. The standard tree-ring width chronology showed a significant negative correlation with Vapor-Pressure Deficit during the entire wet season (0.54), negative correlation with temperature at the end of the wet season (0.45), and a positive correlation with the sum of precipitation during the wet season (0.46). Further stable isotopic analysis will provide additional records of climate variability in the region. Since Amburana cearensis occurs across most of the seasonally dry forests and savannas from South America, it has a great potential to be used to develop climate reconstructions and verify the effects of climate change currently affecting the region.

How to cite: Godoy-Veiga, M., Locosselli, G., Regev, L., Boaretto, E., and Ceccantini, G.: First Amburana cearensis (Fabaceae) tree-ring chronology in Brazil in a dry forest shows great potential for climate reconstruction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11379, https://doi.org/10.5194/egusphere-egu2020-11379, 2020.

The tree-ring densitometric studies conducted in the semiarid regions are rare, among them, minimum earlywood density (MND) records the strongest climate signals than other density parameters. In contrast, maximum density of latewood (MXD) in cold and humid regions usually shows the most significant association with summer temperatures. Density parameters of Purplecone Spruce (Picea purpurea Mast.) in Mt. Shouyang, northwestern China, a typical semiarid region were obtained to test the density-climate relationships. It is showed that MXD has strong positive correlations with temperatures and a negative correlation with precipitation in the late growing season from July to September. MND is significantly positively correlated with temperature and positively correlated with precipitation during the early growing season. During early growing season, spring droughts always occur due to low precipitation. A narrow ring is built under moisture stress, since tree growth is inhibited by decreasing cell division and cell enlargement. With the intensification of monsoon, more precipitation is available, which can basically meet the needs of tree growth. During strong monsoon season with humid conditions, trees are less affected by moisture stress. In this case, high temperature could increase cell wall thickness in the latewood which strongly affects the tree-ring maximum density. It could explain why there is a significant positive correlation between MXD and summer-fall temperature.

How to cite: Song, H. and Liu, Y.: Climatic response of tree-ring densitometric records in a semiarid site of China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6384, https://doi.org/10.5194/egusphere-egu2020-6384, 2020.

Tree ring plays an important role in deciphering the paleoclimatic signals over the past 100-10000 years. However, tree-ring studies from tropical to subtropical regions are rarer than that from extratropical regions, which greatly limit our understanding of some critical climate change issues. Based on tree-ring-width chronologies in different area of Subtropical China (SC), seasonal temperature history of different seasons over the past 200 years were reconstructed. In addition to the warm and cold fluctuations in the reconstructed temperature series, main conclusions are drawn in the following two aspects: 1) Winter-half year temperature had good agreement with summer-time temperature variation in SC at decadal scale, while the winter-half year warming in recent decades was more evident than summer-time. 2) Comparison of the tree-ring based temperature series indicated that the start time of the recent warming in eastern China was regional different. It delayed gradually from north to south, starting at least around 1940 AD in the north part, around 1970 AD in the central part and around 1980s in the south part.

How to cite: Cai, Q. and Liu, Y.: Seasonal and regional temperature differences in subtropical China during the past 200 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12603, https://doi.org/10.5194/egusphere-egu2020-12603, 2020.

EGU2020-22409 | Displays | CL1.24

Growth, isotope records and quantitative wood anatomy reveal species-specific couplings in three Mexican conifers inhabiting drought-prone areas

Giovanna Battipaglia, Arturo Pacheco, Julio Camarero, Marin Pompa-Garcia, Jordi Voltas, and Marco Carrer

An improvement of our understanding of how tree species will respond to warmer conditions and longer droughts requires comparing their responses across different environmental settings and considering a multi-proxy approach. We used different xylem traits (tree-ring width, formation of intra-annual density fluctuations –IADFs, wood anatomy, D13C and d18O records) to retrospectively quantify these responses in three conifers inhabiting two different drought-prone areas in northwestern Mexico. A fir species (Abies durangensis) was studied in a higher altitude and more humid site and two pine species were sampled in a nearby, drier site (Pinus engelmannii, Pinus cembroides). Tree-ring-width indices (TRWi) of all the species showed very similar year-to-year variability, likely indicating a common climatic signal throughout the whole region. Wood anatomy analyses, covering over 3.5 million measured cells, showed that P. cembroides lumen area was much smaller than in the other two species and it remained constant along all the studied period (over 64 years). Alternately, cell wall was ticker in P. engelmannii which also presented the highest amount of intra-annual density fluctuations. Climate and wood anatomy correlations pointed out that lumen area was positively affected by winter precipitation for all the species, while cell-wall thickness was negatively affected by current season precipitation in all species but P. cembroides, suggesting this taxon may be better adapted to withstand drought than its coexisting conifer with thinner cell walls resulting from wet winters. Stable isotope analysis showed in P. cembroides some of the lowest cellulose-Δ13C mean values ever reported in the literature for a forest tree species, although there were no particular trend differences between the studied species. As well, no significant δ18O differences where found between the three species, but they shared a common decreasing trend. With very distinct wood anatomical traits (smaller cells, compact morphology), P. cembroides stood out as the better-adapted species in its current environment and could be less affected by future drier climate. P. engelmannii and A. durangensis showed high plasticity at wood anatomical level, allowing them to promptly respond to seasonal water availability, however this feature may provide few advantages on future climate scenarios with longer and more frequent drought spells. Further research, including xylogenesis analysis and monitoring of different populations of these tree species, would be still necessary to reach a clearer understanding of their future responses to weather patterns. Our multi-proxy approach could be used in other forests to characterize the in situ functioning of trees, e.g. growth, water use, and development of strategies for forest management under the current climate change scenarios.

How to cite: Battipaglia, G., Pacheco, A., Camarero, J., Pompa-Garcia, M., Voltas, J., and Carrer, M.: Growth, isotope records and quantitative wood anatomy reveal species-specific couplings in three Mexican conifers inhabiting drought-prone areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22409, https://doi.org/10.5194/egusphere-egu2020-22409, 2020.

The Qinling Mountain is the most important mountain range in eastern China, and is the geographical boundary and the climatic boundary. We investigated tree-ring d18O variations in South and North Slope of the Qinling Mountain, and found that the variations of tree-ring  d18O were significantly correlated over the past two and a half centuries (r=0.641, n=247, p<0.001). And they are negatively correlated with relative humidity and precipitation, and positively correlated with temperature. Compared with the various hydroclimate-related time series in the surrounding area, it is found that both can represent the region's long-term hydroclimate change. The consistent changes in the interannual time scale may be due to the common modulation of ENSO. However, on the decadal time scale, there have been significant divergence between the two tree-ring  d18O series since 1981 and the divergence may be caused by changes in relative humidity at the sampling site, suggesting that in the context of global warming, although the warming range is the same, but the triggered relative humidity changes are not consistent. In addition, changes in PDO may be another cause of low-frequency difference.

How to cite: Li, Q., Liu, Y., and Song, H.: Low-frequency divergence of tree-ring d18O variations on both sides of climatic boundary mountain of eastern China since 1980s, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6467, https://doi.org/10.5194/egusphere-egu2020-6467, 2020.

EGU2020-7730 | Displays | CL1.24

Impact of cloud coverage on growth dynamics of Cedrela nebulosa from an Amazonian pre-montane forest in Central Ecuador

Danny Vargas, Darwin Pucha-Cofrep, Angélica Burneo, Lisseth Carlosama, Madison Herrera, Sheila Serrano, Marco Cerna, A.J. Timothy Jull, Mihály Molnár, István Futó, Anikó Horváth, Marjan Temovski, and László Palcsu

The neotropical tree genus Cedrela (Meliaceae) had originated in dry forest under seasonal climates in North America, then spread to South America during the Oligocene/Early Miocene and finally adapted to deciduous forest in the Pliocene Epoch. At present, Cedrela comprises 17 species distributed in the Neotropics (24N-27S) and in Ecuador; the species Cedrela nebulosa (T.D.Penn. & Daza) generally develops in the altitudinal range of 1100-2400 m a.s.l. The town of Mera, Pastaza in Central Ecuador was the first lowland Amazonian site from which paleoecological data were acquired. It brought about the hypothesis of a 4.5 oC temperature depression during glacial times recently supported by a paleolimnological record in the area. However, despite the dry events during glacial periods there was not a loss of forest structure owing to the importance of cloud cover formation enhanced by the lower temperatures (Montoya et al., 2018).

Our research aims to study the role that cloud cover plays in the pre-montane forest of Mera, located at the Andean eastern flank (1º24'25 S, 78º03'10 W, 1200 m a.s.l) and its coupling with modern climate variations. It is expected that cloud cover will continue moving upwards and narrowing as temperature rises overriding its buffering effect against changes in precipitation, a scenario that threatens the forest stability achieved even during glacial periods. Dendroclimatological methods will be applied with trees of Cedrela nebulosa which receive moisture and constant temperature throughout the year. Interpretations of the phenomenon are expected to be drawn using oxygen isotopes in tree-ring cellulose (δ18OTR) and precipitation (δ18OW), as well as air temperature (T), for which monitoring has been established in the study area. The formation of annual rings in the species has been preliminary validated by radiocarbon dating (14C) using the bomb peak.

The research was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund in the project of GINOP-2.3.2-15-2016-00009 ‘ICER’.

Reference: Montoya et al., 2018. Front. Plant Sci., 9, 196; doi: 10.3389/fpls.2018.00196

How to cite: Vargas, D., Pucha-Cofrep, D., Burneo, A., Carlosama, L., Herrera, M., Serrano, S., Cerna, M., Jull, A. J. T., Molnár, M., Futó, I., Horváth, A., Temovski, M., and Palcsu, L.: Impact of cloud coverage on growth dynamics of Cedrela nebulosa from an Amazonian pre-montane forest in Central Ecuador, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7730, https://doi.org/10.5194/egusphere-egu2020-7730, 2020.

EGU2020-3975 | Displays | CL1.24

Linking tree rings with satellite observations of soil moisture: toward the reconstruction of water availability in the Mediterranean Andes region

Alvaro Gonzalez-Reyes, Duncan Christie, Carlos LeQuesne, Moises Rojas-Badilla, Tomas Muñoz, and Ariel Muñoz

Soil moisture is a key variable into the earth surface dynamics, however long-term in situ measurements are globally scarce. In the Mediterranean Andes of Chile (30° - 37°S) grow the long-lived conifer “Ciprés de la Cordillera” (Austrocedrus chilensis), which is a demonstrated hydroclimatic proxy capable to cover the last millennium. Previous paleoclimatic studies have documented a high sensitivity between tree species and several hydroclimatic variables such as precipitation, streamflow, snowpack and aridity indexes, but the lack of in situ soil moisture observations has precluded an assessment of the spatial growth responses to high-resolution soil moisture variability. Here, we use three A. chilensis chronologies to determine linkages with the satellite-based surface soil moisture product v04.5 generated by ESA. We found significant relationships between tree-growth an a soil moisture field across the 32° - 34°S spatial domain of western South America from January to September during 1985 – 2013 period (r = 0.65; P < 0.001). Temporal relationships between tree-growth and soil moisture satellite observations exhibit a significant spectral coherence associated to cycles around 7 years (P < 0.10) and a clear decadal variability. Based on our preliminary results and the present extensive network of A. chilensis tree-ring chronologies, this species appears as a promising proxy to reconstruct surface soil moisture variability derived from remote sensing over the last millennium in a topographically complex Andean region of South America.

Acknowledgements

Alvaro Gonzalez-Reyes wish to thank: CONICYT+PAI+CONVOCATORIA NACIONAL SUBVENCIÓN A INSTALACIÓN EN LA ACADEMIA CONVOCATORIA AÑO 2019 + PAI77190101

How to cite: Gonzalez-Reyes, A., Christie, D., LeQuesne, C., Rojas-Badilla, M., Muñoz, T., and Muñoz, A.: Linking tree rings with satellite observations of soil moisture: toward the reconstruction of water availability in the Mediterranean Andes region , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3975, https://doi.org/10.5194/egusphere-egu2020-3975, 2020.

EGU2020-9173 | Displays | CL1.24

Compression wood has a minor effect on the climate signal in tree-ring stable isotopes of montane Norway spruce

Karolina Janecka, Ryszard Kaczka, Holger Gärtner, Jill E. Harvey, and Kerstin Treydte

Compression wood is a common tissue present in the trunk, branches and roots of mechanically stressed coniferous trees. Its main role is to increase the mechanical strength and regain the vertical orientation of a leaning stem. Compression wood is thought to influence the climate signal in different tree-ring measures. Hence trees containing compression wood are mostly excluded from tree-ring studies reconstructing past climate variability. There is a large gap of systematic work testing the potential effect of compression wood on the strength of the climate signal in different tree-ring parameters, and especially stable isotope records.

Here we test for the first time the effect of compression wood contained in montane Norway spruce (Picea abies L. Karst) on both δ13C and δ18O tree-ring cellulose records by analyzing compression and opposite wood radii from several disturbed trees together with samples from undisturbed reference trees. We selected four trees tilted by geomorphic processes that were felled by wind, and four undisturbed reference trees in the Tatra Mountains, Poland. We qualitatively classified the strength of compression wood using wood cell anatomical characteristics (tracheid shape, cell wall thickness and presence of intercellular spaces). Then we developed tree-ring width, δ13C and δ18O chronologies from the compression wood radii and the opposite radii of the tilted trees, and from the radii of the reference trees. We tested the effect of compression wood on tree-ring cellulose δ13C and δ18O variability and on the climate signal strength. Only minor differences were found in the means of δ13C and δ18O compression, opposite and reference radii. The statistical relationships between climate variables, δ13C and δ18O remained consistent among all chronologies. Our findings suggest that moderately tilted trees containing compression wood can be used to both reconstruct past geomorphic activity, and stable-isotope based dendroclimatological research.

How to cite: Janecka, K., Kaczka, R., Gärtner, H., Harvey, J. E., and Treydte, K.: Compression wood has a minor effect on the climate signal in tree-ring stable isotopes of montane Norway spruce, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9173, https://doi.org/10.5194/egusphere-egu2020-9173, 2020.

EGU2020-18994 | Displays | CL1.24

Soil water uptake of larch and spruce recorded by stable isotope tracing in the Swiss Alps

Kerstin Treydte, Lukas Bächli, Daniel Nievergelt, Christopher Sargeant, Marina Fonti, Matthias Saurer, Marco M. Lehmann, Arthur Gessler, and Katrin Meusburger

Tree species differ in their ability to utilize existing soil water pools due to their root architecture, but also due to their capacity to react on spatiotemporal variations of the supply. The interplay between variations of water availability and species-specific utilization plays a crucial role in determining the water balance and cycle of ecosystems. Despite a large number of studies on the various aspects of ecosystem water relations, there exists still uncertainty regarding the plasticity of tree roots to take up water from different soil depths in relation to the mechanisms and patterns of water infiltration into the root zone.

We will present results from a holistic tracer irrigation experiment in the Lötschental, Swiss Alps. A subalpine forest plot (150 m2) of Larix decidua and Picea abies was irrigated with, relative to natural soil abundance 18O and 2H depleted glacier water during 10 subsequent days in summer 2019. Water was taken from a nearby glacier river. Irrigation was conducted through a dripping system installed on the ground to increase and keep soil water content at field capacity during the experiment. Throughout the irrigation, soil moisture at three locations in the experimental as well as in a control plot was monitored in 15-minutes intervals in two soil depths. Four larch and four spruce trees per plot were selected and equipped with continuously measuring sapflow sensors. Sampling of soil and tree tissues took place on a daily basis always before noon: Soil samples were taken in close distance to the soil moisture sensors from at least three soil depths, needles and twigs from all experimental trees were sampled in the canopy of the sun-exposed crowns. Every third day xylem samples were taken from the tree stems with a 5mm increment corer. All samples were immediately cooled until the isotopic analysis. In parallel to the soil and tree sampling, physiological measurements were performed on the same trees with a Licor. In addition, also pre-dawn leaf water potentials were measured every third day. Finally, also micro cores were taken several times before, during and after the experiment for monitoring of xylem cell growth as a basis for high-resolution tree-ring isotope analysis at a later project phase. From all soil, needle, twig and stem core samples water was extracted by cryogenic vacuum distillation and d18O and d2H measured.

The data of this experiment together with mechanistic modelling will elucidate the spatiotemporal pattern of soil water dynamics, water uptake by roots and tree-water relations of two species that have ecologically different life forms but are both highly representative for subalpine regions. Understanding their ability to react and capitalize on soil rewetting after dry periods will be crucial for the estimation of their survival potential and competitiveness under future dry and wet extreme events.

How to cite: Treydte, K., Bächli, L., Nievergelt, D., Sargeant, C., Fonti, M., Saurer, M., Lehmann, M. M., Gessler, A., and Meusburger, K.: Soil water uptake of larch and spruce recorded by stable isotope tracing in the Swiss Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18994, https://doi.org/10.5194/egusphere-egu2020-18994, 2020.

Despite a long-standing interest in retrieving intra-annual environmental information from tree-ring features, none of the approaches developed so far for accurately dating intra-ring sector has been validated on observations. Here, we investigated space-for-time association across regular intra-ring sectors for which we estimated the timing of formation. For this purpose, a unique dataset containing quantitative wood anatomy measurements and kinetics of tracheid differentiation was compiled for 45 trees grown in North-East France (three years of wood formation monitoring, for five trees, from three different conifer species). Tracheid dimensions were measured directly on the best anatomical sections at the end of the growing season, while the kinetics of xylem cell differentiation were provided at tree-level by an empirical model of wood formation dynamics. Our results confirmed that the time taken to form sectors of the same width increased from earlywood (composed of wide thin-walled tracheids) to latewood (composed of narrow thick-walled tracheids). This mainly reflected the increase of the duration of cell wall deposition through the growing season, and, to a lesser extent, the augmentation of the number of tracheids per sectors. However, our results also show that regular intra-ring sectors, which were well separated in space, overlapped in time. The overlapping culminated during the summer period, reaching 40 % for 10 sectors. It could be reduced to approx. 30 % by increasing the number of sectors (from 10 to 25, for example), but it cannot be removed. Therefore, successive intra-ring sectors could not be attributed to a succession of separated time intervals by simply using their relative position along the ring. However, the formation of sectors of equivalent ranks were noticeably synchronous between the different trees and years, reaching 80 % of synchronicity for the process of wall thickening. This suggest that data from regular intra-ring sectors could be reliably used to build mean chronologies expressing the common signal of tree populations. Our results show the limits that the xylogenesis process itself imposes on the dating of intra-ring features. They also argue for an in-depth understanding of the association between cell differentiation processes (enlargement, wall thickening and lignification) and wood characteristics (density, anatomy, stable isotope composition).

How to cite: Peres-De-Lis, G., Rathgeber, C., and Ponton, S.: Cutting time slices of tree rings —How intra-annual dynamics of wood formation help to decipher space for time conversion in tree-ring sciences, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22286, https://doi.org/10.5194/egusphere-egu2020-22286, 2020.

EGU2020-10372 | Displays | CL1.24

Using X-ray densitometry of carbonized wood to refine the date of past volcanic eruptions

Frederick Reinig, Giulia Guidobaldi, Daniel Nievergelt, Anne Verstege, Fritz Schweingruber, Alan Crivellaro, Lukas Wacker, Jan Esper, and Ulf Büntgen

Trees that were killed and buried by volcanic eruptions can be used to date an eruption with annual or even sub-annual resolution. The detection and measurement of subfossil tree-ring widths (TRW), however, often remains challenging if the material was carbonized during the eruption. Here, we show that the application of X-ray densitometry can improve the assessment of charcoal. Measuring the wood density of carbonized trees killed by the Laacher See Eruption ~13,000 years ago, facilitates the identification of the outermost rings that were formed just before the eruption. Our results suggest that anatomical techniques should be routinely applied in the assessment of historical, archaeological and subfossil wood.

How to cite: Reinig, F., Guidobaldi, G., Nievergelt, D., Verstege, A., Schweingruber, F., Crivellaro, A., Wacker, L., Esper, J., and Büntgen, U.: Using X-ray densitometry of carbonized wood to refine the date of past volcanic eruptions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10372, https://doi.org/10.5194/egusphere-egu2020-10372, 2020.

Despite its importance for the study of past climates, as well as its significance for carbon sequestration, we lack a mechanistic explanation for how temperature controls wood anatomy. A model of xylogenesis is presented and used to analyse observed tree ring anatomy-temperature relationships in Scots pine (Pinus sylvestris). The model treats the daily proliferation of new cells in the cambium and their subequent differentiation through expansion and secondary wall thickening phases. Control on size at division in the cambium follows recent work on the Arabidopsis shoot apical meristem, and cell enlargement rates in the cambium and enlargement zone are controlled by temperature. The duration of post-cambial enlargement is partially controlled by the rate at which cells pass through the enlargement zone, and partially by the size of this zone, which is controlled by daylength. This set of assumptions is sufficient to generate observed profiles of cell sizes across radial files, with characteristic transitions from earlywood to latewood. After they leave the enlarging zone, cells enter the wall thickening zone, the width of which is also dependent on daylength. A temperature-dependent rate of wall material deposition is insufficient to reproduce the observed gradient in mass density across the radial file, and fails to fully capture the observed seasonality of the correlation between maximum latewood density and temperature. Inclusion of a control on the rate of wall deposition from substrate (sugar) supply, diffusing from the phloem across the radial file, corrects these deficiencies. The resulting model provides a mechanistic explanation of temperature-tree ring relationships, and has the potential to underpin understanding of how climate and CO2 interact in determining the amount of carbon sequestered in trees.

How to cite: Friend, A.: Mechanistic modelling of the influence of temperature on the wood anatomy of Scots pine, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9455, https://doi.org/10.5194/egusphere-egu2020-9455, 2020.

EGU2020-5326 | Displays | CL1.24

Are periodic tangential band of vessels a new anatomical marker of floods in diffuse-porous tree rings?

Jacques C. Tardif, Heather Dickson, France Conciatori, Alexandre Florent Nolin, and Yves Bergeron

Flood rings (FR) in ring-porous species have been widely used to identify flood events in boreal and temperate regions. Flood rings also have been experimentally reproduced in both Quercus and Fraxinus species. More recently, continuous measurement of earlywood cross-sectional vessel area in riparian black ash trees (Fraxinus nigra Marsh.) have shown that not only were FR associated with flood events but that the year-to-year variation in chronologies derived from earlywood cross-sectional vessel area also reflected that in mean spring flow data. These findings led to the reconstruction of the Harricana river spring flow for the period 1770-2016 with more than 65% of the variance in the gauge streamflow data captured (See Nolin et al. presentation at EGU2020). Compared to ring-porous species, anatomical variations in diffuse-porous species in relation to flood events has been little studied.

In this study, both ring-porous black ash and diffuse-porous [trembling aspen (Populus tremuloides Michx.) and balsam poplar (Populus balsamifera L.)] trees were sampled in three floodplain sites located on the shore of Lake Duparquet, northern Quebec. Within each floodplain site, trees were selected so to represent a gradient of exposure to spring flooding. Given that the response of black ash to flooding is well documented (FR), paired sampling was used so each Populus tree was paired with a nearby black ash tree. When feasible, cross-sections from dead trees were also collected. For each tree, the elevation of the tree base to lake water level and the height of extracted cores were noted.  The main objective of the study was to assess if diffuse-porous trembling aspen and balsam poplar growing on floodplains responded like ring-porous black ash to annual spring flooding.

All wood samples were prepared following standard dendrochronological procedures with visual crossdating validated using program COFECHA. In addition to ring-width measurements, a visual determination of the intensity of FR was done for each black ash tree. In diffuse-porous species, a newly observed tree-ring anomaly referred to as tree ring with “periodic tangential band of vessels” (PTBV) were systematically compiled using a two-part numerical code; the first digit corresponding to the start position of the banding sequence within a tree ring and the second digit referring to the number of consecutive bands within a sequence. Two observers independently compiled their observations. The main hypotheses were that years recording PTBV will correspond to FR years and that they will also be associated with those hydroclimatic variables leading to major spring floods. Preliminary analyses indicated that FR and PTBV years display synchronicity. Both anomalies are also associated with hydroclimatic conditions leading to major spring flooding. The absence of a perfect match between ring-porous and diffuse-porous species however as well as the observed variability in the banding patterns still need to be analyzed in relation to flood exposure and core height. The discovery of a new potential flood marker in diffuse-porous tree species opens the door for the novel application of wood-cell anatomy in dendrohydrology and especially when ring-porous species are absent.  

How to cite: Tardif, J. C., Dickson, H., Conciatori, F., Nolin, A. F., and Bergeron, Y.: Are periodic tangential band of vessels a new anatomical marker of floods in diffuse-porous tree rings?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5326, https://doi.org/10.5194/egusphere-egu2020-5326, 2020.

EGU2020-22520 | Displays | CL1.24

Growth and wood anatomical adjustments of Fraxinus excelsior to the infestation of the invasive fungus Hymenoscyphus fraxineus

Stefan Klesse, Georg von Arx, Martin Gossner, Christian Hug, Andreas Rigling, and Valentin Queloz

Since the 1990s the invasive fungus Hymenoscyphus fraxineus has led to severe crown dieback and high mortality rates in Fraxinus excelsior in Europe. In addition to a strong genetic control of tolerance to the fungus, previous studies have found high landscape variability in the severity of dieback symptoms. However, apart from heat and humidity-related climate conditions favoring fungal development the mechanistic understanding of why smaller or slower growing trees are more susceptible to dieback remains less well understood.

Here, we analyzed three stands in Switzerland with a unique setting of eight years of intra-annual diameter growth and annual crown health assessments, together with ring-width and quantitative wood anatomical measurements preceding the monitoring, to investigate if wood anatomical adjustments can help better explaining the size-related dieback phenomenon.

We found that slower growing trees or trees with smaller crowns already before the arrival of the fungus were more susceptible to dieback and mortality. We show that defoliation directly reduces growth as well as maximum earlywood vessel size, and that the positive relationship between vessel size and growth rate causes a positive feedback amplifying crown dieback. Because leaf necrosis happens during late summer when ring formation has already finished, photosynthesis is heavily reduced during a time when non-structural carbohydrates (NSCs, sugars and starch) are stored. Thus, we hypothesize that a lack of NSCs (mainly sugars) leads to lower turgor pressure and smaller earlywood vessels in the next year impeding efficient water transport and photosynthesis, and is responsible why smaller and slower growing trees show stronger symptoms of dieback and higher mortality rates.

How to cite: Klesse, S., von Arx, G., Gossner, M., Hug, C., Rigling, A., and Queloz, V.: Growth and wood anatomical adjustments of Fraxinus excelsior to the infestation of the invasive fungus Hymenoscyphus fraxineus, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22520, https://doi.org/10.5194/egusphere-egu2020-22520, 2020.

EGU2020-7395 | Displays | CL1.24 | Highlight

An integrated approach for monitoring the post-fire responses of Pinus pinaster Aiton

Francesco Niccoli, Veronica De Micco, Simona Castaldi, Riccardo Valentini, and Giovanna Battipaglia

In the Mediterranean Basin, fire incidence has increased dramatically during the past decades and fire is expected to become more severe in the future due to climate change. The effects of fires on forest ecosystems can last several years: the survival of fire-injured trees depend not only on the adaptive traits of individual species, but also on the ability of trees to tolerate post-fire environmental constraints.

Several trees, although initially resisting the strong heat injury caused by the high temperatures of the flames, can reduce their vigor and finally die after a few years after fire, due to serious damage at the canopy level or due to the difficult conditions arising in the surrounding stands. The study of long-term trends of the eco-physiological processes in plants subjected to fire are of fundamental importance in planning management actions and restoration strategies of burned areas.

In this context, our research aims to identify and understand the impacts that post-fire conditions can have on the growth and eco-physiology of Pinus pinaster Aiton, through the study of a forest stand hit by a devastating fire that affected the Vesuvius National Park, in Southern Italy, in July 2017. This study combines the dendrochronological analyses with the monitoring of xylogenesis, supported by the measurements in continuum of the eco-physiological parameters of the individual plants through the use of the innovative TreeTalker device.

The results of the dendrochronological analyses showed that, at the end of 2018, despite the strong stress suffered and a significant decrease in growth, the plants showed a very limited mortality rate: only 2-10% of the individuals reduced their vigor. However, preliminary data on xyologenesis, collected from spring 2019 to nowadays, suggest how, after two years, the fire of 2017 is still influencing the cambium activity of individual plants: the productivity and the differentiation kinetics of xylem cells are strongly influenced by the damages suffered at the canopy level.

The monitoring activities will continue for the next few years in order to identify the recovery times of the plant to return to normal vital functions, as well as, eventually, understand the eco-physiological processes that lead to a reduction in productivity or even to death.

How to cite: Niccoli, F., De Micco, V., Castaldi, S., Valentini, R., and Battipaglia, G.: An integrated approach for monitoring the post-fire responses of Pinus pinaster Aiton, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7395, https://doi.org/10.5194/egusphere-egu2020-7395, 2020.

EGU2020-11598 | Displays | CL1.24

Forty years of growth-climate relationships in a progeny test of Pinus pinaster in Sardinia

Elio Fierravanti, Serena Antonucci, Giovanni Santopuoli, Roberto Tognetti, and Marco Marchetti

The area of the Mediterranean basin is expected to be threatened by more severe and prolonged droughts and heat waves. Therefore, a more exhaustive knowledge about growth-climate responses in forest trees is necessary in order to adopt mitigation and adaptation strategies in forest management and planning. Climate change will cause shifts of the climate envelope for tree species, potentially leading to migration of species distribution. Under these circumstances, investigations on growth-climate relationships in trees of different provenances of the same species are important for the success of climate-smart forestry. Provenance trials are useful for understanding the response of this species to drought stress. We studied growth-climate relationships in 40-year-old trees of maritime pine (Pinus pinaster Ait.) from five provenances (Corsica, Portugal, Tuscany, and two native ones: Telti and Limbara) grown on four different sites in Sardinia island (Montes, Montarbu, Uatzo and Usinavà), Italy. In details, for all trees in each site, measurements of stem diameter at breast height (DBH) and plant height (H) were collected. For each site-provenance combination, two incremental cores were collected for each tree; successively, samples were cross-dated and standardized. Weather data (temperature and precipitation) were collected from CRU data online (http://www.cru.uea.ac.uk/). Differences in DBH and H were found among sites. In particular, the highest values for DBH and H were found in Montes and Uatzo, respectively. Instead, Montarbu showed the lowest mean values for both parameters. Differences among provenances were also observed. Specifically, in Montarbu, the greatest H were found for Tuscany and the lowest for Corsica (p<0.0001). The same pattern was also found for DBH, but without statistical significance (p>0.5). In Uatzo, Corsica showed the highest mean values for both H and DBH, while the lowest DBH was observed for Tuscany (p=0.0008), and the lowest H was found for Limbara (p<0.0001) provenance, respectively. No significant differences were found for both H and DBH in Montes. Finally, in Usinavà, Limbara showed significant higher values, for both H and DBH, compared to the other provenances (p<0.001). Temperature had a greater influence on growth traits in Montarbu, especially for spring-summer period, with Telti and Tuscany having the most significant correlation. Precipitation, instead, mostly affected Usinavà. On the other hand, in Montes and Uatzo, no significant correlations between climate and growth were observed. However, different climate-growth relationships were observed among provenances. In conclusion, our results suggest that, after 40 years of growth, greater H and DBH were found in the sites with lower temperature and higher precipitation (Uatzo and Montes). Interestingly, in Uatzo, Corsica showed the highest values of both DBH and H, while Limbara presented the lowest growth. Noteworthy, Limbara showed greater H in Usinavà (the warmest and driest site), whereas in the previous survey, Limbara had the lowest H. These results represent a further step in identifying potential genetic variation in tree growth and drought tolerance of maritime pine in Mediterranean conditions. Data collected in long-term experimental plots and repeated measurements are confirmed of fundamental importance to estimate the resilience of forest species to climatic changes.

How to cite: Fierravanti, E., Antonucci, S., Santopuoli, G., Tognetti, R., and Marchetti, M.: Forty years of growth-climate relationships in a progeny test of Pinus pinaster in Sardinia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11598, https://doi.org/10.5194/egusphere-egu2020-11598, 2020.

EGU2020-2713 | Displays | CL1.24

Combining tree-ring and stable isotope analyses to differentiate between the effects of weather and edaphic factors on tree growth

Frank Thomas

EGU2020-8232 | Displays | CL1.24

Climate warming does not adequately translate to increased radial stem growth of coniferous species along the Alpine treeline ecotone

Walter Oberhuber, Ursula Bendler, Vanessa Gamper, Jacob Geier, Anna Hölzl, Werner Kofler, Hanna Krismer, Barbara Waldboth, and Gerhard Wieser

It is well established, that tree growth at high elevations is mainly limited by low temperature during the growing season and climate warming was frequently found to lead to more growth and expansion of trees into alpine tundra. However, dendroclimatological studies revealed contradictory growth response to recent climate warming at the upper elevational limit of tree growth, and transplant experiments unveiled that high elevation tree provenances are not adequately benefiting from higher temperatures when planted at lower elevation. We therefore re-evaluated growth response of trees to recent climate warming by developing tree ring series of co-occurring conifers (Swiss stone pine (Pinus cembra), European larch (Larix decidua), and Norway spruce (Picea abies)) along several altitudinal transects stretching from the subalpine zone to the krummholz-limit (1630–2290 m asl; n=503 trees) in the Central European Alps (CEA). We evaluated whether trends in basal area increment (BAI) are in line with two phases of climate warming which occurred from 1915–1953 and from mid-1970s until 2015. We expected that BAI of all species shows an increasing trend consistent with distinct climate warming during the study period (1915–2015) amounting to >2 °C. Although enhanced tree growth was detected in all species in response to climate warming, results revealed that at subalpine sites (i) intensified climate warming since mid-1970s did not lead to corresponding increase in BAI, and (ii) increase in summer temperature primarily favored growth of Norway spruce, although Swiss stone pine dominates at high altitude in the CEA and therefore was expected to mainly benefit from climate warming. At treeline BAI increase was above the determined age trend in all species, whereas at the krummholz-limit only deciduous larch showed minor growth increase. We explain missing adequate growth response to recent climate warming (i) by strengthened competition for resources (primarily nutrients and light) in increasingly denser stands at subalpine sites leading to changes in carbon allocation among tree organs, and (ii) by frost desiccation injuries of evergreen tree species at the krummholz-limit. Our findings indicate that tree growth response to climate warming at high elevation is possibly nonlinear, and that increasing competition for resources and the influence of climate factors beyond the growing season impair stem growth. 

How to cite: Oberhuber, W., Bendler, U., Gamper, V., Geier, J., Hölzl, A., Kofler, W., Krismer, H., Waldboth, B., and Wieser, G.: Climate warming does not adequately translate to increased radial stem growth of coniferous species along the Alpine treeline ecotone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8232, https://doi.org/10.5194/egusphere-egu2020-8232, 2020.

EGU2020-3680 | Displays | CL1.24

Stable Isotopes in Tree Rings: Inferring Physiological, Climatic and Environmental Responses

Rolf Siegwolf, Renée Brooks, John Roden, and Matthias Saurer

We are editing a new book in the Springer Tree Physiology Series entitled “Stable Isotopes in Tree Rings: Inferring Physiological, Climatic and Environmental Responses” due out in 2020. Because trees produce annual growth increments that can be precisely dated, annual and interannual variations in tree ring width and stable carbon, oxygen and hydrogen isotopes provide detailed records of past physiological responses to biotic and abiotic impacts over many decades and centuries. In contrast to non-living chronologies (ice cores, stalagmites etc.), trees modify base physical inputs in response to local microclimates through their physiological response to light, temperature, humidity, water availability, CO2 and nutrients. Although this can make interpretation of isotopic variation in organic matter more complicated, it also means that these proxies can provide a wealth of additional information. Thus, an understanding of the combined physical and biological drivers of isotope fractionation in tree rings is crucial for paleoclimate interpretation. In addition, tree rings and stable isotopes contained therein integrate dynamic environmental, phenological and developmental variation that can be used to study present organism function and recent anthropogenic influences apart from their use as proxies for conditions in the distant past. The last few decades have seen tremendous progress in understanding the mechanisms by which tree physiology modifies stable isotope fractionation in organic matter.

This book will be the first to comprehensively cover the field of tree ring stable isotopes. This volume highlights how tree ring stable isotopes have been used to address a range of environmental issues from paleoclimatology to forest management, and anthropogenic impacts on forest growth. It evaluates strengths and weaknesses of isotope applications in tree rings. This book focuses on physiological mechanisms that influence isotopic signals and reflect environmental impacts. Each of the 25 chapters has been authored by leading experts providing the most recent developments in the area.

How to cite: Siegwolf, R., Brooks, R., Roden, J., and Saurer, M.: Stable Isotopes in Tree Rings: Inferring Physiological, Climatic and Environmental Responses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3680, https://doi.org/10.5194/egusphere-egu2020-3680, 2020.

CL1.26 – Speleothem and Continental Carbonate Archives of Modern and Palaeoenvironmental Change

EGU2020-1686 | Displays | CL1.26

Insights into recharge processes and speleothem proxy archives from long-term monitoring networks of cave drip water hydrology

Andy Baker, Pauline Treble, Andreas Hartmann, Mark Cuthbert, Monika Markowska, Romane Berthelin, Carol Tadros, Matthias Leopold, and Stuart Hankin

Since 2010 we have established cave drip water hydrological monitoring networks in four contrasting climate zones (Mediterranean, montane, semi-arid and sub-tropical) across continental Australia. Deploying over one hundred automated drip loggers, we combine these long-term monitoring datasets with climate and water isotope data, lidar mapping, electrical resistivity imaging and karst hydrological modelling to provide insights into recharge processes and the impact of hydrological variability on speleothem proxy archives.

We identify increases in drip discharge and compare the timing of those events to antecedent climate conditions (rainfall, evapotranspiration). We find rainfall recharge thresholds vary with climate. At our montane site, recharge occurs after 13 to 31 mm rainfall events, depending on antecedent conditions. At the semi-arid site, recharge occurs after 40 mm rainfall events, and at our sub-tropical sites, recharge occurs following all instances where > 93 mm / week of precipitation occurs, with lower precipitation thresholds (down to 33 mm / week) possible depending on antecedent conditions and at sites with limited vegetation cover. We use these recharge thresholds to constrain simple soil moisture balance models to better understand soil and karst storage volumes. Combined with electrical resistivity imaging, we can relate recharge to the caves to subsurface water flow paths and karst water stores.

At our montane and Mediterranean climate sites, relatively consistent drip water isotopic composition confirms the presence of well-mixed water stores. This allows us to quantify the extent of speleothem oxygen isotope variability due to fractionation associated with changes in drip rate. We identify significant differences in long-term mean drip rates between different drip sites within a cave, and significant differences in event-based drip rate responses within a cave. Drip hydrological variability helps explain the within-cave variability of speleothem oxygen isotope composition observed at both sites, and helps identify the primary drip water oxygen isotope signal.

At our semi-arid site, drip water isotopic composition is dominated by epikarst evaporation and our drip water monitoring demonstrates that recharge events are infrequent (~1.6 per year). Using both observational and modelling data, we quantify the relative importance of evaporative fractionation in the epikarst and fractionation during calcite precipitation. Using modern speleothem samples, we demonstrate that the oxygen isotope signal in this water limited environment reflects the balance between the oxygen isotope composition of recharge and its subsequent fractionation in the soil, epikarst and cave.

How to cite: Baker, A., Treble, P., Hartmann, A., Cuthbert, M., Markowska, M., Berthelin, R., Tadros, C., Leopold, M., and Hankin, S.: Insights into recharge processes and speleothem proxy archives from long-term monitoring networks of cave drip water hydrology , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1686, https://doi.org/10.5194/egusphere-egu2020-1686, 2020.

EGU2020-895 | Displays | CL1.26

Hydroclimate variability of western Thailand during the last 1400 years

sakonvan chawchai, Guangxin Liu, Raphael Bissen, Denis Scholz, Dana F.C. Riechelmann, Hubert Vonhof, Regina Mertz-Krause, Liangcheng Tan, Hong-Wei Chiang, and Xianfeng Wang

Mainland Southeast Asia is located on the route of moisture transport of the Indian summer monsoon where hydroclimate records from speleothems have rarely been investigated. Here we present a new multi-proxy data set (δ18O, δ13C, trace elements and grayscale values) of stalagmite KPC1 from Khao Prae cave in western Thailand spanning from approximately 500 CE to 1900 CE. Our multi-proxy data reveal high variability between wet and dry periods during 500-850 CE and 1150-1350 CE, a stable condition between 850-1150 CE, and an overall trend towards dry conditions since 1350 CE. The δ13C, trace elements and grayscale values suggest centennial-scale fluctuations driven by local hydrological process at the cave site. In contrast, variations in stalagmite δ18O reflect integrated changes in rainfall amount from the Indian summer monsoon, supported by two-year monitoring rainfall data. In comparison with other Asian Monsoon records for the last millennia, the KPC1 record shows similarity with speleothem δ18O records from India, as well as lakes and tree-ring data from mainland Southeast Asia but diverges from records from equatorial regions and the western Pacific. We conclude that hydroclimate variability in the western side of Mainland Southeast Asia is mainly driven by changes in moisture transport from the Indian summer monsoon and modulated by expansion and contraction of the Intertropical convergent zone (ITCZ). However, Pacific Walker circulation (PWC) may have been the overriding control on precipitation on the eastern sides of Mainland Southeast Asia located closely to the western Pacific.

How to cite: chawchai, S., Liu, G., Bissen, R., Scholz, D., Riechelmann, D. F. C., Vonhof, H., Mertz-Krause, R., Tan, L., Chiang, H.-W., and Wang, X.: Hydroclimate variability of western Thailand during the last 1400 years , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-895, https://doi.org/10.5194/egusphere-egu2020-895, 2020.

EGU2020-140 | Displays | CL1.26

A long continuous palaeoclimate-palaeoenvironmental record of the last glacial period from southern Italy and implications for the coexistence of Anatomically Modern Humans and Neanderthals

Andrea Columbu, Veronica Chiarini, Christoph Spötl, Jo De Waele, Stefano Benazzi, John Hellstrom, and Hai Cheng

Western Mediterranean speleothem palaeoclimate records covering the entire Last Glacial period are extremely rare and discontinuous, because the progressive aridity and temperature decrease inhibited continuous carbonate deposition (Budsky et al., 2019; Perez-Mejias et al., 2019). This lack of high-resolution archives impedes a better understanding of key issues regarding the Late Quaternary, such as: 1) The spatio-temporal teleconnection between the northern latitudes and the Western Mediterranean area during the expansion/contraction of ice sheets related to DO cyclicity and AMOC changes; and 2) the palaeoclimate and palaeoenvironmental conditions during the scarcely known MIS 3, when the first Anatomically Modern Humans arrived on the Italian peninsula about 45.5 ka (Benazzi et al., 2011), sharing the territory with the already settled Neanderthals until the disappearance of the latter around 42 ka.

We present a well-dated continuous stalagmite record from Pozzo Cucù cave (southern Italy, Apulia) spanning from 106.0 +2.8/-2.7 to 26.6 +0.8/-0.9 ka, with an average uncertainty of less than 1 ka. The age model is based on 27 U-Th dates and about 2600 δ18O and δ13C analyses were performed at an average resolution of about 40 years. δ18O and δ13C are interpreted as rainfall and soil bioproductivity indicators, respectively, although moisture source possibly had a role in modulating δ18O. The δ18O-δ13C timeseries is the first western Mediterranean speleothem record duplicating the Greenland ice core record (NGRIP) for MIS 5 to 3, and showing a striking resemblance for most of the DO cycles, especially from DO 22 to DO 16 and from DO 11 to DO 4. Discrepancies exist too, especially during the early MIS 3. Interestingly, the speleothem does not show evidence of many of the most severe climate events affecting the northern latitudes (e.g. Heinrich events). This calls for a re-evaluation of the role of the northern high latitudes in triggering major cooling/drying events across the Mediterranean region.

The oldest remains of Anatomically Modern Humans in Europe were found in Apulia (about 45.5 ka), and Neanderthals are known to have existed there at least until 42 ka. Thus, our new record provides a palaeoclimate-palaeoenvironmental background for the arrival of Anatomically Modern Humans in southern Europe, their coexistence with the Neanderthals, and the disappearance of the latter, which marks one of the most important biocultural transitions in human history (Wolf et al., 2018).

 

References

 

Benazzi S et al., 2011. Early dispersal of modern humans in Europe and implications for Neanderthal behavior. Nature

 

Budsky A et al., 2019. Western Mediterranean climate response to Dansgaard/Oeschger Events: New Insights From Speleothem Records. GRL

 

Pérez-Mejías C et al., 2019. Orbital-to-millennial scale climate variability during Marine Isotope Stages 5 to 3 in northeast Iberia. QSR

 

Wolf D et al., 2018. Climate deteriorations and Neanderthal demise in interior Iberia. SR

How to cite: Columbu, A., Chiarini, V., Spötl, C., De Waele, J., Benazzi, S., Hellstrom, J., and Cheng, H.: A long continuous palaeoclimate-palaeoenvironmental record of the last glacial period from southern Italy and implications for the coexistence of Anatomically Modern Humans and Neanderthals, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-140, https://doi.org/10.5194/egusphere-egu2020-140, 2020.

EGU2020-4800 | Displays | CL1.26

History of Late Pleistocene Permafrost in Southern Ural revealed by studies of speleothems and cave sediments

Yuri Dublyansky, Gabriella Koltai, Denis Scholz, Michael Meyer, Luke Gliganic, Olga Kadebskaya, Hai Cheng, and Christoph Spötl

In the area of the European-Asian border, in the Ural Mountains, the southern boundary of permafrost has moved in meridional direction by more than 1000 km in response to Quaternary climate variations. During cold climate states, permafrost extended as far south as the Southern Ural (53°N). We studied three independent archives in three caves in the Southern Ural (Shulgan-Tash, Victoria and Grandioznaya) in order to gain insights into the long-term dynamics of permafrost in the region.

Common speleothems (e.g., stalagmites and flowstone) require liquid water to form, and are therefore restricted to permafrost-free periods. Cryogenic cave carbonates (CCC) form when the temperature in the cave is close to or slightly below 0°C (permafrost conditions). These two types of speleothems were dated using the 230Th-U method in order to determine the timing of permafrost and permafrost-free conditions. As a novel indicator of freezing conditions in caves we identified frost wedges in silty cave sediments filled by sand. These sands were dated using OSL to constrain the timing of sub-zero rock temperatures (required to form frost wedges) in caves.

Stalagmites, abundant in in South Uralian caves, exhibit two prominent growth phases, associated with interglacials – MIS 5e and Holocene. In addition, mm-thin layers of flowstone formed in one chamber of Shulgan-Tash cave in association with smaller-scale warming episodes during MIS 3 (Greenland interstadials GI-9 and GI-8) and MIS 2 (GI-1; Bølling-Allerød). All CCC in Shulgan-Tash and Victora caves yielded MIS 3 ages, typically lagging cooling events (Greenland stadials) GS-16.1, GS-15.1, GS-13, GS-12, GS-10, and GS-7 by several hundred years up to one 1 ka. CCC from Grandioznaya cave formed during a single episode following GS-1 (Younger Dryas). Sand filling frost wedges in Victoria cave was washed into the cave during MIS 2, ca. 24-25 ka BP. Apparently, during this time the karst massif hosting the cave was engulfed by permafrost (to a depth of at least 90 m) and flow of water through the cave was severely restricted, which led to back-flooding of the cave passage and the accumulation of several m-thick silt deposits, interspersed with thin sand layers.

How to cite: Dublyansky, Y., Koltai, G., Scholz, D., Meyer, M., Gliganic, L., Kadebskaya, O., Cheng, H., and Spötl, C.: History of Late Pleistocene Permafrost in Southern Ural revealed by studies of speleothems and cave sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4800, https://doi.org/10.5194/egusphere-egu2020-4800, 2020.

EGU2020-16623 | Displays | CL1.26

Boron isotope systematics of lacustrine carbonates: a new approach for tracing the palaeo-hydroclimatic evolution of the Dead Sea

Hana Jurikova, Ina Neugebauer, Birgit Plessen, Michael Henehan, Rik Tjallingii, Markus J. Schwab, Achim Brauer, and Cécile Blanchet

Sedimentary sequences of the Dead Sea provide a unique high-resolution archive of past climatic changes in the Mediterranean-Levant, a key region for human migration out of Africa at the boundary of hemispheric climate belts. The well-preserved record of the Holocene Dead Sea and its Last Glacial precursor Lake Lisan is characterised by annual laminations – varves – composed of alternate layers of aragonite and detritus. Past lake level reconstructions suggest large fluctuations in the regional hydrological balance driven by abrupt climatic events, including a pronounced transition from lake level high-stand during the Last Glacial Maximum (LGM) to a low-stand at the onset of the Holocene [1]. On millennial timescales these changes have been associated with temperature variations recorded in the Greenland ice core, underscoring the potential of the Dead Sea to offer both regional and global perspectives on high-amplitude climatic events in the past. However, our ability to fully read the Dead Sea record critically depends on reliable extraction of palaeo-climatic and palaeo-environmental data from lacustrine carbonates, and an improved understanding of their formation. Here we present carbon, oxygen, boron isotope and trace element composition of hand-picked authigenic aragonite from a Dead Sea deep-drilling core (ICDP 5017-1; [2]) and shore outcrops. While traditionally used as a pH-proxy [3], we examine the possibility of applying boron geochemistry for reconstructing the source water and brine composition [4]. Using our innovative combined approach, we elucidate the palaeo-hydroclimatic evolution of the Dead Sea during intervals of major environmental changes since the end of the LGM.

[1] Torfstein A., et al. (2013) Quat. Sci. Rev. 69, 1–7.
[2] Neugebauer I., et al. (2014) Quat. Sci. Rev. 102, 149–165.
[3] Jurikova H., et al. (2019) Geochim. Cosmochim. Acta 248, 370–386.
[4] Vengosh A., et al. (1991) Geochim. Cosmochim. Acta 55, 1689–1695.

How to cite: Jurikova, H., Neugebauer, I., Plessen, B., Henehan, M., Tjallingii, R., Schwab, M. J., Brauer, A., and Blanchet, C.: Boron isotope systematics of lacustrine carbonates: a new approach for tracing the palaeo-hydroclimatic evolution of the Dead Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16623, https://doi.org/10.5194/egusphere-egu2020-16623, 2020.

EGU2020-18849 | Displays | CL1.26

Speleothem water content as a proxy for past moisture variability in stalagmites from Milandre Cave, Switzerland

Stéphane Affolter, Dominik Fleitmann, Anamaria Häuselmann, and Markus Leuenberger

Speleothems are powerful archives able to gain relevant paleoclimate information on temperature, moisture source or rainfall. Specifically, there is a need for new proxy related to past moisture availability, which would allow reconstruction especially in Europe, where such records are lacking. Among speleothem-based records, quantitative estimation of the water content (hereafter WC) remains rare as it is generally a collateral result of more challenging analyses such as isotope determinations of fluid inclusions or noble gases. Using a recently developed method to analyse speleothem fluid inclusion water isotopes (Affolter et al., 2014), we obtained a record of more than 250 WC data covering the Younger Dryas and Holocene intervals with a decadal to multi-decadal resolution measured on two Swiss stalagmites from Milandre Cave, NW Switzerland. The crushing of samples in the measuring line resulted in a mean WC of 1.9 microlitre of water per gram of crushed calcite from both stalagmites. The comparison with other paleohumidity-related indicators from central Europe suggests that the WC is related to past moisture variability. In addition, trace elements strontium (Sr) and magnesium (Mg) measurements as proxies for the water residence time and growth rate respectively are ongoing at the Department of Environmental Sciences at the University of Basel, which will further help with the interpretation of the WC. New reconstruction of past moisture variability together with speleothem fluid inclusion temperature estimates (Affolter et al., 2019) would allow a better understanding of the central European climate variability during the Holocene.

Affolter, S., Häuselmann, A., Fleitmann, D., Edwards, R. L., Cheng, H., and Leuenberger, M.: Central Europe temperature constrained by speleothem fluid inclusion water isotopes over the past 14,000 years, Sci Adv, 5, eaav3809, 10.1126/sciadv.aav3809, 2019.

Affolter, S., Fleitmann, D., and Leuenberger, M.: New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS), Clim Past, 10, 1291-1304, DOI 10.5194/cp-10-1291-2014, 2014.

How to cite: Affolter, S., Fleitmann, D., Häuselmann, A., and Leuenberger, M.: Speleothem water content as a proxy for past moisture variability in stalagmites from Milandre Cave, Switzerland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18849, https://doi.org/10.5194/egusphere-egu2020-18849, 2020.

Climate- and environmental-proxy time series obtained from different archives, such as speleothems, allowed for major leaps in the understanding of past climate and environmental dynamics. However, age uncertainties that arise from the applied dating techniques and from the proxy sampling methodologies, respectively, are often neglected. These age uncertainties are important when leads and lags between different proxy time series are examined or if the relationship to climate-forcing is investigated. This is most pronounced when examining data that detail events of sub-centennial down sub-annual resolution, where noise is not smoothed by a low resolution sampling (e.g. conventional dental drill), or in records karst systems where the noise is inherently high (e.g. water-limited environments).

We explore the use of dynamic time warping with a hierarchical aggregation layer (or HDTW) on multiple trajectories to generate an indexing table for the input samples. We hypothesize that this aggregation process results a temporally aligned references table (of the original trajectories) and allows for an analytical space to investigate and distinguish between local and non-local phenomena. We aim to compare sample derived features, such as peaks in trace element, organic fluorescence analyses and potentially δ18O (not tested here), on the derived analytical space, for the purpose of enabling a robust and simplified approach to multi-sample age modelling.

We show HDTW compatibility to existing peak-counting methodologies applied on laser-ablation trace element analysis and confocal fluoresce laser microscopy. As a case study, we use HDTW on three published micron-scale elemental measurements of samples from Mediterranean climates with strong dry summer – wet winter seasonality - two from south-western Australia (Nagra et al., 2017) and one from the Soreq Cave in the Eastern Mediterranean (Orland et al., 2014). The HDTW continuous space for these samples yields results that are within the published age constraints, without the need to stack multiple traverses and manually account for double or missing peaks.

HDTW is an important new tool for locating and identifying local and non-local phenomena in micron scale measurements (e.g. parallel laser ablation trace element traverses) by automatically aligning several coeval time axes of similar proxies. In the future HDTW could be applied for regional scale investigation (e.g. a coeval speleothems from a single cave or the same region, multiple cores from a single lake) allowing the unbiased fine-tuning between different environmental archives registering similar forcing mechanisms.

Nagra, G., Treble, P.C., Andersen, M.S., Bajo, P., Hellstrom, J.C., Baker, A., 2017. Dating stalagmites in Mediterranean climates using annual trace element cycles. Sci. Rep. 7, 621.

Orland, I.J., Burstyn, Y., Bar-Matthews, M., Kozdon, R., Ayalon, A., Matthews, A., Valley, J.W., 2014. Seasonal climate signals (1990–2008) in a modern Soreq Cave stalagmite as revealed by high-resolution geochemical analysis. Chem. Geol. 363, 322–333.

How to cite: Burstyn, Y. and Gazit, A.: Using hierarchical dynamic time warping to synchronize age-uncertain (proxy) time series, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1054, https://doi.org/10.5194/egusphere-egu2020-1054, 2020.

Stalagmites can provide long, accurate, and continuous palaeoenvironmental records of the Earth’s surface. However, insufficient or biased information on stalagmites has also been derived from some observed data, such as fluorescent annual-layer patterns and cave-climate monitoring data, which indicate sub-annual stalagmite growth rates can change with seasonal cave environments. Observations of stalagmite growth processes compared with cave-climate monitoring data provide an estimate of changes in growth rate. However, this method is considered unreliable as growth rates of normal stalagmites (~ 0.001 – 0.1 mm yr-1) cannot provide sufficient data for validation. Many caves developed in uplifted Quaternary coral-limestones of subtropical islands in the Northeastern Pacific region.

The Gyokusen-do Cave in the southern part of Okinawa Island, southwest Japan, is famous for frequent and massive speleothems and as a tourist destination. This cave has stalagmites with a high growth rate (~ 1 mm yr-1) along a pathway laid in 1987. The cave climate (temperature, carbon dioxide concentration, drop rates, and water chemistry) has been monitored since the summer of 2017. Distinctive seasonal changes in the cave environment are apparent in the data. In this study, we sampled sub-annual layer patterns collected in January 2019 from a stalagmite (~ 20 mm in length) on a stone wall in the cave and compared them with the cave-climate monitoring data and climate records near the study site, thus verifying the formation of annual layers. About 31 or 32 years are reflected in the (0.63 – 0.65 mm yr-1) in the stalagmite record, because the stone wall was constructed in 1987. From base to top, the stalagmite has about 30 couplets of a transparent layer and a coarsely crystalline zone. The uppermost 5 mm has continuous layers without any hiatus, whereas concave points such as the drop position have thick layers of large crystals still in development. The stalagmite surface is covered with relatively large crystals that developed in the winter of 2018, which suggests that the winter climate produces coarse-grained layers precipitated during the winter season. The cave-climate monitoring data, collected about 150 m from the stalagmite, shows calcium ion concentrations of around 1 – 1.5 mol m-3, temperature around 24 – 25 °C, and drastically different carbon dioxide concentrations in summer and winter seasons (around 400 – 500 ppm from the end of October to the beginning of May and around 2500 ppm from the middle of May to the middle of October). Precipitation and drop rates are highest in summer as compared to other seasons. Stalagmite growth simulations based on the monitoring data showed that the growth rate during the summer season was about five times that in winter. These results suggest that alternation between the transparent layer precipitated in summer and the coarse-grained layer precipitated in winter make annual layers that were strongly affected by drop rates and carbon dioxide concentrations. As some seasonal layers have significantly different thicknesses, more precise comparisons with cave-climate data are required to fully understand on the processes that occur in cave environments.

How to cite: Ishihara, Y., Ooka, S., Sasaki, H., and Yoshimura, K.: Comparison of annual-layer formation pattern and climate monitoring data: an example of a stalagmite from Gyokusen-do Cave, Okinawa Island, southwest Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2536, https://doi.org/10.5194/egusphere-egu2020-2536, 2020.

EGU2020-11089 | Displays | CL1.26

Monitoring activities in several caves along a transect stretching from the Adriatic Sea to the Aggtelek Karst (NE-Hungary): trace element and stable isotopic compositions of drip waters and cave carbonates

György Czuppon, Attila Demény, Neven Bocic, Nenad Buzjak, Krisztina Kármán, Zsófia Kovács, Szabolcs Leél-Össy, Szilárd John, Mihály Óvári, and Emese Bottyán

Several caves have been monitored along a transect stretching from the Adriatic Sea to the Aggtelek Karst (NE-Hungary) including two caves in Croatia and three caves in Hungary:  1) Cerovacke cave (~25 km far from the sea, Velebit Mt.), 2) Baraceve cave (~70 km far from the sea), 3) Csodabogyós Cave (~320 km far from the sea, Keszthely Mt.), 4) Béke and Baradla Caves (~700 km far from the sea, Aggtelek Karst). The monitoring activities in each caves included microclimate measurements, analyses of the elemental and stable isotope compositions of drip water and precipitation, as well as stable isotope measurements of modern calcite precipitates formed on light bulbs or glass plates.

The stable isotope compositions of the drip waters in all cases (except one) show systematically lower values than those found in amount-weighted annual precipitation suggesting that the source of the infiltrating water dominantly derives from winter precipitation. Moreover, the relative contribution of winter precipitation can vary even within same cave system reflecting also the local morphology of the karst above the cave. The d-excess values of the drip waters show an increasing trend from the Aggtelek Karst towards to Adriatic Sea, showing higher values than 10‰ (Béke-C.: 10.3‰; Csodabogyós-C.: 11‰, Baraceve-C.: 12‰, Cerovacke: 15‰). These observations indicate significant contribution from moisture originated from the Mediterranean Basin to the infiltrating water. The monitoring of the precipitation support these findings as among the marine moisture source the Mediterranean is the most dominant even relative far from the sea.

The trace element systematics in drip waters indicate that PCP likely took place during relatively dry periods. In some caves the change of the hydrological condition affected both the trace element composition of the drip water and the stable isotope composition of the modern calcite precipitates. Although the calcite-water isotope fractionations show significant scatter even within individual caves, the majority of the data fall close to the Coplen (2007) and the Tremaine et al. (2011) fractionation values in both Croatian and Hungarian caves.

The research was supported by the Ministry for Innovation and Technology, the National Research, Development and Innovation Office (project No. PD 121387).

How to cite: Czuppon, G., Demény, A., Bocic, N., Buzjak, N., Kármán, K., Kovács, Z., Leél-Össy, S., John, S., Óvári, M., and Bottyán, E.: Monitoring activities in several caves along a transect stretching from the Adriatic Sea to the Aggtelek Karst (NE-Hungary): trace element and stable isotopic compositions of drip waters and cave carbonates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11089, https://doi.org/10.5194/egusphere-egu2020-11089, 2020.

EGU2020-18124 | Displays | CL1.26

High-precision dating of MIS 7 using Austrian Alp stalagmites

Kathleen Wendt, Xianglei Li, Hai Cheng, R. Lawrence Edwards, and Christoph Spötl

We present a high-precision record of the Penultimate Interglacial (MIS 7) and the Penultimate Glacial inception (MIS 7–6 transition) from Spannagel Cave in the central European Alps (southern Austria). Drip waters in this high-elevation cave are largely sourced from the overlying low-permeability gneiss, giving rise to unusually high uranium concentrations in secondary calcite deposits (up to 200 ppm). The large quantities of 234U and 230Th incorporated in samples can be measured using high-precision spectrometry, resulting in relative age uncertainties as low as 1‰ (2σ) during our study period (~250 to 197 thousand years ago [ka]). Using this unprecedented age control, we revisit Spannagel stalagmite SPA121 that grew continuously throughout MIS 7 and the MIS 7–6 transition. Previous work by Spötl et al. (EPSL 2008) revealed that SPA 121 δ18O displays similar timing and structure to global benthic marine δ18O during MIS 7, including distinct sub-stages. New dating allows us to constrain the exact timing and duration of MIS 7 sub-stages in the European Alps, including the timing of Terminations (T) III and IIIa. Preliminary results show the onset of MIS 7e at 241.4 ± 0.3 ka, the δ18O minima during MIS 7b at 224.5 ± 0.3 ka, and the mid point of TIIIa at ~216.2 ± 0.3 ka. The onset of decreasing δ18O associated with the MIS 7a–6e transition occurred no later than 193.0 ± 0.2 ka. Two newly collected stalagmites from this cave (SPA146 & 183) provide two high-resolution replications of the MIS 7a–6e transition. The resulting multi-stalagmite record will provide important chronological constraints on climate shifts in the European Alps during the Penultimate Interglacial and subsequent glacial inception.

How to cite: Wendt, K., Li, X., Cheng, H., Edwards, R. L., and Spötl, C.: High-precision dating of MIS 7 using Austrian Alp stalagmites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18124, https://doi.org/10.5194/egusphere-egu2020-18124, 2020.

Fluorescent annual layers with thicknesses of 0.01–0.1 mm occur frequently in stalagmites around the world. Aggradational variations of fluorescence intensity expressing those annual layers have been postulated as being caused by seasonal fluctuations of the supply of fulvic acid from the surface. The variation patterns of fluorescence intensity in annual layers can be classified into symmetric, gradually increasing, and gradually decreasing types. Numerical simulation of fluorescent annual-layer patterns based on the stalagmite-formation model suggests that various patterns of fluorescence intensity in annual layers can form by time lags between a growth season and the fulvic acid supply peak on a stalagmite. However, verification of those fluorescence patterns requires long-term cave climate monitoringin caves. In this study, we simulated fluorescence intensity variations in a modeled stalagmite based on cave climate monitoring data from a cave in a humid-temperature climate and validated annual layer formations.

Cave climate monitoring was performed at point A (40 m inside the entrance), point B (90 m inside the entrance), and other points in Koumori-ana Cave, Mine City, Yamaguchi Prefecture, southwest Japan, from the end of 2016. The monitoring data included cave air temperatures, CO2 concentrations, and drip rates. Ca2+ concentrations and relative fluorescence intensities to quantify fulvic-acid concentrations were measured monthly from drip-water samples.

The monitoring data showed that cave temperatures decrease in winter near the entrance and increase in summer near the upper vent. Drip rates at point A corresponded to rainfall amounts at the meteorological station in Akiyoshi-dai, whereas drip rates at point B were constant throughout the years monitored. CO2 concentrations in the cave, closed to outside air values from November to March, became greater from April and reached maximum values in September. Ca2+ concentration had gradual seasonal variations, showing a maximum in October and a minimum in March. The relative fluorescence intensities, showing fulvic acid concentration, at both points revealed a change range of about four times the minimum.

The stalagmite-growth simulations based on the monitoring data showed different growth patterns at the two monitored points: continuous growth at one and hiatus at the other. The calculated fluorescent annual layer at point A was the symmetric or gradually increasing type, with high concentration of fulvic acid in August. The growth rate varied in the range of 0.45 (Jan–Apr) to 6.2 (May–Oct) µm/month. Because the relative fluorescence intensity of fulvic acid had small variations throughout the years, the simulated fluorescent annual layer at point A is suggested to be affected by the growth rate of stalagmite. At point B, decreased saturation indices of calcite from April to June and September to October suggest no precipitation of calcite. Although the simulated annual thickness of precipitation at point B is around 28 µm, half of the thickness is precipitated in July. Point B stalagmite growth is stopped by a high concentration of CO2, low Ca2+ concentration, and low drip rate. This study suggests that specific seasonal paleoenvironmental changes recorded in stalagmites can be estimated by using fluorescence patterns of annual layers.

How to cite: Sasaki, H., Onishi, Y., Ishihara, Y., Murakami, T., and Yoshimura, K.: Simulation of fluorescent annual-layer patterns in stalagmites based on cave climate monitoring data: an example from Komori-ana Cave, Akiyoshi-dai Plateau, southwest Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2575, https://doi.org/10.5194/egusphere-egu2020-2575, 2020.

EGU2020-7466 | Displays | CL1.26

Understanding the deglacial relationship between carbon isotopes and temperature in stalagmites from Western Europe

Franziska A. Lechleitner, Christopher C. Day, Micah Wilhelm, Negar Haghipour, Oliver Kost, Gideon M. Henderson, and Heather M. Stoll

The last deglaciation was a period of rapid and profound climatic change in Western Europe. Speleothem carbon isotope (δ13C) records from mid-latitude Western Europe have consistently shown large and reproducible excursions over this time period, strikingly similar to available temperature reconstructions from other archives. The mechanism behind the temperature sensitivity of speleothem δ13C, however, remains poorly constrained, due to the complex interplay of multiple processes affecting this proxy.

Here we use a multi-proxy approach and forward modelling of karst processes to investigate what drives the response of speleothem δ13C to the last deglaciation in Western Europe. We present new proxy data (14C and δ44Ca) from speleothem Candela from El Pindal Cave, northern Spain, which covers the period from the Last Glacial Maximum (25 ka BP) to the Early Holocene (8 ka BP). Previously published stable isotope data (Moreno et al., 2010) revealed a pronounced decrease in δ13C over the deglaciation (~8‰ VPDB) which closely tracks regional temperature records from the Iberian Margin. We make use of the different sensitivities of ancillary proxies (14C, Mg/Ca, and δ44Ca) to processes in soil and karst to quantify their relative importance on the δ13C shift. For this, we use the forward modelling software CaveCalc (Owen et al., 2018) to generate a large ensemble of possible solutions, from which the ones closest matching the data are chosen and evaluated.

Our preliminary results suggest that in-cave and karst processes (carbonate host rock dissolution and reprecipitation) cannot explain the full amplitude of the δ13C shift over the deglaciation, and that changes in soil δ13C are to some extent translated to the speleothem carbonate δ13C. The possibility of quantitatively disentangling processes in the soil from other karst processes could allow the reconstruction of past soil activity from speleothems.

 

References:

Moreno, A., Stoll, H., Jiménez-Sánchez, M., Cacho, I., Valero-Garcés, B., Ito, E., Edwards, R.L., 2010. A speleothem record of glacial (25-11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Glob. Planet. Change 71, 218–231. doi:10.1016/j.gloplacha.2009.10.002

Owen, R.A., Day, C.C., Henderson, G.M., 2018. CaveCalc: A new model for speleothem chemistry & isotopes. Comput. Geosci. doi:10.1016/J.CAGEO.2018.06.011

How to cite: Lechleitner, F. A., Day, C. C., Wilhelm, M., Haghipour, N., Kost, O., Henderson, G. M., and Stoll, H. M.: Understanding the deglacial relationship between carbon isotopes and temperature in stalagmites from Western Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7466, https://doi.org/10.5194/egusphere-egu2020-7466, 2020.

EGU2020-22391 | Displays | CL1.26

Speleothem record of enhanced hydroclimate during MIS15a in Northeast Greenland

Gina Moseley, R. Lawrence Edwards, Christoph Spötl, and Hai Cheng

The Arctic region is predicted to be one of the most sensitive areas of the world to future anthropogenically-forced climate change, the consequences of which will affect vast numbers of people worldwide, for instance through changes to mid-latitude weather systems and rising eustatic sea levels. Recent changes in temperature and precipitation, and those projected for the future, indicate that some of the greatest changes will occur in Northeast Greenland. Essential knowledge on the climate history of this region, which can be used to validate models and understand forcing mechanisms and teleconnections, is however absent. Here, we present a speleothem palaeoclimate record for Northeast Greenland (80 °N) that formed during Marine Isotopes Stage 15a  between 588 ka to 537 ka. The record indicates that at that time, Northeast Greenland was warmer and wetter than at present associated with a reduction in Arctic sea ice, thawing of permafrost in eastern Siberia (55 °N and 60 °N), and elevated warm conditions at Lake El’gygytgyn (67.5 °N), Russia.

How to cite: Moseley, G., Edwards, R. L., Spötl, C., and Cheng, H.: Speleothem record of enhanced hydroclimate during MIS15a in Northeast Greenland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22391, https://doi.org/10.5194/egusphere-egu2020-22391, 2020.

EGU2020-13062 | Displays | CL1.26

Green Sahara periods and climate-human interactions during the Last Glacial Period: Evidence from Northwest African speleothems

Yassine Ait Brahim, Lijuan Sha, Jasper A. Wassenburg, Francisco W. Cruz, and Hai Cheng

North Africa is a key region to study the interactions between low-latitude African monsoon systems and high-latitude millennial-scale climate change. Here, we present new high‐resolution δ18O records and preliminary Δ17O data (deviation of triple oxygen isotope data between δ17O and δ18O) from four Southwest Moroccan speleothems (⁓31°N) spanning the last glacial period. Our δ18O records provide evidence of humid conditions during the Marine Isotope Stage (MIS) 5 and the early to mid‐Holocene. The apparent increase in moisture during these Green Sahara periods is linked to the increase of summer insolation and the resulting expansion of the West African monsoon fringe, which could reach 31°N in NW Africa. Furthermore, the preliminary Δ17O results support our interpretation of δ18O data and reveal substantial changes in moisture sources and climate regimes between glacial and interglacial cycles.

Additionally, the Green Sahara periods are good examples to illustrate how dramatic climate change could shape human life in Africa – the original home of anatomically modern humans (AMH). Archaeological evidence shows that the human populations in North Africa during MIS5 were geographically well placed to disperse after the “Green Sahara” faded. Our climate record shows an abrupt deterioration of climate conditions during the MIS5-MIS4 transition, which has been proposed as one of the main factors that pushed AMH to move into Eurasia. Interestingly, the MIS5-MIS4 transition is characterized by a decrease of summer insolation and the occurrence of the Heinrich events 7a and 7b, which possibly induced a southern shift of the Intertropical Convergence Zone (ITCZ) and, therefore, a retreat of the African monsoon during this period.

How to cite: Ait Brahim, Y., Sha, L., Wassenburg, J. A., Cruz, F. W., and Cheng, H.: Green Sahara periods and climate-human interactions during the Last Glacial Period: Evidence from Northwest African speleothems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13062, https://doi.org/10.5194/egusphere-egu2020-13062, 2020.

EGU2020-19466 | Displays | CL1.26

Last interglacial speleothem records from the western and southeastern side of the Alps

Charlotte Honiat, Christoph Spötl, Stéphane Jaillet, Paul Wilcox, Tanguy Racine, R.Larry Edwards, and Hai Cheng

The Last Interglacial (LIG, ~130–116 ka) was one of the warmest interglacials of the past 800,000 years. Although the orbital configuration was different, the LIG is a useful test bed for the future of the Holocene, because LIG archives have a higher preservation potential and can be dated at much higher precision than older interglacials, e.g. Marine Isotope Stage 11. Speleothems are among the most important terrestrial archives to study the climate of the LIG. Only few well-dated such studies, however, have been published for Europe and there are significant uncertainties regarding the timing of the onset and the magnitude of the peak warmth between some of these reconstructions.

The European Alps have shown to be a climatically highly sensitive region with a warming trend twice the average of the Northern Hemisphere. We therefore examined Alpine caves and studied stalagmite records of the LIG to gain insights into how this mountain range was affected by a warmer climate than today. We present a new, replicated and precisely dated speleothem stable isotope stack from two caves in the Western Alps and two caves in the southeastern Alps. Modern and paleodata show that the O isotopic composition of meteoric precipitation is a function of the mean air temperature in most parts of the Alps. Western stalagmites record an initial warming at 129.6 ± 0.4 ka and reach a first O isotope plateau at 129.0 ± 0.4 ka. An early optimum is identified after the first warming until 127.4 ± 0.5 ka, followed by a cooling until 126.6 ± 0.5 ka. The warming continued but the growth rate slowed down from 126.2 ±0.4 ka to 123.7 ±0.8 ka. Toward the end of the record (123.7 ±0.8 ka) the carbon isotopes slightly rise toward less negative values, possibly indicating climate cooling. The southeastern Alpine stalagmites started growing after Termination II (between 129.1±1.1 ka and 128.5±0.5 ka) and the oxygen isotope values slightly increase from 129 to 120 ka. At the onset of the LIG the carbon isotope values show a stepwise decrease as the oxygen isotope values become less negative, documenting the expansion of vegetation and the gradual soil development during the early part of the LIG. Vegetation and soil bioproductivity peaked around 126 ka in the west and at 125 ka in the southeast. Growth in the west was interrupted soon after 125 ka while in the southeast the carbon isotope signal stayed stable until 123 ka. The final decrease in vegetation density towards the end of the LIG was less synchronous among the southeastern speleothems and was characterized by abrupt shifts. Most stalagmites stopped growing after 119 ka when the carbon isotope values reached their highest values indicating a decrease in soil activity and/or vegetation density, possibly associated with deforestation. 

How to cite: Honiat, C., Spötl, C., Jaillet, S., Wilcox, P., Racine, T., Edwards, R. L., and Cheng, H.: Last interglacial speleothem records from the western and southeastern side of the Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19466, https://doi.org/10.5194/egusphere-egu2020-19466, 2020.

EGU2020-6972 | Displays | CL1.26

Uranium isotope systematics in the Melchsee-Frutt cave region (Central Swiss Alps)

Andrea Schröder-Ritzrau, Jens Fohlmeister, Martin Trüssel, Julius Förstel, Norbert Frank, Christoph Spötl, and Marc Luetscher

We investigated the uranium isotope systematics in an alpine cave environment (central Switzerland). We measured the U concentration and the 234U/238U activity ratio of the two main host rock formations in which the cave developed and the 234U/238U activity ratio of drip water. We further investigated the U characteristics of young carbonate precipitates (< 500 a old) at these drip sites. In addition, we analysed several speleothems between 1 and ~200 ka old. We observe variable U concentrations (between 0.1 – 5 ppm) and a significant spread in the initial activity ratio of 234U/238U (between ~1 and 5) between individual drips and individual stalagmites. In general, high U concentrations are accompanied by low initial 234U/238U ratios and vice versa. However, these data do not follow a binary mixing line between the two host rock endmembers (both show low U concentrations of about 1 ppm). Instead, we argue that redox processes within the karst might govern the U systematics of cave drip water and speleothems, as high and variable SO42- concentrations in drip water are observed, which point to at least locally constrained anoxic conditions in the host rock. The dependence of the initial 234U/238U activity ratio and U concentration of the stalagmites from this cave in concert with the partly large absolute value in their initial activity ratio open the perspective for dating speleothems from this karst region back to ~1 Ma.

How to cite: Schröder-Ritzrau, A., Fohlmeister, J., Trüssel, M., Förstel, J., Frank, N., Spötl, C., and Luetscher, M.: Uranium isotope systematics in the Melchsee-Frutt cave region (Central Swiss Alps), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6972, https://doi.org/10.5194/egusphere-egu2020-6972, 2020.

EGU2020-17760 | Displays | CL1.26

Atmospheric and Soil Signals in a Climate Dependent Stalagmite Radiocarbon Record from Northern Turkey

Steffen Therre, Jens Fohlmeister, Dominik Fleitmann, Ronny Friedrich, Marleen Lausecker, Andrea Schröder-Ritzrau, and Norbert Frank

The climatic controls of stalagmite radiocarbon (14C) remain one focus of modern paleoclimatology due to recent efforts and achievements in 14C calibration. The Hulu cave 14C record (Cheng et al., 2018) has proven the potential of stalagmites from temperate climate zones for atmospheric 14C reconstruction. However, a constant dead carbon fraction (DCF) in stalagmites over long periods is rather exceptional. In our study, a high-resolution 14C record (N=111) of a precisely U-Series dated stalagmite from Sofular Cave (Northern Turkey) with elemental Mg/Ca ratio data is presented. A phase of low and constant DCF (12.5% ± 1.6%, N=20) between 10 and 14 kyr BP, together with relatively stable Mg/Ca ratios suggest stable hydrological soil/karst conditions above the cave. However, we observe unstable soil conditions for the period before 14 kyr BP where DCF is strongly variable between a lower threshold of approximately 5% and an upper limit of 25%. Near a phase of slow growth at ~17 kyr BP DCF as high as 38% is observed on sub-centennial timescales.  The combination of stable isotopes, element ratios, radiocarbon and U-series data allows for multi-proxy analysis of the impact of rapid climate changes like D/O events on the incorporation of 14C into stalagmites. Between 15 and 27 kyr BP, hydrological changes have a large impact on limestone dissolution systematics which is reflected in fast DCF variations on sub-centennial timescales. A growth stop between 21 and 23 kyr BP is resolved. Although a comprehensive reconstruction of atmospheric 14C variations is not possible for the entire growth period, the stalagmite reproduces the deviation from the IntCal13 record (Reimer et al. 2013) seen in the Hulu 14C data at ~40 kyr BP during the Laschamp geomagnetic reversal and provides further inside on the climate dependency of 14C incorporation in stalagmites.

References

Cheng, H., Lawrence Edwards, R., Southon, J., et al.: Atmospheric 14C/12C changes during the last glacial period from Hulu cave, Science, 362(6420), 1293–1297, doi:10.1126/science.aau0747, 2018.

Reimer, P. J., Bard, E., Bayliss, A., et al.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP, Radiocarbon, 55(4), 1869–1887, doi:10.2458/azu_js_rc.55.16947, 2013.

How to cite: Therre, S., Fohlmeister, J., Fleitmann, D., Friedrich, R., Lausecker, M., Schröder-Ritzrau, A., and Frank, N.: Atmospheric and Soil Signals in a Climate Dependent Stalagmite Radiocarbon Record from Northern Turkey, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17760, https://doi.org/10.5194/egusphere-egu2020-17760, 2020.

EGU2020-10485 | Displays | CL1.26

Pleistocene carbonates from Dobrogea (E Romania) and their relationship with Black Sea level fluctuations

Virgil Dragusin, Silviu Constantin, Vasile Ersek, Dirk L. Hoffmann, and Alex Hotchkies

The eastern part of Romania, bordering on the Black Sea, is generally poor in speleothems and only Piatra Cave has important speleothem occurrences. This cave is positioned close to the present-day shoreline, forcing the local aquifer to completely flood it when it rose synchronously with sea level. The flooding of the cave prevented speleothem formation. Conversely, sub-aerial carbonate deposition took place when the sea level was lower than today and the cave was dry. The study of speleothems from Piatra Cave could bring more insight on past Black Sea level fluctuations, as well as on the isotopic composition of percolating water.

Some 50 km to the south of Piatra Cave, around the town of Mangalia, botryoidal calcite has been deposited inside small voids formed between Sarmatian limestone beds. Such calcite formations are considered to form close to the water table, at the contact with the underground atmosphere. If so, they could be used to track the position of past water tables, as well as the isotopic composition of those waters. Moreover, as these samples are found only close to the present-day shoreline, they might have been deposited from underground water whose level was directly controlled by the sea.

Here we present the results of δ18O and δ13C measurements on 75 samples and sub-samples of botryoidal calcite. We explore the implications of their isotopic variability, by comparison with speleothems from Piatra Cave as well as to other speleothems from Romania. Moreover, we explore their isotopic variability across the sampling area, in order to better assess their possible use as sea level markers.

How to cite: Dragusin, V., Constantin, S., Ersek, V., Hoffmann, D. L., and Hotchkies, A.: Pleistocene carbonates from Dobrogea (E Romania) and their relationship with Black Sea level fluctuations , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10485, https://doi.org/10.5194/egusphere-egu2020-10485, 2020.

EGU2020-19608 | Displays | CL1.26

Climate driven mobility of the early humans in SW Asia: Preliminary evidence from Iranian Stalagmites

Arash Sharifi, Ali Pourmand, Mehterian Sevag, Peter Swart, Larry Peterson, and Hamid A. K. Lahijani

The dynamic interaction between synoptic systems across the Iranian Plateau in West Asia has made this region highly sensitive to climate change.   Early human migration routes in the region from Africa to Eurasia are marked by Paleolithic sites and provide a unique opportunity to study the impact of climate variability on early human mobility and settlement. Preliminary results are based on δ18O and elemental time series from three stalagmites in central-northwest Iran with robust U-Th chronology over the last 450,00 years The data raise the possibility that the Iranian Plateau experienced several episodes of wet conditions during the Paleolithic period. This is in line with findings from a compilation of independent proxy records of lake sediment in northwest Iran and loess deposits in northeast Iran. The fluctuation of Mn abundance and δ18O values in these stalagmites correlate with the Greenland ice core record (NGRIP) and coincide with periods of high solar intensity in the northern hemisphere. These early results indicate wet conditions may have prevailed over the Iranian Plateau during marine isotope stages MIS5a,b, MIS5c, MIS5e, MIS6b, MIS6d-e and most likely also during stages MIS3-4 and MIS7a. Early human occupation of the Southern Caucasus, Zagros, and the Near East regions coincides with the upper Pleistocene wet periods. The co-variability between the proxy data from these speleothems and solar insolation at 30°N suggests that early human settlements/occupations may have been more prevalent along coastal regions of the Near East during dry climate episodes.

How to cite: Sharifi, A., Pourmand, A., Sevag, M., Swart, P., Peterson, L., and A. K. Lahijani, H.: Climate driven mobility of the early humans in SW Asia: Preliminary evidence from Iranian Stalagmites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19608, https://doi.org/10.5194/egusphere-egu2020-19608, 2020.

EGU2020-18326 | Displays | CL1.26

The Maya Terminal Classic Drought replicated in two stalagmites from Columnas Cave, NW Yucatán

Daniel James, Sebastian Breitenbach, Hai Cheng, Adam Hartland, Ian Orland, Mark Brenner, Jason Curtis, Christina Gallup, Soenke Szidat, John Nicolson, James Rolfe, Andrew Mason, Gideon Henderson, and David Hodell

During the Terminal Classic Period (c.800-1000CE) most major Maya centres in the lowlands of the southern Yucatán Peninsula declined and were then abandoned, in what would come to be known as the Classic Maya Collapse. The causes of this societal transformation remain open for debate in modern archaeology. Over the past 25 years, palaeoclimatic records from lake sediments and speleothems have prompted discussion about the role abrupt climate change may have played in the decline. These records largely indicate the existence of a Terminal Classic Drought, a period of increased drought frequency that is approximately contemporaneous with the Collapse.

The high temporal resolution of speleothem archives makes them an important tool in assessing the validity of these records. Previous work has demonstrated the prevalence of drought in the lowlands of both northern and southern Yucatán during the Terminal Classic and Early Postclassic Periods. However, it has been difficult to build a detailed understanding of regional rainfall changes owing to the large spatial and temporal variability of precipitation over the Peninsula, as observed in the modern day.

Here we report a high-resolution (100µm), absolutely-dated, replicated record of δ18O and δ13C variations in two stalagmites from Columnas Cave (Rancho Hobonil) near the Puuc Hills, a dominant region of Maya settlement in north-western Yucatán during the Terminal Classic. The oxygen and carbon isotopic records of the speleothems (designated Hobo-5 and Hobo-6), located <10m apart in the farthest reaches of the cave, can be correlated with one another in great detail. The highest δ18O values in both speleothems occur during the Terminal Classic Period, coupled with the onset of an extended period of consistently high δ13C values. These are interpreted as representing a period of increased drought frequency; as documented from sediment cores in nearby Lake Chichancanab, located ≈30km from Columnas Cave. These replicated records provide strong evidence for highly variable climatic conditions in the Terminal Classic, when the Puuc Maya underwent several boom-bust cycles. Ultrahigh-resolution (10µm) SIMS isotope and synchrotron µXRF analyses during this critical period have been undertaken to test if an annual record of climatic changes can be developed.

Radiocarbon data across the Terminal Classic also displays a single abrupt increase in 14C content around 1000CE, indicating a decrease in the dead carbon fraction. This event occurs close in time to the 994CE solar proton event documented in tree rings. If these events are indeed synchronous, it would constitute the first instance of the cosmogenic radiocarbon event being recorded in a speleothem, which would provide a valuable absolute correlation horizon.

How to cite: James, D., Breitenbach, S., Cheng, H., Hartland, A., Orland, I., Brenner, M., Curtis, J., Gallup, C., Szidat, S., Nicolson, J., Rolfe, J., Mason, A., Henderson, G., and Hodell, D.: The Maya Terminal Classic Drought replicated in two stalagmites from Columnas Cave, NW Yucatán, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18326, https://doi.org/10.5194/egusphere-egu2020-18326, 2020.

EGU2020-10343 | Displays | CL1.26

Holocene hydroclimate of the Volga Basin recorded in speleothems from the Central and Southern Ural Mountains, Russia

Jonathan Baker, Yuri Dublyansky, Olga Kadebskaya, Denis Scholz, Gabriella Koltai, Hanying Li, Jingyao Zhao, Christoph Spötl, and Hai Cheng

Hydroclimatic variability over the Volga River watershed (western Russia) strongly influences agricultural production, forest and grassland ecology, Caspian Sea level, and associated economic stability. Climate model forecasts of these variables suggest long-term increases in crop shortfalls and over-basin evaporation in the Volga and Caspian regions, respectively, but these projections currently lack validation from high-quality paleoclimate data. We present decadal-scale geochemical proxy data (δ13C, Mg/Ca, Sr/Ca) from 230Th-dated stalagmites retrieved from four caves along a 640-km north-south gradient in the Ural Mountains, which collectively cover the entire Holocene (11.7 ka to present). Orbital trends in δ13C and Mg/Ca are broadly coherent between Ural speleothems and suggest that following Early Holocene aridity, warm-season precipitation was paced by summer insolation and has gradually declined since ~8 ka, consistent with model hindcasting. Centennial-scale variability, which is exceptionally well replicated between the Southern (Kinderlinskaya Cave) and Central (Geologov-3 Cave) Ural sites, supports a dynamic link between Volga hydroclimate and sea-surface temperature in the northeastern North Atlantic and Barents Sea. Important discrepancies exist, however, with data from the southernmost cave sites, which may be related to past migration of a strong latitudinal precipitation gradient that characterizes the modern basin and approximates the limit of North Atlantic influence. Finally, we conduct model-data comparisons and review our composite dataset in light of pollen- and soil-based proxies from across the Volga region, as well as reconstructions of Caspian Sea level. Our results provide a temporally well-constrained and spatially coherent portrait of Holocene hydroclimate for the Volga River watershed, thus constituting an important metric for future modeling studies.

How to cite: Baker, J., Dublyansky, Y., Kadebskaya, O., Scholz, D., Koltai, G., Li, H., Zhao, J., Spötl, C., and Cheng, H.: Holocene hydroclimate of the Volga Basin recorded in speleothems from the Central and Southern Ural Mountains, Russia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10343, https://doi.org/10.5194/egusphere-egu2020-10343, 2020.

CL1.27 – Tracers in the Paleo Sea

EGU2020-290 | Displays | CL1.27

Modelling the impact of biogenic particle flux intensity and composition on sedimentary Pa/Th

Lise Missiaen, Laurie Menviel, Katrin J. Meissner, Nathaelle Bouttes, Didier M. Roche, Jean-Claude Dutay, Aurélien Quiquet, Fanny Lhardy, Claire Waelbroeck, and Sylvain Pichat

There is compelling evidence of a strong relation between the Atlantic Meridional Overturning Circulation (AMOC) and millennial scale climate variability during the last glacial period. Part of the advances in understanding the underlying mechanisms rely on the analysis of the sedimentary Pa/Th ratio, which can be used to qualitatively infer past flow rates in the Atlantic. The compilation of existing North Atlantic records indicates repeated, consistent and significant Pa/Th increases across millennial-scale events, indicating significant reductions of deep-water formation in the Northwest Atlantic. However, the use of sedimentary Pa/Th as a pure kinematic circulation proxy is challenging because Pa and Th are also highly sensitive to changes in particulate flux intensity and composition that have probably occurred across these millennial scale events. A primary control of particles on the available Pa/Th records has been ruled out ensuring the absence of correlation between the reconstructed particle fluxes (e.g. Th-normalized opal fluxes) and the sedimentary Pa/Th. However, quantitative estimates of the impact of particles on the available paleo Pa/Th are still missing.

In this study, we use the Pa/Th enabled iLOVECLIM Earth System Model of Intermediate Complexity to decipher the impact of particles on the sedimentary Pa/Th. We evaluate the impact of imposed changes in biogenic particle flux intensity and composition on the Atlantic Pa/Th in a 3-D geographical perspective. We find that up to 30% of the observed Pa/Th increase across Heinrich Stadial 1 could be explained by changes in particle fluxes and composition. Besides, changes in the Particulate Organic Carbon (POC) most efficiently affects the sedimentary Pa/Th, followed by biogenic opal. Last but not least, the global Atlantic sedimentary Pa/Th response is very sensitive to shifts in the geographical distribution of particles and high scavenging areas. In our simulations, a decrease of the opal production in the Northwest Atlantic can induce a far field Pa/Th increase in a large part of the North Atlantic basin, suggesting that a local monitoring of the particle fluxes might not be enough to rule out any influence of the particles on paleo sedimentary Pa/Th records.

How to cite: Missiaen, L., Menviel, L., Meissner, K. J., Bouttes, N., Roche, D. M., Dutay, J.-C., Quiquet, A., Lhardy, F., Waelbroeck, C., and Pichat, S.: Modelling the impact of biogenic particle flux intensity and composition on sedimentary Pa/Th, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-290, https://doi.org/10.5194/egusphere-egu2020-290, 2020.

EGU2020-2186 | Displays | CL1.27

230Th normalization: New insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean

Kassandra Costa and the GEOTRACES Working Group 3: Particle Fluxes

230Th-normalization is a valuable paleoceanographic tool for reconstructing high-resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more complex marine environments, the nuances of 230Th systematics, with regards to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the Late Holocene (0-5000 years ago, or 0-5 ka) and the Last Glacial Maximum (18.5-23.5 ka), and investigated the spatial structure of 230Th-normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79-2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48-1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th-normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic (> 1000 m) marine settings.

How to cite: Costa, K. and the GEOTRACES Working Group 3: Particle Fluxes: 230Th normalization: New insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2186, https://doi.org/10.5194/egusphere-egu2020-2186, 2020.

EGU2020-13297 | Displays | CL1.27

The Atlantic Meridional Overturning Circulation Over Time From Nd Isotopes

Maayan Yehudai, Steve Goldstein, Leo D. Pena, Joohee Kim, Maria Jaume-Segui, Chandranath Basak, Karla Knudson, Allison E. Hartman, and Rachel Lupien

The Atlantic Meridional Overturning Circulation (AMOC) brings heat from the tropics to the high latitudes, and its temporal variability has major impacts on climatic cycles. We have constructed north-south profiles using deep sea cores from the North Atlantic to the Southern Ocean, covering the past ~1.5 Ma or so, including the interval prior to and including the Mid-Pleistocene Transition (MPT), the interval of ‘lukewarm interglacials’ following the MPT, and to the present-day, using Nd isotopes in Fe-Mn oxide encrusted foraminifera and fish debris. Some important observations show that our Nd isotope records indeed reflect the AMOC variability, rather than regional Nd sources or alteration effects. Firstly, throughout the time interval and at all sites, the εNd-values show glacial-interglacial ‘zig-zags’, indicating stronger AMOC during interglacials and weaker AMOC during glacials. Secondly, going from north to south the data show increasingly weaker NADW signals at all points in time. Thirdly, all of the εNd-values are those expected from seawater Nd sources. The εNd-values at North Atlantic DSDP Site 607 during interglacials are almost always between -13 and -14.5, similar to present-day NADW both before and after the AMOC-crisis, thus indicating that the normal NADW range during interglacials has remained similar since the middle Pleistocene. Fourthly, at all times, the εNd-values throughout the transect remain sandwiched by the global North Atlantic and North Pacific end-member values. These observations are what are required if the data reflect the glacial-interglacial waxing and waning of the AMOC, but are unexpected for virtually any other scenario.

How to cite: Yehudai, M., Goldstein, S., Pena, L. D., Kim, J., Jaume-Segui, M., Basak, C., Knudson, K., Hartman, A. E., and Lupien, R.: The Atlantic Meridional Overturning Circulation Over Time From Nd Isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13297, https://doi.org/10.5194/egusphere-egu2020-13297, 2020.

EGU2020-11092 | Displays | CL1.27

North Atlantic deep water sources and export since MIS3: implications from Nd isotopes

Patrick Blaser, Frerk Pöppelmeier, Martin Frank, Marcus Gutjahr, and Jörg Lippold

Deep water formation in the North Atlantic represents an integral link between the atmosphere, cryosphere, and the deep ocean: heat loss from warm surface waters supplies moisture to the high latitudes and their subsequent sinking ventilates the deep ocean and sequesters greenhouse gases from the atmosphere. This moisture supply supported the formation of immense ice sheets in the region during the last glacial, which in turn affected climate. While many studies have improved our understanding of these processes for past glacials, a comprehensive picture including the significance and variation of deep water export from the Nordic Seas is still missing. Furthermore, recent observations suggested the export of a previously unknown bottom water mass from the glacial subpolar North Atlantic.

In this study we investigate the distribution and sourcing of water masses in the subpolar North Atlantic since MIS3 with the help of authigenic Nd isotopes. This method benefits from the large heterogeneity in Nd isotopic compositions of source rocks in this region, but the post-depositional dissolution of detritus within the sediments can also impede interpretations of individual records. We thus compare several Nd isotope records from the subpolar North Atlantic and Nordic Seas in order to define distinct deep water mass end members and estimate their prevalence and mixing in the subpolar North Atlantic during the last 30 ka. Our observations suggest that Nordic Seas deep water overflowing the Greenland-Scotland Ridge during MIS2 reached into the deep subpolar North Atlantic. Furthermore, its spatial distribution implies that overflow across Denmark Strait into the Irminger Basin was more pronounced than overflow into the Iceland Basin further south. The hydrographic configuration during the Last Glacial Maximum thus appears to have been more complex and more similar to today than previously thought.

How to cite: Blaser, P., Pöppelmeier, F., Frank, M., Gutjahr, M., and Lippold, J.: North Atlantic deep water sources and export since MIS3: implications from Nd isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11092, https://doi.org/10.5194/egusphere-egu2020-11092, 2020.

EGU2020-9988 | Displays | CL1.27

The novel hydroxylated tetraether index RI-OH′ as a sea surface temperature proxy for the period 160–50 ka BP off the Iberian Margin

Nina Davtian, Edouard Bard, Frauke Rostek, Guillemette Ménot, and Sophie Darfeuil

The stable oxygen isotope ratio (δ18O) of planktic foraminifers, the C37 ketone unsaturation ratio (UK′37) and the TetraEther indeX of tetraethers consisting of 86 carbon atoms (TEX86) are three well-known examples of paleothermometric proxies. These established proxies are in the realism phase of the Elderfield proxy curve (2002 Geochim. Cosmochim. Acta 66 Suppl. 1, 213, DOI: 10.1016/S0016-7037(02)01009-8), which means that their advantages and shortcomings are relatively well evidenced, though not fully understood. By contrast, the Ring Index of hydroxylated tetraethers (RI-OH′) is an example of novel paleothermometer. RI-OH′ is still in the optimism phase, so its potential in paleothermometry remains to be further explored.

Here, we present new high-resolution temperature records over the interval 160–50 ka BP using four organic proxies (RI-OH′, RI-OH, TEX86 and UK′37) from three deep-sea sediment cores located in a north-south transect along the Iberian Margin. RI-OH′, RI-OH and TEX86 are based on LC-MS analyses of individual tetraethers with a two-column HPLC and improved mass spectrometric method. We analyzed all organic proxies in the same organic extracts to optimize proxy-proxy comparisons and phase relationship studies.

Our main results strengthen the optimism concerning the novel RI-OH′ proxy for five reasons. 1/, the only existing global core-top calibration to date allows to reconstruct realistic sea surface temperature (SST) from RI-OH′ in comparison to those derived from UK′37 and TEX86. 2/, RI-OH′ allows to establish plausible latitudinal temperature gradients, which are reasonably coherent with those based on UK′37 and TEX86. 3/, RI-OH′ records resemble those from established paleothermometers, especially UK′37 and δ18O of planktic foraminifers that better reflect SST than does TEX86. 4/, RI-OH′ responds to Dansgaard-Oeschger and Heinrich events as expected for North Atlantic SST proxies, which supports a direct relationship with Greenland temperature records. 5/, the outputs of a bipolar seesaw model forced with the RI-OH′ record are well correlated with Antarctic paleotemperatures as expected from theoretical considerations.

Overall, our main findings support a continued interest on the novel hydroxylated tetraether paleothermometer RI-OH′ so that it can progress along the Elderfield proxy curve. This work complements our first promising attempt based on a RI-OH record for a shallow core from the western Mediterranean Sea, located in a complex sedimentary setting much less favorable than the Iberian Margin (Davtian et al., 2019 Paleoceanography and Paleoclimatology 34, 616–634, DOI: 10.1029/2018PA003452).

How to cite: Davtian, N., Bard, E., Rostek, F., Ménot, G., and Darfeuil, S.: The novel hydroxylated tetraether index RI-OH′ as a sea surface temperature proxy for the period 160–50 ka BP off the Iberian Margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9988, https://doi.org/10.5194/egusphere-egu2020-9988, 2020.

EGU2020-19481 | Displays | CL1.27

Deciphering the Signal of Arctic Climate Change

Audrey Morley, Markus Raitzsch, Jelle Bijma, Szabina Karancz, and Michal Kucera

Whether or not Arctic regions remain(ed) a carbon sink or source to the atmosphere during rapidly warming climates (in the past) is a fundamental question with regards to future global warming and ocean acidification. The boron isotopic composition of planktonic foraminiferal shell calcite (δ11BCc) can potentially provide valuable information of past seawater pH if information on a second carbonate system parameter, temperature, and salinity is available. However, most applications of palaeoceanographic proxies to the cold polar oceans are limited due to a paucity of calibration data, limited information on the calcification habitat, and secondary effects of the carbonate system on the temperature recorded by Mg/Ca values measured in the dominant Arctic species Neogloboquadrina pachyderma sinistral (NPS). Here we present a new Multi-Collector Inductively Coupled Mass Spectrometry (MC-ICPMS) δ11B dataset measured on live NPS collected via plankton tows from the Labrador Sea and Baffin Bay. We compare our results with δ11Bborate derived from pH measurements, δ13C DIC seawater values, temperature and salinity collected at the time and depth the foraminifera calcified. To quantify the control of low carbonate ion concentration on Mg/Ca derived temperatures we measured B/Ca alongside Mg/Ca in the calibration dataset. We are thus able to present a new geochemical correction scheme that can isolate non-thermal controls on the Mg/Ca-temperature relationship for NPS, allowing us for the first time the reconstruction of carbonate system parameters in the Arctic Ocean.

How to cite: Morley, A., Raitzsch, M., Bijma, J., Karancz, S., and Kucera, M.: Deciphering the Signal of Arctic Climate Change , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19481, https://doi.org/10.5194/egusphere-egu2020-19481, 2020.

Ocean circulation plays an essential role in Earth’s climate and the global carbon cycle. A prerequisite for improving confidence in future climate projections is the accurate numerical modeling of past deep ocean circulation changes. Unfortunately our understanding of such changes is impeded by ambiguities in the data-based reconstructions which heavily rely on radiocarbon dating of marine samples. Central to this method is the knowledge of the reservoir age (the age difference between the surface ocean and the atmosphere). Concomitant changes in atmospheric levels, air-sea exchange rates, and ocean circulation have the potential to drive large temporal and spatial changes of this reservoir age over the deglaciation. However these changes are not well constrained by field evidence. In consequence large uncertainties affect the dating of main climate events. Model studies allow complementing field data while also providing the means of assessing the sensitivity to different processes.

Here, we investigate the sensitivity of the radiocarbon reservoir ages and reconstructed calendar ages over the last termination. For this purpose we take advantage of a set of transient simulations performed with the Max Planck Institute Earth System Model (MPI-ESM) with interactive calculation of river runoff and automatic adjustment of model topography. The experiments, starting at 26 ka BP, are constrained with prescribed time varying ice sheets and topography in addition to variations of the Earth orbital parameters and reconstructed atmospheric greenhouse gases concentrations. Changes in ice sheet volume naturally result in freshwater surges which affect the global circulation and water masses distribution. Ocean radiocarbon is included in the model. The atmospheric 14C follows the INTCAL13 reconstruction while the impacts of varying wind speed, sea-ice cover, and atmospheric CO2 on air-sea exchange rates are explicitly included.

Different ice-sheets reconstructions (ICE-6G_C and GLAC-1D) and model configurations (addressing vertical mixing, bathymetry and land-sea mask) provide a range of ocean responses. The impact on reservoir ages of uncertainties related to planktonic foraminifer species-specific habitat is also considered. Together with the suite of model states this provides a range of reservoir ages over time. A calibration step allows then obtaining an estimate of the temporal evolution over the deglaciation of the time resolution of the radiocarbon dating method. Regional and global evolutions are examined and discussed.

How to cite: Mouchet, A., Mikolajewicz, U., and Voelker, A.: The ocean radiocarbon reservoir age over the last termination and the calendar age uncertainty of marine samples: a sensitivity study with a coupled climate model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19759, https://doi.org/10.5194/egusphere-egu2020-19759, 2020.

EGU2020-3037 | Displays | CL1.27

Foraminiferal tracers of Indian-Atlantic interocean exchange during the last 600 kyr

José N. Pérez-Asensio, Kazuyo Tachikawa, Thibault de Garidel-Thoron, Laurence Vidal, Corinne Sonzogni, Abel Guihou, and Min-Te Chen

The Indian-Atlantic interocean exchange (IAIE), occurring through Agulhas current and its leakage around the southern tip of Africa, is one of the return flows of global thermohaline circulation that contributes to the temperate climate in Europe. The IAIE affects the transport of heat and salt to the zone of deep-water formation in the N Atlantic, influencing the variability of Atlantic Meridional Overturning Circulation (AMOC). During the last 600 kyr, significant climatic events took place such as the Mid-Bruhnes event (MBE) (~430 ka) that marks a transition towards more intense interglacial periods.

The main objective of our study is to assess the impact of climate forcing on the strength of both surface and deep water IAIE during the last 600 kyr. For this purpose, we examined the variability of a group of warm-water planktonic foraminiferal species for tracing surface water circulation. We combined published and unpublished data from 3 cores along an Indian-Atlantic transect: two cores in the Indian Ocean, core MD96-2048 (26°10’S, 34°01’E, 660 m) in the source of the Agulhas current and our study core MD96-2077 (33º10’S, 31º14’E, 3781 m) in the middle of the Agulhas current; and one core in the Atlantic Ocean, core ODP1087 (31°27’S, 15°18’E 1372 m) recording the Agulhas leakage.

Since Globorotalia menardii and Globorotalia tumida are frequently used to trace Agulhas leakage, their variability in Agulhas current in the Indian Ocean is of our interest. Therefore, we compared the relative abundances of the warm-water planktonic G. menardii and G. tumida species with a group of warm-water planktonic foraminiferal species to record the strength of Agulhas current in core MD96-2077. Our results show that the group of warm-water planktonic species reflects increased Agulhas current strength at glacial terminations coinciding with stronger Agulhas leakage (Atlantic core ODP1087) as observed in previous studies. However, in core MD96-2077, both G. menardii and G. tumida relative abundances increase during interglacial periods. This indicates that production of these species in the Agulhas current source region is unlikely to trace Agulhas leakage in the Atlantic Ocean. The analyses of deep-water circulation proxies (Nd isotopes, benthic O and C stable isotopes) are in progress, and they will allow us to assess the response of deep circulation to changes in Agulhas current and leakage over the last 600 kyr.

How to cite: Pérez-Asensio, J. N., Tachikawa, K., de Garidel-Thoron, T., Vidal, L., Sonzogni, C., Guihou, A., and Chen, M.-T.: Foraminiferal tracers of Indian-Atlantic interocean exchange during the last 600 kyr, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3037, https://doi.org/10.5194/egusphere-egu2020-3037, 2020.

Over the past two decades, an impressive amount of radiocarbon age measurements on samples of fossil benthic foraminifera and deep-sea corals have been published in the literature. These measurements are commonly used to draw inferences about changes in the ventilation of deep oceanic basins during the last deglacial period. Lacking in most previous studies, however, are quantitative estimates of deep-ocean paleo-ventilation rates and quantitative estimates of their errors, leading to potential over-interpretation and sterile debate. Moreover, most previous studies were concerned with the interpretation of individual records with low or no regard for other records available for the same time interval.

Here we present an effort to go beyond the qualitative interpretation of single radiocarbon records by analyzing an updated compilation of 14C age data using recursive least-squares (RLS) methods (a Kalman filter and a related smoother). In stark contrast with other methods of data analysis, RLS methods can provide an estimate of the history of the state of the physical system of interest and an estimate of the error in this history, which are consistent (in the least-squares sense) with times series of data and with a dynamical model, given estimates of the statistics of the errors in the data and in the model. Our current compilation includes 1,698 deep water 14C age data for the past 40 kyr based on fossil samples of benthic foraminifera, deep‐sea corals, deep‐dwelling planktonic foraminifera, bivalves, and spiral shells. The geographic distribution of the samples is very irregular, with most of them originating from near the margins and with large regions devoid of any data. The depths of the samples vary from about 250 m to about 5,000 m. In our study, the potential of RLS methods to estimate the history of deep-ocean ventilation rates and their errors from deep water 14C age data is explored for a number of abyssal layers in the Atlantic Ocean during the deglacial interval from 20 to 10 kyr BP. The approach used to apply the powerful but computationally expensive RLS methods to the analysis of geologic time series is described, the least-squares estimates of ventilation rate history in different layers are reported, and their significance in the light of their error estimates is discussed.

How to cite: Marchal, O., Zhao, N., and Duffy, F.: Can Radiocarbon Records lead to Quantitative Estimates of Deep-Ocean Ventilation Rates with Error Estimates in the Geologic Past? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3642, https://doi.org/10.5194/egusphere-egu2020-3642, 2020.

EGU2020-4247 | Displays | CL1.27

On the influence of sediment resuspension on deep-ocean Pa-231 and Th-230 cycling: Roles of turbulent mixing and differential scavenging

Siyuan-Sean Chen, Olivier Marchal, Paul Lerner, Dan McCorkle, and Michiel Rutgers van der Loeff

The naturally-occurring particle-reactive radionuclides protactinium-231 (231Pa) and thorium-230 (230Th) are used as tracers of a variety of oceanic processes, both at present and in the past. Most notably, the sediment 231Pa/230Th ratio has been used to infer changes in the Atlantic Meridional Overturning Circulation over the last (de)glaciation. However, recent measurements along the U.S. GEOTRACES North Atlantic transect (GA03) revealed two features which are at odds with current understanding about 231Pa and 230Th behaviour in the ocean: (i) a sharp decrease in dissolved 231Pa and 230Th activities with depth below 2000-4000 m and (ii) very large particulate 231Pa and 230Th activities near the bottom, at a number of stations between the New England continental shelf and Bermuda. Concomitant measurements of particulate matter concentration and potential temperature showed that both features are associated with the benthic nepheloid layer (BNL) and the bottom mixed layer (BML) that are present at these stations.

Here we develop and apply a simplified model of the exchange of particles, 231Pa, and 230Th between the BNL and the upper sediment, to explore the extent to which the radionuclide anomalies observed near the bottom at a number of GA03 stations can be explained by local sediment resuspension. We find that the model can broadly reproduce the observed anomalies at two stations where samples for radionuclide analyses were collected near the seafloor. Sensitivity tests with the model show that the 231Pa/230Th ratio of particles in the BML and the sediment varies by a factor of 3 as the sediment resuspension rate fluctuates within a range consistent with observational estimates. The modelled variability is comparable to the spatial variability of 231Pa/230Th of suspended particles in the modern North Atlantic and to the variability of Atlantic sediment 231Pa/230Th records across the last (de)glacial period. Two factors are found to contribute to the modelled sensitivity of the sediment 231Pa/230Th to sediment resuspension rate: the vertical turbulent mixing in the BML and the differential scavenging intensity of Pa and Th due to variation in particle concentration. Overall, our study indicates that the exchange of material between the BNL and the upper sediment can affect the particulate 231Pa/230Th ratio in the bottom water and the sediment, which may complicate the use of sediment 231Pa/230Th as a palaeoceanographic tracer.

How to cite: Chen, S.-S., Marchal, O., Lerner, P., McCorkle, D., and Rutgers van der Loeff, M.: On the influence of sediment resuspension on deep-ocean Pa-231 and Th-230 cycling: Roles of turbulent mixing and differential scavenging, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4247, https://doi.org/10.5194/egusphere-egu2020-4247, 2020.

         Cold-water corals represent an intriguing paleoceanographic archive with a great potential to reconstruct high-resolution paleoenvironmental changes. Compared to those of shallow-water corals, proxies derived from cold-water corals have been complicated by biologically mediated vital effects. The oxygen and carbon stable isotope compositions of cold-water coral skeletons are more depleted than the expected carbonate-seawater equilibrium values by ~4–6‰ and ~10‰, respectively. Therefore, it is necessary to correct for the vital effect before using δ18O as a temperature proxy. δ18O and δ13C of cold-water corals exhibit strong linear correlations after adjusting for ambient seawater δ18O and δ13C values. The δ18O intercepts of this linear regression were found to be correlated with water temperatures. This so-called ‘intercept method’ can therefore be used to reconstruct temperatures variations of intermediate and deep oceans. Moreover, sampling along the growing bands of cold-water corals can provide samples to generate temperature sequences. After that, three geochemical models have been proposed to explain the δ18O and δ13C depletion of cold-water corals. However, none of them can explain the behavior of all geochemical parameters. In future, more analyses and experiments at micro-scales are required to adjust these geochemical models or propose new ones.

How to cite: Kong, L.: Oxygen and Carbon Isotopes of Cold-water Corals——Reconstructing Paleotemperature changes and Calcification Mechanism, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6500, https://doi.org/10.5194/egusphere-egu2020-6500, 2020.

EGU2020-6725 | Displays | CL1.27

231Pa/230Th in the northwestern Atlantic: circulation versus particles?

Finn Süfke, Frerk Pöppelmeier, Patrick Blaser, and Jörg Lippold

In 2004 McManus et al. published their famous 231Pa/230Th record from the Bermuda Rise revealing millennial-scale changes in circulation strength back to the Last Glacial Maximum. This record marks the boost of this proxy as a kinematic circulation change proxy for the Atlantic Ocean and the initial rising slope on the ‘Elderfield-Curve’. However, the up-to-date data base of Atlantic sedimentary 231Pa/230Th records gives a rather inconsistent picture of changes in the circulation strength in the Atlantic throughout the past 25 ka (Ng et al., 2018). Since both radioisotopes are strongly particle reactive it is obvious that scavenging processes may play a major role in their cycling as well. At ocean margins such processes do have a major impact on 231Pa/230Th, leading to increased values and thus potentially overprinting the circulation signal. In contrast, records from open ocean sites are assumed to show a less biased circulation signal. In addition, the GEOTRACES program (Schlitzer et al., 2018) provided valuable seawater data allowing for examining the cycling of both radioisotopes under today’s circulation regime in more detail. A transect across the North Atlantic by Hayes et al. (2015) revealed that nepheloid layers contribute to strong bottom scavenging of 231Pa and 230Th in the northwestern Atlantic basin. Surprisingly, sedimentary core-top values do not mirror predominant scavenging effects but rather indicate a strong export of 231Pa and therefore a circulation signal. With our modern proxy toolbox, it is impossible to reconstruct the occurrence and intensity of past nepheloid layers and hence their potential effect on recorded 231Pa/230Th variations. Therefore, isotope-enabled models may help to better decipher the interwoven processes controlling 231Pa/230Th (Rempfer et al., 2017; Lerner et al., 2019). Here an up-to-date compilation of northwestern Atlantic 231Pa/230Th data will be presented. Our findings base on records covering the last 25 ka and will be interpreted in the context of recent model simulations as well as compared to seawater data. Thus, we aim for a deeper understanding of 231Pa and 230Th cycling in the northwestern Atlantic.

References:

Hayes, C., et al. (2015), Deep-Sea Res. Pt. II, 116, 29-41.
Lerner et al. (2020), Deep Sea. Res. Pt. I, 155, 1-41.
McManus, J. F., et al. (2004), Nature, 428, 834-837.
Ng, H., et al. (2018), Nat. Comm., 9, 1-10.
Rempfer et al. (2017), EPSL, 468, 27-37.
Schlitzer, R., et al. (2018), Chem. Geol., 493, 210-223.

 

How to cite: Süfke, F., Pöppelmeier, F., Blaser, P., and Lippold, J.: 231Pa/230Th in the northwestern Atlantic: circulation versus particles?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6725, https://doi.org/10.5194/egusphere-egu2020-6725, 2020.

EGU2020-9634 | Displays | CL1.27

Planktic foraminiferal I/Ca from Holocene sediments of the Pacific and Indian Ocean

Helge Arne Winkelbauer, Simon Chenery, Elliott Montagu Hamilton, Melanie Leng, and Babette Hoogakker

Current climatic trends are expected to lead to expansion of oxygen minimum zones and an overall decrease in oxygen concentration [O2] in the oceans. In order to improve predictions of future trends we need to create a better understanding of the natural oxygen cycle. The iodine to calcium ratio (I/Ca) of planktonic foraminifera is an increasingly popular proxy to assess upper water column oxygenation. Recent studies suggest that this ratio is mainly controlled by subsurface water dissolved oxygen concentrations. A thorough assessment of the proxy has been carried out for the South Atlantic, but is currently lacking for the Indian and Pacific Oceans, which contain the worlds’ most intense and large oxygen minimum zones. Here we present results of recent (Holocene) planktonic foraminifera (mixed layer and deep dwelling species) I/Ca measurements across a range of oceanographic conditions ([O2] varies between < 10 µmol/kg to > 200 µmol/kg) from the Indian and Pacific Ocean to further refine the proxy, using sample material provided by Lamont-Doherty Core Repository.

How to cite: Winkelbauer, H. A., Chenery, S., Hamilton, E. M., Leng, M., and Hoogakker, B.: Planktic foraminiferal I/Ca from Holocene sediments of the Pacific and Indian Ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9634, https://doi.org/10.5194/egusphere-egu2020-9634, 2020.

EGU2020-12134 | Displays | CL1.27

Isotopic evidence for changes in the origin and cycling of nitrogen in the Labrador Sea during the last 8,000 years

Markus Kienast, Sam Davin, Kristin Doering, Dierk Hebbeln, Stephanie Kienast, Nadine Lehmann, Ralph Schneider, Owen Sherwood, and Jens Weiser

Subsurface nitrate in the Labrador Sea (NW Atlantic) and Baffin Bay is provided by North Pacific water flowing through Bering Strait and the Canadian Arctic as well as by advection from the North Atlantic. Both these nitrate sources are distinct in their isotopic signature (δ15N), owing to benthic denitrification on the Bering, Chukchi and east Siberian shelves and nitrogen fixation in the North Atlantic, respectively. Accordingly, water column profiles of δ15N(nitrate) collected off Greenland in the eastern Labrador Sea show low δ15N(nitrate), which mixes with more 15N-enriched nitrate flowing through Baffin Bay into the northern Labrador Sea. The Labrador Current carries this mixture southward along the western Labrador Sea, toward Newfoundland. The δ15N of surface sediments in the Labrador Sea closely mirrors these water column signals, suggesting that sediments can be used to trace changes in both the source signature of Atlantic versus Pacific-derived nitrate as well as in the admixture of the two source waters.

Two downcore sedimentary δ15N records from the NE and NW Labrador Sea coast both show high δ15N values of ca. 7‰ during the early Holocene (9-7 kyrs BP). In the NE Labrador Sea, this is followed by a long-term decrease toward δ15N of ca. 4.5‰ at the core top, in contrast to a much more subtle decrease in the NW Labrador Sea (surface sediment δ15N of ca. 6.5‰). The decreasing δ15N values along the eastern Labrador Sea are consistent with a Holocene increase in nitrogen fixation in the North Atlantic or an increasing advection of isotopically light nitrate. In turn, an increasing admixture of North-Pacific-derived nitrate, or intensified denitrification on the Bering Shelf would be required to explain the much subdued Holocene δ15N decrease in the NW Labrador Sea.

How to cite: Kienast, M., Davin, S., Doering, K., Hebbeln, D., Kienast, S., Lehmann, N., Schneider, R., Sherwood, O., and Weiser, J.: Isotopic evidence for changes in the origin and cycling of nitrogen in the Labrador Sea during the last 8,000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12134, https://doi.org/10.5194/egusphere-egu2020-12134, 2020.

EGU2020-17827 | Displays | CL1.27

Equatorial Atlantic ventilation over the last century revealed by deep-sea bamboo coral radiocarbon records

Qian Liu, Laura F. Robinson, Joseph A. Stewart, Timothy Knowles, Erica Hendy, Tao Li, and Ana Samperiz Vizcaino

Despite growing interest in ocean-climate interactions in response to recent anthropogenic warming, historical hydrographic data with which to assess changes in the deep ocean over the last century are limited. With their robust calcium carbonate skeletons, deep-sea corals, especially long-lived bamboo corals, serve as a potential archive for reconstructing continuous high-resolution paleoceanographic records extending back hundreds to even thousands of years.

Here we use deep-sea bamboo corals collected between 800 and 2000 m water depth in the eastern equatorial Atlantic to reconstruct the ventilation history over the last century. Deep-sea bamboo corals have a jointed axis consisting of organic nodes and internodes composed of calcium carbonate. The radiocarbon content of the organic nodes documents the radiocarbon of surface water and likely records the distinctive bomb 14C signal that can be used to generate a chronology for each coral specimen. By contrast, the radiocarbon content of calcite internodes records the radiocarbon signature of deep water over the lifetime of the coral. The reconstructed calcite radiocarbon record shows a quasi-periodic cycle of about two-decades, which is likely linked to multidecadal fluctuations in North Atlantic climate influencing the ventilation state of the water mass. In addition to radiocarbon records, we show that trace metal compositions of bamboo coral also provides key information with regard to both biomineralization processes, past environmental conditions, and chemistry of seawater. By combining radiocarbon and elemental composition of bamboo coral, we are building a set of tools with which to reconstruct deep ocean dynamics over the last century.

How to cite: Liu, Q., Robinson, L. F., Stewart, J. A., Knowles, T., Hendy, E., Li, T., and Samperiz Vizcaino, A.: Equatorial Atlantic ventilation over the last century revealed by deep-sea bamboo coral radiocarbon records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17827, https://doi.org/10.5194/egusphere-egu2020-17827, 2020.

Most paleoceanographic studies using planktic foraminifera focus on annual means, but seasonal signals buried by the analyses of lumped specimens could be very valuable. Surface ocean feedbacks on climate change may be more significant in the seasonal realm than annual mean in the northern South China Sea, a region being strongly affected by Asian monsoons and tropical cyclones. Here we use oxygen isotope measurements on individual specimens of surface and subsurface planktic foraminiferal species to reconstruct surface seasonality and seasonal upper ocean stratification in this region. Many studies have shown that the thermocline was deeper in the tropical Pacific during the Pliocene than the Pleistocene, but the mechanism remains unclear. Several processes could lead to changes in the upper ocean stratification, such as changes in sea surface temperature and upper ocean mixing by tropical cyclones. Our results show that the upper ocean stratification was weaker during the Late Pliocene than the Early Pleistocene, with the change more significant in summer than winter, while no systematic offset is observed in the surface seasonality. The observations suggest that enhanced mixing by tropical cyclones might be the major cause of the deeper thermocline during the Pliocene.

How to cite: Zhao, N., Vonhof, H., Giosan, L., Schiebel, R., and Haug, G.: Oxygen isotopes of individual planktic foraminifers reveal Pliocene-Pleistocene change of seasonal upper ocean stratification in the northern South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20172, https://doi.org/10.5194/egusphere-egu2020-20172, 2020.

The silicon isotopic composition of sedimentary biogenic opal can be used to track shifts in the balance between silicon inputs to the ocean and outputs by burial. In addition to biosilicification and opal burial, the global cycles of climate (hydrology, weathering, glaciation, etc.), tectonics (volcanoes, LIPs, mountain building, etc.) and geochemistry (reverse weathering, inorganic Si precipitation, etc.) have driven variations in the global Si cycle over geologic time. Prior to the start of the Phanerozoic it is thought that burial in the global oceans was controlled inorganically through chert formation. The evolution of the Si depositing organisms, radiolarians and sponges, reduced oceanic dissolved Si, but the largest reductions occurred with the evolution of the diatoms bringing dissolved Si to the low concentrations (relative to saturating concentrations) observed today. However, the timing of the depletion of dissolved Si by diatoms is currently under debate.
 
Our understanding of the biological components of the Si cycle has grown enormously. In the last decade, silicon isotope ratios (expressed as δ30Si) in marine microfossils are becoming increasingly recognised for their ability to provide insight into silicon cycling. In particular, the δ30Si of deep-sea sponge spicules has been demonstrated to be a useful proxy for past dissolved Si concentrations. However, more recent studies find anomalies in the isotopic fractionation of sponge spicules that relate to skeletal morphology: reliable reconstructions of past dissolved Si can only be obtained using silicon isotope ratios derived from sponges with certain spicule types. We are applying δ30Si proxies from biosiliceous material contained in sediments to generate robust estimates of the timing and magnitude of dissolved Si drawdown. We will provide fundamental new insights into the drawdown of dissolved Si and other key events, which reorganized the distribution of carbon and nutrients in seawater, with implications for productivity of the biological communities within the ancient oceans. 

How to cite: Conley, D. and Hendry, K.: Using the silica isotope composition of biogenic materials in marine sediments to reconstruct ocean chemistry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22504, https://doi.org/10.5194/egusphere-egu2020-22504, 2020.

CL2.1 – Earth radiation budget, radiative forcing and climate change

EGU2020-2025 | Displays | CL2.1

Best practices for surface radiation observations from long-term moored buoys

Robert Weller, J. Thomas Farrar, Sebastien Bigorre, Jason Smith, James Potemra, and Fernando Santiago-Mandujano

The Upper Ocean Process Group of the Woods Hole Oceanographic Institution deploys moorings with surface buoys instrumented with incoming shortwave and longwave radiometers at locations around the world.  The procedures used to calibrate the radiometers in the laboratory and to assess their performance at sea are discussed.  Some mooring deployments are done during collaborative field experiments and are months to a year in length.  Three other sites are being maintained as long-term Ocean Reference Stations (ORS), with sequential one-year deployments being used to collect ongoing time series.  The Stratus ORS, located under the marine stratus clouds off northern Chile, has been collecting surface radiation observations since 2000.  The NTAS ORS in the western tropical Atlantic has collected surface radiation data since 2001; and the WHOTS ORS north of island of Oahu, Hawaii has collected surface radiation data since 2004.  Challenges encountered in making the surface radiation observations are discussed, and the best estimates of observational uncertainties are presented.  With this understanding of the accuracies of the observations, comparisons between the buoy observations and surface radiation values from models and reanalyses are shown.  Work underway on further improvements to the approaches taken to make surface radiation observations from moored buoy are discussed, and a suggestion for field intercomparisons with other oceanic and land-based surface radiation observing platforms is put forward.

How to cite: Weller, R., Farrar, J. T., Bigorre, S., Smith, J., Potemra, J., and Santiago-Mandujano, F.: Best practices for surface radiation observations from long-term moored buoys, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2025, https://doi.org/10.5194/egusphere-egu2020-2025, 2020.

EGU2020-2453 | Displays | CL2.1

An update on brightening and dimming in the United States

John Augustine

Brightening and dimming of solar irradiance at Earth’s surface is a multidecadal phenomenon that occurs globally. Generally, over the past century, there have been two brightening periods (1920s to 1950s, 1980s to the early 2000s) and one dimming period (1950s to mid-1980s). Exceptions are the evolving industrial regions of India and parts of China that have only experienced dimming owing to aerosol effects. The two most recent dimming and brightening periods in Europe were attributed to both aerosol and cloud variability. In the U.S., especially since the 1990s, the systematic variation of cloud cover has been the dominant influence on brightening and dimming.

From 1996 through 2011 downwelling surface solar irradiance over the U.S. increased by +6.6 Wm-2/decade in an environment of decreasing cloud cover and decreasing aerosol optical depth (AOD) [Augustine and Dutton 2013]. Results presented here extend the brightening/dimming trend for the U.S. through 2018 and show that brightening continued for only one more year after 2011. Following 2012, solar irradiance at the surface abruptly retreated to the long-term mean (±1 Wm-2) and stabilized at that level through 2017. In 2018 there was a slight decrease of solar irradiance at the surface resulting in a slight dimming trend of -1.7 Wm-2/decade from 2013 through 2018. During that period AOD continued to decrease but mean cloud cover increased by about 1%, thus cloud variability continued to be the dominant influence on brightening/dimming in the U.S.

It has been shown that the direct effect of aerosols cannot account for the magnitudes of observed trends of surface solar irradiance over the U.S. [Augustine and Dutton 2013]. Here, we show that the second indirect effect of aerosols is consistent with the magnitudes of cloud and AOD reduction from 1996 through 2011. However, over the latest 6-year period analyzed, trends in cloud cover and AOD are not consistent with the stabilization (or small reduction) of solar irradiance at the surface with respect to both the direct and second indirect effect of aerosols. Therefore, systematic changes in circulation and weather must be considered to explain the observed variability, especially with regard to clouds. In this presentation we present evidence for a mechanism that could possibly have been a major contributor to brightening and dimming in the U.S. and western Europe over the past century.

 

Augustine, J. A., and E. G. Dutton (2013), Variability of the surface radiation budget over the United States from 1996 through 2011 from high-quality measurements, J. Geophys. Res.,118, doi:10.1029/2012JD018551.

How to cite: Augustine, J.: An update on brightening and dimming in the United States, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2453, https://doi.org/10.5194/egusphere-egu2020-2453, 2020.

EGU2020-6930 | Displays | CL2.1

Solar radiation in the Arctic during the Early Twentieth Century Warming period (1921–50)

Rajmund Przybylak, Pavel Sviashchennikov, Joanna Uscka-Kowalkowska, and Przemysław Wyszyński

The Early Twentieth Century Warming (ETCW) period includes a time when a clear increase in actinometric observations was noted in the Arctic, which is defined for the purpose of the present paper after Atlas Arktiki (Treshnikov ed., 1985). Nevertheless, available information about energy balance, and its components, for the Arctic for the study period is still very limited, and therefore solar forcing cannot be reliably determined. As a result, the literature contains large discrepancies between estimates of solar forcing. For example, reconstructions of the increase of terrestrial solar irradiance (TSI) during the ETCW period range from 0.6 Wm-2 (CMIP5, Wang et al., 2005), through 1.8 Wm-2 (Crowley et al., 2003), to 3.6 Wm-2 (Shapiro et al., 2011). Suo et al. (2013) concluded that the collection and processing of solar data is of paramount and central importance to the ability to take solar forcing into account, especially in modelling work.

            Having in mind the weaknesses of our knowledge described above, we decided to present in the paper a summary of our research concerning the availability of solar data in the Arctic (including measurements taken during land and marine expeditions). A detailed inventory of data series for the ETCW period (1921–50) also containing all available metadata will be an important part of this work. Based on the gathered data, a preliminary analysis will be presented of the general solar conditions in the Arctic in this time in terms of global, diffuse and direct solar radiation, and their changes from the ETCW period to present times (mainly 1981–2010).

            The research work in this paper was supported by a grant entitled “Causes of the Early 20th Century Arctic Warming”, funded by the National Science Centre, Poland (grant no. 2015/19/B/ST10/02933).

References:

Crowley T.J., Baum S.K., Kim K., Hegerl G.C. and Hyde W.T., 2003. Modeling ocean heat content changes during the last millennium. Geophys. Res. Lett. 30, 1932

Shapiro A.I., Schmutz W., Rozanov E., Schoell M., Haberreiter M. and co-authors, 2011. A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys. 529, A67.

Suo L., Ottera O.H., Bentsen M., Gao Y. and Johannessen O.M., 2013. External forcing of the early 20th century Arctic warming, Tellus A 2013, 65, 20578, http://dx.doi.org/10.3402/tellusa.v65i0.20578

Treshnikov A.F. (ed.), 1985. Atlas Arktiki. Glavnoye Upravlenye Geodeziy i Kartografiy: Moscow.

Wang Y.M., Lean J.L. and Sheeley Jr. N.R., 2005. Modeling the sun’s magnetic field and irradiance since 1713. Astroph. J. 625, 522.

How to cite: Przybylak, R., Sviashchennikov, P., Uscka-Kowalkowska, J., and Wyszyński, P.: Solar radiation in the Arctic during the Early Twentieth Century Warming period (1921–50), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6930, https://doi.org/10.5194/egusphere-egu2020-6930, 2020.

EGU2020-7499 | Displays | CL2.1

Temporal variability of inferred surface energy fluxes derived from the ERA5 energy budget

Johannes Mayer, Michael Mayer, and Leopold Haimberger

We use the new Copernicus ERA5 reanalysis dataset to evaluate the global atmospheric energy budget using a consistent diagnostic framework and  improved numerical methods. A main outcome of this work are mass consistent divergences of moist static plus kinetic energy fluxes. These divergences are combined with top-of-the-atmosphere fluxes based on satellite observations and reconstructions back to 1985 to obtain net surface energy fluxes (FS) with unprecedented accuracy. The global mean of these FS fields is unbiased by construction. Hence, this product is well-suited for climate studies and model evaluations.  Here, the temporal variability and stability of inferred FS, the land-ocean energy transport and the corresponding water cycle are presented and compared with previous evaluations, which used ERA-Interim. 

The inferred FS fields exhibit a much smaller noise level, and sampling errors are drastically reduced due to the high temporal resolution (hourly) of the ERA5 dataset. Energy budget residuals over land are on the order of 17.0 Wm-2, which represents a 63 % reduction compared to ERA-Interim. We also present time series of FS averaged over the global ocean. Its global mean is 2.0 Wm-2, which is in much better agreement with ocean heat uptake than widely used satellite-derived surface flux products. Moreover, it exhibits reasonable temporal stability at least from 2000 onwards. We compare the annual cycles of FS over the ocean and ocean heat content variations derived from ocean reanalysis products and find good agreement. Overall, our results demonstrate clear improvements over earlier evaluations, but more work is needed to optimally use the available data and further reduce uncertainties.

How to cite: Mayer, J., Mayer, M., and Haimberger, L.: Temporal variability of inferred surface energy fluxes derived from the ERA5 energy budget , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7499, https://doi.org/10.5194/egusphere-egu2020-7499, 2020.

EGU2020-1351 | Displays | CL2.1

Decadal variations in retrieved aerosol optical depth from sunshine duration measurements over Europe since the late 19th century

William Wandji, Antti Lipponen, Else van den Besselaar, Arturo Sanchez–Lorenzo, Martin Wild, and Antti Arola

A better knowledge of the present–day aerosol forcing requires an accurate estimation of the historical evolution of aerosol optical depth (AOD), which is also crucial to better understand the role played by atmospheric aerosols in the dimming/brightening phenomena that have occurred since the mid-20th century. A physically-based approach using daily sunshine duration and cloud cover measurements is applied over Europe for retrieving AOD (Wandji Nyamsi et al., 2019). Both European Climate Assessment & Dataset (ECA&D) and national meteorological offices/institutes provide suitable measurements, from ~ 1000 ground-based stations, to carry out our study.

The retrieved long-term AOD shows reasonable seasonal and annual variabilities including signals induced by major volcanic eruptions. The trends of atmospheric aerosols and associated increase and decrease of AOD over the periods 1960–1984 and 1985–2010, respectively, are in good agreement with the dimming/brightening periods reported before. In addition, a more dominant decrease in AOD including high variability from the early-1900s to the 1950s is observed, which agrees with some earlier studies reporting “early brightening” for this period. The high inter-annual AOD variability during that period may be partly due to the transition from coal to gas in some European countries and also due to the possible influence of the Word Wars I & II.

References

Wandji Nyamsi, W.; Lipponen, A.; Sanchez–Lorenzo, A.; Wild, M. and Arola, A. (2019), A hybrid method for reconstructing the historical evolution of aerosol optical depth from sunshine duration measurements, submitted.

How to cite: Wandji, W., Lipponen, A., van den Besselaar, E., Sanchez–Lorenzo, A., Wild, M., and Arola, A.: Decadal variations in retrieved aerosol optical depth from sunshine duration measurements over Europe since the late 19th century, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1351, https://doi.org/10.5194/egusphere-egu2020-1351, 2020.

EGU2020-17654 | Displays | CL2.1

Atmospheric observations of the water vapour continuum in the near-infrared windows

Jon Elsey, Marc Coleman, Tom Gardiner, Kaah Menang, and Keith Shine
 
The water vapour continuum is an important additional component to the total absorption of atmospheric radiation by water vapour. However, while it has been studied extensively in the far and mid-infrared, there are significant uncertainties in its absorption strength in the near-infrared, since the relatively few laboratory measurements in this region disagree by a factor of ~50. Compounding this uncertainty is the lack of observations in atmospheric conditions; measurements are typically made at room-temperature or above, but the continuum has significant (and uncertain) temperature dependence. We aim to reduce this uncertainty by presenting observations of the near-infrared water vapour continuum from Camborne, UK at sea level using a sun-pointing, radiometrically-calibrated Fourier transform spectrometer in the window regions between 2000–10000 cm−1. When extrapolated to atmospheric temperatures, we show good agreement with various laboratory studies in the 4 µm window.  Our results show that the widely-used MT_CKD continuum is too weak by a factor of ~5 in the in the centre of the 2.1 µm window in line with laboratory analyses, with implications for energy balance studies and remote sensing. Our results at 1.6 µm show significantly stronger absorption than MT_CKD. This may be in part due to the influence of atmospheric aerosol, which forms a rather significant part of the uncertainty in our measurements at higher wavenumbers. We demonstrate the difficulties in making such field observations, and highlight the need for future observations both from the laboratory and the field, with the aim of including the water vapour continuum in the HITRAN spectroscopic database.

How to cite: Elsey, J., Coleman, M., Gardiner, T., Menang, K., and Shine, K.: Atmospheric observations of the water vapour continuum in the near-infrared windows, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17654, https://doi.org/10.5194/egusphere-egu2020-17654, 2020.

EGU2020-11489 | Displays | CL2.1 | Highlight

Changing of the Guard for the Total Solar Irradiance Record

Greg Kopp, David Harber, Karl Heuerman, and Brandon Stone

The uninterrupted, 41-year-long, spaceborne total solar irradiance (TSI) record has recently undergone several changes in the instruments contributing to these measurements of the net incoming radiant energy providing nearly all the power driving the Earth’s climate system. Two long-term instruments, NASA’s SORCE/TIM and TCTE/TIM, have recently been powered off. This ends the 17-year record from the SORCE/TIM, which established the currently-accepted TSI value of 1361 W m‑2 after its launch in 2003. ESA’s SoHO/VIRGO continues to acquire measurements that extend its 24-year record, but data availability has been on hold as a new processing methodology is implemented. NASA’s recently-launched TSIS‑1/TIM is presently continuing the measurements of these stalwart legacy instruments. This new TSI instrument is demonstrating higher on-orbit accuracy than any prior such instrument has achieved, with daily measurement updates that are available to the community for climate- and solar-research purposes. I will discuss the many recent changes to the spaceborne TSI measurement record, the current measurement-accuracy improvements and stabilities achieved and their implications for Earth energy-balance studies, and the future plans to maintain measurement continuity.

How to cite: Kopp, G., Harber, D., Heuerman, K., and Stone, B.: Changing of the Guard for the Total Solar Irradiance Record, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11489, https://doi.org/10.5194/egusphere-egu2020-11489, 2020.

EGU2020-10294 | Displays | CL2.1

Effective Radiative Forcing and Adjustments in CMIP6

Christopher Smith, Ryan Kramer, Gunnar Myhre, Kari Alterskjær, Bill Collins, Robert Pincus, and Piers Forster and the RFMIP modelling groups

The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmsophere and surface, as emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and atmospheric adjustments in 13 contemporary climate models that are participating in CMIP6 and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global mean anthropogenic forcing relative to pre-industrial (1850) from climate models stands at 1.97 (± 0.26) W m-2, comprised of 1.80 (± 0.11) W m-2 from CO2, 1.07 (± 0.21) W m-2 from other well-mixed greenhouse gases, -1.04 (± 0.23) W m-2 from aerosols and -0.08 (± 0.14) W m-2 from land use change. Quoted ranges are one standard deviation across model best estimates, and 90% confidence in the reported forcings, due to internal variability, is typically within 0.1 W m-2. The majority of the remaining 0.17 W m-2 is likely to be from ozone. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the "traditional" stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing, but not for aerosols, and consequentially, not for the anthropogenic total forcing. The spread of present-day aerosol forcing has narrowed compared to CMIP5 models to the range of -0.63 to -1.37 W m-2, with a less negative mean. The spread in CO2 forcing has also narrowed in CMIP6 compared to CMIP5, which may be a consequence of improving radiative transfer parameterisations. We also find that present-day aerosol forcing is uncorrelated with equilibrium climate sensitivity. Therefore, there is no evidence to suggest that the higher climate sensitivity in many CMIP6 models is a consequence of stronger negative present-day aerosol forcing.

How to cite: Smith, C., Kramer, R., Myhre, G., Alterskjær, K., Collins, B., Pincus, R., and Forster, P. and the RFMIP modelling groups: Effective Radiative Forcing and Adjustments in CMIP6, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10294, https://doi.org/10.5194/egusphere-egu2020-10294, 2020.

EGU2020-1780 | Displays | CL2.1 | Highlight

The end of the anthropogenic aerosol era?

Susanne E. Bauer and Kostas Tsigaridis

The Earth’s climate is rapidly changing. Over the past century, aerosols, via their ability to absorb or scatter solar radiation and alter clouds, played an important role in counterbalancing some of the greenhouse gas (GHG) caused global warming. This, over a century-long anthropogenic aerosol cooling effect, prevented present day climate to have yet reached even higher surface air temperatures and subsequent more dramatic climate change impacts. Trends in aerosol concentrations and optical depth show that in many formerly highly polluted regions such as Europe and the United States of America aerosol precursor emissions have already decreased back to pollution levels of the 1950s. More recent polluting countries such as China may have reached a turning point in recent years as well, while India keeps still following an upward trend. Here we study aerosol trends in the CMIP6 simulations of the GISS ModelE climate model using a fully coupled atmosphere composition configuration, including interactive gas phase chemistry, and either an aerosol microphysical (MATRIX) or a mass based (OMA) aerosol module. Results show that the question if we are already at a period where aerosol radiative forcing continuously declines globally depends on the aerosol scheme used. Using the aerosol microphysical scheme, where the aerosol system reacts stronger to the trend in sulfur dioxide (SO2) emissions, global peak direct aerosol forcing was reached in the 1980’s, whereas the mass-based scheme simulates peak direct aerosol forcing around 2010. The models are tested again ice core records, satellite and surface network datasets. An evaluation with satellite data between 2001 and 2014 demonstrates that the model that better reproduces the satellite retrieved trends has reached maximal aerosol direct forcing in the 1980s, and is since on a decreasing global forcing trajectory. As a consequence, we expect that the recently observed global warming which is primarily driven by greenhouse gases has been augmented by the effect of a decreasing aerosol cooling effect on the global scale.

How to cite: Bauer, S. E. and Tsigaridis, K.: The end of the anthropogenic aerosol era?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1780, https://doi.org/10.5194/egusphere-egu2020-1780, 2020.

EGU2020-19472 | Displays | CL2.1

Observation-constrained Radiative Forcing from historical land-cover changes in CMIP5 models

Quentin Lejeune, Edouard Davin, Grégory Duveiller, Bas Crezee, Ronny Meier, Alessandro Cescatti, and Sonia Seneviratne

The albedo of trees is lower than the one of crops and grasses, especially in the presence of snow. It is therefore understood that the replacement of forests by croplands and grasslands used for agricultural purposes that has occurred since pre-industrial times led to large-scale albedo increases. This is reflected by the estimate of the Radiative Forcing (RF) from historical Land-Cover Changes (LCC) of the Fifth Assessment Report (AR5) of the IPCC, which amounts to -0.15 +/- 0.10 W/m2. However, this expert judgment was intended to both account for a few studies using single climate models which put forward values close to 0.2W/m2, and the finding that climate models usually overestimate the albedo difference between natural vegetation and croplands in comparison to satellite-derived observational evidence. Further uncertainties around this number have also been suggested by studies revealing a substantial model spread in the albedo response to historical LCC. This points at the need to revisit the IPCC AR5 conclusions in light of recent model intercomparison efforts and observational data.

In this study, we reconstructed the local albedo changes induced by conversions between trees and crops/grasses since 1860 for 15 CMIP5 models. We evaluated the employed methodology using factorial experiments isolating the historical LCC forcing in four models for which the required simulations are available, and obtained very similar results. Using an empirical parameterisation of the radiative kernel, we then derived estimates of the associated RF ranging between 0 and -0.22 W/m2, with a multi-model mean value of -0.07 W/m2.

Furthermore, we constrained the RF estimates with observations by replacing the albedo response to the transition between trees and crops/grasses from the models by that provided by satellite-derived data. This led to an unexpected increase in the range between the models, due to two models having unrealistic conversion rates from trees to crops/grasses. Excluding these two models, we obtain a revised multi-model mean estimate of -0.11 W/m2 (with individual model results between -0.04 and -0.16 W/m2). We were also able to link the differences between the unconstrained and constrained RF estimates to some of the model biases in the albedo sensitivity to deforestation.

Since the conversions between trees and crops/grasses are responsible for almost the totality of historical albedo changes in CMIP5 models, our findings are comparable to previous estimates of the RF from all LCC. They point at values that are at the lower end of the range provided by the IPCC AR5. The approach described in this study can be applied on other model simulations, such as those from CMIP6.

How to cite: Lejeune, Q., Davin, E., Duveiller, G., Crezee, B., Meier, R., Cescatti, A., and Seneviratne, S.: Observation-constrained Radiative Forcing from historical land-cover changes in CMIP5 models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19472, https://doi.org/10.5194/egusphere-egu2020-19472, 2020.

EGU2020-19702 | Displays | CL2.1

Climate forcing and committed global warming: GHGs, aerosols and ozone 1970-2010

Alcide Zhao, David Stevenson, and Massimi Bollasina

It is crucial to reduce uncertainties in our understanding of the climate impacts of short‐lived climate forcers, in the context that their emissions/concentrations are anticipated to decrease significantly in the coming decades worldwide. Using the Community Earth System Model (CESM1), we performed time‐slice experiments to investigate the effective radiative forcing (ERF) and climate respons to 1970–2010 changes in well‐mixed greenhouse gases (GHGs), anthropogenic aerosols, and tropospheric and stratospheric ozone. Once the present‐day climate has fully responded to 1970–2010 changes in all forcings, both the global mean temperature and precipitation responses are twice as large as the transient ones, with wet regions getting wetter and dry regions drier. The temperature response per unit ERF for short‐lived species varies considerably across many factors including forcing agents and the magnitudes and locations of emission changes. This suggests that the ERF should be used carefully to interpret the climate impacts of short‐lived climate forcers. Changes in both the mean and the probability distribution of global mean daily precipitation are driven mainly by GHG increases. However, changes in the frequency distributions of regional mean daily precipitation are more strongly influenced by changes in aerosols, rather than GHGs. This is particularly true over Asia and Europe where aerosol changes have significant impacts on the frequency of heavy‐to‐extreme precipitation. Our results may help guide more reliable near‐future climate projections and allow us to manage climate risks more effectively.

How to cite: Zhao, A., Stevenson, D., and Bollasina, M.: Climate forcing and committed global warming: GHGs, aerosols and ozone 1970-2010, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19702, https://doi.org/10.5194/egusphere-egu2020-19702, 2020.

EGU2020-15422 | Displays | CL2.1

Radiative feedbacks in a 1D radiative-convective equilibrium model

Lukas Kluft, Sally Dacie, Stefan A. Buehler, Hauke Schmidt, and Bjorn Stevens

Equilibrium climate sensitivity (ECS), the change in surface temperature in response to a doubling of atmospheric CO2, is arguably one of the most important quantities when discussing climate change. Despite major improvements in climate modelling over the last decades, ECS estimates lie within a rather constant range between 1.5-4 K. The cause of this spread is not obvious as the comparison of comprehensive climate models is difficult due to the complexity of their formulations.

 

We are revisiting one of the simplest climate models, one-dimensional radiative-convective equilibrium (RCE). Despite their simple and concise model formulation, RCE models include the most dominant clear-sky radiative feedbacks. In our study, we quantify the strength of the Planck, water-vapor, and lapse-rate feedback by turning them on or off using different model configurations. This method allows us to compare the effect of different model assumptions, e.g. the vertical distribution of water vapor, on the decomposed radiative feedbacks. We find that the interplay of the water-vapor and the lapse-rate feedback is especially affected by the relative humidity in the upper troposphere.

 

The RCE model is run with a state-of-the-art radiation scheme, that is also used in comprehensive  Earth system models. A line-by-line radiative transfer model is used to both verify the performance of the fast radiation scheme, and to attribute changes in the radiative feedbacks to specific regions in the electromagnetic spectrum.

 

In a further step, conceptual rectangular clouds are added to investigate possible cloud masking effects on both the radiative forcing and feedback. A large Monte Carlo ensemble is used to tune the cloud optical parameters in a way that the resulting cloud radiative effect matches satellite observations. Preliminary results suggest a near zero long-wave feedback, in contrast to previous studies.

How to cite: Kluft, L., Dacie, S., Buehler, S. A., Schmidt, H., and Stevens, B.: Radiative feedbacks in a 1D radiative-convective equilibrium model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15422, https://doi.org/10.5194/egusphere-egu2020-15422, 2020.

EGU2020-8050 | Displays | CL2.1

Representing transient precipitation change of Solar Radiation Management and Carbon Dioxide Removal with fast and slow precipitation components

Anton Laakso, Peter Snyder, Stefan Liess, Antti-Ilari Partanen, and Dylan Millet

Solar Radiation Management (SRM) and Carbon Dioxide Removal (CDR) have been proposed to mitigate global warming in the event of insufficient greenhouse gas emission reductions. We have studied temperature and precipitation responses to CDR and SRM with the RCP4.5 scenario using the MPI-ESM and CESM Earth System Models (ESMs). The two SRM scenarios were designed to meet different climate targets to keep either global mean 1) surface temperature or 2) precipitation at the 2010-2020 level via stratospheric sulfur injections. This was done in two-fold method, where global aerosol fields were first simulated with aerosol-climate model ECHAM-HAMMOZ, which were then used as prescribed fields in ESM simulations. In the CDR scenario the annual CO2 increase based on RCP4.5 was counteracted by a 1% annual removal of the atmospheric CO2 concentration which decreased the global mean temperature back to the 2010-2020 level at the end of this century. 

Results showed that applying SRM to offset 21st century climate warming in the RCP4.5 scenario led to a 1.42%  (MPI-ESM) or 0.73% (CESM) reduction in global mean precipitation, whereas CDR increased global precipitation by 0.5% in both ESMs for 2080-2100 relative to 2010-2020. To study this further we separated global precipitation responses to a temperature-dependent and a fast temperature-independent components. These were quantified by a regression method. In this method the climate variable (e.g. precipitation) is regressed against the temperature change due to the instantaneous forcing. Temperature-dependent slow response and temperature independent fast response are given by the fitted regression line. We showed that in all simulated geoengineering scenarios, the simulated global mean precipitation change can be represented as the sum of these response components. This component analysis shows that the fast temperature-independent component of atmospheric CO2 concentration explains the global mean precipitation change in both SRM and CDR scenarios. Results showed relatively large differences in the individual precipitation components between two ESMs. This component analysis method can be generalized to evaluate and analyze precipitation, or other climate responses, basically in any emission scenario and in any ESM in a conceptually easy way. 

Based on the SRM simulations, a total of or 292-318 Tg(S) (MPI-ESM) or 163-199 Tg(S) (CESM) of injected sulfur from 2020 to 2100 was required to offset global mean warming based on the RCP4.5 scenario. The distinct effects of SRM in the two ESM simulations mainly reflected differing shortwave absorption responses to water vapor. To prevent a global mean precipitation increase, only 95-114 Tg(S) was needed. Simultaneously this prevent the global mean climate warming from exceeding 2 degrees above preindustrial temperatures in both models. 

How to cite: Laakso, A., Snyder, P., Liess, S., Partanen, A.-I., and Millet, D.: Representing transient precipitation change of Solar Radiation Management and Carbon Dioxide Removal with fast and slow precipitation components, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8050, https://doi.org/10.5194/egusphere-egu2020-8050, 2020.

EGU2020-18875 | Displays | CL2.1

Global heat uptake by inland waters

Inne Vanderkelen, Nicole P.M. van Lipzig, Dave Lawrence, Bram Droppers, Malgorzata Golub, Simon N. Gosling, Annette B. G. Janssen, Rafael Marcé, Hannes Müller Schmied, Martorie Perroud, Don Pierson, Yadu Pokhrel, Yusuke Satoh, Jacob Schewe, Sonia I. Seneviratne, Victor M. Stepanenko, Richard I. Woolway, and Wim Thiery

Heat uptake is a key variable for understanding Earth system response to greenhouse gas forcing. Recent assessments highlighted that most of the excess energy is stored in the oceans, whereas the land, atmosphere and ice melt take up smaller amounts. However, despite the importance of this heat budget, heat uptake by inland waters has so far not been quantified. Here we use a unique combination of global-scale lake models, global hydrological models and Earth system models to, for the first time, quantify global heat uptake by lakes, reservoirs and rivers over the industrial period (1900-2020).

We use a total of 16 different simulations of global-scale lake models and global hydrological models driven by the same bias-corrected climate forcing from four different global climate models, conducted within the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). The model output is combined with reservoir and lake data from the Global Reservoir and Dam (GRanD) database and HydroLAKES.

Total inland water heat uptake in the industrial period amounts to 2.8 ± 4.3x1020 J by the end of the period, with the largest uptake realised after 1990. The overall uptake is dominated by warming of natural lakes (2.9 ± 2.0x1020 J, the multi-model mean and standard deviation; 103% of total inland water heat uptake), followed by reservoir warming (5.9 ± 2.7x1018 J; 2.1%). The multi-model mean heat uptake by rivers contributes negatively to the total heat uptake (-0.15 ± 4.3x1020 J; -5.3%), but encompasses a large uncertainty originating from the river storage term, simulated by the global hydrological models. The global picture of positive heat uptake by natural lakes is confirmed at the regional scale in the major lake regions by all global-scale lake model and global climate model combinations. The heat uptake by inland waters makes up ~3.2% of continental heat uptake reported in the IPCC AR5 (2013). The rapid increase in dam construction and resulting reservoir expansion in the second half of the 20th century causes a heat redistribution from ocean to land by storing extra water on land. Remarkably, this heat redistribution exceeds the anthropogenic heat uptake by inland waters by a factor of ~ 9.6, adding up to 27 ± 2.1x1020 J.

Our results overall underline the importance of inland waters for buffering atmospheric warming through enhanced anthropogenic greenhouse gas concentrations. 

How to cite: Vanderkelen, I., van Lipzig, N. P. M., Lawrence, D., Droppers, B., Golub, M., Gosling, S. N., Janssen, A. B. G., Marcé, R., Müller Schmied, H., Perroud, M., Pierson, D., Pokhrel, Y., Satoh, Y., Schewe, J., Seneviratne, S. I., Stepanenko, V. M., Woolway, R. I., and Thiery, W.: Global heat uptake by inland waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18875, https://doi.org/10.5194/egusphere-egu2020-18875, 2020.

EGU2020-6018 | Displays | CL2.1

Developing Best Practices for Observing Global Surface Shortwave and Longwave Radiation across the Land and Ocean

Robert Weller, Christian Lanconelli, Martin Wild, and Joerg Trenmann

In-situ shortwave or solar radiation and longwave or thermal radiation are observed at the earth’s surface on both the land and the ocean.  In addition, satellites are used to develop fields of surface radiation balance.  Planning for the Global Ocean Observing System (GOOS) and the Global Climate Observing System (GCOS) has identified surface heat flux, including the radiative fluxes, as an Essential Ocean Variable (EOV) and Essential Climate Variable (ECV), respectively.  The GOOS and GCOS requirements for surface radiative fluxes (spatial and temporal sampling, accuracies) are summarized here.  Surface radiation sites will continue to be sparse in the future, especially in the ocean; and satellite-derived products developed in concert with in-situ observing system will be important.  To make better progress towards meeting those requirements, we propose the goal of establishing dialog across the different methods of in-situ observing surface radiation and with the remote sensing community.  Objectives of the effort would include sharing knowledge and experience of how to make the observations, documentation of calibration methods, and assessment of the uncertainties to be associated with the different observing methods.  The resulting metadata and quantitative understanding of the different approaches would support improved combination of surface radiation observations across land and sea into homogeneous products at global scale.  At the same time, improved in-situ sampling would help assess and validate climate models and contribute to our understanding of the earth’s energy balance.  We review here the different observing methods now in use on land and at sea and discuss the challenges faced in making the observations.  We also propose future field inter-comparison and standardization of calibration methods to better establish the accuracy and comparability of surface radiation observations on land and at sea.

How to cite: Weller, R., Lanconelli, C., Wild, M., and Trenmann, J.: Developing Best Practices for Observing Global Surface Shortwave and Longwave Radiation across the Land and Ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6018, https://doi.org/10.5194/egusphere-egu2020-6018, 2020.

EGU2020-933 | Displays | CL2.1

Systematic and Random error correction of ship based marine meteorological parameters observed across Tropical Indian ocean

Kameshwari Nunna, Udaya Bhaskar Tata Venkata Sai, Pattabhi Rama Rao Eluri, and Venkata Jampana

In this study, ship based observations obtained from Indian Meteorological Department (IMD) and Naval Operations Data Processing and Analysis Centre (NODPAC) observed across Tropical Indian ocean (TIO) are combined with International Comprehensive Ocean-Atmosphere Dataset (ICOADS R3.0) and several climatology are generated for TIO. The ship observations from the Voluntary Observing Ships (VOS) have been found to contain both random and systematic errors. An attempt is made to apply a systematic correction upon wind speed (WS) and random error correction upon sea level pressure (SLP), dry bulb temperature (DBT), sea surface temperature (SST), dew point temperature (DPT). The systematic error correction upon WS is actually a correction applied to the old World Meteorological Organization (WMO) 1100 scale, i.e. the Beaufort estimated wind speeds are corrected as the old WMO 1100 scale was found to have errors. The new July scale derived exclusively for TIO rightly reduces the over estimation of high WS and increases the under estimation of lower WS as given by the old WMO 1100 scale. The systematic bias between anemometer measured wind speeds and Beaufort estimated wind speeds reduced from 0.52 m/s (obtained after the correction done by previous scale) to 0.08 m/s with the new scale. The random errors are calculated based on a technique called semi-variogram analysis technique. The fluxes derived from the observation error corrected variables are analyzed and the net heat flux across TIO was observed to reduce by 14 W/m2.

How to cite: Nunna, K., Tata Venkata Sai, U. B., Eluri, P. R. R., and Jampana, V.: Systematic and Random error correction of ship based marine meteorological parameters observed across Tropical Indian ocean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-933, https://doi.org/10.5194/egusphere-egu2020-933, 2020.

EGU2020-17981 | Displays | CL2.1

Equilibrium Climate Sensitivity in AWI-ESM: Mechanisms and Effects

Christopher Danek, Paul Gierz, Christian Stepanek, and Gerrit Lohmann

The global-mean surface air temperature change due to a doubled carbon dioxide concentration in the atmosphere (equilibrium climate sensitivity, ECS) is an important measure to quantify the impact of predicted anthropogenic climate change. The latest climate modeling intercomparison project (CMIP6) exhibits a higher ECS compared to the previous climate model generation (1.8 to 5.6 K for CMIP6 versus 1.5 to 4.5 K for CMIP5). The increase in ECS is likely due to decreases in extratropical low cloud coverage and albedo, caused by improvements in the numerical aerosol schemes. Our state-of-the-art Earth system model AWI-ESM, developed at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, yields an ECS of 3.59-3.62 K, which is close to the CMIP5 mean. Using a set of varying model configurations, we identify dynamic vegetation and model resolution as the primary driving factors which influence the modeled global response to an increased greenhouse gas forcing.

How to cite: Danek, C., Gierz, P., Stepanek, C., and Lohmann, G.: Equilibrium Climate Sensitivity in AWI-ESM: Mechanisms and Effects, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17981, https://doi.org/10.5194/egusphere-egu2020-17981, 2020.

EGU2020-884 | Displays | CL2.1

High resolution Aerosol Radiative Effects over Europe using detailed optical properties from the Chemical Transport Model PMCAMx

Marios Bruno Korras Carraca, Dimitris Manetas, David Patoulias, Spyros Pandis, Nikolaos Hatzianastassiou, Ilias Vardavas, and Christos Matsoukas

Natural and anthropogenic aerosol particles are major drivers of the Earth’s radiation budget, which they affect directly (through scattering and absorption) and indirectly (through modification of cloud scattering and precipitation properties), while they semi-directly influence atmospheric stability and convection, mainly through modification of solar radiation absorption by the atmosphere. Despite the important climatic role of aerosols, large uncertainties in their radiative effects remain due to limited knowledge of the aerosol spatio-temporal distribution and physico-chemical properties. The interaction of aerosols with radiation is strongly dependent on their optical properties, which in turn are controlled by the particles’ size distribution, shape, chemical composition and mixing state. In order to accurately estimate the magnitude of the aerosol direct radiative effect (DRE), detailed knowledge of their optical properties with high spatial and temporal resolution is required.

The European continent is a region of particular interest for studying atmospheric aerosol effects, because of the presence of  numerous and varying sources of particles and their precursors, such as industries, large urban centers and biomass burning, especially when combined with high levels of solar insolation during summer. In this study, the aerosol DRE over Europe is examined using the FORTH deterministic spectral radiative transfer model (RTM) and aerosol data from the chemical transport model PMCAMx. Chemically and size resolved aerosol concentrations predicted by PMCAMx are combined with a Mie model to calculate key aerosol optical properties (i.e. vertically resolved aerosol optical depth, single scattering albedo and asymmetry parameter) that are necessary to compute aerosol DRE using the RTM. The Mie model takes into account concentrations of organics, black carbon, sulfate, nitrate, ammonium, chlorine, sodium, water, and crustal material, and calculates aerosol optical properties assuming that the aerosol particles of the same size are internally mixed. The DRE is estimated at the Earth’s surface, within the atmospheric column and at the top of the atmosphere (TOA), at high spatial and temporal resolution (36 × 36 km grids, 27 vertical layers, hourly), during June and July 2012.

Initial modelling results reveal that DREs exhibit significant spatio-temporal variability, due to the heterogeneity of source emissions rates, mostly with regard to wildfires, and the varying synoptic conditions. Emphasis is thus given to biomass burning aerosols, which are among the most significant radiative forcing agents in Europe during summer. Their relative forcing is computed by performing model computations with and without biomass burning emissions.

How to cite: Korras Carraca, M. B., Manetas, D., Patoulias, D., Pandis, S., Hatzianastassiou, N., Vardavas, I., and Matsoukas, C.: High resolution Aerosol Radiative Effects over Europe using detailed optical properties from the Chemical Transport Model PMCAMx, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-884, https://doi.org/10.5194/egusphere-egu2020-884, 2020.

EGU2020-9976 | Displays | CL2.1

The Effects of Anthropogenic Aerosol Emissions from Chile and Mexico in ECHAM-HAMMOZ

Tuuli Miinalainen, Harri Kokkola, Kari E. J. Lehtinen, and Thomas Kühn

In this research project we studied the climatic effects of anthropogenic aerosol emissions originating from Chile and Mexico. In particular, we studied black carbon (BC), organic carbon (OC) and sulfur dioxide (SO2).

By using aerosol-climate model ECHAM6.3.0-HAM2.3-MOZ1.0, we analyzed how each aerosol species affects the local cloud properties and radiative balance in the atmosphere. As we here are interested in the maximum impact, we simulated each aerosol species with separate model runs. The reference scenario (BASE) was simulated with the full representation of anthropogenic aerosol emissions from the ECLIPSEV6a emission inventory for the year 2015.Then, we constructed otherwise identical scenarios but the anthropogenic aerosol emissions from Chile and Mexico for each aerosol type were removed (NO_BC, NO_OC and NO_SO2). 

The results indicate that for Chile the sulfur emissions seem to have the greatest impact on both cloud condensation nuclei (CCN) and cloud droplet number concentration. This result is plausible since there the SO2 emissions are much higher than BC and OC emissions. For Mexico, the OC emissions had the most notable effect on CCN, but the cloud droplets are more affected by the SO2 emissions. When looking at the radiative properties, we found out that the direct effects were rather minor compared to semi-direct and indirect effects. This indicates that aerosol-cloud interactions have much larger regional effect on radiation than the aerosol direct effect.

How to cite: Miinalainen, T., Kokkola, H., Lehtinen, K. E. J., and Kühn, T.: The Effects of Anthropogenic Aerosol Emissions from Chile and Mexico in ECHAM-HAMMOZ, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9976, https://doi.org/10.5194/egusphere-egu2020-9976, 2020.

EGU2020-10202 | Displays | CL2.1

Exploring the impact of aerosol radiative forcing uncertainty on shifts in ITCZ position and tropical rainfall in the near-term future

Amy Peace, Ben Booth, Ken Carslaw, Leighton Regayre, Lindsay Lee, David Sexton, and John Rostron

Anthropogenic aerosol emissions over the industrial period have caused a negative but highly uncertain radiative forcing. This negative radiative forcing has had a cooling effect mainly over the northern hemisphere, affecting the atmospheric interhemispheric energy balance. Consequently aerosols have been linked to observed dynamical responses over the industrial period that depend on the atmospheric interhemispheric energy balance, such as changes in the position of the Intertropical Convergence Zone (ITCZ) and resultant tropical precipitation shifts. However, over the course of the 21st century anthropogenic aerosol emissions are predicted to decline. The reduction in anthropogenic aerosol emissions will cause a positive radiative forcing relative to present day, creating a warming effect in the northern hemisphere. Hence, if the strength of aerosol radiative forcing modulates the magnitude of shifts in the ITCZ, then the large uncertainty in aerosol radiative forcing will limit our understanding of how tropical precipitation will shift in the near-term future.

We use a perturbed parameter ensemble (PPE) of a global coupled climate model to investigate the link between aerosol radiative forcing and ITCZ and tropical rainfall shifts in the near-term future. The PPE consists of 20 simulations of the UK Met Office’s GC3.05 model with parameters perturbed from a range of model schemes. The ensemble was designed to sample uncertainties in future changes, and as a result spans a range of aerosol radiative forcings.

The PPE reveals both northward and southwards shifts in the ITCZ position across the ensemble in the latter half of the 20th century and first half of the 21st century, as well as changes in width and intensity of the ITCZ. We find a correlation between the shift in the ITCZ position and the magnitude of aerosol radiative forcing and AOD trends. However, the correlations in our ensemble are not as strong as those cited in previous studies that use multi-model ensembles. The potential causes of this difference are investigated. We also compare our model output to aerosol, cloud and radiation observations in attempt to identify the most plausible future aerosol-driven climate responses.

How to cite: Peace, A., Booth, B., Carslaw, K., Regayre, L., Lee, L., Sexton, D., and Rostron, J.: Exploring the impact of aerosol radiative forcing uncertainty on shifts in ITCZ position and tropical rainfall in the near-term future , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10202, https://doi.org/10.5194/egusphere-egu2020-10202, 2020.

Aerosols offset poorly quantified fraction of anthropogenic greenhouse gas warming, whereas the aerosol impact on clouds is the most uncertain mechanism of anthropogenic climate forcing. In this research, we extend satellite observations of polluted cloud tracks from Toll et al. (2019, Nature, https://doi.org/10.1038/s41586-019-1423-9) with analysis of larger scale polluted cloud areas detected in MODerate-resolution Imaging Spectroradiometer satellite images. We demonstrate that large-scale anthropogenic aerosol-induced cloud perturbations exist at various major industrial aerosol source regions. The areal extent of the polluted cloud areas detected in MODIS satellite images extended to hundreds by hundreds of kilometres. Polluted clouds detected in satellite images in the global anthropogenic air pollution hot spot of Norilsk, Russia, and in other regions show close compensation between aerosol-induced cloud water increases and decreases. On average, there is relatively weak decrease in cloud water in the large areas with strong decreases in cloud droplet radii. This is in very good agreement with previous results based on small-scale polluted cloud tracks (Toll et al., 2019) and strongly disagrees with unidirectionally increased liquid water path in global climate models.

How to cite: Trofimov, H. and Toll, V.: Large-scale industrial cloud perturbations confirm bidirectional cloud water responses to anthropogenic aerosols, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8909, https://doi.org/10.5194/egusphere-egu2020-8909, 2020.

EGU2020-885 | Displays | CL2.1

Changes in radiative forcing due to clear-cutting in Sweden

Iris Mužić, Patrik Vestin, Anders Lindroth, Meelis Mölder, Tobias Biermann, Michal Heliasz, and Janne Rinne

Land cover conversion affects climate by imposing perturbations in the surface properties and greenhouse gas fluxes. Forest management systems often disregard that modification in surface albedo influences the exchange of energy and greenhouse gases. In this study, we examine the net climatic effect of clear-cutting in high-latitude regions by comparing the importance of biogeophysical (albedo) and biogeochemical (carbon dioxide release) changes in Sweden. The hypothesis is that the albedo effect of high-latitude clear-cutting can reduce climate warming.

Data on incoming and reflected shortwave radiation was obtained from four-component net radiometers installed in the forest and neighbouring clear-cut sites, in southern (56°N), central (60°N) and northern (64°N) Sweden. The study site pairs along a latitudinal gradient were chosen to account for different climatic conditions. Data at these station pairs covered a continuous period of three (2016-2018), five (2014-2018) and one year (2014), respectively. Due to lack of clear-cut measurement stations in close vicinity to the northernmost forest site, the shortwave radiation data was retrieved from an open mire, where albedo and its temporal dynamics are similar to a clear-cut. All the forest stations and the mire station are part of ICOS Sweden network. Data on carbon dioxide release from clear-cutting was estimated as a difference in the aboveground carbon stock of the standing biomass between forest and clear-cut sites. The estimated carbon dioxide release was translated into an equivalent change in absorbed shortwave radiation and compared to the radiative forcing by albedo difference between forest and clear-cut sites.

Our results underline results from previous studies showing that the magnitude of the net radiative forcing by clear-cutting varies considerably depending on the latitudinal position of the examined sites. Based on available data, clear-cutting in southern and central Sweden had a warming effect on the climate while in northern Sweden clear-cutting had a net cooling effect. However, large inter-annual variability (central Sweden) and lack of available continuous data (northern Sweden) resulted in high uncertainty of the climatic effects of changes in net radiative forcing due to clear-cutting. Our study indicates that the albedo effect has an essential role in the estimation of the climatic effect of clear-cutting and should thus be incorporated in future forest management strategies.

How to cite: Mužić, I., Vestin, P., Lindroth, A., Mölder, M., Biermann, T., Heliasz, M., and Rinne, J.: Changes in radiative forcing due to clear-cutting in Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-885, https://doi.org/10.5194/egusphere-egu2020-885, 2020.

EGU2020-1 | Displays | CL2.1

Challenging CMIP6 model predictions

Miklos Zagoni

The WCRP Coupled Model Intercomparison Project (CMIP) simulations expect increasing downward longwave radiation (DLR, surface LW down) from a human-enhanced greenhouse effect during the 21st century in the range of 10 – 40 Wm-2. We announce a public challenge to these predictions based on a long known but rarely referred theoretical constraint. Following the logic of original radiative transfer equations of Schwarzschild (1906, Eq. 11), a relationship connects surface net radiation to the effective emission, independent of the optical depth. This relationship is reproduced by several textbooks on atmospheric radiation like Goody (1964, Eq. 2.115), Goody and Yung (1989, Eq. 2.146), Houghton (2002, Eq. 2.13), Pierrehumbert (2010, Eq. 4.44-4.45). In CERES notation: Surface [shortwave (SW) + longwave (LW)] net = OLR/2. A specific “gross” version is: Surface (SW net + LW down) = 2OLR. These are for the cloudless case. Their all-sky form includes longwave cloud radiative effect (LWCRE): Surface SW+LW net = (OLR – LWCRE)/2 and Surface (SW net + LW down) = 2OLR + LWCRE. Controlling these four equations on CERES EBAF Edition 4.1, 18 years of data, and on EBAF Ed4.1 Data Quality Summary Table 2-1 and Table 4-1, each of them is valid within 3 Wm-2. The all-sky versions are satisfied by the IPCC-AR5 (2013) global energy budget (Fig. 2.11) and a water cycle assessment (Stephens and L'Ecuyer 2015) within 2 Wm-2. We couldn't find any reference to these equalities in the literature on general circulation models or climate sensitivity. Applying known definitions, the equations can be solved for LWCRE, resulting in a set of small integers (Zagoni, EGU2019). All-sky fluxes: Surface SW net = 6; Surface LW net = –2; DLR = 13; OLR = 9. Clear-sky fluxes: Surface SW net = 8; Surface LW net = –3; DLR = 12; OLR = 10; Surface LW up (ULW) = 15 (both for all-sky and clear-sky); LWCRE (surface and TOA) = 1. From this solution it comes for all-sky: DLR = (13/9)OLR, ULW = (15/9)OLR, and for clear-sky ULW = (15/10)OLR. Since the physical principles and conditions behind these equations are solid and justified by observations, we expect them to remain valid in the forthcoming decades as well. CMIP6 models might represent regional distribution changes and cloud feedbacks correctly, in lack of global constraints they may lead to profoundly different outcomes in the long run. This is a testable difference. To check the robustness and stationarity of our equations, we challenge published CMIP5 predictions. We predict for the 21st century: all-sky DLR = (13/9)OLR ± 3.0 Wm-2; ULW = (15/9)OLR ± 3.0 Wm-2 and clear-sky ULW = (15/10)OLR ± 3.0 Wm-2. Initial status (CERES EBAF Edition 4.1 annual global means for 2018): all-sky OLR = 240.14, DLR = 344.82, ULW = 399.37, hence all-sky DLR = (13/9)OLR – 2.05 and ULW = (15/9)OLR – 0.86 (Wm-2); clear-sky ULW = 399.05, OLR = 265.80, hence ULW = (15/10)OLR + 0.35 Wm-2. Greenhouse effect: g(theory) = G/ULW = (ULW–OLR)/ULW = (15 9)/15 = 0.4, g(observed) = 0.399.

How to cite: Zagoni, M.: Challenging CMIP6 model predictions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1, https://doi.org/10.5194/egusphere-egu2020-1, 2020.

EGU2020-12307 | Displays | CL2.1

Counteracting global warming by using a locally variable Solar Radiation Management

Davide Marchegiani and Dietmar Dommenget

Solar Radiation Management (SRM) is regarded as a tool which could potentially mitigate or completely offset global warming by increasing planetary albedo. However, this approach could potentially reduce precipitation as well, as shown in the latest Intergovernmental Panel on Climate Change (ICPP) 5th report. Thus, although SRM might weaken global climate risks, it may enhance those in some regions. Here, using the Globally Resolved Energy Balance (GREB) model, we present experiments designed to completely offset the temperature and precipitation response due to a CO2-doubling experiment (abrupt2×CO2). The main idea around which our study is built upon is to employ a localized and seasonally varying SRM, as opposed to the most recent Geo-Engineering experiments which just apply a global and homogeneous one. In order to achieve such condition, we carry out the computation by using an “artificial cloud cover”. The usage of this localized approach allows us to globally cut down temperature warming in the abrupt2×CO2 scenario by 99.8% (which corresponds to an increase of 0.07 °C on a global average basis), while at the same time only having minor changes in precipitation (0.003 mm/day on a global average basis). To achieve this the cloud cover is increased by about 8% on a global average. Moreover, neither temperature nor precipitation response are exacerbated when averaged over any IPCC Special Report on Extremes (SREX) region. Indeed, for temperatures, 90% of SREX regions averages fall within 0.3 °C change, with all regional mean anomalies being under 0.38 °C. Whereas, as far as precipitation is concerned, changes go up to 0.01 mm/day for 90% of SREX regions, with all of them changing by less than 0.02 mm/day. Similar results are achieved for seasonal variations, with Seasonal Cycle (DJF-JJA) having no major changes in both surface temperature and precipitation.

How to cite: Marchegiani, D. and Dommenget, D.: Counteracting global warming by using a locally variable Solar Radiation Management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12307, https://doi.org/10.5194/egusphere-egu2020-12307, 2020.

EGU2020-3241 | Displays | CL2.1

Climatic Effects of Hygroscopic Growth of Sulfate Aerosols in the Stratosphere

Krishna-Pillai Sukumara-Pillai Krishnamohan, Govindasamy Bala, Long Cao, Lei Duan, and Ken Caldeira

Deliberate climate intervention by injection of sulfate aerosols in the stratosphere is a method proposed to counter anthropogenic climate warming. In such an injection scenario, an improved understanding of the microphysical and optical properties of the injected aerosols is important as these properties alter the radiative forcing and resulting climate. Here we analyze the effect of a specific microphysical property of sulfate aerosols in the stratosphere: hygroscopic growth – the tendency of aerosol particles to grow by accumulating water. In the NCAR CESM model, using idealized climate simulations, we find that, for a given mass, stratospheric sulfate aerosols cause more cooling when prescribed at the lower levels of the stratosphere because of increased hygroscopic growth of the aerosols due to larger relative humidity. The relative humidity in the stratosphere typically decreases rapidly with the increasing altitude. The larger relative humidity in the lower stratosphere causes an increase in the aerosol size through hygroscopic growth, which leads to a larger scattering efficiency. The increase in shortwave back-scattering due to the size change is found to be the primary factor contributing to the additional surface cooling as the aerosols are prescribed in the lower levels of the stratosphere. In our simulations, hygroscopic growth provides an additional cooling of 23% (0.7 K) when 20 Mt-SO4 of sulfate aerosols are prescribed at 100 hPa, relative to a non-hygroscopic simulation where hygroscopic growth is not allowed in the stratosphere. This additional cooling due to hygroscopic effect becomes weaker higher in the stratosphere where relative humidity is lower. Hygroscopic growth also leads to additional warming in the layers where the aerosols are prescribed due to an increase in near-IR shortwave absorption. This warming causes secondary effects such as a decrease in high clouds and an increase in stratospheric water vapor, which affects the effective radiative forcing. This altitude dependence of the cooling effects of hygroscopic growth is opposite to the altitude dependence of sedimentation effects;  while the hygroscopic effect produces larger cooling when aerosols reside in the lower stratosphere, the sedimentation effect produces less cooling when aerosols are injected into the lower stratosphere as the residence time becomes shorter.

How to cite: Krishnamohan, K.-P. S.-P., Bala, G., Cao, L., Duan, L., and Caldeira, K.: Climatic Effects of Hygroscopic Growth of Sulfate Aerosols in the Stratosphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3241, https://doi.org/10.5194/egusphere-egu2020-3241, 2020.

EGU2020-7017 | Displays | CL2.1

Hemispheric TOA SW radiation budgets under changed atmospheric radiation conditions

Traute Crueger, Hauke Schmidt, and Bjorn Stevens

Under present day conditions the observations approximately show a hemispheric symmetry of the top of atmosphere (TOA)  short wave (SW) reflection despite the asymmetry of surface SW reflection. This has been confirmed by climate models. With models in an aqua planet setup, Voigt et al. (2014) found that tropical clouds largely compensate surface SW hemispheric asymmetries, however to a different degree in dependence on the convection scheme.

In this study, we question, whether there is also a hemispheric symmetry of TOA SW radiation under changed atmospheric radiation conditions. For that reason, we analyze experiments performed with a set of fully coupled general circulation models. The experiments were performed with either a) hemispheric asymmetric incoming radiation, b) increased atmospheric CO2 concentrations, c) increased atmospheric CO2 concentrations combined with increased stratospheric aerosol burden, or d) increased atmospheric CO2 concentration in conjunction with increased ocean albedo.

We show that generally, a hemispheric symmetry of TOA SW radiation does not occur. Overall, among the group of models, the hemispheric TOA SW radiation budgets are roughly similar for the distinct experiments, although the models utilyze different convection schemes.  We discuss the role of surface and atmospheric feedbacks in the different experiments, especially of tropical and extratropical clouds.

Reference:
Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2014: Compensation of Hemispheric Albedo Asymmetries by Shifts of the ITCZ and Tropical Clouds. J. Climate, 27, 1029–1045, https://doi.org/10.1175/JCLI-D-13-00205.1.

How to cite: Crueger, T., Schmidt, H., and Stevens, B.: Hemispheric TOA SW radiation budgets under changed atmospheric radiation conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7017, https://doi.org/10.5194/egusphere-egu2020-7017, 2020.

EGU2020-13239 | Displays | CL2.1

Climate Monitoring SAF: Sustained Generation of Satellite based climate data records

Marc Schröder, Rainer Hollmann, and Jörg Trentmann

In recent decades climate variability and change have caused impacts on natural and human systems on all continents. Observations are needed to understand and document these interactions. These observations are increasingly based on remote sensing from satellites which offer global scale and continuous coverage. Only long-term and consistent observations of the Earth system allow us to quantify impacts of climate variability and change on the natural and human dimension. From this understanding one can estimate and eventually predict future states of the Earth system and quantify its vulnerability and resilience to continuing anthropogenic forcing.

Since nearly 20 years, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF, www.cmsaf.eu) develops capabilities for a sustained generation and provision of Climate Data Records (CDRs) derived from operational meteorological satellites. The ultimate aim is to make the resulting data records suitable for the analysis of climate variability and the detection of climate trends. The product portfolio of the CM SAF comprises long time series of Essential Climate Variables (ECVs) related to the energy and water cycle as defined by the Global Climate Observing System (GCOS). Several data records have been released to the public by CM SAF and new editions of CDRs will be published in the coming years which will extend the time-range and the portfolio. In particular, existing products include, among others, surface and top of the atmosphere radiative fluxes, surface albedo, cloud products, as well as latent heat flux and freshwater flux over the global ice-free oceans. New products related to the following topics are currently developed and provided in near future: global precipitation (ocean and land) and global high clouds. All products are well-documented, carefully validated and were externally reviewed prior to product release.

This presentation will highlight results from the currently available CDRs from CM SAF. A focus will be on uncertainty characterisation and results from validation as well as exemplary applications. Finally, the presentation will present an overview of the upcoming new editions of CDRs.

 

How to cite: Schröder, M., Hollmann, R., and Trentmann, J.: Climate Monitoring SAF: Sustained Generation of Satellite based climate data records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13239, https://doi.org/10.5194/egusphere-egu2020-13239, 2020.

The surface radiation budget is defined by the difference between the downward and upward components of shortwave and thermal infrared longwave radiation at the surface. The instability of the surface radiation budget plays a significant role in climate change and variability through the modulation of temperature, precipitation, atmospheric circulation, etc. Clouds are believed to be a key factor to regulate such energy imbalance at the surface, as they generally reflect shortwave radiation from the sun and emit infrared radiation. Specifically, we are going to focus on the continental United States and answer the following questions: How is the surface radiation budget varied with time and space in the observations? How do clouds impact variations of surface radiation budget? How do state-of-the-art global climate models capture these observed features? What can they tell us about future changes in the surface radiation budget?

To investigate these questions, the NASA Clouds and the Earth's Radiant Energy System (CERES) observations will be used, along with model simulations from Phase 6 of the Coupled Model Intercomparison Project (CMIP6). We will first focus on the surface radiation budget from CERES observations in the 21st century, and examine their seasonal cycles, spatial patterns, long-term trends, and interannual variations over the continental United States. More importantly, we are going to investigate how cloud variability, including cloud types, cloud amount and cloud water content, influences the surface radiation budget. Then the CMIP6 historical simulations will be compared with CERES observations over the same time period. In addition, the CMIP6 future scenario simulations will be used to investigate how the surface radiation budget changes from the middle and late 21st century to the early 21st century. Overall, this study will help us to better understand the cloud and radiation variations in the past, as well as build credibility in the hindcast and future projections of surface energy budget over the continental United States.

How to cite: Fu, D.: Linking Cloud Variability with Surface Radiation Budget over the Continental United States Using NASA CERES Satellite Observations and CMIP6 Model Simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6165, https://doi.org/10.5194/egusphere-egu2020-6165, 2020.

The NASA/GEWEX Surface Radiation Budget (SRB) project is finalizing a 3-hourly shortwave and longwave surface and top-of-atmosphere radiative fluxes for a 34-year period from July 1983 through June 2017. The new Release 4 Integrated Product (IP) uses the newly recalibrated and processed ISCCP HXS product as its primary input for cloud and radiance data, replacing ISCCP DX with a ninefold increase in pixel count (10 km instead of 30 km).  This first version retains a 1°x1° resolution for intercomparison against previous versions and other data sets such as CERES. ISCCP also provides an atmospheric temperature and moisture dataset known as nnHIRS which we use and discuss radiative flux sensitivities to in this presentation.  In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated SW atmospheric transmissivities and reflectivities yielding a somewhat less transmissive atmosphere. Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable consistent with SORCE measurements. The LW code has been updated to improve the optical property treatment for clouds, particularly ice clouds, and aerosols are included in this version.  The variable aerosol composition are specified using a detailed aerosol history from the Max Planck Institute Aerosol Climatology (MAC).  Seasonally dependent spectral surface emissivity maps are now also included.  In this presentation, we analyze the new SW and LW SRB datasets, comparing them to the previous Release 3, BSRN, GEBA and PMEL surface measurements, and ERBE and CERES satellite datasets.  For surface flux validation besides ensemble comparisons, we show the variability of SRB vs surface measurements from BSRN beginning in 1992 and GEBA from 1983.  For the early period, comparison of top-of-atmosphere flux variability is made to latest version of ERBE fluxes.  For the latter period, we provide comparisons to CERES SYN1Deg and EBAF datasets for a benchmark.  Long-term changes in the surface radiation budget components and cloud radiative effects are shown and discussed relative to CERES and surface measurements.   An assessment of long-term changes are made including an assessment of uncertainties due to satellite artifacts.

How to cite: Stackhouse, P., Cox, S., Mikovitz, J. C., and Zhang, T.: A 34 Year Assessment of Surface and Top-of-Atmosphere Radiative Fluxes from the NASA’s GEWEX Surface Radiation Budget Release 4 Integrated Product, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10403, https://doi.org/10.5194/egusphere-egu2020-10403, 2020.

EGU2020-1303 | Displays | CL2.1

Global validation of satellite-based and reanalysis surface solar radiation data sets

Jörg Trentmann, Uwe Pfeifroth, Roswitha Cremer, and Martin Stengel

The solar radiation reaching the Earth’s surface determines our climate and is therefore important to be monitored as consistent and complete as possible. Even though surface reference measurements of surface solar radiation are available (e.g. from the Baseline Surface Radiation Network (BSRN)), their density remains low and large areas, like the oceans, remain poorly covered. To fill the gaps in space and time, satellite-based data records (like CLARA-A2 and SARAH-2.1 from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF)) or model-based reanalysis data records (like ERA-5) are used. They provide surface solar radiation data with regional and global coverage, which are needed to understand its distribution and variability from the regional to the global scale.

Here we present a validation and analysis of monthly mean surface solar irradiance from multiple satellite-based and reanalysis data sets on the regional and global scale with reference to a data base of hundreds of surface measurements over land and ocean, collected from different sources (incl. BSRN, GEBA, WRDC, and buoy networks). This study provides new insights about the quality and uncertainty of available state-of-the-art satellite-based and reanalysis data records for climate studies. Regions of agreement as well as areas where the gridded data records exhibit larger differences are identified, providing important information on our current knowledge of the surface solar radiation climatology and possible improvements for future developments.

How to cite: Trentmann, J., Pfeifroth, U., Cremer, R., and Stengel, M.: Global validation of satellite-based and reanalysis surface solar radiation data sets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1303, https://doi.org/10.5194/egusphere-egu2020-1303, 2020.

The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based  high-quality climate data records, with a focus on the global energy and water cycle. The new concept of Interim Climate Data Records (ICDRs) that extent the fixed-length Climate Data Records (CDRs) into 'near-realtime' in a consistent way, enables climate monitoring at a higher level of accuracy.

It has been found in recent studies based on surface and satellite data that on average SSR has been increasing in the last 3 decades in Europe (e.g. Sanchez-Lorenzo et al. 2017, Pfeifroth et al. 2018) - especially in spring and summer. Here we use the latest SARAH-2.1 TCDR (1983-2017), potentially together with its corresponding ICDR (2018 onwards), to analyze if the found positve trends in SSR are about to continue. In this respect, the satellite-based data record will be compared and validated with surface measurements given by the Baseline Surface Radiation Network (BSRN), the  World Radiation Data Center (WRDC) and the Global Energy Balance Archive (GEBA). A reasonable line of potential reasons for the found spring and summertime brightening in Europe is discussed.

How to cite: Pfeifroth, U. and Trentmann, J.: Variability and Trends of Surface Solar Radiation in Europe based on satellite- and surface-based data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-241, https://doi.org/10.5194/egusphere-egu2020-241, 2020.

The main advantage of remote sensing products is that they are reasonably good in terms of temporal and special coverage, and they are available in a near real time. Therefore, an understanding of the strengths and weaknesses of satellite data is useful to choose it as an alternative source of information with acceptable accuracy.  On the first hand, this study assesses an Inter-comparison between CMSAF Sunshine Duration (SD) data records and ground observations of 30 data sets from 1983 to 2015. the correlation is very significant and the satellite data fits very closely to in situ observations. On the other hand, trend analysis is applied to SD and Solar Incoming Direct radiation (SID) data, a number of stations show a statistically significant decreasing trend in SD and also SID shows a decreasing trend over Morocco in most of regions especially in summer. The results indicate a general tendency of decrease in incoming solar radiation mostly during summer which could be of some concern for solar energy.

How to cite: Moutia, S.: Spatial variation and temporal trends of solar radiation over Morocco based on ground observations and CMSAF data records., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20470, https://doi.org/10.5194/egusphere-egu2020-20470, 2020.

EGU2020-2036 | Displays | CL2.1

Validation of Clear-Sky Global LAnd Surface Satellite (GLASS) Longwave Radiation Product

Qi Zeng, Jie Cheng, and Feng Yang

Surface longwave (LW) radiation plays an important rolein global climatic change, which is consist of surface longwave upward radiation (LWUP), surface longwave downward radiation (LWDN) and surface longwave net radiation (LWNR). Numerous studies have been carried out to estimate LWUP or LWDN from remote sensing data, and several satellite LW radiation products have been released, such as the International Satellite Cloud Climatology Project‐Flux Data (ISCCP‐FD), the Global Energy and Water cycle Experiment‐Surface Radiation Budget (GEWEX‐SRB) and the Clouds and the Earth’s Radiant Energy System‐Gridded Radiative Fluxes and Clouds (CERES‐FSW). But these products share the common features of coarse spatial resolutions (100-280 km) and lower validation accuracy.

Under such circumstance, we developed the methods of estimating long-term high spatial resolution all sky  instantaneous LW radiation, and produced the corresponding products from MODIS data from 2000 through 2018 (Terra and Aqua), named as Global LAnd Surface Satellite (GLASS) Longwave Radiation product, which can be free freely downloaded from the website (http://glass.umd.edu/Download.html).

In this article, ground measurements collected from 141 sites in six independent networks (AmerciFlux, AsiaFlux, BSRN, CEOP, HiWATER-MUSOEXE and TIPEX-III) are used to evaluate the clear-sky GLASS LW radiation products at global scale. The bias and RMSE is -4.33 W/m2 and 18.15 W/m2 for LWUP, -3.77 W/m2 and 26.94 W/m2 for LWDN, and 0.70 W/m2 and 26.70 W/m2 for LWNR, respectively. Compared with validation results of the above mentioned three LW radiation products, the overall accuracy of GLASS LW radiation product is much better. We will continue to improve the retrieval algorithms and update the products accordingly.

How to cite: Zeng, Q., Cheng, J., and Yang, F.: Validation of Clear-Sky Global LAnd Surface Satellite (GLASS) Longwave Radiation Product, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2036, https://doi.org/10.5194/egusphere-egu2020-2036, 2020.

EGU2020-1630 | Displays | CL2.1

The versatile Heliosat-V method for estimating downwelling surface solar irradiance from satellite imagery

Benoit Tournadre, Benoit Gschwind, Yves-Marie Saint-Drenan, and Philippe Blanc

Downwelling surface solar irradiance (DSSI) is one of the Essential Climate Variables defined by the Global Climate Observing System. The knowledge of its space and time variabilities is of primary importance for different applications, including Earth sciences, agriculture and renewable solar energies. To characterize such variabilities, the retrieval of long time series and of a dense kilometric global spatial coverage is required. The Heliosat methods are developed by Mines ParisTech since the mid-1980’s to estimate DSSI from the imagery produced by geostationary meteorological satellites. A challenge today is to use imagery from different satellites, including non-geostationary. This raises a number of issues, related among others to the different viewing geometries and spectral sensitivities of the sensors. These issues motivate the evolution of the Heliosat methods toward a more flexible version: the versatile Heliosat-V method. Other difficulties, mainly of operational types, such as massive data retrieval/processing, geometric correction, radiometric cross-calibration, missing data, seamless mosaicking, etc. are out of the scope of this communication.

Heliosat-V is designed to produce estimates of DSSI that can cover a wide variety of satellite optical sensors that have at least one radiometric channel with sensitivity in the 400-1000-nm part of the electromagnetic spectrum. The method is capable of using calibrated imagery from geostationary and also non-geostationary satellites. External remote-sensed data of surface reflectance anisotropy (Ross-Li model parameters derived from the imagery of the Moderate-Resolution Imaging Spectroradiometer (MODIS)) and atmospheric composition (ozone, water vapour and aerosol types and optical depths) from coupled meteorological and chemical transport models (Copernicus Atmospheric Monitoring Services) are used to produce fast radiative transfer simulations. Typical reflectances of cloudy scenes at the top of the atmosphere are produced via look-up tables derived from a radiative transfer model (libRadtran). They can adapt to the spectral sensitivity of the satellite channel, and to the solar and viewing geometries. This algorithm setup allows its use without past data, which were necessary for previous Heliosat methods. This is a real asset for its implementation to non-geostationary satellites.

We test the validity of the method, by comparing DSSI estimates derived from one year of Meteosat Second Generation 0° imagery, with ground-based pyranometer measurements from 10 stations of the Baseline Surface Radiation Network, on different continents and environments. Our results show root-mean square errors of 15-min averaged DSSI between 12% and 35% (71 and 133 W m-2 in absolute value), similarly to existing surface irradiance products based on Heliosat-2 or Heliosat-4.

How to cite: Tournadre, B., Gschwind, B., Saint-Drenan, Y.-M., and Blanc, P.: The versatile Heliosat-V method for estimating downwelling surface solar irradiance from satellite imagery, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1630, https://doi.org/10.5194/egusphere-egu2020-1630, 2020.

EGU2020-14878 | Displays | CL2.1

Spectrally resolved OLR from IASI measurements

Simon Whitburn, Lieven Clarisse, Sophie Bauduin, Steven Dewitte, Maya George, Sarah Safieddine, Daniel Hurtmans, Pierre-François Coheur, and Cathy Clerbaux

The Earth’s Outgoing Longwave Radiation (OLR) is a key component in the study of climate feedbacks and processes. As part of the Earth’s radiation budget, it reflects how the Earth-atmosphere system compensates the incoming solar radiation at the top of the atmosphere. It can be retrieved from the radiance intensities measured by satellite sounders and integrated over all the zenith angles of observation. Since satellite instruments generally acquire the radiance at a limited number of viewing angle directions and because the radiance field is not isotropic, the conversion is however not straightforward. This problem is usually overcome by the use of empirical angular distribution models (ADMs) developed for different scene types that directly link the directional radiance measurement to the corresponding OLR.

OLR estimates from dedicated broadband instruments are available since the mid-1970s; however, such instruments only provide an integrated OLR estimate over a broad spectral range. They are therefore not well suited for tracking separately the impact of the different parameters affecting the OLR (including greenhouse gases), making it difficult to track down deficiencies in climate models. Currently, several hyperspectral instruments in space acquire radiances in the thermal infrared spectral range, and in principle, these should allow to better constrain the OLR. However, as these instruments were not specifically designed to measure the OLR, there are several challenges to overcome. Here we propose a new retrieval algorithm for the estimation of the spectrally resolved OLR from measurements made by the IASI sounder on board the Metop satellites. It is based on a set of spectrally resolved ADMs developed from synthetic spectra for a large selection of scene types associated with different states of the atmosphere and the surface. Atmospheric and surface parameters are derived from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis dataset and selected using a dissimilarity-based subset selection algorithm. These spectral ADMs are then used to convert the measured IASI radiances into spectral OLR.

We then evaluate how the IASI OLR compare with the CERES and the AIRS integrated and spectral OLR. We analyze the interannual variations in OLR over 10 years of IASI measurements for selected spectral channels using EOF analysis and we connect them with well-known climate phenomena such as El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation (AMO).

How to cite: Whitburn, S., Clarisse, L., Bauduin, S., Dewitte, S., George, M., Safieddine, S., Hurtmans, D., Coheur, P.-F., and Clerbaux, C.: Spectrally resolved OLR from IASI measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14878, https://doi.org/10.5194/egusphere-egu2020-14878, 2020.

EGU2020-3777 | Displays | CL2.1

Temperature Annual Cycle Variation and Response to Solar Radiation during 1960 to 2016 in China

Runze Zhao, Kaicun Wang, Guocan Wu, and Chunlue Zhou

The change of its annual cycle is extremely important due to global warming. A widely used method to analyze the changes of temperature annual cycle is based on the decomposition to phase, amplitude and baseline terms. Solar radiation as the leading energy source of temperature changes can directly influence temperature annual cycle. In this study, we investigate the phase, amplitude and baseline of temperature and solar radiation annual cycle after Fourier transform during 1960-2016 in China. The results show that annual cycle of maximum, minimum and mean surface air temperature are advancing in time (-0.08, -0.27 and -0.33 days per ten years), decreasing in range (-0.07, -0.25 and -0.18 degrees per ten years) and rising in baseline (0.20, 0.34 and 0.25 degrees per ten years). To further quantify the effect of surface solar radiation to temperature, we remove the effect from its original time series of maximum and mean temperature, based on a linear regression. The compare of raw and adjusted temperature shows that surface solar radiation advancing the time by 0.19 and 0.19 days per ten years, reduces the range by 0.14 and 0.13 degrees per ten years, and reduces the baseline by 0.08 and 0.04 degrees per ten years, for surface maximum and mean daily air temperature. The result can explain parts of seasonal temperature variation. Effect of surface solar radiation is most obvious Yunnan-Guizhou Plateau for maximum phase. The low phase value in this area is corrected and well-match with other same latitude area after adjusted.

How to cite: Zhao, R., Wang, K., Wu, G., and Zhou, C.: Temperature Annual Cycle Variation and Response to Solar Radiation during 1960 to 2016 in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3777, https://doi.org/10.5194/egusphere-egu2020-3777, 2020.

Previous studies have documented that the surface solar radiation (SSR) over most regions of China has shifted from the ‘global dimming’ since the 1950s to the ‘global brightening’ after 2005. In this paper, the potential factors that affect the annual trends of SSR over East China from 2005 to 2018 based on different satellite-derived products are analyzed. Then, due to the lack of long-term various aerosol species from observation data, the focus of this study is to calculate the contributions from direct effects of different types of cloud fraction on SSR relative to the effects of total cloud fraction over East China during the same period using a BCC_RAD radiative transfer model. The results show that clouds and aerosols are the primary factors that affect the SSR over East China from 2005 to 2018, followed by water vapor and ozone.

The annual mean all-sky SSR from 2005 to 2018 is significantly increased over the North China Plain, Northeast China, Yunnan, and Eastern Sichuan provinces, with the increases up to 0.6 W m-2 yr-1. This is probably due to the combined reductions of aerosols and clouds during this period, but clouds even play a more important role over Shanxi and northern Shaanxi. Changes in aerosols dominate the increase of SSR over Hunan, Jiangxi, and Fujian provinces, whereas clouds contribute more to the decreases of SSR over Guangdong, Guangxi, Guizhou, and Zhejiang provinces. Meanwhile, the simulations indicate that the marked annual mean decreases in high cloud fraction, especially for low cloud fraction, are the main causes of simulated increases in SSR due to total cloud fraction over most regions of East China, while the increases in high, medium-high, especially for medium-low cloud fraction, play more important roles in reductions of SSR over southern China. Moreover, the direct effects of various types of cloud fraction on changes in SSR for each season are also examined. It seems that the direct effects of low cloud fraction on SSR are likely the strongest among all kinds of clouds. Take southern China as an example, the direct effects of medium-low and low cloud fraction are stronger for spring and autumn, while contributions from low cloud fraction are largest in winter. However, the combined increases in high, medium-high, medium-low cloud fraction exceed decreases in low cloud fraction, thus causing the reduction in SSR in summer. This study highlights that different types of clouds may have different impacts on SSR not only on the annual mean scale but also on seasonal scales.

Keywords: surface solar radiation, aerosols, different types of cloud fraction

How to cite: Wang, Q., Zhang, H., and Wild, M.: Effects of potential factors on changes in surface solar radiation in East China over recent decade, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5699, https://doi.org/10.5194/egusphere-egu2020-5699, 2020.

EGU2020-14932 | Displays | CL2.1

Contribution of clouds radiative forcing to the local surface temperature variability

Oscar Rojas, Marjolaine Chiriaco, Sophie Bastin, and Justine Ringard

The local contribution of clouds to the surface energy balance and temperature variability is an important topic in order to apprehend how this intake affects local climate variability and extreme events, how this contribution varies from one place to another, and how it evolves in a warming climate. The scope of this study is to understand how clouds impact temperature variability, to quantify their contribution, and to compare their effects to other surface processes. To do so, we develop a method to estimate the different terms that control temperature variability at the surface (∂T2m /∂t) by using this equation: ∂T2m /∂t=R+HA+HG+Adv where R is the radiation that is separated into the cloud term (Rcloud) and the clear sky one (RCS), HA the atmospheric heat exchange, HG the ground heat exchange, and Adv the advection. These terms are estimated hourly, almost only using direct measurements from SIRTA-ReOBS dataset (an hourly long-term multi-variables dataset retrieved from SIRTA, an observatory located in a semi-urban area 20-km South-West of Paris; Chiriaco et al., 2019) for a five-years period. The method gives good results for the hourly temperature variability, with a 0.8 correlation coefficient and a weak residual term between left part (directly measured) and right part of the equation.

A bagged decision trees analysis of this equation shows that RCS dominates temperature variability during daytime and is mainly modulated by cloud radiative effect (Rcloud). During nighttime, the bagged decision trees analysis determines that Rcloud is the term controlling temperature changes. When a diurnal cycle analysis (split into seasons) is performed for each term, HA becomes an important negative modulator in the late afternoon, chiefly in spring and summer, when evaporation and thermal conduction are increased. In contrast, HG and Adv terms do not play an essential role on temperature variability at this temporal scale and their contribution is barely considerable in the one-hour variability, but still they remain necessary in order to obtain the best coefficient estimator between the directly measured observations and the method estimated. All terms except advection have a marked monthly-hourly cycle.

Next steps consist in characterize the types of clouds and study their physical properties corresponding to the cases where Rcloud is significant, using the Lidar profiles also available in the SIRTA-ReOBS dataset.

How to cite: Rojas, O., Chiriaco, M., Bastin, S., and Ringard, J.: Contribution of clouds radiative forcing to the local surface temperature variability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14932, https://doi.org/10.5194/egusphere-egu2020-14932, 2020.

As the use of chlorofluorocarbons (CFC) gas was completely banned in 2010, hydrofluorocarbon (HFC) and perfluorocarbon (PFC) gases are replacing its place. HFC and PFC demands are consistently increasing due to their use in extinguishing agent, refrigerant for cooling and also in semiconductor and display manufacturing process for etching, deposition, cleaning and more. However, most HFCs and PFCs currently in use have a very high GWP, which adversely affect the greenhouse gas reduction policies that each country is working on.

To this aspect, countries and relating companies are conducting research to replace from high GWP rated HFCs and PFCs to low GWP rated HFCs and PFCs or to new gases. However, the proper study has not yet been made because of unknown information about GWP, in the case of using or developing a gas which has not been clarified its GWP in IPCC, WMO, and related papers.

Therefore, here, we propose a determination method of global warming potential based on various literature studies as following.

  1. Calculating absorbed cross-sectional area by measuring infrared adsorption spectra using Fourier-transform infrared spectroscopy (FT-IR) and applying to Lambert-Beers’ law using measured infrared absorption spectra.
  2. Applying original Pinnock curve (Pinnock et al., 1995) and final Pinnock curve using the Oslo LBL model (Myhre et al., 2006), to calculate the radiative forcing by integrating the calculated absorbed cross-sectional area from Step 1.
  3. Measuring the reactivity of the hydroxyl radical using PTR-Mass (V.Sinha et al., 2008) and based on measured OH radical, calculate the atmospheric life expectancy using the rate coefficient (Burkholder et al., 2014) and tropospheric lifetime (WMO, 2014) of CH3CCl3 (MCF), reference material proposed by WMO, 2014 .
  4. Following the IPCC AR5(2013), calculate GWP from the radiative forcing and the atmospheric life expectancy, determined by Step 2 and 3.

This work was supported by Korea Institute of Energy Technology Evaluation and Planing (No. 20172010106080)

How to cite: Lee, B. J. and Lee, J. I.: A study on the determination method of Global Warming Potential (GWP) by measuring the experiment-based infrared absorption spectra and the reactivity of the hydroxyl radical, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2310, https://doi.org/10.5194/egusphere-egu2020-2310, 2020.

CL2.3 – Phenology and seasonality in climate change

EGU2020-2945 | Displays | CL2.3

Increasing temperatures and fruit phenology – Comparing spatio-temporal trends for apple and pear in Belgium

Bianca Drepper, Anne Gobin, Wim Verjans, and Jos Van Orshoven

For several cultivars of Malus domestica (apple) and Pyrus communis (pear), records of seven decades (1950-2019) from the Research Centre for Fruit in north-east Belgium revealed that flowering occurred on average 9.5 (apple) and 11.5 (pear) days earlier following dormancy periods (October to April) that were warmer than the average (Drepper et al., 2020). However, the relationship between winter temperature and flowering date is not linear and relative delays of flowering following the warmest winters suggest that increasing temperatures before and after dormancy break (so-called chilling and forcing periods) have respectively delaying or advancing effects on the time of flowering of fruit trees in temperate regions (Drepper et al., 2020).

Well calibrated phenological models are potentially usable to support decision-making regarding (new) orchard locations, cultivar selection and frost mitigation measures. To this end a dynamic chill model was coupled to a growing degree day forcing model, calibrated and validated to the local cultivars for the Research Centre’s conditions. The combined model was applied for apple and pear on a 5km X 5km grid covering the region of Flanders in Belgium and run based on observed temperatures since 1950 from the Belgian Meteorological Institute on the one hand and regionally downscaled and adjusted temperature projections from the CORDEX project for the near future (up to 2060) on the other hand. This temporal horizon is farm practice driven and covers the lifespan of orchards planted in 2020.

The results (forthcoming) allow to investigate spatial patterns of (i) date of start of flowering, (ii) the occurrence of frost during sensitive stages around the flowering time, (iii) timing of dormancy break as well as (iv) its interaction with forcing completion.    

 

Drepper, Bianca, Anne Gobin, Serge Remy, and Jos Van Orshoven. “Comparing Apple and Pear Phenology and Model Performance: What Seven Decades of Observations Reveal.” Agronomy 10, no. 1 (January 4, 2020): 73. https://doi.org/10.3390/agronomy10010073.

 

How to cite: Drepper, B., Gobin, A., Verjans, W., and Van Orshoven, J.: Increasing temperatures and fruit phenology – Comparing spatio-temporal trends for apple and pear in Belgium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2945, https://doi.org/10.5194/egusphere-egu2020-2945, 2020.

A phenological data set collected by volunteers` observers from the Latvia Phenological Observation Network covering period 1970 to 2018 has digitized from original paper based publications in Nature Calendars and analysed. The data set includes more than 40 thousand observations, 148 phenological phases across five different taxonomic groups: insects, amphibian, birds, fungi and plants as well as agrarian activities like sowing, harvesting date and some meteorological parameters like first and late frost, snow, ice regime.

The phenological changes or trends was analysed in two ways: 1. by combining data rows (station-phase-species) for one phase, such as leafing (BBCH11) for all trees and bushes; 2. by performing regression analyses for each phase and for each observation point separately.

More than 80% of spring data series shows negative tendency as reported in most scientific publications on European phenology. In our data set, overall, autumn phenologies are occurring later over time or the trends are neutral.

Regression analyses of phenology date versus year shows the disparities among species and among locations within a species: spring migrants’ return earlier, while staying longer in the fall with exceptions, for example the white stork in autumn leaves earlier than in the beginning of the period.

The commencement of the agricultural activities in spring such as sowing date have not changed significantly. However, such activities as livestock grazing and sowing of winter cereals takes place latter in the autumn.  These both appear to have affected by both technological changes and changes in meteorological parameters, for example, the trend of first autumn frost and first snow is positive – they have observed latter.

We have analysed trends and cross correlation with phenology in temperature regime, heat waves, precipitation, drought indexes, evapotranspiration, and soil temperature for the last 40 years.

Research is supported by the ERDF Project No. 1.1.1.2/VIAA/2/18/265 at the University of Latvia.

How to cite: Kalvane, G., Kalvans, A., and Briede, A.: Phenological data set of five taxonomic groups and agrarian activities in temperate climate: trends and influencing factors, Latvian case study , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4735, https://doi.org/10.5194/egusphere-egu2020-4735, 2020.

EGU2020-15171 | Displays | CL2.3

Using Sentinel-1 and -2 satellite time series to monitor crop phenology at the parcel level

Raphaël d'Andrimont, Guido Lemoine, and Marijn van der Velde

Phenology can contribute to many scientific disciplines from climate change, biodiversity, agriculture and forestry to human health. The knowledge of timing of phenological events and their variability can provide valuable data for agriculture. Accurate and timely information on the dates of specific stages of crop development is needed for various applications including crop yield forecasting. Despite the proven capabilities of Sentinel satellites for crop mapping and estimating phenology, they have not yet been applied effectively for tracking crop development across large areas. 

A methodology is proposed to systematically identify phenology phases from time series generated by the Copernicus Sentinel-1 (S1) and Sentinel-2 (S2) sensors. This is done by linking specific agricultural-parcel temporal S1 and S2 signatures to phenology observations representative for 5-km buffers around the 6573 Deutscher Wetterdienst (DWD) stations spatially distributed across Germany. First, a S1-based 10-m crop type classification was made around each DWD station trained with LUCAS (Land Cover and Land Use Area frame Survey) 2018 data which allowed identifying parcels as well as crop types. Second, the average crop specific S1 (VV and VH) and S2 (NDVI) temporal signal is extracted for each DWD station and the correlation between the DWD BBCH event and characteristic behaviour in the satellite signals such as dips or peaks is systematically assessed for each crop. 

This approach identified the unique and crop-specific temporal signatures of S1 and S2 associated with specific phenology events such as emergence, flowering or ripening. We further discuss the potential and limitations of S1 and S2 to extract this type of information. These temporal S1 and S2 signatures can contribute to a digital reference library that could be used to monitor crop phenology operationally for parcels across the globe. Moreover, it unveils the potential of S1 and S2 to study detailed spatial and temporal gradient of crop phenology in the light of climate change.

How to cite: d'Andrimont, R., Lemoine, G., and van der Velde, M.: Using Sentinel-1 and -2 satellite time series to monitor crop phenology at the parcel level, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15171, https://doi.org/10.5194/egusphere-egu2020-15171, 2020.

EGU2020-18012 | Displays | CL2.3

Exploring the control of phenological patterns of leaf function and tree growth in European tree species

Matthias Arend, Cedric Zahnd, and Günter Hoch

Trees in temperate climates show distinct seasonality of leaf photosynthetic function and tree growth, which has strong influence on the annual cycle of terrestrial carbon sequestration. Thus, there are intense efforts to explore phenological pattern of leaf photosynthetic function and tree growth in temperate tree species and understand their internal and external regulation. In this presentation, we summarize our past research in this field, combining results from different experimental studies and field observations on a large number of European tree species. We show not only the well-known dependency of the onset of spring bud burst and leaf development on temperature and photoperiod and their large inter- and intra-specific variability, but also refer to further, fairly unknown, environmental factors. We give examples how varying soil properties and drought stress may interact with temperature on the seasonal timing of bud burst, photosynthesis, shoot growth and autumnal leaf senescence. Finally, we give information on the temporal coordination of bud burst, canopy greening and tree growth, showing strong differences among European tree species. With the collected information, we identify potential sources of uncertainty in approaches predicting the seasonal timing of leaf photosynthetic activity and tree growth with climate warming.

 

How to cite: Arend, M., Zahnd, C., and Hoch, G.: Exploring the control of phenological patterns of leaf function and tree growth in European tree species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18012, https://doi.org/10.5194/egusphere-egu2020-18012, 2020.

EGU2020-17923 | Displays | CL2.3

Monitoring Mediterranean grass phenology from digital terrestrial camera and Sentinel-2 vegetation indices in an oak-grass savanna ecosystem

Maria P. González-Dugo, Pedro J. Gómez-Giraldez, María J. Pérez-Palazón, and María J. Polo

Annual grasslands are an essential component of Mediterranean oak savannas, the most extensive agroforestry system in Europe, as the primary source of fodder for livestock and wildlife. Monitoring its phenology is key to adequately assess the impacts of global warming on different time scales and identify pre-critical states in the framework of early warning decision making systems. The natural variability of the climatic-hydrological regime in these areas and the usually complex spatial patterns of the vegetation, with sparse distribution and multiple layers, encourage the exploitation of available data from remote sensing sources. This work presents an assessment of vegetation indexes (VI) from Sentinel-2 validated against field data from terrestrial photography in an oak-grass system in southern Spain as a multi-approach method to monitor phenology in grass pastures. The analysis also has provided an insight into the links of the phenology dynamics with hydrological variables under these conditions.

From December 2017 to May 2019 a quantitative value of grassland greenness was computed using the Green Chromatic Coordinate (GCC) index. The phenological parameters of the start of the season (SOS), the peak of the season (POS) and end of the season (EOS) were extracted using the 50% amplitude method and confirmed using field photography. These values were compared with those provided by eight VI's derived from Sentinel-2 (NDVI, GNDVI, SAVI, EVI, EVI2, MTCI, IRECI and S2REP) and the difference in days between the key phenological dates were estimated. The results showed that for annual grasslands NDVI was the index providing estimations closest to those of ground GCC, with differences below 10 days for all phenological dates and the best correlation with GCC values (r = 0.83, p <0.001). None of the VIs using bands in the red-edge region have improved the NDVI results. Two of them, MTCI and S2REP, followed a different trend that the rest of explored indices, presenting a high temporal variability. The high diversity of species, typical of Mediterranean grasslands, might explain the high variability observed in these values. However, the third index using red-edge bands, IRECI, presented a high correlation with GCC. In this case, the index was designed to focus on the chlorophyll content of the canopy instead of the leaf scale addressed by S2REP. The influence of the vegetation ground coverage and foliage density is then higher and more similar to the broad-band indices. GNDVI also provided good general results. Soil moisture (SM) time-series were also used to estimate phenology and have presented a good agreement with GCC in SOS and EOS estimations, with SM reaching threshold values a few days before greenness ones, as measured by GCC. However, SM was not a good indicator of the POS, presenting significant biases with respect to GCC estimations.

How to cite: González-Dugo, M. P., Gómez-Giraldez, P. J., Pérez-Palazón, M. J., and Polo, M. J.: Monitoring Mediterranean grass phenology from digital terrestrial camera and Sentinel-2 vegetation indices in an oak-grass savanna ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17923, https://doi.org/10.5194/egusphere-egu2020-17923, 2020.

EGU2020-7261 | Displays | CL2.3

Multi-scale phenology from digital time-lapse camera to Sentinel-2 and MODIS over Australian pastures

Yuxia Liu, Alfredo Huete, Qiaoyun Xie, and Ha Nguyen

As a natural ecosystem dominated by grasses, phenological studies of pastures have attracted increased attention for their important roles in global carbon cycling, ecosystem biodiversity, and public health. To better understand pasture phenology from in-situ to regional scales, accurate monitoring of pasture greenness variations across different scales is critical. As an alternative approach to labor-intensive field surveys, digital time-lapse cameras (termed phenocams) can provide diurnal and long-term vegetation greenness observation at in-situ scale with less impact from atmospheric effects. Even so, monitoring of phenology at regional to global scales only can be obtained by satellite remote sensing. The data from satellite sensors whether medium-resolution (i.e. Moderate Resolution Imaging Spectrodiometer, MODIS, 250 m) or fine spatial resolution (i.e. Sentinel-2 mission, 10 m) is widely used for vegetation phenology monitoring. However, achieving accurate pasture greenness dynamics using satellite data remains challenging due to limitations resulting from heterogeneity in Australian pastures.   

Combining phenocam, Sentinel-2 data and MODIS land surface products, this study aimed to (1) compare differences in temporal profiles of pasture greenness derived from ground-based phenocam and satellite sensors with fine- and medium-spatial resolutions, respectively; (2) assess the capacity of Sentinel-2 pixels for representing the phenocam footprint for monitoring greenness dynamics; and (3) evaluate the potential of improving greenness upscaling from phenocam to MODIS by masking non-grass areas via Sentinel-2 data.

A set of RGB phenocams was deployed over sites located over eastern Australian pastures. Green chromatic coordinate (GCC) was calculated from phenocam images. Six spatial footprints centered at phenocam sites were defined (i.e. 10 m, 30 m, 90 m, 250 m, 750 m and 1250 m), in which the Enhanced Vegetation Index (EVI) was calculated from Sentinel-2 and MODIS. The correlations between phenocam GCC and Sentinel-2 EVI were analyzed at single and multiple sites within the phenocam footprint (< 100 m) across all phenophases. Similarly, the correlations between GCC and EVI derived from Sentinel-2 and MODIS were analyzed for larger scales (> 100 m). Finally, we analyzed the relationships between GCC and MODIS EVI derived after applying a Sentinel-2 grass mask.

First, generally consistent temporal patterns of GCC and EVI were found at all spatial scales and phenophases, though there were differences at larger scales. Second, relationships between GCC and Sentinel-2 EVI within the phenocam footprint (< 100 m) kept nearly consistent regression trends and significant correlations whether from single or multiple sites, but decreasing at scales beyond 100 m. Third, correlations between GCC and MODIS EVI were similar to Sentinel-2 EVI at the same scales (< 100 m). However, at > 250 m scale, EVI derived from Sentinel-2 non-grass filtered data improved the correlation with GCC compared with EVI from all Sentinel-2 pixels and MODIS pixels. Our results indicate that Sentinel-2 can enable retrieval of grass pasture phenology in heterogeneous landscapes with higher accuracy compared with MODIS, and demonstrated the potential of Sentinel-2 data as a land cover filter to improve phenocam upscaling to MODIS.  

How to cite: Liu, Y., Huete, A., Xie, Q., and Nguyen, H.: Multi-scale phenology from digital time-lapse camera to Sentinel-2 and MODIS over Australian pastures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7261, https://doi.org/10.5194/egusphere-egu2020-7261, 2020.

The length of the period of vegetation activity is a significant driver of the global carbon cycle. Thus, the observation of plant phenology and seasonal vegetation dynamics has become an essential tool to quantify the impact of climate change on ecosystems. However, the accurate prediction of potential shifts of plant phenology in a warmer future requires a detailed spatio-temporal quantification of phenological patterns observed today. While phenological data derived from satellite-based remote sensing platforms often lack the spatial and/or temporal resolution to resolve the responses on the species level or to even reveal intraspecific patterns across the landscape, accurate visual observations by a human observer for thousands of trees are often not feasible due to time constraints. Therefore, we here present a novel near-surface remote sensing method that allowed the accurate tracking of tree phenology along an elevation- and urbanization gradient using a car-mounted camera. Using deep-learning-based image segmentation, we were able to track distinct patterns in the timing of leaf phenology of tens of thousands of trees along a nearly 100 km transect in New England throughout two growing seasons. The efficient collection of such high-resolution, multi-species, spatiotemporal data provides an excellent opportunity to quantify variation in tree phenology down to the level of individual organisms, across landscape and regional scales and for the fine-tuning of phenological models.

How to cite: Basler, D. and Richardson, A. D.: PhenoCar: Assessment of phenology of thousands of trees along an environmental gradient using car mounted cameras and deep-learning based image segmentation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18521, https://doi.org/10.5194/egusphere-egu2020-18521, 2020.

Direct in situ phenological observations of co-located trees and shrubs help characterize the phenological profile of ecosystems, such as, temperate deciduous forests. Accurate determination of the start and end of the growing season is necessary to define the active carbon uptake period for use in reliable carbon budget calculations. However, due to the resource intensive nature of recording in situ phenology the spatial coverage of sampling is often limited. In recent decades, the use of freely available satellite-derived phenology products to monitor ‘green-up’ at the landscape scale have become commonplace. Although these data sets are widely available they either have (i) high temporal resolution but low spatial resolution, such as, MODIS (daily return time; 250m) or (ii) low temporal resolution but high spatial resolution, such as, Landsat (16-day return time; 30m). However, the recently (2017) launched VENμS (Vegetation and Environment monitoring on a New Micro-Satellite) satellite combines both high temporal (two-day return time) and spatial (5-10m) resolution at a local scale thus providing an opportunity for small scale comparison of a range of phenometrics. The next challenge is to determine what in situ phenophase corresponds to the satellite-derived phenology. Our study site is a temperate deciduous woodlot on the campus of the University of Wisconsin-Milwaukee, USA, where we monitored in situ phenology on a range of (5) native (N) and (3) non-native invasive (NNI) shrub species, and (6) tree species for a 3-year period (2017-2019) to determine the timing and duration of key spring (bud-open, leaf-out, full-leaf unfolded) and autumn (leaf color, leaf fall) phenophases. The monitoring campaign coincided with the 2-day return time of VENμS to enable direct comparison with the satellite data. The shrubs leafed out before the trees and the NNIs, in particular, remained green well into the autumn season when the trees were leafless. The next step will be to determine what exact in situ phenophses correspond to NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived start, peak and end of season from MODIS and VENμS data. In addition, we will determine if VENμS can detect differences in phenological profile between N and NNI shrubs at seasonal extremes. We anticipate that the high resolution VENμS data will increase the accuracy of phenological determination which could help improve carbon budget determination and inform forest management and conservation plans.

How to cite: Donnelly, A. and Yu, R.: Combining in situ observations and high resolution VENμS data to monitor temperate deciduous shrub and tree phenology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3719, https://doi.org/10.5194/egusphere-egu2020-3719, 2020.

EGU2020-15030 | Displays | CL2.3

Digital repeat photography as a tool for assessing crop phenology, CO2 and water vapor exchange from a legume grassland in eastern Finland

Narasinha J. Shurpali, Yuan Li, Dan Kou, Perttu Virkajärvi, Mikko Peltoniemi, Cemal M. Tanis, and Ali N. Arslan

EGU2020-5871 | Displays | CL2.3

Climate change reshapes the drivers of false spring risk across European trees

Catherine Chamberlain, Benjamin Cook, Ignacio Morales-Castilla, and Elizabeth Wolkovich

Temperate and boreal forests are shaped by late spring freezing events after budburst, which are also known as false springs. Research has generated conflicting results on whether or not these events will change with climate change, potentially because---to date---no study has compared the myriad climatic and geographic factors that contribute to a plant's risk of a false spring. We assessed and compared the strength of the effects of mean spring temperature, distance from the coast, elevation and the North Atlantic Oscillation (NAO) using PEP725 leafout data for six temperate, decidious tree species across 11,648 sites in Central Europe and how these predictors shifted with climate change. Across species before recent warming, mean spring temperature and distance from the coast were the strongest predictors, with higher mean spring temperatures associated with decreased risk in false springs (–7.64% per 2°C increase) and sites further from the coast experiencing an increased risk (5.32% per 150km from the coast). Elevation (2.23% per 200m increase in elevation) and NAO index (1.91% per 0.3 increase) also increased false spring risk. 

With climate change, elevation and distance from coast---i.e., the geographic factors---remain relatively stable, while climatic factors shifted in magnitude for mean spring temperature (down to -2.84% in risk per 2°C), and in direction, with positive NAO phases leading to lower risk (-9.15% per 0.3). The residual effects of climate change---unexplained by the climatic and geographic factors already included in the model---magnified the species-level variation in risk, with risk increasing among early-leafout species (i.e., Aesculus hippocastanum, Alnus glutinosa and Betula pendula) but a decline or no change in risk among late-leafout species (i.e., Fagus sylvatica, Fraxinus excelsior and Quercus robur). Our results show that climate change has reshaped the major drivers of false spring risk and highlight how considering multiple factors can yield a better understanding of the complexities of climate change.

How to cite: Chamberlain, C., Cook, B., Morales-Castilla, I., and Wolkovich, E.: Climate change reshapes the drivers of false spring risk across European trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5871, https://doi.org/10.5194/egusphere-egu2020-5871, 2020.

EGU2020-18671 | Displays | CL2.3

Climatic Drivers of Greening Trends in the Alps

Edoardo Cremonese, Gianluca Filippa, Marta Galvagno, Umberto Morra di Cella, and Mirco Migliavacca

Since the 1980s, vegetated lands have experienced widespread greening at the global scale. Spatial patterns and mechanisms of this phenomenon were extensively investigated, especially in the Arctic and sub-Arctic regions. Greening trends in the European Alps have received less attention, although this region has experienced strong climate and land-use changes during recent decades. We investigated the rates and spatial patterns of greening in an inner-alpine region of the Western Alps. We used MODIS-derived normalized difference vegetation index (NDVI) at 8-day temporal and 250 m spatial resolution, for the period 2000–2018, and removed areas with disturbances in order to consider the trends of undisturbed vegetation. We had two objectives :

(i) quantify trends of greening in a representative area of the Western Alps; and (ii) examine mechanisms and causes of spatial patterns of greening across different plant types.

Sixty-three percent of vegetated areas experienced significant trends during the 2000–2018 period, of which only 8% were negative. We identify (i) a climatic control on spring and autumn phenology with contrasting effects depending on plant type and elevation, and (ii) land-use change dynamics, such as shrub encroachment on abandoned pastures and colonization of new surfaces at high elevation.

Below 1500 m, warming temperatures promote incremental greening in the transition from spring to summer, but not in fall, suggesting either photoperiod or water limitation. In the alpine and sub-alpine belts ( > 1800 m asl), snow prevents vegetation development until late spring, despite favorable temperatures. Instead, at high elevation greening acts both in summer and autumn. However, photoperiod limitation likely prevents forested ecosystems from fully exploiting warmer autumn conditions. We furthermore illustrate two emblematic cases of prominent greening: recent colonization of previously glaciated/non vegetated areas, as well as shrub/tree encroachment due to the abandonment of agricultural practices. Our results demonstrate the interplay of climate and land-use change in controlling greening dynamics in the Western Alps.

How to cite: Cremonese, E., Filippa, G., Galvagno, M., Morra di Cella, U., and Migliavacca, M.: Climatic Drivers of Greening Trends in the Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18671, https://doi.org/10.5194/egusphere-egu2020-18671, 2020.

EGU2020-17837 | Displays | CL2.3

Gross Primary Production and False Spring: a spatio-temporal analysis

Emma Izquierdo-Verdiguier, Raúl Zurita-Milla, Álvaro Moreno-Martinez, Gustau Camps-Valls, Anja Klisch, Clement Atzberger, and Steven W. Running

Phenological information can be obtained from different sources of data. For instance, from remote sensing data or products and from models driven by weather variables. The former typically allows analyzing land surface phenology whereas the latter provide plant phenological information. Analyzing relationships between both sources of data allows us to understand the impact of climate change on vegetation over space and time. For example, the onset of spring is advanced or delayed by changes in the climate. These alterations affect plant productivity and animal migrations.

Spring onset monitoring is supported by the Extended Spring Index (SI-x), which are a suite of regression-based models for key indicator plant species. These models (Schwartz et al. in 2013) are based on daily maximum and minimum temperature from the first day of the year (January 1st). The primary products of these models are the timing of first leaf and first bloom, but they also provide derivative products such as the timing of last freeze day and the risk of frost damage day (damage index) for each year. This information helps to understand if vegetation could have suffered from environmental stressors such as droughts or a late frost events. The effects of environmental stressors in vegetation could be captured by the false spring index, which relates the first leaf day and the last freeze day. Moreover, this information could be used to understand plant productivity as well as to evaluate the economic impact of climate change.

Previous works studied the relationship between remote sensing and plant level products by means of spatial-temporal analysis between Gross Primary Production (GPP) and a spring onset index. However, they did not consider the possible impact of false spring effect in these relationships. Here, we present a spatial-temporal analysis between GPP and the damage index to better understand the effect of false springs (in annual gross photosynthesis data). The analysis is done for the period 2000 to 2015 over the contiguous US and at spatial resolution of 1 km. We used the MODIS annual sum of GPP and the damage and false spring indices derived from the SI-x models.

How to cite: Izquierdo-Verdiguier, E., Zurita-Milla, R., Moreno-Martinez, Á., Camps-Valls, G., Klisch, A., Atzberger, C., and Running, S. W.: Gross Primary Production and False Spring: a spatio-temporal analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17837, https://doi.org/10.5194/egusphere-egu2020-17837, 2020.

EGU2020-21586 | Displays | CL2.3

No risk - no fun: The tradeoff between avoiding frost and maximizing growth

Frederik Baumgarten, Yann Vitasse, and Arthur Gessler

Abstract

Leaf-out timing is crucial for the fitness of deciduous trees inhabiting temperate and higher latitudes. Optimal leaf-out allows minimizing freezing damages and herbivory pressure while maximizing growing season length and resource uptake in order to increase their competitiveness. However only a few attempts have been made to classify species according to their strategy along this trade-off.

Using climate chambers, we artificially provoked 5 different flushing dates that span the maximum possible range of natural occurring flushing dates of 4 tree species (Prunus avium, Carpinus betulus, Fagus sylvatica and Quercus robur). Shortly after each of the five leaf-out timings, 12 saplings per species were exposed to a frost treatment that is expected to either kill all leaves (LT100, i.e. lethal temperature killing 100% of the leaves) or to partially damage them. These temperature thresholds have been adapted to each species according to their freezing resistance found in the literature. A subset of 12 indviduals per species served as a control and were not subjected to a frost treatment. Shortly after the frost treatment, all saplings were planted outside in the ground under a shading net (~-60% of light transmission) simulating below canopy conditions at the WSL research facility near Zürich.

Growth parameters (diameter, height) and recovery state (percentage of greenness compared to the control) were regularly measured during the consecutive growing season as well as the leaf coloring in autumn 2019. Preliminary results suggest that cherry and oak have recovered more than 80% by the end of the growing season, whereas beech and hornbeam only recovered about 50%. Oak was the fastest species to recover, already reaching 80% three weeks after the frost treatment. Our results allow to better quantify to what extend damaging spring frost reduces competitiveness for resources (light, nutrients) among species.

How to cite: Baumgarten, F., Vitasse, Y., and Gessler, A.: No risk - no fun: The tradeoff between avoiding frost and maximizing growth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21586, https://doi.org/10.5194/egusphere-egu2020-21586, 2020.

EGU2020-22453 | Displays | CL2.3

An interactive analysis of users, use and usability of phenological information

Raul Zurita-Milla, Iñaki Garcia de Cortazar-Atauri, and Emma Izquierdo-Verdiguier

Phenology is the science that studies the timing of periodic plant and animal life cycle events, as well as their causes, interrelations, and variations in space and time. Phenological information has a plethora of use and hence of users. For example, this information is often used to study climate change because phenological timings respond to changes in environmental conditions. Besides this, phenological information helps to model the water, carbon and energy cycles, is necessary to monitor and manage natural and artificial man-made ecosystems and even supports nature lovers and public health practitioners. The well-established EGU session on “Phenology and seasonality in climate change” shows the diversity of phenological research and products and brings together multiple research communities: ecologists, agronomists, foresters, climatologists, geo-information and remote sensing scientists, and of course, citizen science experts. We believe that this diversity deserves attention and propose carrying out a first analysis of users, use and usability of phenological products by interacting with the participants of this EGU session. For this we will use a presentation software that allows posing questions to the audience and collecting their views in real-time. This presentation will then provide a better view of the phenological community, including their most commonly used data sources, tools, and needs. Special attention will be paid to identify major achievements and research and/or operational gaps that can help to define a phenological agenda for this new decade.

How to cite: Zurita-Milla, R., Garcia de Cortazar-Atauri, I., and Izquierdo-Verdiguier, E.: An interactive analysis of users, use and usability of phenological information, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22453, https://doi.org/10.5194/egusphere-egu2020-22453, 2020.

The exceptional warmth of spring and early summer of 2018 caused the earliest beginning of fruit ripening dates in Austria since 1946 of black elder and red currant, the second earliest of apricot, as well as the shortest period between the beginning of flowering and fruit ripening for all three species (same as 1956 for red currant). These phenological extremities of the 2018 spring correspond with the highest Austrian preseason (temperatures before the phenological event) April/May/June average since 1768.

In order to put the spring of 2018 into a long term perspective, the above mentioned phenological time series were extended back to 1768 by the much longer homogenised HISTALP temperature time series. This was achieved by multiple regression driven by preseason mean monthly temperatures. In order to accommodate for the uncertainty of the regression model, the lower (5%) and upper (95%) bounds of the confidence intervals were added to the reconstructed time series. Even when considering the lower bounds, the 2018 entry date of black elder beginning of fruit ripening remains the earliest since 1768. The 2018 entry date of apricot comes fourth (after 1811, 1794, 1797 and same as 1822) and that of red currant third (after 1811 and 1794). In order to evaluate the phenological variability since 1970 a 11 year moving average and a 41 year moving trend were calculated for the combined time series consisting of the modelled (from 1768 to 1945) and observed (from 1946 – 2018) sections. Neither the level of the 11 year averages nor the level of the 41 year trend values since 1970 have occurred during any other period since 1768.

These results contribute to the discussion of the temperature sensitivity of phenological phases. In spite of the unprecedented spring and early summer temperature level our phenological data do not indicate that lower bounds of the time period between flowering and fruit ripening have yet been reached. The fruit ripening phenology of the mid latitudes is still sensitive enough to faithfully record temperature trends and extreme events supplementing the instrumental record.

How to cite: Scheifinger, H.: The extreme warmth of the Central European spring in 2018 and its effects on fruit ripening phenology in Austria – a 251 year perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2968, https://doi.org/10.5194/egusphere-egu2020-2968, 2020.

Spring leaf unfolding is a spectacular recurring event at the mid- and high latitudes that is associated with deciduous vegetation. Several lines of evidence indicate that the timing of spring green-up (i.e. the start of the season, SOS) changed in the past decades resulting in an earlier leaf unfolding - a phenomenon which is considered to be a major indicator of the effects of global warming. Contrary to the timing of the SOS, considerably less attention was paid to studying the dynamics of vegetation green-up, characterized by the leaf unfolding speed or the duration of spring green-up. The importance of studying the spring green-up dynamics lies in the fact that the duration of leaf development and timing of the onset of growth jointly determine the annual cycle of vegetation activity including carbon and energy balance, canopy conductance and evapotranspiration.

The aim of our research was to characterize the dynamics of leaf unfolding of deciduous broadleaf forests in the wider Carpathian Basin, located in Central Europe, using satellite remote sensing. The study was based on the Normalized Difference Vegetation Index (NDVI) time-series derived from the MOD09A1 official MODIS products during 2000–2019, the IGBP land cover classification dataset of the MCD12Q1 products, the CORINE 2012 (CLC2012) land cover dataset, the SRTM elevation dataset, and the FORESEE meteorological database. Our results clearly show that there is considerable interannual variability in the green-up duration of the deciduous broadleaf forest during 2000–2019. The last three years had, on average, the shortest (2018) and the two longest (2017 and 2019) recorded green-up durations in the region. Observed variability was partially attributed to the meteorological conditions, namely the extreme weather events occurring during the spring. We demonstrate that the meteorological conditions during the green-up period have a strong effect on the duration. The relationship between the SOS and the green-up duration reveals that the SOS also played an important role as a driver. Our results also reveal considerable elevation dependency both in the green-up duration and also in its correlation with SOS. Multiple linear regression models based on the SOS and the meteorological variables were also created to explain and predict the green-up duration.

How to cite: Kern, A., Marjanović, H., and Barcza, Z.: Variability of green-up duration of deciduous broadleaf forests in Central Europe during 2000-2019 based on MODIS NDVI, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-840, https://doi.org/10.5194/egusphere-egu2020-840, 2020.

EGU2020-2551 | Displays | CL2.3

Sensitivity of phenology models to the selection of driving meteorological datasets
not presented

Réka Ágnes Dávid, Anikó Kern, and Zoltán Barcza

Plant phenology focuses on the annual repetitive development phases of the terrestrial vegetation. Since the date of the onset and the cessation of vegetation growth define the possible time period for photosynthesis, plant phenology strongly affects the carbon cycle of the ecosystems. Phenology has a serious impact on the climate system through the carbon-, water- and energy cycle. Observations indicate changes in the phenological cycle of the vegetation worldwide that are clear indicators of climate change. Warming climate can be associated with more intense carbon uptake, but it can also negatively affect production. Current studies clearly indicated that the phenological cycle is not properly represented in the Earth System Models which means that further research is needed.

Meteorological variables affecting the state of the environment, such as temperature and precipitation, also play a key role in the development of vegetation. Phenology models of different complexity were developed to quantify the timing of the onset of vegetation growth based on meteorological data. The sensitivity of the models to the source meteorological datasets is rarely studied. The aim of the present study is to quantify the sensitivity of widely used phenology models to the selection of the driving meteorological dataset.

Two phenology models were used to evaluate the different databases. One is the so-called Growing Degree Day (GDD) method, which calculates the onset date based on the degree day logic. The GDD model is further divided into simple thermal forcing model and thermal model, where the latter includes chilling requirement as well. The second method uses minimum temperature, photoperiod and vapor pressure deficit and calculates a so-called Growing Season Index (GSI) which is used to estimate onset date

Considering the meteorological data, three different datasets were used. The ERA5 is a reanalysis database, which is the product of the European Centre for Medium-Range Weather Forecasts (ECMWF). The CarpatClim and the FORESEE (Open Database FOR ClimatE Change-Related Impact Sudies in CEntral Europe) are observation based, gridded datasets for the larger Carpathian Region (Central Europe).  

In any modelling exercise aiming at simulating the stages of phenology, observations are essential. In the present study the phenological observation data is originating from satellite data and field observations. The first means the third generation Normalized Vegetation Index (NDVI3g) disseminated by GIMMS (Global Inventory Modeling and Mapping Studies), and the latter means the PEP725 phenology dataset and field observations from the botanical garden of Eötvös Loránd University, located in Budapest.

How to cite: Dávid, R. Á., Kern, A., and Barcza, Z.: Sensitivity of phenology models to the selection of driving meteorological datasets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2551, https://doi.org/10.5194/egusphere-egu2020-2551, 2020.

EGU2020-9545 | Displays | CL2.3

Climatic change caused larger variation of spring phenology in temperate semi-dry grasslands in China

Xuancheng Zhou, Yongshuo Fu, and Yaru Zhang

Vegetation phenology is highly sensitive to climate change. Previous studies focusing on the trends of phenological events have found that temperature and precipitation primarily regulate the dates of spring phenology in temperate grasslands. However, the variation of spring phenology and its controlling factors are still unclear. In this study, we investigated the start of the growing season (SOS) in temperate semi-dry grasslands in China using five methods, and determined the variation of SOS and its primary factor over the study period 1982-2015. We found that, in line with previous studies, the SOS date did not change significantly during the entire study period 1982-2015, but its variation increased significantly from the first subperiod (1982-1998, Std: 8.8±1.1 day) to the second (1999-2015, Std: 10.3±1.1 days), the latter of which coincides with fast warming. The larger variation in SOS may be caused by the different climatic drivers on phenology in different areas. The fluctuation of temperature was significantly increased over the study area and subsequently may result in a larger variation of SOS. Furthermore, precipitation and soil moisture has increased until the mid-1990s, which may lead to the removal of water as a limiting factor and increase the response of semi-dry grassland spring phenology to temperature, and finally result in larger variation in SOS.

How to cite: Zhou, X., Fu, Y., and Zhang, Y.: Climatic change caused larger variation of spring phenology in temperate semi-dry grasslands in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9545, https://doi.org/10.5194/egusphere-egu2020-9545, 2020.

EGU2020-10582 | Displays | CL2.3

Analysis of radar and thermal satellite data time-series for understanding the long-term impact of land surface temperature changes on forests

Maria Prodromou, Anastasia Yfantidou, Christos Theocharidis, Milto Miltiadou, and Chris Danezis

Forests are globally an important environmental and ecological resource since they retrain water through their routes and therefore limit flooding events and soil erosion from moderate rainfall. They also act as carbon sinks, provide food, clean water and natural habitat for humans and other species, including threatened ones. Recent reports stressed the vulnerability of EU forest ecosystem to climate change impacts (EEA, 2012) (IPPC, et al., 2014). Climate change is a significant factor in the increasing forest fires and tree species being unable to adapt to the severity and frequency of drought during the summer period. Consequently, the possibility of increased insect pests and tree diseases is high as trees have been weakened by the extreme weather conditions. In Cyprus, there are two types of pine trees that exists on Troodos mountains, Pinus Nigra and Pinus Brutia, that may have been influenced by the reduced snowfall and extended summer droughts during the last decades.

 

The overarching aim of this project is to research the impact of Land Surface Temperature on Cypriot forests on Troodos mountains by analysing time-series of radar and thermal satellite data. Impacts may include forest decline that does not relate to fire events, decreased forest density and alternations to timing of forest blooming initiation, duration and termination. Radar systems emitted pulses that can penetrate forest canopy due to the size of its wavelength and, therefore, collect information between tree branches without being affected by clouds. This presentation will focus on radar analysis conducted; testing of various methods, and how the processing pipeline has been automated.

 

The project ‘ASTARTE’ (EXCELLENCE/0918/0341) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Innovation Foundation.

How to cite: Prodromou, M., Yfantidou, A., Theocharidis, C., Miltiadou, M., and Danezis, C.: Analysis of radar and thermal satellite data time-series for understanding the long-term impact of land surface temperature changes on forests , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10582, https://doi.org/10.5194/egusphere-egu2020-10582, 2020.

EGU2020-12393 | Displays | CL2.3

Influence of spring phenology on seasonal net primary productivity in the alpine grassland on the Tibetan Plateau

Zhoutao Zheng, Wenquan Zhu, Yangjian Zhang, Ke Huang, and Nan Cong

Vegetation phenology is recognized to exert crucial influences on carbon sequestration and the role of vegetation phenology in mediating carbon cycle varies with ecosystem type. However, the relationship between vegetation phenology and productivity has not been fully understood in the alpine ecosystem due to a lack of field observations, poor model performances and their complex mechanisms. In this study, we examined the spatio-temporal variation in beginning of growing season (BGS) and net primary productivity (NPP) for the alpine grassland on the Tibetan Plateau (TP) and the regulation effects of spring phenology on seasonal NPP by integrating field observations, remote sensing monitoring and ecosystem model simulation. The ecosystem model performances were improved by optimizing ecosystem parameters from field observations. The results indicated a significant advance in BGS with a rate of 0.31 days/yr (P < 0.1) in the alpine grassland during 2001-2015 while the annual NPP increased significantly at a rate of 1.25 gC/m2/yr (P < 0.01). With regard to the relationship between BGS and NPP, large spatial heterogeneities were identified. Overall, a negative but non-significant correlation (R = -0.34, P > 0.1) was observed between BGS and annual NPP for the entire grassland ecosystem on the TP. But responses of NPP to BGS varied with seasons. Specifically, BGS showed significant negative correlation with spring NPP (R = -0.73, P < 0.01), and advanced spring led to increased spring NPP. The positive effects of advanced BGS on NPP tended to weaken in summer. Moreover, BGS was significantly and positively correlated with autumn NPP in some relatively arid zones of the southwestern TP, suggesting the suppressing effects of earlier spring on carbon assimilation during the later growing season in water limited areas. This study improved our understanding on the impacts of biotic factors on carbon cycles of the alpine ecosystem and implies that the effects of phenology can’t be concluded simply for an annual sum, and their relationships for each separate season are also critical.

How to cite: Zheng, Z., Zhu, W., Zhang, Y., Huang, K., and Cong, N.: Influence of spring phenology on seasonal net primary productivity in the alpine grassland on the Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12393, https://doi.org/10.5194/egusphere-egu2020-12393, 2020.

Using RGB camera data (e.g. webcams, wildlife cameras) has great potential to measure forest phenology over climate gradients, because of its very high temporal resolution, while at the same time being more objective and less time consuming than in situ observations. To make images useful for the purpose of measuring phenological events, such as Start of Season (SOS) and End of Season (EOS), there is need to derive Regions of Interest (ROI) objectively and (semi-)automatically. In order to answer this need, Bothmann et al. (2017) proposed a method which randomly sets a number of pinpricks in the image and calculates how greenness over time from all other pixels correlates to these different pinpricks. Subsequently, ROIs are created by discarding the pixels with low correlation, using multiple thresholds. Despite its advantage of being automated and more objective compared to prevailing expert-based ROIs, and therefore its potential applicability for phenological research using a large amount of cameras, the method has not been reproduced for this purpose so far. Therefore, we assess here how well this method is able to separate foliage of different deciduous species from evergreens and phenologically irrelevant components in time-lapse wildlife camera data and in that way how suitable it is in explaining variation in phenology over a temperature gradient. We used 73 Cuddleback wildlife cameras troughout Bavaria which were installed within nine quadrants of 6*6 kilometers spanning a temperature gradient of 2.5°C. Hourly taken images of deciduous forests in spring, summer and autumn 2019 were analysed. Half of them were facing canopy, and half of them were facing understory. We applied the principles of the method from Bothmann et al. (2017) and assigned the best matching ROI to foliage of Fagus sylvatica or other deciduous species. Within this ROI, mean Green Chromatic Coordinate (GCC), a greenness index, over all pixels within the ROI, was derived per time-stamp. Afterwards, a time-series was calculated on these GCC values and with a suitable combination of curve-fitting techniques, SOS and EOS were derived, expressed in Day of Year (DOY). We compared these SOS and EOS dates with weekly in situ observations of spring and autumn phenology, which were taken in the same quadrants. Despite that Bothmann's method was developed on a single tower-mounted scientific webcam which viewed on canopy from above, while we made use of wildlife cameras at 73 different locations facing either understory perpendicular or canopy from below, it was able to distinguish F. sylvatica and other deciduous foliage from phenologically less relevant information. Time-series derived from these ROIs were able to explain variability in phenology between understory and canopy and over the temperature gradient similarly and supplementary to in situ observations. 

How to cite: Uphus, L. and Menzel, A.: Time-series within automatically generated ROIs from wildlife cameras are well able to explain variability in forest phenology on a temperature gradient, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16006, https://doi.org/10.5194/egusphere-egu2020-16006, 2020.

EGU2020-16521 | Displays | CL2.3

Students learning phenology for becoming citizen scientists: an example of Italian High School students and CNR researchers teamwork experience

Carla Cesaraccio, Annalisa Canu, Grazia Pellizzaro, Pierpaolo Masia, and Maria Leonarda Fadda

Citizen science is the scientific research that involves the participation of the public assisting professional scientists. This typically occurs in helping to data collection and/or data analysis, and an increasingly popular use of citizen science is the collection of phenological data, like wildflowers blooming in summer or leaves changing color in fall. Studying the life cycles of plants (phenology) reveals some consequences of climate change.

The PCTO (Percorsi per le Competenze Trasversali e per l'Orientamento) is a school-work alternation program and represent an innovative teaching method, introduced in 2015 by the Italian Ministry of Education, University and Research. This program, through practical experience, helps to consolidate the knowledge acquired at school and to enrich the student training. The school-work alternation is compulsory for all the students of the last three years of high school (13-17 years age). This program is a cultural change that incorporates good European practices, aimed at creating a synergy between school and work in order to encourage students to follow program learning inside of a public/private company.

The National Research Council of Italy is a partner of this program and each year students from high school are involved in technical and research activities. During the years 2015-2019, the Institute for the BioEconomy of Sassari, offered a School-Work learning program dedicated exclusively to Phenological and Pollen monitoring to groups of students of High School. While they employed their skills at work, they learnt to implement the specific protocols of a scientific project. These experiences increased their awareness of the essential role they can play by acquiring new knowledge of the environment and skills through scientific tools of citizen science. In this paper, results of the Phenological and Pollen monitoring program held at IBE-CNR Sassari are illustrated.

In the future, citizen scientists can provide reliable observations when following scientific methods and standardized protocols. Phenological monitoring programs based on volunteers support will become increasingly important in providing open‐access, standardized data sets capable of supporting the process of answering ecological and global change questions.

How to cite: Cesaraccio, C., Canu, A., Pellizzaro, G., Masia, P., and Fadda, M. L.: Students learning phenology for becoming citizen scientists: an example of Italian High School students and CNR researchers teamwork experience, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16521, https://doi.org/10.5194/egusphere-egu2020-16521, 2020.

EGU2020-16922 | Displays | CL2.3

Microclimatic effects on spring budburst and autumn leaf coloration of four temperate tree species

Yann Vitasse, Rungnapa Kaewthongrach, and Frederik Baumgarten

Recent study highlighted large microclimatic variation occurring within forests, especially concerning light and temperature. In this study we aimed to quantify to what extent variation in light, soil humidity, nutrient availability and bud temperature alter the phenology of four tree species (Fagus sylvatica, Quercus robur, Prunus avium and Fraxinus excelsior). Various treatments were applied to seedlings grown in large wooden boxes in situ conditions near Zurich. The different treatments included shade (~60% of light transmission), reduced precipitation using rain shelters, fertilizer, additional watering during summer, as well as painting buds in black or white to alter bud temperature via albedo change. Budburst timing and leaf coloration were observed twice a week during the spring and autumn 2019.

Preliminary results show that the time of budburst was delayed when seedlings were grown under shade conditions (from +3 to +11 days for Quercus and Fagus respectively) or when buds are painted in white compared to black (from +4 to +11 days from Quercus and Prunus respectively), whereas no significant effect was found under reduced precipitation for any species. For the timing of leaf coloring, a very significant effect of light was found with a delay of +22, +39 and +42 days observed under shade conditions for Fraxinus, Prunus and Fagus. Preliminary results based on the temperature recorded within the buds or close to the plants suggest that bud temperature explain the differences observed in the time of bud burst among the different treatments, though light intensity may have also directly influenced bud development of Fagus in spring. Regarding leaf coloration, our results suggest that light intensity has a strong influence on most of temperate trees whereas soil water and nutrient content has only a minor species-specific effect. Overall, our results underline the importance of microclimatic variation to explain phenological variation among trees within or among nearby sites, especially in topographically complex regions as in mountains or in forests with varying vertical structure.

How to cite: Vitasse, Y., Kaewthongrach, R., and Baumgarten, F.: Microclimatic effects on spring budburst and autumn leaf coloration of four temperate tree species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16922, https://doi.org/10.5194/egusphere-egu2020-16922, 2020.

EGU2020-18786 | Displays | CL2.3

New station-specific limits in phenology to improve data quality during online-data-entry

Barbara Pietragalla and Linda Füzér

The Swiss phenology network operated by MeteoSwiss counts approximately 160 stations where up to 69 phenological events are observed by private persons. Currently, 68% of the observer transmit their data online by a recently developed tool called Phenotool. In order to reduce typing errors during the entry of the data, the values are instantly checked by Phenotool. The observer receives a visual warning if the data exceeds defined limits of an expected time-period giving him the opportunity to verify the date entered. The defined limits need to be as suitable as possible for each station and phenological event as numerous false warnings reduce the sensitivity of the observers and cause them to ignore the warning. 
Until June 2019, limits had been used for five altitudinal layers and for each phenological event resulting from the mean ± 2 SD (standard deviation) rounded to the nearest 10. However, for some stations these limits were not appropriate, therefore, we decided to calculate station specific limits as follows: The median and SD was calculated for each phenological series consisting of at least 10 observations. In a second step, the mean of all SDs < 20 days was calculated and 2.5 times SD added/subtracted from the median. This approach leads to the same range of the limits for each phenological event, while the start of the limits is specific for each stations depending on the previously calculated median. If we would have used a station-specific standard deviation, stations with high variability and often less accurate data, would have been “awarded” with a large range. 
For new stations, data-series consisting of less than 10 observations or deviant data-series, we calculated the limits with the mean standard deviations as described above and a predicted median from a linear regression model showing the relationship between the medians of a specific phenological event and the station heights. Deviant data-series were recognized by a difference larger than 30 days between modelled and calculated median.
The comparison of the old and new limits revealed that the newly calculated limits have an average range which is 8.52 days smaller. 55 out of the 69 phenological events have a smaller range, two has the same, and the remaining 12 have a larger range. Using the previous limits, in average 8.12% of the data from 1985-2019 was outside the defined ranges, however, applying the new limits results in 3.98% of the observations not fitting the limits. Considering the fact that the new limits have in average a smaller range, this improvement becomes even more significant. To conclude, we can say that the new limits produce clearly less warnings and more appropriate warnings in Phenotool enhancing data quality.

How to cite: Pietragalla, B. and Füzér, L.: New station-specific limits in phenology to improve data quality during online-data-entry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18786, https://doi.org/10.5194/egusphere-egu2020-18786, 2020.

EGU2020-19787 | Displays | CL2.3

Climate Change and its impact on Poaceae and Fagaceae pollen season in Northern Sardinia, Italy

Annalisa Canu, Arnoldo Vargiu, and Grazia Pellizzaro

Airborne pollen data are an important source of information on flowering phenology, because they record the response of plants surrounding the sampling station, rather than the responses of individual plants, as with direct phenological observation. Plant phenology represents a good indicator of vegetation responses to long-term variation to temperatures. Furthermore, several studies have evidenced that aerobiological data series and pollen season are often strongly correlated to climate change.

This research aims to analyze airborne pollen data of Poaceae and Fagaceae measured from 1986 to 2008 in a urban area of northern Sardinia (Italy) and to investigate the trends in these data and their relationship with meteorological parameters using time series analysis. The aerobiological monitoring station was located in the center of the city very close to a public garden, and it is part of both the Italian and the European - A.I.A. Aeroallergen monitoring Network. Meteorological data were recorded during the same period by an automatic weather station.

The following parameters were calculated for each pollen: start, end and duration of pollen season, date of peak pollen concentration, number of days from the beginning of the season to the peak, annual pollen index (API), percentage distribution of API and maximum daily concentration.

The correlation between meteorological variables and the different characteristics of pollen seasons was analyzed using Spearman’s correlation tests.

A linear regression model was used for the trend analysis of the API of airborne pollen spread of the two family from 1986 to 2008.

How to cite: Canu, A., Vargiu, A., and Pellizzaro, G.: Climate Change and its impact on Poaceae and Fagaceae pollen season in Northern Sardinia, Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19787, https://doi.org/10.5194/egusphere-egu2020-19787, 2020.

EGU2020-19894 | Displays | CL2.3

Improving cropping management and yield prediction with satellite derived crop phenology

Peng Zhu, Philippe Ciais, and David Makowski

Spatiotemporal information about crop phenology and physiology during the growing season is critical for estimates and forecasts of productivity and yield. Further, knowledge of phenology during the season provides information for applying efficient irrigation, scheduling fertilization, pest management and harvesting at optimal times.. Yield loss from climatic stress, like drought or heat, is critically dependent on both phenology and physiology. Yet, current yield forecasting models do not fully use all the potential of phenology and physiology related variables that can be retrieved from satellites. We attempt to address this research gap, focusing on the major winter crops grown in northern France, wheat and rapeseed. The yields of these crops are inaccurately predicted, in this region (and elsewhere) despite their economic importance. We will derive key crop phenological stages and physiological parameters at high spatial resolution with validation at site level, and using those data together with climate fields to develop statistical models of seasonal crop yield forecast. The proposed approach has potential to be applied to other crop types and areas.


 

 

 

How to cite: Zhu, P., Ciais, P., and Makowski, D.: Improving cropping management and yield prediction with satellite derived crop phenology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19894, https://doi.org/10.5194/egusphere-egu2020-19894, 2020.

EGU2020-20804 | Displays | CL2.3

Estimation of corn harvest date in South Korea based on the accumulated temperature

Jina Hur, Kyo-Moon Shim, Yongseok Kim, and Sera Jo

This study was estimated harvest date of corn in South Korea based on the temperature index called the accumulated temperature. The accumulated temperature was calculated using observed daily mean temperature. We assumed a unified seeding date, 5 April, across the South Korea. The daily mean temperatures from 61 weather stations provided by the Korean Meteorological Administration were obtained for the period 2009-2018 (10 years). We used 1,650℃ as the criterion of the accumulated temperature to identify harvest date of corn for early-cultivated variety. The accumulated temperature over the most areas generally meted the criterion (1,650℃) in early July. In case of 2018, 66% area of Gang-won province, major corn producer, become suitable to harvest corn in July, peaking in the middle July (51%). The harvest date has been accelerating due to increase in daily mean temperature during the recent 10 years. This study infers that changes in farming activities are needed through reflecting the environmental change.        

 

Acknowledgements

: This study was carried out with the support of “Research Program for Agricultural Science & Technology Development (Project No. PJ014882)”, National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

 

How to cite: Hur, J., Shim, K.-M., Kim, Y., and Jo, S.: Estimation of corn harvest date in South Korea based on the accumulated temperature, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20804, https://doi.org/10.5194/egusphere-egu2020-20804, 2020.

EGU2020-21952 | Displays | CL2.3

A machine learning software framework for extraction of phenology indicators from multi-temporal sentinel-2 images

Dounia arezki, Hadria Fizazi, Santiago Belda, Charlotte De Grave, Luca Pipia, and Jochem Verrelst

Optical Earth observation satellites provide spatially-explicit data that are necessary to study trends in vegetation dynamics. However, more of often than not optical data are discontinuous in time, due to persistent cloud cover and instrumental noises. Hence, the operating constraints of these data require several essential pre-processing steps, especially when aiming to reach towards monitoring of vegetation seasonal trends.  To facilitate this task, here we present an end-to-end processing software framework applied to Sentinel-2 images.

To do so, first biophysical retrieval models were generated by means of a trained machine learning regression algorithm (MLRA) using simulated data coming from radiative transfer models. Among various tested MLRAs, the variational heteroscedastic Gaussian process regression (VHGPR) was evaluated as best performing. to train the retrieval model.  The training and retrieval were conducted in the Automated Radiative Transfer Models Operator (ARTMO) software framework.

Subsequently, in view of retrieving the phenological parameters from the obtained vegetation products, a novel times series toolbox as part of the ARTMO framework was used, called:  Decomposition and Analysis of Time Series software (DATimeS). DATimeS provides temporal interpolation among other functionalities with several advanced MLRAs for gap filling, smoothing functions and subsequent calculation of phenology indicators. Various MLRAs were tested for gap filling to reconstruct cloud-free maps of biophysical variables at a step of 10 days.

A demonstration case is presented involving the retrieval of Leaf area index (LAI), fraction of Absorbed Photosynthetically Active Radiation (FAPAR) from sentinel-2 time series.  A large agricultural Algerian site of 143, 75 km² including Oued Rhiou, Ouarizane, Djidioua (1,345,075 pixels) was chosen for this study.  A reference image was excluded from the time series in order to evaluate the reconstruction accuracy over a 40-day artificial gap.

  The reference vs.  Reconstructed maps produced by the gap-filling methods were compared with statistical goodness-of-fit metrics.  Considering both accuracy and processing speed, the fitting algorithms Gaussian process regression (GPR) and Next neighbour interpolation (R²= 0.90 / 0.081 sec per pixel and R²=0.88 / 0.001 sec per pixel respectively) interpolations proved to reconstruct the vegetation products the most efficient, with GPR as more accurate but Next faster by a factor of 70.

Finally, we evaluated of the phenology indicators such as start-of-season and end-of-season based on LAI and FAPAR. The obtained maps provide valid information of the vegetation dynamics.  Altogether, the ARTMO-DATimeS software framework enabled seamless processing of all essential steps:  (1) from L2A sentinel-2 images converted to vegetation products, (2) to cloud-free composite products, and finally (3) converted into vegetation phenology indicators.

 

How to cite: arezki, D., Fizazi, H., Belda, S., De Grave, C., Pipia, L., and Verrelst, J.: A machine learning software framework for extraction of phenology indicators from multi-temporal sentinel-2 images, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21952, https://doi.org/10.5194/egusphere-egu2020-21952, 2020.

EGU2020-21960 | Displays | CL2.3

Is bud burst of temperate trees promoted by a critical daylength?

Nora Pohl, Frederik Baumgarten, and Yann Vitasse

Is bud burst of temperate trees promoted by a critical daylength?

 

Bud burst of temperate trees is mainly controlled by cool temperatures during winter-dormancy (chilling), warm temperatures in spring (forcing) and daylength (photoperiod). Some tree species may rely more on one of these drivers than others (e.g. temperature driven species) but recent studies emphasize complex interactions among them for most species. As one of these factors, photoperiod can act by preventing trees from flushing too early, minimizing the risk of damaging spring frost. Yet it is unclear whether stimulating and/or inhibiting effects of photoperiod on spring phenology act (i) gradually (i.e. increasing daylength progressively accelerates bud development response to temperature) or (ii) whether photoperiod slows down bud development until reaching a critical threshold.

In this study we tested the second hypothesis by exposing twig cuttings of 5 species (Acer pseudoplatanus, Carpinus betulus, Fagus sylvatica, Quercus petraea, Tilia cordata) to different constant photoperiods that occur before leaf-out in the latitudes of Zurich (10h, 11h, 12h, 13h). Two additional photoperiods of 8h and 16h served as a control to simulate shortest and longest natural occurring daylengths. The experiment was repeated on three occasions (from October 2019 to January 2020) to account for different dormancy depths.  Bud development was monitored twice a week.

The experiment is still running. We expect that temperature-sensitive species would leaf-out regardless of the photoperiod, while photoperiod sensitive species such as beech may wait until a critical threshold has passed. Furthermore, longer photoperiods might substitute for insufficient chilling by decreasing the required amount of forcing to bud burst. The results could serve to better implement photoperiod into phenological models.

How to cite: Pohl, N., Baumgarten, F., and Vitasse, Y.: Is bud burst of temperate trees promoted by a critical daylength?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21960, https://doi.org/10.5194/egusphere-egu2020-21960, 2020.

EGU2020-7053 | Displays | CL2.3

Extreme summer heat and drought acts as an environmental veto for fruit production in European beech

Anita Nussbaumer, Katrin Meusburger, Maria Schmitt, Peter Waldner, Regula Gehrig, Matthias Haeni, Andreas Rigling, Ivano Brunner, and Anne Thimonier

European beech is known to be a masting species, i.e. fruit production does not occur every year. It is thought to be a species which is flowering controlled, i.e. that after successful pollination, fruits and seeds would be produced. In the last two decades, years with high fruit production occurred every two to three years in Middle Europe, which may be indication for an inherent biennial cycle. However, successful fruit production can be hampered by disadvantageous weather conditions, such as frost events, during the pollination season.

In Switzerland, after high beech pollen concentration was measured in spring of 2018, high fruit production was expected. However, during the extremely hot and dry European summer of 2018, beech produced no, or only small amounts of beechnuts in two of three long-term monitoring beech stands in Switzerland, which are part of the Swiss Long-Term Forest Ecosystem Research Programme. We observed that beechnuts were aborted in early summer already. Over the last decades, we found similar examples of mast failure and fruit abortion in years with hot and dry summer conditions. These extreme conditions can thus act as an “environmental veto”, similar to frost events during flowering. In years with fruit abortion, summer mean temperatures were 1.2°C higher, and precipitation sums were 45% lower than the long-term average. Our findings are evidence for a biennial masting cycle in European beech, which can be interrupted by extreme weather conditions such as extreme summer heat and drought or frost during flowering.

How to cite: Nussbaumer, A., Meusburger, K., Schmitt, M., Waldner, P., Gehrig, R., Haeni, M., Rigling, A., Brunner, I., and Thimonier, A.: Extreme summer heat and drought acts as an environmental veto for fruit production in European beech, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7053, https://doi.org/10.5194/egusphere-egu2020-7053, 2020.

Will warmer winters induce more forest and crop pests in Switzerland?

Léonard Schneider*,**

*Institute of Geography, University of Neuchatel, Espace Tilo-Frey 1, 2000 Neuchatel (leonard.schneider@unine.ch)

**Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf

 

With current global warming, recent winters have often been milder in Switzerland than they were in previous decades and should still become more so in the coming decades. Some insect species sensitive to winter extreme cold events could increase their survival rates during the cold season. Forest pests, such as pine processionary moth (Thaumetopoea pityocampa), green spruce aphid (Elatobium abietinum), and some crop pests, such as southern green stink bug (Nezara viridula), could overwinter more easily in Switzerland. These species are affected by temperatures below -12°C (Thaumetopoea pityocampa, Elatobium abietinum) to below -8°C (Nezara viridula).

This research aims to determine to what extent the evolution of winter minimum temperatures could increase the winter survival rate of some pest species in various places in Switzerland. We examine the trends for winter temperatures, with a special focus on cold events (days with minimal air temperature below -8°C and -12°C). We first analyse daily air temperature between 1980 and 2019 using 67 meteorological stations located all over Switzerland. Then, we use available data from CH2018 climatic scenarios to estimate possible trends along the coming century.

Preliminary results showed that the frequency of cold days has been decreasing in Switzerland over the last 40 years even though winter minimum temperatures have been increasing less than yearly minimum temperatures. By the end of the 21st Century, occurrences of temperatures below -12°C could become irregular up to 1700 m and winters with temperatures below -8°C could become rare at lower elevations in Switzerland. As a consequence, some crop pests such as southern green stin bug could overwinter more easily on the Swiss Plateau, and some forest pests such as green spruce aphid and pine processionary moth could reach higher elevations in mountain areas by the end of the century.

How to cite: Schneider, L.: Will warmer winters induce more forest and crop pests in Switzerland?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10450, https://doi.org/10.5194/egusphere-egu2020-10450, 2020.

EGU2020-20606 | Displays | CL2.3

Plant phenology evaluation of CRESCENDO land surface models

Deborah Hemming, Daniele Peano, Stefano Materia, Taejin Park, David Warlind, Yuanchao Fan, Hanna Lee, Andy Wiltshire, and Chris D Jones

A new generation of land surface models (LSMs) have been developed in the framework of the EU-funded CRESCENDO project aiming to improve understanding of the Earth system as part of the community CMIP6 effort. 
These new LSMs explicitly represent key processes in the carbon and nitrogen cycles, enabling more realistic vegetation-climate interactions to be simulated. For instance, vegetation phenology, the seasonality of vegetation, is explicitly represented in all these new LSMs. Intra- and inter-annual variations in vegetation phenology can substantially influence land-atmosphere exchanges of energy, moisture and carbon. Changes in phenological events also provide clear indicators of climate impacts on ecosystems. 
Results are presented on the evaluation of phenological variability from offline runs of this new generation of LSMs. In particular, the timing of growing season onset and offset at global scale, and the Leaf Area Index (LAI) peak timing are investigated using monthly mean outputs. Three satellite-derived LAI datasets are used as benchmark observations for this evaluation.
In general, LSMs exhibit high skill in reproducing the observed phenology cycle in the North hemisphere mid- and high-latitudes, while lower skill is obtained in the South hemisphere. All LSMs simulate an offset in the timing of the active vegetative season characterized by later onset and LAI peak. Offset timings are slightly better captured by the LSMs. For these reasons, further development of the representation of phenology is required in LSMs, especially in the South hemisphere, where more complex vegetation and reduced in-situ observations are available.

How to cite: Hemming, D., Peano, D., Materia, S., Park, T., Warlind, D., Fan, Y., Lee, H., Wiltshire, A., and Jones, C. D.: Plant phenology evaluation of CRESCENDO land surface models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20606, https://doi.org/10.5194/egusphere-egu2020-20606, 2020.

Studying grassland phenology and its relationships to climate would deepen our understanding of vegetation-air interactions under global climate change. To date, however, our knowledge of the responses of grassland phenology to climatic factors is still limited at the continental scale. In this study, we retrieved the start (SOS) and end (EOS) of the growing season for mid-latitude (30°N~55°N) grasslands of the Northern Hemisphere during 1981-2014, and investigated their relations with previous temperature, rainfall, and snowfall (only for SOS) through trends analysis and time window analysis. Results illustrated a predominant significant advancing/delaying trend of SOS/EOS in 23.2%/20.5% of the study region. They jointly resulted in a primarily significant prolongation trend of growing season length in 22.7% of the study region. Next, a dominated negative correlation between air temperature/rainfall and SOS was found in 62.4%/57.6% of areas. Snowfall showed converse effects (positive/negative) among different grasslands. The time window opening date for air temperature to start to affect SOS was identified as the day 1-90 before the multi-year average SOS in 76.1% of areas, while the time window opening date for the effect of rainfall/snowfall on SOS was relatively evenly distributed between the 1st and 180th day before the multi-year average SOS. EOS was found to be significantly negatively/positively correlated with air temperature/precipitation in 74.8%/83.7% of areas. The time window opening date for the effect of air temperature on EOS was identified as the 90-180th day before the multi-year average EOS in 66.9% of areas, while the time window opening date for the effect of precipitation on EOS was mainly concentrated on the 60-120th day before the multi-year average EOS in 51.5% of areas. Overall, this study highlights the distinctly different time windows for the thermal-moisture effects on grassland vegetation phenology and this should be considered when establishing process-based phenological models.

How to cite: Ren, S., Li, Y., and Peichl, M.: Diverse effects of climate at different times on grassland phenology in mid-latitude of the Northern Hemisphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3992, https://doi.org/10.5194/egusphere-egu2020-3992, 2020.

EGU2020-6053 | Displays | CL2.3

Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region

Yue Yang, Mai-He Li, Zhengfang Wu, Hong S. He, Haibo Du, and Shengwei Zong

Regions at high latitudes and high altitudes are undergoing a more pronounced winter warming than spring warming, and such asymmetric warming will affect chilling and forcing processes and thus the spring phenology of plants. We analyzed winter chilling and spring forcing accumulation in relation to the spring phenology of three tree species (Ulmus pumila, Populus simonii, and Syringa oblata) growing in a cold region (CR) compared with trees in a warmer reference region (WR, using the Dynamic Model and the Growing Degree Hour (GDH) model. We tested that forcing rather than chilling affects the spring phenology of trees in CR (hypothesis I), and that trees in CR have both lower chilling and lower forcing temperatures and thus longer accumulation periods than trees in WR (hypothesis II). In line with our hypotheses, forcing played a crucial role in spring phenology in CR, but chilling and forcing combined to determine spring phenology in WR. The temperatures during the chilling and forcing periods were lower and the accumulation period started earlier and ended later in CR than in WR. Moreover, the chilling accumulation was broken into two periods by the low deep winter temperature in CR. We conclude that asymmetric warming, with a stronger temperature increase in winter than in spring, could decrease the forcing accumulation effects and increase the chilling effects on the spring phenology of plants in CR. This change in the balance between chilling and forcing will lead to a shift in plant phenology, which will further have major impacts on biogeochemical cycles and on ecosystem functioning and services.

How to cite: Yang, Y., Li, M.-H., Wu, Z., He, H. S., Du, H., and Zong, S.: Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6053, https://doi.org/10.5194/egusphere-egu2020-6053, 2020.

Changes in winter soil freeze-thaw (F-T) phenology not only affect nature, but also affect social-economy in permafrost regions. However, a lack of understanding of its response to global warming is a critical gap in knowledge to preclude adaptation to climate change. Here we explored effects of warming gradient (0, 1, 2 and 4oC) combined with precipitation addition on it by which further on CO2 emission on the Tibetan Plateau. We find that only warming delays start and end dates of soil F-T cycle during autumn-winter season, but advances them during winter-spring season, thus shortens the durations of completely freezing (14.9 days oC-1) and total duration of soil F-T period from autumn to spring (11.7 days oC-1). Thus, asynchronic shifts of the soil F-T cycle induced by warming significantly decreased total CO2 emission by 31-47% relative to T0 treatment during the whole F-T period from autumn to spring.

How to cite: wang, S., wang, Q., lv, W., zhou, Y., and jiang, L.: Asynchrony of winter soil freeze-thaw phenology induced by warming reduces ecosystem respiration of alpine meadow during the freeze-thaw period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12031, https://doi.org/10.5194/egusphere-egu2020-12031, 2020.

EGU2020-18551 | Displays | CL2.3

Phenological changes in Europe are still attributable to climate change induced warming

Annette Menzel, Ye Yuan, Michael Matiu, Tim H Sparks, Helfried Scheifinger, Regula Gehrig, and Nicole Estrella

During 1971-2000 phenological responses of wild species in spring and summer matched the warming pattern in Europe, whereas timing of farming activities as well as autumnal leaf colouring did not mirror climate change to the same extent (Menzel et al. GCB 2006). These findings were a backbone of the corresponding global attribution study of the IPCC AR4 (Rosenzweig et al. 2007, 2008). Two decades of warming later, however, new phenological findings suggest that especially a lack of chilling and / or increasing influence of photoperiod may have lowered the phenological temperature response and that adaptation in agricultural management is taking place. We therefore updated the GCB 2006 study by asking three questions: What drives the inherent variation of trends? Can we now detect a warming signal in “false” agricultural (i.e. those being directly or indirectly determined by farmers’ management) and autumn phases? Is there still an attributable warming signal in phenology?

The complete phenological dataset of Germany, Austria and Switzerland (1951-2018, ~97.000 times series, corresponding to 96.3% of PEP725 data) was analysed. We determined linear trends, studied their variation by plant traits / phenogroups, across season and time, and followed IPCC methodology for attributing phenological changes to warming patterns.

For spring and summer phases of wild plants we found more (significantly) advancing trends (~90% and ~60% sign.) which were stronger in early spring, at higher elevations, but smaller for non-woody insect-pollinated species. Although mean trend strength decreased, changes in spring were strongly attributable to warming in spring and winter. We had similar but less strong findings for agricultural crops in these seasons. In contrast only ~75% of phenological phases set by farmers’ decisions were advancing, however this was the only phenological group for which the mean advance increased, indicating adaptation. Equally trends in farming phases in spring and summer were attributable to warming in winter and summer, respectively. Leaf coloring and fall was now predominantly delayed (57%) which was attributable to winter and spring warming, too.

Thus, this update of the GCB2006 study demonstrates that there is still a significant and attributable phenological change pattern in Europe, in which number of (significant) trends pointing into the direction of warming increased, but mean trend strength mostly decreased, probably due to a lack of chilling and smaller forcing trends. More attention should be paid to the inherent variability of trends with traits / species groups, season and time triggering divers (e.g. ecological) consequences of these phenological shifts. Still existing differences between the generative period of crops and wild species as well as between the farming season and the general growing season call for more research in this area.

How to cite: Menzel, A., Yuan, Y., Matiu, M., Sparks, T. H., Scheifinger, H., Gehrig, R., and Estrella, N.: Phenological changes in Europe are still attributable to climate change induced warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18551, https://doi.org/10.5194/egusphere-egu2020-18551, 2020.

CL2.4 – Synoptic climatology - methods and application

EGU2020-349 | Displays | CL2.4

Revisiting the Identification of Wintertime Atmospheric Circulation Regimes in the Euro-Atlantic Sector

Swinda Falkena, Jana de Wiljes, Antje Weisheimer, and Theodore G. Shepherd

A number of methods exist for the identification of atmospheric circulation regimes. The most commonly-used method is k-means clustering. Often the clustering algorithm is applied to the first several principal components, instead of the full field data. In addition, many studies use a time-filter to get rid of high frequency oscillations before the clustering is executed. We discuss the consequences of these filtering techniques on the identified circulation regimes for the Euro-Atlantic sector in winter. Most studies identify four regimes: the Atlantic Ridge, the Scandinavian Blocking, and the two phases of the North Atlantic Oscillation. However, when k-means clustering is applied to the full field data of a reanalysis dataset, the optimal number of regimes is not found to be four, but six. This optimal number is based on the use of an information criterion, together with consistency arguments. The two additional regimes can be identified as the opposite phases of the Atlantic Ridge and Scandinavian Blocking, since they have a low-pressure area where the original regimes have a high-pressure area. Furthermore, the incorporation of a persistence constraint within the clustering algorithm is found to preserve the occurrence rates of the regimes, and thus maintains the consistency of the results. In contrast, applying a time-filter to enforce persistence of the regimes changes the occurrence rates. We conclude that care must be taken when filtering the data before the clustering algorithm is applied, since this can lead to biases in the identified circulation regimes and their occurrence rates.

How to cite: Falkena, S., de Wiljes, J., Weisheimer, A., and Shepherd, T. G.: Revisiting the Identification of Wintertime Atmospheric Circulation Regimes in the Euro-Atlantic Sector, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-349, https://doi.org/10.5194/egusphere-egu2020-349, 2020.

EGU2020-1454 | Displays | CL2.4

Synoptic Circulation Patterns and Climate Regionalization of East Africa

Markos Ware, Paolo Mori, Kisten Warrach -Sagi, Mark Jury, Thomas Schiwtalla, and Volker Wulfmeyer

Abstract. Climate regionalization is crucial for climate studies, especially in the case of heterogeneous regions like East Africa. This paper focuses on categorizing Ethiopia into homogeneous climatic sub-regions by applying a classification of circulation patterns on precipitation. The sub-regions obtained will be applied on the verification of WRF-NOAHMP seasonal simulations performed over the Horn of Africa. We analyzed the occurrence of each circulation type per month and per year over the whole country. Then, trend analysis of temperature and precipitation over the respective sub-regions were performed. Principal Component Analysis (PCA) were applied to group daily mean Sea Level Pressure (SLP) into Circulation Types (CTs). Then, PCA coupled with k-means clustering employed to regionalize precipitation fields (distributed spatially) following CTs into homogeneous climatic sub-regions. Observational data were obtained from the National Center for Environmental Prediction (NCEP) reanalysis, Climate Hazards Group Infrared Precipitation with Stations (CHIRPS version 2), and National Meteorology Agency (NMA) of Ethiopia (gauge 1st and 2nd classes). Five principal components, which explain 98% of the total variance, were maintained using the Scree test technique. Ten CTs were obtained using positive and negative phases of each principal component scores following the extreme score values (> 2 and < −2) procedure. From ten CTs, we found that three (CT1, CT3, and CT8) were characterized by low pressure over the southwest corner of the domain, which consequently brings rainfall over the Ethiopian highlands. The number of days classified under different CTs shows different trends. CTs seasonal distribution agreed with the regional seasons. Long-term monthly mean rainfall ranges from 0-600 mm over the region. Ethiopia is clustered into four homogeneous sub-regions based on the spatial distribution of precipitation following CTs. Rainfall from CHIRPS and gauge did not have any specific trend over the sub-regions, however high standardized anomalies were observed compared to the long term mean. The temperature showed a 2 °C change for the past three decades. There was a negligible difference in the shape, size, and location of regions using data from different sources. The final decision on the optimal number of homogeneous climatic sub-regions depends upon the research objective, geographical domain size, and topographic features of the domain. This study provides an assessment and decision pathway.

 

Keywords: climatology, regionalization, Ethiopia, precipitation, k-means, circulation types

How to cite: Ware, M., Mori, P., Warrach -Sagi, K., Jury, M., Schiwtalla, T., and Wulfmeyer, V.: Synoptic Circulation Patterns and Climate Regionalization of East Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1454, https://doi.org/10.5194/egusphere-egu2020-1454, 2020.

EGU2020-3438 | Displays | CL2.4

Assessment of future heat events for the city of Augsburg by means of a normal vector based analog approach

Christian Merkenschlager, Christoph Beck, and Elke Hertig

Under enhanced anthropogenic greenhouse gas forcing heat waves are only one example of climatic risks mankind has to deal with. Especially in urban areas where most of the people will live until the end of the 21st century heat waves are a serious risk factor since the urban heat island will reinforce such events. For the city of Augsburg, new analog methods are utilized for assessing the development and impacts of heat waves taking into account the varying urban structure.

For model calibration the temperature data from the Augsburg-Mühlhausen weather station operated by the German Weather Service (DWD) and atmospheric circulation variables of the ERA5 reanalysis data set were used to analyze the recent temperature development. For this purpose, the least deviation of the normal vector was used to determine a subsample of analogs corresponding to the day of interest. The normal vector was derived from the regression plane of the prevailing circulation on the respective day. Subsequently, the temperature patterns were used to define the analog day from the subsample. For future periods, the same method was applied to model data for two representative concentration pathways (RCP4.5, RCP8.5) of different general circulation models (GCM: ACCESS1-0, CNRM-CM5, MPI-ESM-LR). Thus, we derive future time series of analogs corresponding to events prevailing in the observational period. To account for projected trends of the GCMs, the trends of all time-series were first removed and, after the analog selection process, added again according to the trends of the GCMs.

Temperature extremes are defined as days with temperatures exceeding the 90th quantile (Q90) and heat days are defined as days where at least two temperature indices (TMIN, TMEAN, TMAX) exceed Q90. When at least three consecutive days are defined as heat day a heat wave is proclaimed. Analysis have shown that under consideration of RCP8.5 (RCP4.5) and all model runs the number of heat days in the end of the 21st century will be nine (five) times higher than within the reference period 1970-2000. Furthermore, the mean duration of heatwaves will extend by factor four (two), whereby heat waves of more than 30 (15) consecutive days are possible.

How to cite: Merkenschlager, C., Beck, C., and Hertig, E.: Assessment of future heat events for the city of Augsburg by means of a normal vector based analog approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3438, https://doi.org/10.5194/egusphere-egu2020-3438, 2020.

EGU2020-4375 | Displays | CL2.4

Archetypal analysis of Southern Hemisphere extreme circulation events

James Risbey and Didier Monselesan

EGU2020-5449 | Displays | CL2.4

Seasonal weather regimes in the North Atlantic region: towards new seasonality?

Florentin Breton, Mathieu Vrac, Yiou Pascal, Pradeebane Vaittinada Ayar, and Aglaé Jézéquel

European climate variability is shaped by atmospheric dynamics and local physical processes over the North Atlantic region. Both have strong seasonal features. So, a better understanding of their future seasonality is essential to anticipate changes in weather conditions for human and natural systems. We revisit the notion of seasons over the North Atlantic region through the concept of seasonal weather regimes (SWRs), by classifying daily fields of geopotential height at 500 hPa (Z500) without a priori separation of seasons. We use data from the ERA-Interim reanalysis, and from 12 climate models of the fifth phase of the Coupled Model Intercomparison Project. The spatial and temporal variability of SWR structures is investigated, as well as associated patterns of surface air temperatures. Although the climate models have biases, they reproduce structures and evolutions of SWRs similar to the reanalysis over 1979-2017: decreasing frequency of winter conditions, which start later and end earlier, and increasing frequency of summer conditions starting earlier and ending later in the year. These changes are stronger over 1979-2100 than over 1979-2017. By the end of the 21st century, the typical past winter conditions (e.g. 1979-2017) have almost disappeared and correspond to future extreme cold conditions. A new cluster related to summer that was almost absent in 1979-2017 (corresponding to past extreme warm conditions in the past) becomes dominant. To understand whether these changes are linked to uniform Z500 increase or changes in Z500 spatial patterns, we detrend the data (but impose a stationary seasonality) by removing the trend in the seasonal Z500 regional average to define detrended seasonal weather regimes (d-SWRs). The temporal properties of d-SWRs appear almost constant, whereas spatial patterns show evolution. Our results indicate that the evolutions of the SWR temporal features are caused by the regional Z500 trend and that changing spatial patterns in d-SWRs account for the heterogeneity of this trend. Previous research has shown that this large-scale Z500 trend is linked to human influence, suggesting that it drives the changes in seasonality that we find.

How to cite: Breton, F., Vrac, M., Pascal, Y., Vaittinada Ayar, P., and Jézéquel, A.: Seasonal weather regimes in the North Atlantic region: towards new seasonality?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5449, https://doi.org/10.5194/egusphere-egu2020-5449, 2020.

EGU2020-5965 | Displays | CL2.4

Climatology and variability of jets in the upper troposphere

Clemens Spensberger and Thomas Spengler

Jets in the upper troposphere constitute a cornerstone of both synoptic meteorology and climate dynamics, thus providing a direct link between weather and mid-latitude climate variability. Conventionally, jet variability is mostly inferred indirectly through the variability of geopotential or sea-level pressure. Here we use a feature-based jet detection and present a global climatology of upper tropospheric jets as well as their variability for ocean sectors in both Hemispheres. The jet streams on both hemispheres are found to spiral poleward, featuring a continuous transition from subtropical to eddy-driven jets. Most intrinsic patterns of jet variability represent a changeover from a meridional shifting type variability to a pulsing-type variability, or vice-versa, across each ocean basin.

For the Southern Hemisphere, we find considerable discrepancies between geopotential and jet-based variability. Specifically, we show that SAM cannot be interpreted in terms of mid-latitude variability, as SAM merely modulates the most poleward part of the cyclone tracks and only marginally influences the distribution of other weather-related features of the storm track (e.g., position of jet axes and Rossby wave breaking). Instead, SAM emerges as the leading pattern of geopotential variability due to strong correlations of sea-level pressure around the Antarctic continent. Considering sector-specific variability pattern, we identify modes of consistent geopotential and jet variability in the South Pacific, and, to a lesser extent, the South Indian Ocean. In the South Pacific the leading mode of variability points towards NAO-like variability.

How to cite: Spensberger, C. and Spengler, T.: Climatology and variability of jets in the upper troposphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5965, https://doi.org/10.5194/egusphere-egu2020-5965, 2020.

EGU2020-8549 | Displays | CL2.4

Torrential rainfall prediction: WeMOTool

Laia Arbiol-Roca

The Western Mediterranean Oscillation index (WeMOi) presents a statistically significant relationship with the pluviometric totals of the eastern façade of the Iberian Peninsula. Use of the WeMOi at daily resolution has proven to constitute a useful tool for helping to predict torrential rainfall episodes in the east of the peninsula. The present research attempts to determinate which atmospherics circulations defines the WeMOi phases. Also, the WeMOi research has focused on the prediction of it in order to configure itself as a predictive tool, the WeMOTool, for torrential rains associated, especially during the autumn months. The calculation of this index is made using the surface pressure data of the GFS model and is updated with the model outputs at 00h and 12h and up to 144h.

How to cite: Arbiol-Roca, L.: Torrential rainfall prediction: WeMOTool, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8549, https://doi.org/10.5194/egusphere-egu2020-8549, 2020.

EGU2020-8877 | Displays | CL2.4

Drought occurrence in key regions of soil moisture-atmosphere interaction in temperate Eurasia

Alla Yurova, Daniil Kozlov, and Yali Zhu

In an atmospheric general circulation drought-forming anomaly the nonlinear relationship between soil moisture and evapotranspiration play an important role in transitional (sub-humid and semi-dry) moisture regime. In this study the preceding soil moisture deficit was linked to the following low standardized precipitation index (SPI) indicating atmospheric drought in two major land-atmosphere coupling regions over Eurasia – Northern Eurasian Plains (NEP) and Plains and Uplands of Northeastern China (PUNEC).  Spring season was under consideration as the most significant for crop development failure due to lack of moisture and the most predictable due to prolonged soil memory after major hydrological event of the year – the snowmelt. The Global Energy and Water Exchanges (GEWEX) project deliverables and Climate Prediction Center (CPC) soil moisture data were used after validation with agrometeorological station data. It was shown that May droughts in NEP and PUNEC occur after regional negative soil moisture anomaly in early spring in significantly high proportion of cases for the study period 1985-2019. The soil moisture anomaly is leading to drought when the specific circulation pattern is formed as shown by the composite analysis. Importantly, the circulation pattern is Eurasia-broad with upstream blocking ridge centered in NEP and anticyclone formation in PUNEC. Both ridge and anticyclone are persistent and characterized by low cloudiness, reduced moist static energy (also due to reduction in evapotranspiration by low soil moisture) and low large scale and convective precipitation. That is why low SPI events often co-occur in two study regions. Atmospheric models tend to agree that atmospheric processes do respond to negative anomalies in surface moisture conditions in NEP and PUNEC and positive feedback of soil drought on the atmosphere is largely responsible for enabling atmospheric aridity extremes. The reasons for the simultaneous early spring moisture deficits in two regions are to be searched in the features of winter general circulation which lead to reduced snow accumulation and/or snowmelt regime with lower than average water infiltration to the soil. European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble seasonal forecast skill was also explored. SPI skill scores in April are indicating better forecast in NEP than in PUNEC but skill decreases sharply in May in NEP while remaining high till June in PUNEC. Further prospects for improving meteorological, hydrological and agricultural drought forecasting and forecast post-processing methodology for the regions of study are discussed.

This study was supported by the Russian Federal Targeted Program 1.2. Grant Number RFMEFI60419X0222 “Global climate and agrolandscapes of Russia: development of assessment and risk management system of Russian chernozems degradation” and National Key Research and Development Program of China, Grant Number 2016YFA0600701 “The variation and mechanism of extreme climate in northern China at interannual timescale”

How to cite: Yurova, A., Kozlov, D., and Zhu, Y.: Drought occurrence in key regions of soil moisture-atmosphere interaction in temperate Eurasia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8877, https://doi.org/10.5194/egusphere-egu2020-8877, 2020.

  To know the detailed seasonal cycle in various regions, confined only to the middle and higher latitudes, is the common basis for deeper understanding of the seasonal backgrounds of (1) extreme meteorological or climatological events and (2) cultural generation through the “seasonal feeling” leading to cultural understanding education. For example, our previous studies (e.g., Kato et al. 2017) pointed out that the “seasonal feeling” on the severe winter relating to the traditional event for driving the winter away (“Fasnacht”) around Germany might be due to the intermittent appearance of the extremely low temperature events, although the winter mean temperature there is lower only by about 3~5℃ than in southern Japan. Hamaki et al.(2018) suggested the appearance of such events to be controlled greatly by the intraseasonal behaviors of the Icelandic low. Furthermore, Kuwana et al. (EGU2018 and 2019) pointed out the asymmetric seasonal progression of the behaviors of the Icelandic low including its intraseasonal variation from the autumn to the next spring. However, it has not been clarified yet what kind of seasonal transition of the dominant large-scale daily fields was related to the increase in appearance frequency of such extremely low temperature events after mid-December. Thus the present study will further examine the detailed features on the above processes, mainly for the 2000/2001 winter based on the NCEP/NCAR reanalysis data.

  Appearance frequency of extremely low temperature events (e.g., below -5℃) rapidly increased around mid-December of 2000 with the large amplitude of its intraseasonal variation although the seasonal mean the Icelandic low appeared from mid-October. It is interesting that the daily mean temperature decreased gradually with shorter-period fluctuation until mid-December, even after the seasonal formation of the Icelandic low.

  As for the seasonal mean fields from mid-December to the next March, the northeastern portion of the Icelandic low area extended more closely to the northwestern Europe and the baroclinicity was enhanced especially to the south of ~55°N. Composite analyses suggest that the extremely low temperature events after mid-December around Germany was related not only to the weakening and westward retreat of the Icelandic low but also to the cold air advection by the low-level easterly wind along the southeastern edge of the intraseasonal-scale surface high to the north of Germany.

How to cite: Miyake, C. and Kato, K.: Synoptic climatological analysis on the rather abrupt seasonal transition to mid-winter situation around Germany with intermittent appearance of extremely low temperature events., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13096, https://doi.org/10.5194/egusphere-egu2020-13096, 2020.

The self-organizing maps (SOMs) have become a widespread tool for studying atmospheric circulation and its links to weather elements. The SOMs do not only produce a classification, but also a topology-preserving representation of the input data—a 2D array of circulation types (CTs). Consequently, one can analyse not only CT frequencies, persistence, and their conditioning of weather elements, but also visualise these parameters in a “continuum” of representative patterns. This latter characteristic makes it in theory plausible to define a (considerably) larger number of CTs compared to other classification approaches, and thus better represent extremes of circulation variability, without necessarily compromising the utility of the output by making it unintelligible.

Here, we investigate whether increasing the number of CTs (enlarging the SOM) leads to a classification better suitable to study synoptic forcing of extreme weather, and, in particular, what the effect is of various SOM parameters, which have to be chosen a priori more or less subjectively—such as array shape and size, radius and function of neighbourhood, learning rate, and initialization—on the utility of the resulting classification. Furthermore, we present the Sammon mapping, typically used to evaluate the topological structure of SOMs, as a standalone classification tool that shares some of the advantages with SOMs while potentially circumventing some of their weaknesses.

How to cite: Stryhal, J. and Plavcová, E.: On the use of circulation classifications by self-organizing maps toward studying extreme weather, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17802, https://doi.org/10.5194/egusphere-egu2020-17802, 2020.

EGU2020-21274 | Displays | CL2.4

Persistence and frequency of drought-relevant circulation types during temperature extremes in southern Central Europe

Selina Thanheiser, Markus Homann, Andreas Philipp, Christoph Beck, and Jucundus Jacobeit

The German weather service reports a new record mean June temperature for Germany and intensive heat waves during 2018 and 2019. Between January 2018 and June 2019, three new monthly top extremes were recorded (April 2018, May 2018 and June 2019).

In this study the relationships between the persistence and frequency of atmospheric circulation patterns related to drought and surface air temperature anomalies are investigated. The study area is in southern Central Europe, including parts of Germany and Switzerland as well as Austria and Czech Republic.

Large-scale atmospheric circulation types (relevant to drought) have been derived by using the COST733 classification software. Atmospheric variables from gridded daily JRA55 reanalysis data (Japanese Meteorological Agency 2018) and gridded precipitation data for the study area (6x6km, based on timeseries of 1756 weather stations from Zentralanstalt für Meteorologie und Geodynamik 2018) were used for the classification. All input variables were specifically weighted in the classification process. Daily maximum temperature data from ECA&D (2019) for different stations within the study area are used to evaluate the relationship between a circulation type and heat (cold) waves.

The drought-relevant circulation types are determined according to relative frequencies of circulation type days under a particular percentile of precipitation: If at least 20 percent of the circulation type days are below the 20th percentile of precipitation, the circulation type is defined as drought relevant.

For the derived drought-relevant circulation types, the mean seasonal frequencies [in %] (April-September, October-March) and the mean persistence [in days] (1961-2017) are calculated. To evaluate the relationship between a circulation type and heat (cold) waves, an efficiency coefficient is calculated. The efficiency coefficient is defined as ratio between the frequency of the circulation type in heat (cold) waves and its mean seasonal frequency.

For the study area, those circulation types relevant to drought with a high proportion of seasonal temperature anomalies could be identified. The circulation type with a dominant Azores high with ridges of high-pressure towards Central/Eastern Europe has the highest proportion of positive temperature anomalies in summer.

How to cite: Thanheiser, S., Homann, M., Philipp, A., Beck, C., and Jacobeit, J.: Persistence and frequency of drought-relevant circulation types during temperature extremes in southern Central Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21274, https://doi.org/10.5194/egusphere-egu2020-21274, 2020.

CL2.5 – Urban climate, urban biometeorology, and science tools for cities

EGU2020-4157 | Displays | CL2.5

ACROSS: An Observational Campaign to Improve Understanding of Photochemistry of Mixed Urban and Biogenic Air Masses

Christopher Cantrell, Vincent Michoud, Paola Formenti, Jean-Francois Doussin, Aline Gratien, and Sebastien Dusanter and the ACROSS team

In recent decades, significant progress has been made in understanding the causes and impacts of urban air pollution, generally leading to improved air quality through enhanced knowledge and regulatory action. While a significant number of people still die prematurely each year from air pollution, progress continues to be made. Scientific investigation has exposed the processes by which primary pollutants, such as oxides of nitrogen and volatile organic compounds, are processed in the atmosphere, leading to their oxidation and ultimate removal, while at the same time producing secondary species such as ozone and organic aerosols.

Research has uncovered the complex chemistry of natural organic compounds released from trees and other plants. Because of the chemical structures of these compounds, they react somewhat differently than organic substances typically found in urban environments. The ACROSS (Atmospheric ChemistRy Of the Suburban foreSt) project focuses on scientific research to understand the detailed chemistry and physics of urban air mixed with biogenic emissions with the goals to increase detailed understanding of the chemical processes and to use this knowledge to improve the performance of air quality models. Enhanced knowledge and improved models will allow society to develop better strategies to improve air quality and save lives.

The central component of ACROSS is a comprehensive summertime field study with many instruments for the measurement of primary and secondary constituents. Measurements will be made from research aircraft, a tower located in a forest, tethered balloons and/or drones, and mobile platforms. Observations from the field study will be analyzed in a variety of ways involving statistical approaches and comparisons with different types of numerical models.

This presentation describes activities in preparation of the ACROSS measurement campaign and provides information for interested parties to become involved.

How to cite: Cantrell, C., Michoud, V., Formenti, P., Doussin, J.-F., Gratien, A., and Dusanter, S. and the ACROSS team: ACROSS: An Observational Campaign to Improve Understanding of Photochemistry of Mixed Urban and Biogenic Air Masses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4157, https://doi.org/10.5194/egusphere-egu2020-4157, 2020.

EGU2020-8837 | Displays | CL2.5

From Urban Air Quality Forecasting and Information Systems to Integrated Urban Hydrometeorology, Climate and Environment Systems and Services for Smart Cities

Alexander Baklanov and the EU FP FUMAPEX, MEGAPOLI, EuMetChem and MarcoPolo projects and international WMO GURME and IUS teams

This presentation is analysing a modern evolution in research and development from specific urban air quality systems to multi-hazard and integrated urban weather, environment and climate systems and services and provides an overview of joint results of large EU FP FUMAPEX, MEGAPOLI, EuMetChem and MarcoPolo projects and international WMO GURME and IUS teams. 

Urban air pollution is still one of the key environmental issues for many cities around the world. A number of recent and previous international studies have been initiated to explore these issues. In particular relevant experience from several European projects will be demonstrated. MEGAPOLI studies aimed to assess the impacts of megacities and large air-pollution hotspots on local, regional and global air quality; to quantify feedback mechanisms linking megacity air quality, local and regional climates, and global climate change; and to develop improved tools for predicting air pollution levels in megacities (doi:10.5194/asr-4-115-2010). FUMAPEX developed for the first time an integrated system encompassing emissions, urban meteorology and population exposure for urban air pollution episode forecasting, the assessment of urban air quality and health effects, and for emergency preparedness issues for urban areas (UAQIFS: Urban Air Quality Forecasting and Information System; doi.org/10.5194/acp-6-2005-2006; doi.org/10.5194/acp-7-855-2007).

While important advances have been made, new interdisciplinary research studies are needed to increase our understanding of the interactions between emissions, air quality, and regional and global climates. Studies need to address both basic and applied research and bridge the spatial and temporal scales connecting local emissions, air quality and weather with climate and global atmospheric chemistry. WMO has established the Global Atmosphere Watch (GAW) Urban Research Meteorology and Environment (GURME) project which provides an important research contribution to the integrated urban services.

Most of the disasters affecting urban areas are of a hydro-meteorological nature and these have increased due to climate change. Cities are also responsible not only for air pollution emissions, but also for generating up to 70% of GHG emissions that drive large scale climate change. Thus, there is a strong feedback between contributions of cities to environmental health, climate change and the impacts of climate change on cities and these phases of the problem should not be considered separately. There is a critical need to consider the problem in a complex manner with interactions of climate change and disaster risk reduction for urban areas (doi:10.1016/j.atmosenv.2015.11.059, doi.org/10.1016/j.uclim.2017.05.004).

WMO is promoting safe, healthy and resilient cities through the development of Integrated Urban Weather, Environment and Climate Services (IUS). The aim is to build urban services that meet the special needs of cities through a combination of dense observation networks, high-resolution forecasts, multi-hazard early warning systems, disaster management plans and climate services. This approach gives cities the tools they need to reduce emissions, build thriving and resilient communities and implement the UN Sustainable Development Goals. The Guidance on IUS, developed by a WMO inter-programme working group, documents and shares the good practices that will allow countries and cities to improve the resilience of urban areas to a great variety of natural and other hazards (https://library.wmo.int/doc_num.php?explnum_id=9903).

How to cite: Baklanov, A. and the EU FP FUMAPEX, MEGAPOLI, EuMetChem and MarcoPolo projects and international WMO GURME and IUS teams: From Urban Air Quality Forecasting and Information Systems to Integrated Urban Hydrometeorology, Climate and Environment Systems and Services for Smart Cities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8837, https://doi.org/10.5194/egusphere-egu2020-8837, 2020.

EGU2020-5879 | Displays | CL2.5 | Highlight

Copernicus for Urban Resilience in Europe: the CURE Project

Nektarios Chrysoulakis, Zina Mitraka, Mattia Marconcini, David Ludlow, Zaheer Khan, Brigitte Holt Andersen, Tomas Soukup, Mario Dohr, Alessandra Gandini, Jürgen Kropp, Dirk Lauwaet, and Christian Feigenwinter

Resilience has become an important necessity for cities, particularly in the face of climate change. Mitigation and adaptation actions that enhance the resilience of cities need to be based on a sound understanding and quantification of the drivers of urban transformation and settlement structures, human and urban vulnerability, and of local and global climate change. Copernicus, as the means for the establishment of a European capacity for Earth Observation (EO), is based on continuously evolving Core Services. A major challenge for the EO community is the innovative exploitation of the Copernicus products in dealing with urban sustainability towards increasing urban resilience. Due to the multidimensional nature of urban resilience, to meet this challenge, information from more than one Copernicus Core Services, namely the Land Monitoring Service (CLMS), the Atmosphere Monitoring Service (CAMS), the Climate Change Service (C3S) and the Emergency Management Service (EMS), is needed. Furthermore, to address urban resilience, the urban planning community needs spatially disaggregated environmental information at local (neighbourhood) scale. Such information, for all parameters needed, is not yet directly available from the Copernicus Core Services mentioned above, while several elements - data and products - from contemporary satellite missions consist valuable tools for retrieving urban environmental parameters at local scale. The H2020-Space project CURE (Copernicus for Urban Resilience in Europe) is a joint effort of 10 partners from 9 countries that synergistically exploits the above Copernicus Core Services to develop an umbrella cross-cutting application for urban resilience, consisting of individual cross-cutting applications for climate change adaptation/mitigation, energy and economy, as well as healthy cities and social environments, at several European cities. These cross-cutting applications cope with the required scale and granularity by also integrating or exploiting third-party data, in-situ observations and modelling. CURE uses DIAS (Data and Information Access Services) to develop a system capable of supporting operational applications and downstream services across Europe. The CURE system hosts the developed cross-cutting applications, enabling its incorporation into operational services in the future. CURE is expected to increase the value of Copernicus Core Services for future emerging applications in the domain of urban resilience, exploiting also the improved data quality, coverage and revisit times of the future satellite missions. Thus, CURE will lead to more efficient routine urban planning activities with obvious socioeconomic impact, as well as to more efficient resilience planning activities related to climate change mitigation and adaptation, resulting in improved thermal comfort and air quality, as well as in enhanced energy efficiency. Specific CURE outcomes could be integrated into the operational Copernicus service portfolio. The added value and benefit expected to emerge from CURE is related to transformed urban governance and quality of life, because it is expected to provide improved and integrated information to city administrators, hence effectively supporting strategies for resilience planning at local and city scales, towards the implementation of the Sustainable Development Goals and the New Urban Agenda for Europe.

How to cite: Chrysoulakis, N., Mitraka, Z., Marconcini, M., Ludlow, D., Khan, Z., Holt Andersen, B., Soukup, T., Dohr, M., Gandini, A., Kropp, J., Lauwaet, D., and Feigenwinter, C.: Copernicus for Urban Resilience in Europe: the CURE Project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5879, https://doi.org/10.5194/egusphere-egu2020-5879, 2020.

EGU2020-5840 | Displays | CL2.5 | Highlight

An Integrated Model of Urban Water-Wastewater-Stormwater-Energy Systems

Arpad Horvath, Aysegul Petek Gursel, Camille Chaudron, and Ioanna Kavvada

The urban water system is complex, comprised of water treatment and distribution, wastewater collection and treatment, and stormwater management (to avoid combined sewer overflow, flooding, and water quality permit violations). These components are often managed by separate agencies and companies, with their respective goals and budgets. In fact, they should all be working together towards the same overarching objective of urban water systems: to provide water to people and the economy for both indoor and outdoor uses at the lowest economic and energy costs and at the lowest achievable level of pollution.

We present an integrated model of urban water systems that accounts for changes in population, water consumption patterns, water saving technologies, raw water sources, water and wastewater treatment technologies, decentralization of wastewater treatment plants, water reuse demand, stormwater control measures, economic activities, electricity and other energy supply, landscape, weather, and climate. The methodological basis includes environmental life-cycle assessment (LCA) and life-cycle cost analysis (LCCA). The model is globally applicable. For effective decision making, we have created a decision making tool with an extensive, very detailed database to allow for specific, holistic analyses of the unique demographic, economic, and physical characteristics of urban areas.

The target audience for our model, tool, and results includes the government planners and regulators of the urban water system, water and wastewater agencies and companies, urban users of water (both individuals and companies), and real estate developers.

Through case studies of cities in different regions and climates over time, we show that water consumption does not have to follow population growth, in fact, it has dropped in many cities where the average per-person water consumption has been reduced due to water conservation measures. Water withdrawal and potable water production in some cities are more than four times more energy intensive than in others, and the energy intensity is expected to increase in many parts of the world due to droughts and overwhelmed water sources. Due to differing electricity mixes and corresponding greenhouse gas emissions, the average per-person water consumption in some cities is more than four times more impactful than in others, but reductions are feasible. Tailoring water quality to an application is a key to lowering energy and emissions. We show how we can diversify irrigation sources for agricultural production in and around cities, including the potential energy and emissions implications of wastewater recycling. Using the integrated decision support tool (i-DST), which allows for the comprehensive life-cycle cost and environmental assessment of gray, green, and hybrid stormwater control measures, we can estimate the needed investments in the gray and green infrastructure, and find that in areas with water scarcity, stromwater is a viable source of water.

How to cite: Horvath, A., Gursel, A. P., Chaudron, C., and Kavvada, I.: An Integrated Model of Urban Water-Wastewater-Stormwater-Energy Systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5840, https://doi.org/10.5194/egusphere-egu2020-5840, 2020.

EGU2020-10868 | Displays | CL2.5 | Highlight

Opportunistic weather sensors: an Amsterdam case study of private weather stations, commercial microwave links and smartphones

Lotte de Vos, Arjan Droste, Marjanne Zander, Aart Overeem, Hidde Leijnse, Bert Heusinkveld, Gert-Jan Steeneveld, and Remko Uijlenhoet

Several opportunistic sensors (private weather stations, commercial microwave links and smartphones) are employed to obtain weather information and successfully monitor urban weather events. The ongoing urbanisation and climate change urges further understanding and monitoring of weather in cities. Two case studies during a 17-day period over the Amsterdam metropolitan area, the Netherlands, are used to illustrate the potential and limitations of hydrometeorological monitoring using non-traditional and opportunistic sensors. We employ three types of opportunistic sensing networks to monitor six important environmental variables: (1) air temperature estimates from smartphone batteries and personal weather stations; (2) rainfall from commercial microwave links and personal weather stations; (3) solar radiation from smartphones; (4) wind speed from personal weather stations; (5) air pressure from smartphones and personal weather stations; (6) humidity from personal weather stations. These observations are compared to dedicated, traditional observations where possible, although such networks are typically sparse in urban areas. First we show that the passage of a front can be successfully monitored using data from several types of non-traditional sensors in a complementary fashion. Also we demonstrate the added value of opportunistic measurements in quantifying the Urban Heat Island (UHI) effect during a hot episode. The UHI can be clearly determined from personal weather stations, though UHI values tend to be high compared to records from a traditional network. Overall, this study illustrates the enormous potential for hydrometeorological monitoring in urban areas using non-traditional and opportunistic sensing networks.

How to cite: de Vos, L., Droste, A., Zander, M., Overeem, A., Leijnse, H., Heusinkveld, B., Steeneveld, G.-J., and Uijlenhoet, R.: Opportunistic weather sensors: an Amsterdam case study of private weather stations, commercial microwave links and smartphones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10868, https://doi.org/10.5194/egusphere-egu2020-10868, 2020.

EGU2020-7470 | Displays | CL2.5

The WRF-SUEWS coupled system: development and evaluation in two UK cities

Hamidreza Omidvar, Ting Sun, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen Ward, Zhiwen Luo, and Sue Grimmond

To capture complex physical processes in cities with high degree of heterogeneity, sophisticated urban land surface models (ULSMs) are used with various anthropogenic activities considered. These ULSMs can be used either offline, using atmospheric measurements as forcing inputs, or online, coupled with large-scale climate models. One downside of using ULSMs in offline mode is that most of atmospheric measurements in cities are spatially limited (e.g. a few points or sites) preventing the physical processes across extremely diverse or heterogeneous conditions in cities from being studied in their entire complexity. Coupling ULSMs with meso-scale models helps us study two-way interactions between the urban surface and atmosphere, and provides spatio-temporal information about the effect of urban climate on various city-related environmental issues such as the urban heat island and urban stormwater.

Here we couple and evaluate state-of-the-art surface urban energy and water scheme (SUEWS) with the weather research and forecasting (WRF) model. The coupled system (WRF-SUEWS) is evaluated in two UK cities: London (dense urban) and Swindon (suburban) for four two-week periods in each season. In general, WRF-SUEWS models the surface energy balance fluxes well in both cities across all periods. One strength of the coupled system is the ability to model the spatial and temporal distribution of anthropogenic heat in urban areas. We study how the difference between the anthropogenic heat flux of residential and commercial areas affects the energy balance as well as atmospheric variables over these areas.

How to cite: Omidvar, H., Sun, T., Li, Z., Zhang, N., Huang, W., Kotthaus, S., Ward, H., Luo, Z., and Grimmond, S.: The WRF-SUEWS coupled system: development and evaluation in two UK cities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7470, https://doi.org/10.5194/egusphere-egu2020-7470, 2020.

EGU2020-7150 | Displays | CL2.5

Comparison of surface temperature over different natural and artificial urban surfaces

Zsuzsanna Dezső, Rita Pongrácz, and Judit Bartholy

It is a well-known fact that in urban areas, human activities result in special climatic conditions. Urban climate studies nowadays are becoming more and more important as their results can be directly used by urban planners, architects and municipal decision-makers. In the framework of a long-term cooperation between the Urban Climate Research Group of the Department of Meteorology at the Eötvös Loránd University (Budapest) and the Department of Environment at the Municipality of Újbuda (district XI of Budapest), regular urban climate measurements are carried out in the district XI of Budapest to detect the urban heat island (UHI) effect on different spatial scales.

Measuring campaigns were conducted in summer 2018 and later, in spring, summer and autumn 2019 to determine the surface temperature of various urban materials using a Voltcraft IR-280 infrared thermometer. The purpose of these measurements was to obtain information about the thermal properties of different urban surfaces, objects in order to analyse which surfaces are suitable for decreasing and hence mitigating the UHI effect. The impact of the colour of different surfaces and the role of shading are analysed as well. The measurements were carried out at two measuring sites: (i) in the largest public park of the district, called Bikás Park (with 37 measuring points), (ii) in the commercial and public transportation centre of the district, called Móricz Zsigmond Square (with 17 measuring points). Based on the compiled database, a detailed statistical analysis was performed to investigate the thermal properties of various urban surfaces, e.g. pavements, walls, street furniture, sport facilities, water and plant surfaces.

The results show that the coolest surfaces are natural covers (water, vegetation), while the hottest surfaces are concrete pavements, asphalt and rubber paving when exposed to direct solar radiation. In summer, extremely high surface temperatures can occur, the average surface temperature around noon exceeds 40 °C in the case of dark painted wood objects, asphalt and rubber-paved surfaces with sunny conditions. The analysis focusing on the concrete paving blocks with different colours shows that the average surface temperature of light grey surfaces is 5-7 °C lower than the average temperature of darker colours. During the measurement series, the highest temperatures (over 50 °C) were measured at rubber paving-covered sport facilities and playgrounds, in sunny conditions. This material is very popular because its use has many benefits. Our study shows that the extensive use of these surfaces has a negative impact on the urban climate. These surfaces warm up so much during sunny summer days that the facilities covered with this material become practically unusable due to their extremely hot surface. In the case of this surface material, shading plays an important role as it can effectively control and reduce the warming of rubber paving-covered surfaces.

How to cite: Dezső, Z., Pongrácz, R., and Bartholy, J.: Comparison of surface temperature over different natural and artificial urban surfaces, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7150, https://doi.org/10.5194/egusphere-egu2020-7150, 2020.

EGU2020-5781 | Displays | CL2.5 | Highlight

Ruminations of the Urban Climate Field and Hopes for the Future

anthony brazel

In the recent book entitled Urban Climates (2017) by T. Oke, G. Mills, A. Christen and J. A. Voogt, there is an Epilogue section on the History of Urban Climatology (pp 454-459) which states its scientific study dates from the early 19th century (as we know, from Luke Howard’s famous works) and can be divided into four periods of activity: (a) before 1930, pioneering climatographies of selected cities and weather elements, (b) 1930-1965, the growth of micro- and local climatology of climate differentiation and new field techniques, (c) 1965 to ca. 2000, explosive increase in research interest, closer links to meteorology and emergence of physically-based models of the urban atmosphere, and (d) 2000 and beyond, a maturing of the science into a predictive science, a period called one of consolidation and prediction.   With a proliferation of interests, new entities were formed during (d) – e.g., the International Association for Urban Climate and the Board on the Urban Environment of the AMS. They are dedicated to furthering scientific work in the urban climate and meteorology field and fostering cooperation between all interested scientists and practitioners. Through experiencing period (c) and now (d) with colleagues, students, administrators, practitioners, and the public (although now as an emeritus faculty in geography and urban planning) and being exposed to these organizations, it is this latter mission of the urban climate community I would like to highlight. It is a hope that the cooperative spirit of world  scientists and practitioners is further intensified (e.g, through CitiesIPCC and other academic and applied entities) in order to achieve major global-to-local solutions for our world cities. Technologies are exploding; the hope is that there is a concomitant explosion of practice.

How to cite: brazel, A.: Ruminations of the Urban Climate Field and Hopes for the Future, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5781, https://doi.org/10.5194/egusphere-egu2020-5781, 2020.

The impact of local climate change induced by urbanization or changes in the Land Use and Land Cover (LULC) has been contributing as much as ~50% of the total rise in surface air temperature over the Eastern Indian state of Odisha. While analysing the physical mechanism of such rise, it is found that the changes in the specific heat capacity of the surface regulates the changes in the surface energy budget of the region. A slight change in the energy budget may significantly disturb the regional/local climate balance thereby simulating the primary meteorological parameters such as the temperature and surface heat fluxes. LULC which characterises the surface properties can contribute immensely to the energy budget cycle through biophysical and biochemical processes like evaporation, evapotranspiration, shortwave and long wave radiation, absorption and reflection. In this study, we used observational and modeling techniques to quantify the ramifications of LULC changes on the climate of Odisha during the period 2004-2015. A significant change in the spatial pattern of temperature has been observed towards the eastern part of the region.  We try to find out whether this shift in temperature pattern is because of LULC or global climate forcing. Significant diversification in the agricultural practices have also been noticed in the region in the recent times.  To evaluate such effects, Weather Research and Forecasting (WRF) mesoscale modeling system has been enforced to visualize how significantly changes in LULC have impacted parameters like surface temperature, heat fluxes, humidity etc. However, the modeling results also follow consistency with that of the observational signatures and a rise of ~0.5-1.0 oC has been observed. Along with the spatial analysis, vertical profiles are also studied where we found significant impact of changed LULC on specific humidity and temperature. This study discusses the dynamics of land-atmosphere interactions instigated by local LULC effects.

Keywords: LULC, urbanization, remote sensing, numerical modeling, climate change 

How to cite: Gogoi, P. P. and Vinoj, V.: Signature of LULC induced Regional Climate Change over Eastern India: A Modeling and Observational Approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-940, https://doi.org/10.5194/egusphere-egu2020-940, 2020.

EGU2020-4339 | Displays | CL2.5

Radiation, evapotranspiration, and roughness effects of urban trees on local microclimate: A modelling study

Naika Meili, Paolo Burlando, Jan Carmeliet, Winston T.L. Chow, Andrew M. Coutts, Gabriele Manoli, Matthias Roth, Erik Velasco, Enrique R. Vivoni, and Simone Fatichi

The increase in urban air temperature caused by urban heat and climate change can have negative effects on the outdoor thermal comfort (OTC) as well as on the energy demand for air-conditioning. Nature-based solutions, such as the increase in urban biomass, are often proposed to mitigate excessive urban heat. Trees are expected to decrease temperatures due to shade provision on surfaces and evapotranspiration but their canopy blocks wind flow, thus potentially induce warming by reduction of heat removal. Several studies have shown that trees have a varying potential for air temperature reduction throughout the diurnal cycle as well as in different climates. Studies that partition and attribute the temperature reduction to the aforementioned effects are still lacking though, thus making the explanation of the observed differences difficult.

To address this knowledge gap, we use the mechanistic urban ecohydrological model, Urban Tethys-Chloris (UT&C, Meili et al. 2019), which accounts for radiation, evapotranspiration and roughness effects of trees in the urban canyon. Turning these components on and off by means of virtual experiments allows us to quantify their contribution to the air and surface temperature modification caused by the tree cover. The results are analysed for compact low-rise residential areas (LCZ3) in four different climates (Phoenix, Singapore, Melbourne, Zurich).

We find that tree evapotranspiration is able to lower 2 m air temperature at maximum by 3-4°C in all four climates as stomatal closure due to high vapour pressure deficits in dry and hot cities limit the transpirative cooling effect during mid-day. Counterintuitively, tree-radiation interaction increases the 2 m air temperature up to 2°C at noon time even though a decrease in surface temperatures is observed. While the surfaces underneath the tree canopy receive less radiation due to shading, the overall absorbed solar radiation within the canyon increases due to radiation trapping. In the analysed scenarios, the presence of trees leads to a decrease in the city roughness hindering turbulent energy exchange and thus, increasing the 2 m air temperature in all climates during daytime. The tree-radiation and tree-roughness effects on 2 m air temperature during night vary in different climates due to atmospheric stability effects.

Combining the different tree effects as in the real world, leads to a distinct diurnal pattern of air temperature reduction which is consistent with the observations in the literature. The numerical experiment allows reconciling differences in temperature changes induced by trees across the diurnal cycle and in various climates. The results could be used to guide green cover and tree type selection in cities and inform future studies aimed at optimizing the role of urban greening for improving local microclimatic conditions.

 

Meili, N., Manoli, G., Burlando, P., Bou-Zeid, E., Chow, W. T. L., Coutts, A. M., Daly, E., Nice, K. A., Roth, M., Tapper, N. J., Velasco, E., Vivoni, E. R., and Fatichi, S.: An urban ecohydrological model to quantify the effect of vegetation on urban climate and hydrology (UT&C v1.0), Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-225, accepted, 2019

How to cite: Meili, N., Burlando, P., Carmeliet, J., Chow, W. T. L., Coutts, A. M., Manoli, G., Roth, M., Velasco, E., Vivoni, E. R., and Fatichi, S.: Radiation, evapotranspiration, and roughness effects of urban trees on local microclimate: A modelling study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4339, https://doi.org/10.5194/egusphere-egu2020-4339, 2020.

EGU2020-5728 | Displays | CL2.5

Assessing the impact of the urban landscape on heat wave episodes: a case study of the Metropolitan Area of Barcelona.

Gara Villalba, Sergi Ventura, Joan Gilabert, Alberto Martilli, and Alba Badia

Currently, around 54% of the world's population is living in urban areas and this number is projected to increase by 66% by 2050. In the past years, cities have been experiencing heat wave episodes that affect the population. As the modern urban landscape is continually evolving, with green spaces and parks becoming a more integral component and with suburbs expanding outward from city centres into previously rural, agricultural, and natural areas, we need tools to learn how to best implement planning strategies that minimize heat waves.  In this study we use the Weather and Research Forecasting model (WRF) with a multi-layer layer scheme, the Building Effect Parameterization (BEP) coupled with the Building Energy Model (BEP+BEM, Salamanca and Martilli, 2010) to take into account the energy consumption of buildings and anthropogenic heat generated by air conditioning systems. The urban canopy scheme takes into account city morphology (e.g. building and street canyon geometry) and surface characteristics (e.g. albedo, heat capacity, emissivity, urban/vegetation fraction). The Community Land Surface Model (CLM) is used in WRF that uses 16 different plant functional types (PFTs) as the basis for land-use differentiation.  Furthermore, we use the Local Climate Zones (LCZ) classification which has 11 urban land use categories with specific thermal, radiative and geometric parameters of the buildings and ground to compute the heat and momentum fluxes in the urban areas.  The objective is to validate the model and establish relationships between urban morphology and land use with temperature, so that the model can be used to simulate land use scenarios to investigate the effectiveness of different mitigation strategies to lower urban temperatures during the summer months.

 

We test the methods with the Metropolitan Area of Barcelona (AMB) as a case study. The AMB is representative of the Mediterranean climate, with mild winters and hot summers. With a heterogeneous urban landscape, the AMB covers 636 km2 (34% built, 23% agricultural, and 31% vegetation) and has more than five million habitants. We simulate the heat wave that occurred in August 2018, during which temperatures stayed between 30 and 40ºC for five consecutive days and compare results with observed data from five different weather stations. We then simulate a potential scenario changing land surface from built to vegetation, in accordance with Barcelona´s strategic climate plan, and the potential impact the land use change has on reducing heat wave episodes.

How to cite: Villalba, G., Ventura, S., Gilabert, J., Martilli, A., and Badia, A.: Assessing the impact of the urban landscape on heat wave episodes: a case study of the Metropolitan Area of Barcelona., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5728, https://doi.org/10.5194/egusphere-egu2020-5728, 2020.

EGU2020-9087 | Displays | CL2.5 | Highlight

Finding the right tree for future urban planning – Meso- to microscale model coupling in urban areas

Joachim Fallmann, Helge Simon, Tim Sinsel, Marc Barra, and Holger Tost

It has been long understood that green infrastructure helps to mitigate urban heat island formation and therefore should be a key strategy in future urban planning practices. Due to its high level of heat resilience, the sycamore tree (Platanus) dominates the appearance of urban landscapes in central Europe. Under extreme climate conditions however, these species tend to emit high levels of biogenic volatile organic compounds (BVOCs) which in turn can act as precursors for tropospheric ozone, especially in highly NOx polluted environments such as urban areas.

Assessing the ozone air quality of a large urban area in Germany we use the state-of-the art regional chemical transport model MECO(n), with chemistry coming from the Modular Earth Submodel System (MESSy) and meteorology being calculated by COSMO. Including the latest version of TERRA_URB, the model is configured for the Rhine-Main urban area. In a second step, we implement parts of the regional atmospheric chemistry mechanism in the ENVI-met model framework in order to investigate the impact of isoprene emissions on ozone concentration at street level for the urban area of Mainz, Germany.

Whereas mesoscale model results only show moderate mean ozone pollution over the model area, at micro-scale level on selected hot spots we find a clear relationship between urban layout, proximity to NOx emitters, tree-species-dependent isoprene emission capacity and increase in ozone concentration. The ENVI-met study reveals, that next to tree species, its location is a key factor for its micro-climatic UHI and air pollution mitigation potential. We could show, that isoprene related ozone concentration is highly sensitive to leaf temperature, photosynthetic active radiation as well as to the proximity to NO2 pollution sources. In a street canyon with high traffic load we find significant correlations between diurnal boundary layer dynamics, morning and evening rush hour and ambient ozone levels. For a hot summer day in particular, we simulate ozone concentrations rising up to 500% within a weakly ventilated street canyon with a high amount of strong isoprene emitters being present.

We summarize that combining findings from meso- and microscale model systems can be an important asset for science tools for cities in the framework of climate change adaption and mitigation and air pollution abatement strategies.

How to cite: Fallmann, J., Simon, H., Sinsel, T., Barra, M., and Tost, H.: Finding the right tree for future urban planning – Meso- to microscale model coupling in urban areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9087, https://doi.org/10.5194/egusphere-egu2020-9087, 2020.

Mean flow and turbulence in roughness sublayers (RSLs) over urban areas are complicated because of the diversified building configurations (such as size, shape and orientation, etc.). This study investigates the RSL flows over (part of) the real urban morphology of Hong Kong downtown by wind tunnel measurements. The urban models are fabricated by 3D printing using high-resolution digital maps of building morphology and topography. Vertical profiles of mean and turbulent components in three parallel transects are measured by a constant-temperature hot-wire anemometer (CTA). The wind tunnel results reveal that individual (vertical) profiles of streamwise fluctuating velocity u’’, vertical fluctuating velocity w’’ and vertical momentum flux u’’w’’ show noticeable variations in the RSL. It is largely attributed to the wakes and recirculations after the upstream high-rise buildings. A new analytical solution is proposed to predict the mean wind profiles in the RSL as well as the inertial sublayer (ISL) that is more accurate than the conventional logarithmic law of the wall (log-law). The turbulence in the RSL and ISL are examined in terms of quadrant analysis. The ejection Q2 and the sweep Q4 are stronger in the RSL than those in the ISL, collectively improving street-level air entrainment and pollutant removal.

How to cite: Mo, Z., Liu, C.-H., and Ho, Y.-K.: Flow and Turbulence Characteristics in the Roughness Sublayer over Real Urban Morphology of Hong Kong , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9854, https://doi.org/10.5194/egusphere-egu2020-9854, 2020.

Strategies for urban heat mitigation often make broad and non-specific recommendations (i.e. plant more trees) without accounting for local context. As a result, resources might be allocated to areas of lesser need over those where more urgent interventions are needed. Also, these interventions might return less than optimal results if local conditions are not considered. This project aims to assist with these interventions by providing a method to examine the urban heat profile of a city through an automated systematic approach. Using urban morphology information from databases such as WUDAPT, areas of cities are clustered into representative local climate zones (LCZs) and modelled at a micro-scale using localised features and properties. This bottom up modelling approach, using the VTUF-3D, UMEP, and TARGET models, allows these areas to be assessed in detail for their human thermal comfort performance and provide a city-wide heat map of thermal comfort. It also allows mitigation scenarios to be tested and targeted for each cluster type. A case study performed using this method for Melbourne is presented.

How to cite: Nice, K. and Broadbent, A.: Targeted urban heat mitigation strategies using urban morphology databases and micro-climate modelling to examine the urban heat profile, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12795, https://doi.org/10.5194/egusphere-egu2020-12795, 2020.

EGU2020-8439 | Displays | CL2.5

Exploring pedestrian thermal comfort in hot climates

Yuliya Dzyuban, Charles Redman, David Hondula, Paul Coseo, Ariane Middel, and Jennifer Vanos

Designing cities for thermal comfort should be a priority in the warming and urbanizing world. As cities continue to break extreme heat records, it is necessary to develop new sensing approaches capable of tracking thermal sensations of actual users of urban spaces. The Influence of built infrastructure on the microclimate at a human scale and residents’ thermal sensations is not well explored, but combining sensing techniques with simultaneous collection of user experiences is a promising research direction to shorten the gap.

We explored the relationships between the built environment, heat perception, and behavioral coping mechanisms in one of the most heat vulnerable Phoenix neighborhoods. Using Phoenix as an example, where extreme summer temperatures are a norm, can help to address heat challenges of other cities that have started facing temperature extremes in the recent years.

This study is an experimental citizen science project in which participants helped to create a “heat map” of the neighborhood. Participants were engaged in a 1-hour walk around the neighborhood and recorded their experience in a field guide. A smaller group participated in walking interviews and wore GPS devices and UV meters to gain deeper insights on subjective heat perception and physical body heat accumulation during the walk. Results revealed the differences in heat perception across a variety of urban landscapes. Participants identified preferred and most challenging locations, and gave ideas on what could improve their experience. Combined heart rate, UV exposure and microclimate data mapped in GIS visualized dependencies between the streetscape and physiological conditions of the study participants.

This project is one of the first to examine the impact of urban environment on dynamic psychological and physiological responses to heat. Using sensing techniques and qualitative research instruments, this research will inform the design changes in the neighborhood that will undergo redevelopment. It can serve as an example for other cities striving to adapt urban microclimates to new extremes.

How to cite: Dzyuban, Y., Redman, C., Hondula, D., Coseo, P., Middel, A., and Vanos, J.: Exploring pedestrian thermal comfort in hot climates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8439, https://doi.org/10.5194/egusphere-egu2020-8439, 2020.

Extreme temperatures during heat and cold waves are severe health hazards for humans. Residents’ exposure controls the susceptibility of the urban population to these hazards, yet the spatiotemporal population dynamics has been long overlooked in assessing the risk. In this study, we conducted comparative analysis over 16 major urban habitats under three massive heat waves and one cold wave across the contiguous United States. Incorporating WRF weather simulations with commute-adjusted population profiles, we found that the interaction between population dynamics and urban heat islands makes residents exposed to higher temperatures under extreme weather. After accounting for diurnal population movement, urban residents’ exposure to heat waves is intensified by 2.0 ± 0.8 oC (mean ± standard deviation among cities), and their exposure to cold wave is attenuated by 0.4 ± 0.8 oC. The aggravated exposure to extreme heat is more than half of the heat wave hazard (temperature anomaly 3.7 ± 1.5 oC). The underestimated exposure to extreme heat needs to be taken into serious consideration, especially in nighttime given the evident trend of observed nocturnal warming. Results suggest that the major driver for modified exposure to heat waves is the spatial temperature variability, i.e., residents’ exposure is more likely to be underestimated in a spread-out city. The current release of warnings for hazardous extreme weather is usually at the weather forecast zone level, and our analysis demonstrates that such service can be improved through considering spatiotemporal population dynamics. The essential role of population dynamics should also be emphasized in temperature-related climate adaptation strategies for effective and successful interventions.

How to cite: Yang, J. and Hu, L.: Refined assessment of urban residents' exposure to extreme temperatures across the United States, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-86, https://doi.org/10.5194/egusphere-egu2020-86, 2020.

EGU2020-19013 | Displays | CL2.5

Modelling the cooling potential of street trees at city-scale with COSMO-BEP-Tree

Gianluca Mussetti, Dominik Brunner, Stephan Henne, Scott Krayenhoff, and Jan Carmeliet

Street trees are more and more regarded as a potential measure to mitigate the excessive heat in urban areas resulting from climate change and the urban heat island. However, the current knowledge of the cooling effect of street trees relies on studies at the micro-scale while potential interactions at the city-scale are yet to be understood. In fact, the vast majority of large-scale modelling studies only represent street trees outside the street canyon, neglecting important effects such as the shading and sheltering.

In order to explicitly represent street trees in coupled urban climate simulation, the multi-layer urban canopy model BEP-Tree was coupled with the regional weather and climate model COSMO-CLM. The coupled model, named COSMO-BEP-Tree, enabled simulating the radiative, flow and energy interactions between street trees, canyon surfaces and the atmosphere during weather and climate simulations.

In this study, COSMO-BEP-Tree is used to model the cooling potential of street trees during a heatwave event in Basel, Switzerland. The impact of street trees is explored in terms of near-surface air temperature and thermal comfort. The impact of greening scenarios is simulated and compared with other heat mitigation strategies.

The results highlight contrasting urban climate effects of street trees