ITS – Inter- and Transdisciplinary Sessions
ITS1.1/NP0.2 – Covid-19 pandemic: health, urban systems and geosciences
EGU21-2198 | vPICO presentations | ITS1.1/NP0.2 | Highlight
Remote data collection methods to inventory COVID-19 interventions in low-income urban settlementsFaith Taylor, Manshur Talib, Amos Wandera, Joseph Mulligan, Vera Bukachi, John Drummond, Bruce Malamud, and Mark Pelling
In this PICO, we outline methods used to inventory the spatial distribution and characteristics of COVID-19 response activities (‘interventions’) in Kibera (Nairobi, Kenya). About 1/8 of the World’s Population live in slums and informal settlements. For these people, COVID-19 has presented unique challenges for managing health and livelihoods within the constraints of high-density housing and poor-quality infrastructure. In addition, reliable spatial, demographic and health data is often limited for these areas. Between April and July 2020, using the Survey123 smartphone application, combined with social media searches and phone enumeration, we inventoried 270 individual COVID-19 interventions taking place in Kibera, an informal settlement of 2.67 km2 and an estimated 187,000 to 1 000,000 inhabitants. Results show a large variety in the type of intervention (58 unique types) and organiser (>88 individual organisers), with 39% of interventions led by small scale organisations such as local NGOs and community groups. We found an uneven spatial distribution of interventions within Kibera, with some already underserved neighbourhoods having less access to COVID-19 relief. Many interventions are clustered around the limited open spaces with good accessibility by road, highlighting the need for better coordination between organisers, and the importance of open space for resilience building. Using isochronal service area analysis, we find that 80% of structures are within a 9-minute round trip of a handwashing station. However, 64% of structures have a 24-54 minute round trip to female sanitary supplies, illustrating gender differences in the impact and recovery from COVID-19. Our data is available online in an interactive map dashboard. Our survey results illustrate that rather than being seen as vectors of disease, low income urban neighbourhoods are part of the solution for managing pandemics, and highlight the importance of infrastructure upgrading and planning to build resilience to a range of shocks and stresses.
How to cite: Taylor, F., Talib, M., Wandera, A., Mulligan, J., Bukachi, V., Drummond, J., Malamud, B., and Pelling, M.: Remote data collection methods to inventory COVID-19 interventions in low-income urban settlements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2198, https://doi.org/10.5194/egusphere-egu21-2198, 2021.
In this PICO, we outline methods used to inventory the spatial distribution and characteristics of COVID-19 response activities (‘interventions’) in Kibera (Nairobi, Kenya). About 1/8 of the World’s Population live in slums and informal settlements. For these people, COVID-19 has presented unique challenges for managing health and livelihoods within the constraints of high-density housing and poor-quality infrastructure. In addition, reliable spatial, demographic and health data is often limited for these areas. Between April and July 2020, using the Survey123 smartphone application, combined with social media searches and phone enumeration, we inventoried 270 individual COVID-19 interventions taking place in Kibera, an informal settlement of 2.67 km2 and an estimated 187,000 to 1 000,000 inhabitants. Results show a large variety in the type of intervention (58 unique types) and organiser (>88 individual organisers), with 39% of interventions led by small scale organisations such as local NGOs and community groups. We found an uneven spatial distribution of interventions within Kibera, with some already underserved neighbourhoods having less access to COVID-19 relief. Many interventions are clustered around the limited open spaces with good accessibility by road, highlighting the need for better coordination between organisers, and the importance of open space for resilience building. Using isochronal service area analysis, we find that 80% of structures are within a 9-minute round trip of a handwashing station. However, 64% of structures have a 24-54 minute round trip to female sanitary supplies, illustrating gender differences in the impact and recovery from COVID-19. Our data is available online in an interactive map dashboard. Our survey results illustrate that rather than being seen as vectors of disease, low income urban neighbourhoods are part of the solution for managing pandemics, and highlight the importance of infrastructure upgrading and planning to build resilience to a range of shocks and stresses.
How to cite: Taylor, F., Talib, M., Wandera, A., Mulligan, J., Bukachi, V., Drummond, J., Malamud, B., and Pelling, M.: Remote data collection methods to inventory COVID-19 interventions in low-income urban settlements, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2198, https://doi.org/10.5194/egusphere-egu21-2198, 2021.
EGU21-9227 | vPICO presentations | ITS1.1/NP0.2 | Highlight
Intensity and frequency of extreme novel epidemicsMarco Marani, Gabriel Katul, William Pan, and Anthony Parolari
Human-natural processes that generate extreme events with large financial, social, and health consequences, are inherently non-stationary due to ever-changing anthropogenic pressures and societal exposure. The issues posed by non-stationarity are recognized and addressed in Earth system science. However, extensive epidemiological information remains fragmented and virtually unexplored from this perspective due to the lack of approaches to leverage observations of a heterogeneous past. To address this gap, we assembled a long historical record (1600-present) of infectious disease epidemics from the literature. This new record enabled the development and applications of methods to quantify the time-varying probability of occurrence of extreme epidemic events. We define the intensity of epidemic events, the number of deaths/time/global population, and find that observations from several hundred years, covering almost four orders of magnitude of epidemic intensity, follow a probability distribution with a slowly-decaying power-law tail (Generalized Pareto Distribution, asymptotic exponent = -0.705). To the contrary, the yearly number of epidemics is non-stationary, implying that conventional extreme value analyses are inappropriate. We find that the rate of occurrence of extreme epidemics varies nine-fold over centennial time scales, from about 0.4 to 3.6 epidemics/year. As a result, yearly occurrence probabilities of extreme epidemics are far from constant: The intensity computed for the most extreme event on record – the “Spanish Influenza” of 1918-1920 – has a probability of occurrence varying from 0.27 to 1.75 %/year in the time frame from 1600 to present. When optimistically assuming that 1 year is required to develop, produce, and begin distributing a vaccine/treatment for a new disease (e.g. the recent COVID-19 case), we estimate that the average recurrence time of a pandemic killing most of the global population is now less than 12,000 years.
How to cite: Marani, M., Katul, G., Pan, W., and Parolari, A.: Intensity and frequency of extreme novel epidemics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9227, https://doi.org/10.5194/egusphere-egu21-9227, 2021.
Human-natural processes that generate extreme events with large financial, social, and health consequences, are inherently non-stationary due to ever-changing anthropogenic pressures and societal exposure. The issues posed by non-stationarity are recognized and addressed in Earth system science. However, extensive epidemiological information remains fragmented and virtually unexplored from this perspective due to the lack of approaches to leverage observations of a heterogeneous past. To address this gap, we assembled a long historical record (1600-present) of infectious disease epidemics from the literature. This new record enabled the development and applications of methods to quantify the time-varying probability of occurrence of extreme epidemic events. We define the intensity of epidemic events, the number of deaths/time/global population, and find that observations from several hundred years, covering almost four orders of magnitude of epidemic intensity, follow a probability distribution with a slowly-decaying power-law tail (Generalized Pareto Distribution, asymptotic exponent = -0.705). To the contrary, the yearly number of epidemics is non-stationary, implying that conventional extreme value analyses are inappropriate. We find that the rate of occurrence of extreme epidemics varies nine-fold over centennial time scales, from about 0.4 to 3.6 epidemics/year. As a result, yearly occurrence probabilities of extreme epidemics are far from constant: The intensity computed for the most extreme event on record – the “Spanish Influenza” of 1918-1920 – has a probability of occurrence varying from 0.27 to 1.75 %/year in the time frame from 1600 to present. When optimistically assuming that 1 year is required to develop, produce, and begin distributing a vaccine/treatment for a new disease (e.g. the recent COVID-19 case), we estimate that the average recurrence time of a pandemic killing most of the global population is now less than 12,000 years.
How to cite: Marani, M., Katul, G., Pan, W., and Parolari, A.: Intensity and frequency of extreme novel epidemics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9227, https://doi.org/10.5194/egusphere-egu21-9227, 2021.
EGU21-12677 | vPICO presentations | ITS1.1/NP0.2
Vulnerability mapping to Covid-19 of the metropolitan area in central TuscanyTiziana Pileggi, Simona Cioli, and Enrica Caporali
The COVID-19 pandemic has made urgent the need to improve the resilience of urban system from the effects of different hazards (natural, biological, technological and slow-onset climate change-related) through a multi hazard and multi sector approach that allows a more efficient use of resources and a holistic view of risk, including the interconnectedness across multiple hazards. According to Bangkok Principles for the implementation of the health aspects of the Sendai Framework for Disaster Risk Reduction 2015-2030, systematic integration of health aspects in Disaster Risk Reduction strategies is undelayable.
Building urban resilience means identifying vulnerabilities rapidly and adopting adequate actions to anticipate, resist and recover with the least amount of damage in front hazards impacts.
In this context, a synthetic index to measure vulnerability to COVID-19 is developed, by integrating different levels of information related to demographic characteristics, health profiles and access to resources, in order to identify any situations of fragility and predisposition to the spread of the epidemic, thus constituting a support element for the adoption of an efficient intervention strategy and for the management of any new epidemic waves. The integrated and multi-disciplinary approach that has been chosen allows, indeed, to take into account the complexity and multi-disciplinary nature of the concept of vulnerability. The following information are analysed: demographic characteristics (population density, age, residence in welfare and prisons facilities); health profiles (presence of previous chronic diseases, such as cancer, diabetes, heart disease, lung disease, and particular lifestyles, such as smoking, alcohol consumption, poor diet) and characteristics of the local health infrastructure (number of beds, ratio of population to family doctor, number of health facilities in the area). To construct the vulnerability index, a Geographical Information System is setted up, through which the data are analysed, processed through normalisation, given the different availability and heterogeneity of the information, and combined. The resulting spatial data infrastructure allows us to rapidly identify situations of adversities and possible infrastructural deficiencies.
The first prototypical result provides the implementation of an index of vulnerability to COVID19 and the related information support system, related to the metropolitan area in central Tuscany, in which there is a good availability of open data at different levels of geographical details and for which research on vulnerability to various types of risk is carried out and in progress.
How to cite: Pileggi, T., Cioli, S., and Caporali, E.: Vulnerability mapping to Covid-19 of the metropolitan area in central Tuscany , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12677, https://doi.org/10.5194/egusphere-egu21-12677, 2021.
The COVID-19 pandemic has made urgent the need to improve the resilience of urban system from the effects of different hazards (natural, biological, technological and slow-onset climate change-related) through a multi hazard and multi sector approach that allows a more efficient use of resources and a holistic view of risk, including the interconnectedness across multiple hazards. According to Bangkok Principles for the implementation of the health aspects of the Sendai Framework for Disaster Risk Reduction 2015-2030, systematic integration of health aspects in Disaster Risk Reduction strategies is undelayable.
Building urban resilience means identifying vulnerabilities rapidly and adopting adequate actions to anticipate, resist and recover with the least amount of damage in front hazards impacts.
In this context, a synthetic index to measure vulnerability to COVID-19 is developed, by integrating different levels of information related to demographic characteristics, health profiles and access to resources, in order to identify any situations of fragility and predisposition to the spread of the epidemic, thus constituting a support element for the adoption of an efficient intervention strategy and for the management of any new epidemic waves. The integrated and multi-disciplinary approach that has been chosen allows, indeed, to take into account the complexity and multi-disciplinary nature of the concept of vulnerability. The following information are analysed: demographic characteristics (population density, age, residence in welfare and prisons facilities); health profiles (presence of previous chronic diseases, such as cancer, diabetes, heart disease, lung disease, and particular lifestyles, such as smoking, alcohol consumption, poor diet) and characteristics of the local health infrastructure (number of beds, ratio of population to family doctor, number of health facilities in the area). To construct the vulnerability index, a Geographical Information System is setted up, through which the data are analysed, processed through normalisation, given the different availability and heterogeneity of the information, and combined. The resulting spatial data infrastructure allows us to rapidly identify situations of adversities and possible infrastructural deficiencies.
The first prototypical result provides the implementation of an index of vulnerability to COVID19 and the related information support system, related to the metropolitan area in central Tuscany, in which there is a good availability of open data at different levels of geographical details and for which research on vulnerability to various types of risk is carried out and in progress.
How to cite: Pileggi, T., Cioli, S., and Caporali, E.: Vulnerability mapping to Covid-19 of the metropolitan area in central Tuscany , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12677, https://doi.org/10.5194/egusphere-egu21-12677, 2021.
EGU21-13488 | vPICO presentations | ITS1.1/NP0.2
Covid-19: What about Resilience and Scaling Dynamics?Daniel Schertzer and Ioulia Tchiguirinskaia
The current Covid-19 pandemic has underlined the need to thoroughly revisit our conceptions of managing and developing urban systems and to make them resilient to epidemics. For instance, it fundamentally questions the long-held goal of continually increasing human mobility. More generally, the definition of optimal Covid-19 mitigation strategies remains worldwide on the top of public health agendas, especially in the face of a second wave. However, the relevance of resilient strategies depends heavily on our understanding and our ability to model epidemic dynamics.
Epidemic models are phenomenologically based on the paradigm of a cascade of contacts that spreads infection. However, scaling -a fundamental characteristic that easily results from cascade models,- is not taken into account by conventional epidemic models. The introduction of ad-hoc characteristic times and corresponding rates spuriously break their scale symmetry.
Here, we theoretically argue and empirically demonstrate that Covid-19 dynamics, during both growth and decline phases, is a cascade with a rather universal scale symmetry whose power-law statistics drastically differ from those of exponential processes. This implies slower but longer phases; which are furthermore linked by a fairly simple symmetry. The resulting variability across space-time scales is a major feature that requires alternative approaches with practical consequences for data analysis and modelling. We illustrate some of these consequences using the Johns Hopkins University Center for Systems Science and Engineering database.
The obtained results explain biases of epidemic models and help to improve them. By virtue of their generality, these results pave the way for a renewed approach to epidemics, and more generally to growth phenomena, towards more resilient development and management of our urban systems.
How to cite: Schertzer, D. and Tchiguirinskaia, I.: Covid-19: What about Resilience and Scaling Dynamics?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13488, https://doi.org/10.5194/egusphere-egu21-13488, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The current Covid-19 pandemic has underlined the need to thoroughly revisit our conceptions of managing and developing urban systems and to make them resilient to epidemics. For instance, it fundamentally questions the long-held goal of continually increasing human mobility. More generally, the definition of optimal Covid-19 mitigation strategies remains worldwide on the top of public health agendas, especially in the face of a second wave. However, the relevance of resilient strategies depends heavily on our understanding and our ability to model epidemic dynamics.
Epidemic models are phenomenologically based on the paradigm of a cascade of contacts that spreads infection. However, scaling -a fundamental characteristic that easily results from cascade models,- is not taken into account by conventional epidemic models. The introduction of ad-hoc characteristic times and corresponding rates spuriously break their scale symmetry.
Here, we theoretically argue and empirically demonstrate that Covid-19 dynamics, during both growth and decline phases, is a cascade with a rather universal scale symmetry whose power-law statistics drastically differ from those of exponential processes. This implies slower but longer phases; which are furthermore linked by a fairly simple symmetry. The resulting variability across space-time scales is a major feature that requires alternative approaches with practical consequences for data analysis and modelling. We illustrate some of these consequences using the Johns Hopkins University Center for Systems Science and Engineering database.
The obtained results explain biases of epidemic models and help to improve them. By virtue of their generality, these results pave the way for a renewed approach to epidemics, and more generally to growth phenomena, towards more resilient development and management of our urban systems.
How to cite: Schertzer, D. and Tchiguirinskaia, I.: Covid-19: What about Resilience and Scaling Dynamics?, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13488, https://doi.org/10.5194/egusphere-egu21-13488, 2021.
EGU21-14008 | vPICO presentations | ITS1.1/NP0.2
Understanding CoVid-19’s chaotic dynamicsImee Necesito, Donghyun Kim, Junhyeong Lee, Junghyun Eom, Deok-Woo Kim, and Hung Soo Kim
As we move towards the more critical age of technology and learning, understanding the underlying dynamics of events such as the unforeseen and unpredictable pandemics in the ecological system are deemed invaluable and important. In this paper, using acquired observations of daily cases of CoVid-19 in the US, UK and some parts of Asia, Recurrence Quantification Analysis (RQA) and the plots of state space were constructed. In this study, it was found that some countries have shown similar trends in RQA statistics as compared to classic chaotic attractors and functions while others have shown similar state space plots as that of the other countries. The authors believe that the data currently available worldwide does not allow reliable forecast because of the presence of untested asymptomatic cases, therefore construction of the evolution of the CoVid-19 cases signal in the absence of priori knowledge of other factors as well as analysing the RQA statistics can serve as a starting point as well as provide information for the appropriate prediction method for the prevalent CoVid-19 outbreaks.
How to cite: Necesito, I., Kim, D., Lee, J., Eom, J., Kim, D.-W., and Kim, H. S.: Understanding CoVid-19’s chaotic dynamics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14008, https://doi.org/10.5194/egusphere-egu21-14008, 2021.
As we move towards the more critical age of technology and learning, understanding the underlying dynamics of events such as the unforeseen and unpredictable pandemics in the ecological system are deemed invaluable and important. In this paper, using acquired observations of daily cases of CoVid-19 in the US, UK and some parts of Asia, Recurrence Quantification Analysis (RQA) and the plots of state space were constructed. In this study, it was found that some countries have shown similar trends in RQA statistics as compared to classic chaotic attractors and functions while others have shown similar state space plots as that of the other countries. The authors believe that the data currently available worldwide does not allow reliable forecast because of the presence of untested asymptomatic cases, therefore construction of the evolution of the CoVid-19 cases signal in the absence of priori knowledge of other factors as well as analysing the RQA statistics can serve as a starting point as well as provide information for the appropriate prediction method for the prevalent CoVid-19 outbreaks.
How to cite: Necesito, I., Kim, D., Lee, J., Eom, J., Kim, D.-W., and Kim, H. S.: Understanding CoVid-19’s chaotic dynamics, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14008, https://doi.org/10.5194/egusphere-egu21-14008, 2021.
EGU21-2615 | vPICO presentations | ITS1.1/NP0.2
Modelling the second wave of COVID-19 infections in France and Italy via a Stochastic SEIR modelDavide Faranda and Tommaso Alberti
COVID-19 has forced quarantine measures in several countries across the world. These measures have proven to be effective in significantly reducing the prevalence of the virus. To date, no effective treatment or vaccine is available. In the effort of preserving both public health as well as the economical and social textures, France and Italy governments have partially released lockdown measures. Here we extrapolate the long-term behavior of the epidemics in both countries using a Susceptible-Exposed-Infected-Recovered (SEIR) model where parameters are stochastically perturbed with a log-normal distribution to handle the uncertainty in the estimates of COVID-19 prevalence and to simulate the presence of super-spreaders. Our results suggest that uncertainties in both parameters and initial conditions rapidly propagate in the model and can result in different outcomes of the epidemics leading or not to a second wave of infections. Furthermore, the presence of super-spreaders adds instability to the dynamics, making the control of the epidemics more difficult. Using actual knowledge, asymptotic estimates of COVID-19 prevalence can fluctuate of order of ten millions units in both countries.
How to cite: Faranda, D. and Alberti, T.: Modelling the second wave of COVID-19 infections in France and Italy via a Stochastic SEIR model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2615, https://doi.org/10.5194/egusphere-egu21-2615, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
COVID-19 has forced quarantine measures in several countries across the world. These measures have proven to be effective in significantly reducing the prevalence of the virus. To date, no effective treatment or vaccine is available. In the effort of preserving both public health as well as the economical and social textures, France and Italy governments have partially released lockdown measures. Here we extrapolate the long-term behavior of the epidemics in both countries using a Susceptible-Exposed-Infected-Recovered (SEIR) model where parameters are stochastically perturbed with a log-normal distribution to handle the uncertainty in the estimates of COVID-19 prevalence and to simulate the presence of super-spreaders. Our results suggest that uncertainties in both parameters and initial conditions rapidly propagate in the model and can result in different outcomes of the epidemics leading or not to a second wave of infections. Furthermore, the presence of super-spreaders adds instability to the dynamics, making the control of the epidemics more difficult. Using actual knowledge, asymptotic estimates of COVID-19 prevalence can fluctuate of order of ten millions units in both countries.
How to cite: Faranda, D. and Alberti, T.: Modelling the second wave of COVID-19 infections in France and Italy via a Stochastic SEIR model, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2615, https://doi.org/10.5194/egusphere-egu21-2615, 2021.
EGU21-7187 | vPICO presentations | ITS1.1/NP0.2
Modelling buccopharyngeal droplet dispersion in an intensive care unit for Covid patientsMartin Ferrand, Mathieu Guingo, Christian Beauchêne, Maurice Mimoun, and Jean-Pierre Minier
Faced with the first Covid-19 epidemic wave in France, the hospital sector has been forced to considerably increase the number of intensive care beds. To meet this crucial need, some hospital structures have been adapted. This is the case with one of the intensive care sectors of the Burn Treatment Center (CTB) at Saint-Louis Hospital, which has intensive care rooms dedicated to treat burn patients. Beyond the provision and adaptation of these care structures to Covid patients, the hospital has currently an imperative need to progress on the understanding of the dispersion of buccopharyngeal droplets which constitute one of the risk vectors of airborne transmission and as a corollary of manual transmission.
As part of a partnership between CTB and the EDF Foundation, a CEREA research team provided the hospital with its aeraulics expertise which mainly relies on the digital modelling tool (CFD) code_saturne developed for more than 20 years by EDF-Research and Development. Numerical modelling in fluid mechanics makes it possible to accurately reproduce an architectural ensemble, to describe the air flows and what they carry, and thus to better understand where the risks of airborne contamination lie.
The objective of the study is to understand the dispersion of the buccopharyngeal droplets in the resuscitation room according to their sizes, identify the areas at risk of deposit, adapt the treatment protocols and optimise the level and the frequency of systematic bio-cleaning of surfaces exposed to deposit of oral-pharyngeal droplets. It should be noted that we are not directly dealing with the spread of the covid-19 virus but with one of the potential vehicles of oral-pharyngeal droplets.
The methodology consist of a parametric study of poly-dispersion of classes of particles. Each class correspond to a droplet diameter and contains one million of independent droplets for which a Generalized Langevin Model is solved to calculate the instantaneous fluid velocity seen from the particle, the particle velocity and its position. These particles are carried by a turbulent flow using the Reynolds Averaged Navier-Stokes approach, calculating only moments. The specific characteristics of this model allow dealing with poly-dispersed two-phase flow even for particles with very small diameters. The studied parameters are the angle of droplet ejection, the volume of humid air ejected and the time duration of this event and the air flowing activation of the room.
Expected conclusions are found: the largest particles sediment the fastest and close to the source, the finest droplets follow the streamlines to the air vents. In addition, non-intuitive areas of potential deposit are observed and a major impact of air conditioning on residence time is demonstrated.
How to cite: Ferrand, M., Guingo, M., Beauchêne, C., Mimoun, M., and Minier, J.-P.: Modelling buccopharyngeal droplet dispersion in an intensive care unit for Covid patients, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7187, https://doi.org/10.5194/egusphere-egu21-7187, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Faced with the first Covid-19 epidemic wave in France, the hospital sector has been forced to considerably increase the number of intensive care beds. To meet this crucial need, some hospital structures have been adapted. This is the case with one of the intensive care sectors of the Burn Treatment Center (CTB) at Saint-Louis Hospital, which has intensive care rooms dedicated to treat burn patients. Beyond the provision and adaptation of these care structures to Covid patients, the hospital has currently an imperative need to progress on the understanding of the dispersion of buccopharyngeal droplets which constitute one of the risk vectors of airborne transmission and as a corollary of manual transmission.
As part of a partnership between CTB and the EDF Foundation, a CEREA research team provided the hospital with its aeraulics expertise which mainly relies on the digital modelling tool (CFD) code_saturne developed for more than 20 years by EDF-Research and Development. Numerical modelling in fluid mechanics makes it possible to accurately reproduce an architectural ensemble, to describe the air flows and what they carry, and thus to better understand where the risks of airborne contamination lie.
The objective of the study is to understand the dispersion of the buccopharyngeal droplets in the resuscitation room according to their sizes, identify the areas at risk of deposit, adapt the treatment protocols and optimise the level and the frequency of systematic bio-cleaning of surfaces exposed to deposit of oral-pharyngeal droplets. It should be noted that we are not directly dealing with the spread of the covid-19 virus but with one of the potential vehicles of oral-pharyngeal droplets.
The methodology consist of a parametric study of poly-dispersion of classes of particles. Each class correspond to a droplet diameter and contains one million of independent droplets for which a Generalized Langevin Model is solved to calculate the instantaneous fluid velocity seen from the particle, the particle velocity and its position. These particles are carried by a turbulent flow using the Reynolds Averaged Navier-Stokes approach, calculating only moments. The specific characteristics of this model allow dealing with poly-dispersed two-phase flow even for particles with very small diameters. The studied parameters are the angle of droplet ejection, the volume of humid air ejected and the time duration of this event and the air flowing activation of the room.
Expected conclusions are found: the largest particles sediment the fastest and close to the source, the finest droplets follow the streamlines to the air vents. In addition, non-intuitive areas of potential deposit are observed and a major impact of air conditioning on residence time is demonstrated.
How to cite: Ferrand, M., Guingo, M., Beauchêne, C., Mimoun, M., and Minier, J.-P.: Modelling buccopharyngeal droplet dispersion in an intensive care unit for Covid patients, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7187, https://doi.org/10.5194/egusphere-egu21-7187, 2021.
EGU21-13112 | vPICO presentations | ITS1.1/NP0.2
Mobility modelling for simulation of spatial spread of infectious diseasesKrzysztof Knop, Kamil Smolak, Barbara Kasieczka, Witold Rohm, Tomasz Smolarczyk, and Marcin Zyga
The COVID-19 pandemic has highlighted the importance of public health policies and crisis management. The spread of diseases is a complex phenomenon with many time-dependent variables, which hampers an accurate prediction of epidemic evolution. Models of epidemic spread play an important role in guiding in designing public health policies, enabling hypothetical scenarios simulation and rapid analyses of ongoing epidemics.
Over the last century disease spread models evolved from deterministic compartmental models into complex metapopulation and agent-based simulations. Today’s solutions consider many factors, not limiting to the disease itself but also simulating socio-demographic structure and population flows. In the era of globalisation, human mobility became the major factor of rapid disease spread. Although current models consider international and regional travels, used mobility models are simplistic. This limits the accuracy and spatio-temporal resolution of these simulations, providing daily cases updates aggregated to large regions.
We propose an agent-based mobility model, offering a simulation of hourly temporal resolution depicting mobility with less than a few hundreds of meters spatial precision. Agent-based models allow each simulation agent to assign different characteristics, e.g. susceptibility to infection, mobility behaviour.
We integrate our mobility model with disease spread simulation, using an agent’s interaction to detect virus transmission. In every time step of the model, the interaction between the agents, their current state and localisation of interaction are used to determine the probability of infection. Social interactions in the context of the spread of the disease are a fundamental element influencing the temporal and spatial extent of the disease. An essential aspect of our model is the integration of the simulation environment with the points-of-interests (POIs), which represent the destination of the majority of non-home-work related activities. We validate the accuracy of mobility replication and present hypothetical scenarios of disease spread in one of the large European cities, presenting capabilities of our solution.
How to cite: Knop, K., Smolak, K., Kasieczka, B., Rohm, W., Smolarczyk, T., and Zyga, M.: Mobility modelling for simulation of spatial spread of infectious diseases, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13112, https://doi.org/10.5194/egusphere-egu21-13112, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The COVID-19 pandemic has highlighted the importance of public health policies and crisis management. The spread of diseases is a complex phenomenon with many time-dependent variables, which hampers an accurate prediction of epidemic evolution. Models of epidemic spread play an important role in guiding in designing public health policies, enabling hypothetical scenarios simulation and rapid analyses of ongoing epidemics.
Over the last century disease spread models evolved from deterministic compartmental models into complex metapopulation and agent-based simulations. Today’s solutions consider many factors, not limiting to the disease itself but also simulating socio-demographic structure and population flows. In the era of globalisation, human mobility became the major factor of rapid disease spread. Although current models consider international and regional travels, used mobility models are simplistic. This limits the accuracy and spatio-temporal resolution of these simulations, providing daily cases updates aggregated to large regions.
We propose an agent-based mobility model, offering a simulation of hourly temporal resolution depicting mobility with less than a few hundreds of meters spatial precision. Agent-based models allow each simulation agent to assign different characteristics, e.g. susceptibility to infection, mobility behaviour.
We integrate our mobility model with disease spread simulation, using an agent’s interaction to detect virus transmission. In every time step of the model, the interaction between the agents, their current state and localisation of interaction are used to determine the probability of infection. Social interactions in the context of the spread of the disease are a fundamental element influencing the temporal and spatial extent of the disease. An essential aspect of our model is the integration of the simulation environment with the points-of-interests (POIs), which represent the destination of the majority of non-home-work related activities. We validate the accuracy of mobility replication and present hypothetical scenarios of disease spread in one of the large European cities, presenting capabilities of our solution.
How to cite: Knop, K., Smolak, K., Kasieczka, B., Rohm, W., Smolarczyk, T., and Zyga, M.: Mobility modelling for simulation of spatial spread of infectious diseases, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13112, https://doi.org/10.5194/egusphere-egu21-13112, 2021.
EGU21-13720 | vPICO presentations | ITS1.1/NP0.2
Epidemic compartmental models: Realizations for Covid-19 and the bearing of vaccination scenariosAlin Andrei Carsteanu and Andreas Langousis
Our work is aimed at analyzing the intrinsic variability of epidemic compartmental models, including the main qualitative characteristics of the Covid-19 pandemic, such as a relatively long asymptomatic contagious incubation period and a time-limited immunity. Intrinsic variability is important in order to quantitatively distinguish it from extrinsic variation factors, such as variability of virulence, social behavior, weather and climate, or statistical interpretation of data. The influence of vaccination rates is also analyzed, in as far as different scenarios may avert or revert the existence of an asymptotic endemic equilibrium point, as well as contribute to the build-up of herd immunity.
How to cite: Carsteanu, A. A. and Langousis, A.: Epidemic compartmental models: Realizations for Covid-19 and the bearing of vaccination scenarios, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13720, https://doi.org/10.5194/egusphere-egu21-13720, 2021.
Our work is aimed at analyzing the intrinsic variability of epidemic compartmental models, including the main qualitative characteristics of the Covid-19 pandemic, such as a relatively long asymptomatic contagious incubation period and a time-limited immunity. Intrinsic variability is important in order to quantitatively distinguish it from extrinsic variation factors, such as variability of virulence, social behavior, weather and climate, or statistical interpretation of data. The influence of vaccination rates is also analyzed, in as far as different scenarios may avert or revert the existence of an asymptotic endemic equilibrium point, as well as contribute to the build-up of herd immunity.
How to cite: Carsteanu, A. A. and Langousis, A.: Epidemic compartmental models: Realizations for Covid-19 and the bearing of vaccination scenarios, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13720, https://doi.org/10.5194/egusphere-egu21-13720, 2021.
EGU21-2742 | vPICO presentations | ITS1.1/NP0.2 | Highlight
On the uncertainty of real-time predictions of epidemic growths: A COVID-19 case study for China and ItalyTommaso Alberti and Davide Faranda
While COVID-19 is rapidly propagating around the globe, the need for providing real-time forecasts of the epidemics pushes fits of dynamical and statistical models to available data beyond their capabilities. Here we focus on statistical predictions of COVID-19 infections performed by fitting asymptotic distributions to actual data. By taking as a case-study the epidemic evolution of total COVID-19 infections in Chinese provinces and Italian regions, we find that predictions are characterized by large uncertainties at the early stages of the epidemic growth. Those uncertainties significantly reduce after the epidemics peak is reached. Differences in the uncertainty of the forecasts at a regional level can be used to highlight the delay in the spread of the virus. Our results warn that long term extrapolation of epidemics counts must be handled with extreme care as they crucially depend not only on the quality of data, but also on the stage of the epidemics, due to the intrinsically non-linear nature of the underlying dynamics. These results suggest that real-time epidemiological projections should include wide uncertainty ranges and urge for the needs of compiling high-quality datasets of infections counts, including asymptomatic patients.
Alberti T. and Faranda D. (2020) On the uncertainty of real-time predictions of epidemic growths: A COVID-19 case study for China and Italy. Commun. Nonlin. Sci. Num. Sim., 90, 105372.
How to cite: Alberti, T. and Faranda, D.: On the uncertainty of real-time predictions of epidemic growths: A COVID-19 case study for China and Italy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2742, https://doi.org/10.5194/egusphere-egu21-2742, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
While COVID-19 is rapidly propagating around the globe, the need for providing real-time forecasts of the epidemics pushes fits of dynamical and statistical models to available data beyond their capabilities. Here we focus on statistical predictions of COVID-19 infections performed by fitting asymptotic distributions to actual data. By taking as a case-study the epidemic evolution of total COVID-19 infections in Chinese provinces and Italian regions, we find that predictions are characterized by large uncertainties at the early stages of the epidemic growth. Those uncertainties significantly reduce after the epidemics peak is reached. Differences in the uncertainty of the forecasts at a regional level can be used to highlight the delay in the spread of the virus. Our results warn that long term extrapolation of epidemics counts must be handled with extreme care as they crucially depend not only on the quality of data, but also on the stage of the epidemics, due to the intrinsically non-linear nature of the underlying dynamics. These results suggest that real-time epidemiological projections should include wide uncertainty ranges and urge for the needs of compiling high-quality datasets of infections counts, including asymptomatic patients.
Alberti T. and Faranda D. (2020) On the uncertainty of real-time predictions of epidemic growths: A COVID-19 case study for China and Italy. Commun. Nonlin. Sci. Num. Sim., 90, 105372.
How to cite: Alberti, T. and Faranda, D.: On the uncertainty of real-time predictions of epidemic growths: A COVID-19 case study for China and Italy, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2742, https://doi.org/10.5194/egusphere-egu21-2742, 2021.
EGU21-8955 | vPICO presentations | ITS1.1/NP0.2 | Highlight
Analysis of the potential drivers of seasonality in COVID-19 transmission dynamics in 409 locations across 26 countriesRachel Lowe, Ben Armstrong, Sam Abbott, Sophie Meakin, Kathleen O'Reilly, Rosa Von Borries, Rochelle Schneider, Dominic Roye, Masahiro Hashizume, Mathilde Pascal, Aurelio Tobias, Ana Maria Vicedo-Cabrera, Antonio Gasparrini, and Francesco Sera and the MCC Network & CMMID COVID-19 working group
More than a year since its emergence, there is conflicting evidence on the potential influence of weather conditions on SARS-CoV-2 transmission dynamics. We used a two-stage ecological modelling approach to estimate weather-dependent signatures in SARS-CoV-2 transmission in the early phase of the pandemic, using a dataset of 3 million COVID-19 cases reported until 31 May 2020, spanning 409 locations in 26 countries. We calculated the effective reproduction number (Re) over a location-specific early-phase time-window of 10-20 days, for which local transmission had been established but before non-pharmaceutical interventions had become established as measured by the OxCGRT Government Response Index. We calculated mean levels of meteorological factors, including temperature and humidity observed in the same time window used to calculate Re. Using a multilevel meta-regression approach, we modelled nonlinear effects of meteorological factors, while accounting for government interventions and socio-demographic factors. A weak non-monotonic association between temperature, absolute humidity and Re was identified, with a decrease in Re of 0.087 (95% CI: 0.025; 0.148) between mean temperature of 10.2°C (maximum) and 20°C (minimum) and a decrease in Re of 0.061 (95% CI: 0.011; 0.111) between absolute humidity of 6.6 g/m3 (maximum) and 11 g/m3 (minimum). However, government interventions explained twice as much of the variation in Re compared meteorological factors. We find little evidence of meteorological conditions having influenced the early stages of local epidemics, and conclude that population behaviour and governmental intervention are more important drivers of transmission.
How to cite: Lowe, R., Armstrong, B., Abbott, S., Meakin, S., O'Reilly, K., Von Borries, R., Schneider, R., Roye, D., Hashizume, M., Pascal, M., Tobias, A., Vicedo-Cabrera, A. M., Gasparrini, A., and Sera, F. and the MCC Network & CMMID COVID-19 working group: Analysis of the potential drivers of seasonality in COVID-19 transmission dynamics in 409 locations across 26 countries , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8955, https://doi.org/10.5194/egusphere-egu21-8955, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
More than a year since its emergence, there is conflicting evidence on the potential influence of weather conditions on SARS-CoV-2 transmission dynamics. We used a two-stage ecological modelling approach to estimate weather-dependent signatures in SARS-CoV-2 transmission in the early phase of the pandemic, using a dataset of 3 million COVID-19 cases reported until 31 May 2020, spanning 409 locations in 26 countries. We calculated the effective reproduction number (Re) over a location-specific early-phase time-window of 10-20 days, for which local transmission had been established but before non-pharmaceutical interventions had become established as measured by the OxCGRT Government Response Index. We calculated mean levels of meteorological factors, including temperature and humidity observed in the same time window used to calculate Re. Using a multilevel meta-regression approach, we modelled nonlinear effects of meteorological factors, while accounting for government interventions and socio-demographic factors. A weak non-monotonic association between temperature, absolute humidity and Re was identified, with a decrease in Re of 0.087 (95% CI: 0.025; 0.148) between mean temperature of 10.2°C (maximum) and 20°C (minimum) and a decrease in Re of 0.061 (95% CI: 0.011; 0.111) between absolute humidity of 6.6 g/m3 (maximum) and 11 g/m3 (minimum). However, government interventions explained twice as much of the variation in Re compared meteorological factors. We find little evidence of meteorological conditions having influenced the early stages of local epidemics, and conclude that population behaviour and governmental intervention are more important drivers of transmission.
How to cite: Lowe, R., Armstrong, B., Abbott, S., Meakin, S., O'Reilly, K., Von Borries, R., Schneider, R., Roye, D., Hashizume, M., Pascal, M., Tobias, A., Vicedo-Cabrera, A. M., Gasparrini, A., and Sera, F. and the MCC Network & CMMID COVID-19 working group: Analysis of the potential drivers of seasonality in COVID-19 transmission dynamics in 409 locations across 26 countries , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8955, https://doi.org/10.5194/egusphere-egu21-8955, 2021.
EGU21-10284 | vPICO presentations | ITS1.1/NP0.2
A reflexion on the environmental effect on the transmission of COVID-19Victor L Barradas and Monica Ballinas
This research is a general reflection of the possible transmission not only of COVID-19 but of any influenza disease depending on environmental parameters such as solar radiation, air humidity and air temperature (vapor pressure deficit), evoking the Penman-Monteith model regarding the evaporation of the water that constitutes the small water droplets (aerosols) that carry the virus. In this case the evapotranspiration demand of the atmosphere with which it can be deduced that the spread of the disease will be higher in those places with less evaporative demand, that is, high air humidity and / or low temperatures, and / or low radiation intensities, and vice versa. It can also be deduced that the hours of greatest potential contagion are the night hours, while those with the lowest risk are between 2:00 p.m. and 4:00 p.m. On the other hand, in those rooms with low temperatures the contagion would be more effective. So, considering that the drops produced by a sneeze, by speaking or breathing can go beyond two meters away, it is roughly explained that the use of face masks and keeping a safe minimum distance of two meters can limit transmission of viruses and / or infections. However, this practice is not entirely safe as the environment can play an important role. What is recommended to reduce the spread of these pathogens is to produce high evaporative demands: increasing solar radiation, and increasing air temperature and reducing air humidity, which is practice that can be effective in closed rooms.
How to cite: Barradas, V. L. and Ballinas, M.: A reflexion on the environmental effect on the transmission of COVID-19, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10284, https://doi.org/10.5194/egusphere-egu21-10284, 2021.
This research is a general reflection of the possible transmission not only of COVID-19 but of any influenza disease depending on environmental parameters such as solar radiation, air humidity and air temperature (vapor pressure deficit), evoking the Penman-Monteith model regarding the evaporation of the water that constitutes the small water droplets (aerosols) that carry the virus. In this case the evapotranspiration demand of the atmosphere with which it can be deduced that the spread of the disease will be higher in those places with less evaporative demand, that is, high air humidity and / or low temperatures, and / or low radiation intensities, and vice versa. It can also be deduced that the hours of greatest potential contagion are the night hours, while those with the lowest risk are between 2:00 p.m. and 4:00 p.m. On the other hand, in those rooms with low temperatures the contagion would be more effective. So, considering that the drops produced by a sneeze, by speaking or breathing can go beyond two meters away, it is roughly explained that the use of face masks and keeping a safe minimum distance of two meters can limit transmission of viruses and / or infections. However, this practice is not entirely safe as the environment can play an important role. What is recommended to reduce the spread of these pathogens is to produce high evaporative demands: increasing solar radiation, and increasing air temperature and reducing air humidity, which is practice that can be effective in closed rooms.
How to cite: Barradas, V. L. and Ballinas, M.: A reflexion on the environmental effect on the transmission of COVID-19, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10284, https://doi.org/10.5194/egusphere-egu21-10284, 2021.
EGU21-12733 | vPICO presentations | ITS1.1/NP0.2
Heat-related mortality in Portugal amplified during the COVID-19 pandemicPedro M. Sousa, Ricardo M. Trigo, Ana Russo, João L. Geirinhas, Ana Rodrigues, Susana Silva, and Ana Torres
The warmest July ever in Portugal was observed during 2020, leading to the highest number of total deaths in July months (10430) since consistent records became available in 2009. This record summed up to the very high death toll throughout the year, characterized by the COVID-19 pandemic. As a combined result of these factors, cumulated deaths during 2020 are also the largest in the records available since 2009 (123753), corresponding to an excess of ~12000 deaths (~11% above the baseline). COVID-19 was responsible for the largest fraction of anomalous mortality during the spring months (62% of the excess during March-May) and from autumn onwards (85% of the excess during October-December). However, during the warmer season, the direct impact of the pandemic decreased substantially (as in the rest of Europe) and other causes were the main trigger for the observed excessive mortality (~3500 versus 553 COVID-19 deaths). Prolonged hot spells, occurring between June 21 and August 7, triggered persistent mortality anomalies in the upper tertile (>310 deaths/day) reaching its peak in mid-July (+45% deaths/day). Two other shorter hot spells occurring outside summer months (May and September) also appear to have contributed to significant mortality anomalies.
July 2020 registered an overall temperature anomaly of +2.6ºC over continental Portugal, and a cumulated anomaly of +127ºC. The lethality rate associated to these cumulated anomalies (+14 deaths per cumulated ºC) was higher than that observed in recent relevant heat-related mortality episodes, even those with higher absolute temperature anomalies, such as in 2013 and 2018. Rates comparable to those observed in 2020 in Portugal are only found far back in tragic heatwaves like those experienced in June 1981 or August 2003. In fact, the 2003 European heatwaves triggered significant changes in public health policies, in order to minimize the mortality burden associated to hot spells, which resulted in lower lethality rates, until 2020. These results are further supported by a statistical model developed to estimate expected deaths due to cold/heat (calibrated for 2009-2019: r=0.84; ME=7%), estimating an amplification of at least 50% in heat-related deaths during 2020 compared to pre-pandemic years. We argue that the significant decrease observed in emergency admissions (ER) and disruption in health-care since the start of the pandemic helps explaining this amplification factor. A ~2/3 decrease in total ERs was observed at the peak of the COVID-19 crisis, never returning to normal pre-pandemic levels. Furthermore, in average cases classified as emergent and very urgent in triage remained below 80% of previous reference levels throughout the 2020 summer, particularly the latter.
The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 – IDL.
How to cite: Sousa, P. M., Trigo, R. M., Russo, A., Geirinhas, J. L., Rodrigues, A., Silva, S., and Torres, A.: Heat-related mortality in Portugal amplified during the COVID-19 pandemic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12733, https://doi.org/10.5194/egusphere-egu21-12733, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The warmest July ever in Portugal was observed during 2020, leading to the highest number of total deaths in July months (10430) since consistent records became available in 2009. This record summed up to the very high death toll throughout the year, characterized by the COVID-19 pandemic. As a combined result of these factors, cumulated deaths during 2020 are also the largest in the records available since 2009 (123753), corresponding to an excess of ~12000 deaths (~11% above the baseline). COVID-19 was responsible for the largest fraction of anomalous mortality during the spring months (62% of the excess during March-May) and from autumn onwards (85% of the excess during October-December). However, during the warmer season, the direct impact of the pandemic decreased substantially (as in the rest of Europe) and other causes were the main trigger for the observed excessive mortality (~3500 versus 553 COVID-19 deaths). Prolonged hot spells, occurring between June 21 and August 7, triggered persistent mortality anomalies in the upper tertile (>310 deaths/day) reaching its peak in mid-July (+45% deaths/day). Two other shorter hot spells occurring outside summer months (May and September) also appear to have contributed to significant mortality anomalies.
July 2020 registered an overall temperature anomaly of +2.6ºC over continental Portugal, and a cumulated anomaly of +127ºC. The lethality rate associated to these cumulated anomalies (+14 deaths per cumulated ºC) was higher than that observed in recent relevant heat-related mortality episodes, even those with higher absolute temperature anomalies, such as in 2013 and 2018. Rates comparable to those observed in 2020 in Portugal are only found far back in tragic heatwaves like those experienced in June 1981 or August 2003. In fact, the 2003 European heatwaves triggered significant changes in public health policies, in order to minimize the mortality burden associated to hot spells, which resulted in lower lethality rates, until 2020. These results are further supported by a statistical model developed to estimate expected deaths due to cold/heat (calibrated for 2009-2019: r=0.84; ME=7%), estimating an amplification of at least 50% in heat-related deaths during 2020 compared to pre-pandemic years. We argue that the significant decrease observed in emergency admissions (ER) and disruption in health-care since the start of the pandemic helps explaining this amplification factor. A ~2/3 decrease in total ERs was observed at the peak of the COVID-19 crisis, never returning to normal pre-pandemic levels. Furthermore, in average cases classified as emergent and very urgent in triage remained below 80% of previous reference levels throughout the 2020 summer, particularly the latter.
The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 – IDL.
How to cite: Sousa, P. M., Trigo, R. M., Russo, A., Geirinhas, J. L., Rodrigues, A., Silva, S., and Torres, A.: Heat-related mortality in Portugal amplified during the COVID-19 pandemic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12733, https://doi.org/10.5194/egusphere-egu21-12733, 2021.
EGU21-42 | vPICO presentations | ITS1.1/NP0.2 | Highlight
Modifying emissions data and projections to incorporate the effects of lockdown in climate modellingRobin Lamboll, Piers Forster, Chris Jones, Ragnhild Skeie, Stephanie Fiedler, Bjørn Samset, and Joeri Rogelj
Lockdowns to avoid the spread of COVID-19 have created an unprecedented reduction in human emissions, however emissions estimates are typically only available after one or more years, making it hard to incorporate these reductions into emissions projections. In this talk we will outline how mobility data and power usage can nowcast country-and-sector emissions of various gases. In this way we show that the short-term impact of lockdown on emissions data is not expected to be significant for long-term temperature trends.
We will also outline how different recovery pathways can be made using basic longer-term emissions projections and how to construct detailed scenarios for non-CO2 emissions, using assumptions about the effects of lockdown on nationally determined contributions and a new software package called Silicone that can infill missing greenhouse gas emissions. Silicone allows the consistent incorporation of tradeoffs between emission species as modelled by IAMs, and as expressed in available greenhouse gas emission scenarios, to be applied to the proposed pathways. We will then show how to make these projections into the more detailed, gridded, CMIP-6 compatible emissions estimates that are required to run General Circulation Models (GCM).
How to cite: Lamboll, R., Forster, P., Jones, C., Skeie, R., Fiedler, S., Samset, B., and Rogelj, J.: Modifying emissions data and projections to incorporate the effects of lockdown in climate modelling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-42, https://doi.org/10.5194/egusphere-egu21-42, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Lockdowns to avoid the spread of COVID-19 have created an unprecedented reduction in human emissions, however emissions estimates are typically only available after one or more years, making it hard to incorporate these reductions into emissions projections. In this talk we will outline how mobility data and power usage can nowcast country-and-sector emissions of various gases. In this way we show that the short-term impact of lockdown on emissions data is not expected to be significant for long-term temperature trends.
We will also outline how different recovery pathways can be made using basic longer-term emissions projections and how to construct detailed scenarios for non-CO2 emissions, using assumptions about the effects of lockdown on nationally determined contributions and a new software package called Silicone that can infill missing greenhouse gas emissions. Silicone allows the consistent incorporation of tradeoffs between emission species as modelled by IAMs, and as expressed in available greenhouse gas emission scenarios, to be applied to the proposed pathways. We will then show how to make these projections into the more detailed, gridded, CMIP-6 compatible emissions estimates that are required to run General Circulation Models (GCM).
How to cite: Lamboll, R., Forster, P., Jones, C., Skeie, R., Fiedler, S., Samset, B., and Rogelj, J.: Modifying emissions data and projections to incorporate the effects of lockdown in climate modelling, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-42, https://doi.org/10.5194/egusphere-egu21-42, 2021.
EGU21-1268 | vPICO presentations | ITS1.1/NP0.2
Using COVID19 as an Opportunity to Measure Seismic Silences and Bring Geoscience Projects to StudentsArtash Nath
On 11 March 2020, the World Health Organization declared Covid19 a pandemic. Countries around the world rushed to declare various states of emergencies. Canada also implemented emergency measures to restrict the movements of people including the closure of borders, non-essential services, and schools and offices to slow the spread of Covid19. I used this opportunity to measure changes in seismic vibrations registered in Canada before, during, and after the lockdown due to the slowdown in transportation, economic, and construction activities. I analyzed continuous seismic data for 6 Canadian cities: Calgary and Edmonton (Alberta), Montreal (Quebec), Ottawa, and Toronto (Ontario), and Yellowknife (Northwest Territories). These cities represented the wide geographical spread of Canada. The source of data was seismic stations run by the Canadian National Seismograph Network (CNSN). Python and ObSpy libraries were used to convert raw data into probabilistic power spectral densities. The seismic vibrations in the PPSDs that fell between 4 Hz and 20 Hz were extracted and averaged for every two weeks period to determine the trend of seismic vibrations. The lockdown had an impact on seismic vibrations in almost all the cities I analyzed. The seismic vibrations decreased between 14% - 44% with the biggest decrease in Yellowknife in the Northwest Territories. In the 3 densely populated cities with a population of over 1 million - Toronto, Montreal, and Calgary, the vibrations dropped by over 30%.
To enable other students to undertake similar projects for their cities, I created a comprehensive online training module using Jupyter notebooks available on Github. Students can learn about seismic vibrations, how to obtain datasets, and analyze and interpret them using Python. They can share their findings with local policymakers so that they become aware of the effectiveness of the lockdown imposed and are better prepared for lockdowns in the future. When we make data and technology accessible, then lockdowns because of pandemics can be an opportunity for students to take up practical geoscience projects from home or virtual classrooms.
How to cite: Nath, A.: Using COVID19 as an Opportunity to Measure Seismic Silences and Bring Geoscience Projects to Students, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1268, https://doi.org/10.5194/egusphere-egu21-1268, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
On 11 March 2020, the World Health Organization declared Covid19 a pandemic. Countries around the world rushed to declare various states of emergencies. Canada also implemented emergency measures to restrict the movements of people including the closure of borders, non-essential services, and schools and offices to slow the spread of Covid19. I used this opportunity to measure changes in seismic vibrations registered in Canada before, during, and after the lockdown due to the slowdown in transportation, economic, and construction activities. I analyzed continuous seismic data for 6 Canadian cities: Calgary and Edmonton (Alberta), Montreal (Quebec), Ottawa, and Toronto (Ontario), and Yellowknife (Northwest Territories). These cities represented the wide geographical spread of Canada. The source of data was seismic stations run by the Canadian National Seismograph Network (CNSN). Python and ObSpy libraries were used to convert raw data into probabilistic power spectral densities. The seismic vibrations in the PPSDs that fell between 4 Hz and 20 Hz were extracted and averaged for every two weeks period to determine the trend of seismic vibrations. The lockdown had an impact on seismic vibrations in almost all the cities I analyzed. The seismic vibrations decreased between 14% - 44% with the biggest decrease in Yellowknife in the Northwest Territories. In the 3 densely populated cities with a population of over 1 million - Toronto, Montreal, and Calgary, the vibrations dropped by over 30%.
To enable other students to undertake similar projects for their cities, I created a comprehensive online training module using Jupyter notebooks available on Github. Students can learn about seismic vibrations, how to obtain datasets, and analyze and interpret them using Python. They can share their findings with local policymakers so that they become aware of the effectiveness of the lockdown imposed and are better prepared for lockdowns in the future. When we make data and technology accessible, then lockdowns because of pandemics can be an opportunity for students to take up practical geoscience projects from home or virtual classrooms.
How to cite: Nath, A.: Using COVID19 as an Opportunity to Measure Seismic Silences and Bring Geoscience Projects to Students, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1268, https://doi.org/10.5194/egusphere-egu21-1268, 2021.
EGU21-8385 | vPICO presentations | ITS1.1/NP0.2
The impact of the COVID-19 lockdown measures on the seismic monitoring in the Bucharest (Romania) metropolitan areaBogdan Grecu, Alexandru Tiganescu, Natalia Poiata, Felix Borleanu, Raluca Dinescu, and Dragos Tataru
The lockdown measures taken to control and stop the spread of the novel coronavirus (COVID-19) in cities around the globe caused an unprecedented reduction of anthropic activities. The signature of this reduction, different from one place to another, has been captured by the seismic stations installed in the urban areas where lockdown restrictions have been implemented. Bucharest, the capital of Romania, was no exception from this phenomenon.
In this paper, we investigate the effect of the COVID-19 lockdown measures imposed by the Romanian authorities on the high-frequency ambient seismic noise (ASN) data recorded by the Bucharest Metropolitan Seismic Network (BMSN). BMSN consists of 26 stations of which 19 are equipped with strong motion sensors and 7 have both short-period velocity and accelerometer sensors. All the stations are continuously recording the ground motion and the data is sent in real-time to the data center of the National Institute for Earth Physics.
The reduction of ASN was first observed at stations installed in educational units (kindergartens, schools) starting with 11th of March 2020, when the Romanian government decided to close the schools in Romania. For these stations, the largest reduction of ASN, up to 82%, was noticed in the 25-40 Hz frequency band. On 16th of March the state of emergency was imposed in Romania and a few days later, on 25th of March, the stay-at-home order was issued. These new restrictions caused substantial reduction in urban traffic and people’s mobility and reflected in significant reduction of ASN at almost all the other BMSN stations, located either free-field or in buildings. For these stations, we observed a decrease of the noise levels by as much as 66% in the 15-25 Hz frequency band. We also correlated the ambient seismic noise with other types of data that might be affected by human activity, such as the mobility data from Google and Apple, and we found good correlation between ASN in different frequency bands and various mobility data categories. Finally, we showed that the noise reduction due to lockdown measures improved the signal-to-noise ratio of the stations in the Bucharest area, allowing us to record smaller earthquakes which otherwise would not have been recorded.
How to cite: Grecu, B., Tiganescu, A., Poiata, N., Borleanu, F., Dinescu, R., and Tataru, D.: The impact of the COVID-19 lockdown measures on the seismic monitoring in the Bucharest (Romania) metropolitan area, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8385, https://doi.org/10.5194/egusphere-egu21-8385, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The lockdown measures taken to control and stop the spread of the novel coronavirus (COVID-19) in cities around the globe caused an unprecedented reduction of anthropic activities. The signature of this reduction, different from one place to another, has been captured by the seismic stations installed in the urban areas where lockdown restrictions have been implemented. Bucharest, the capital of Romania, was no exception from this phenomenon.
In this paper, we investigate the effect of the COVID-19 lockdown measures imposed by the Romanian authorities on the high-frequency ambient seismic noise (ASN) data recorded by the Bucharest Metropolitan Seismic Network (BMSN). BMSN consists of 26 stations of which 19 are equipped with strong motion sensors and 7 have both short-period velocity and accelerometer sensors. All the stations are continuously recording the ground motion and the data is sent in real-time to the data center of the National Institute for Earth Physics.
The reduction of ASN was first observed at stations installed in educational units (kindergartens, schools) starting with 11th of March 2020, when the Romanian government decided to close the schools in Romania. For these stations, the largest reduction of ASN, up to 82%, was noticed in the 25-40 Hz frequency band. On 16th of March the state of emergency was imposed in Romania and a few days later, on 25th of March, the stay-at-home order was issued. These new restrictions caused substantial reduction in urban traffic and people’s mobility and reflected in significant reduction of ASN at almost all the other BMSN stations, located either free-field or in buildings. For these stations, we observed a decrease of the noise levels by as much as 66% in the 15-25 Hz frequency band. We also correlated the ambient seismic noise with other types of data that might be affected by human activity, such as the mobility data from Google and Apple, and we found good correlation between ASN in different frequency bands and various mobility data categories. Finally, we showed that the noise reduction due to lockdown measures improved the signal-to-noise ratio of the stations in the Bucharest area, allowing us to record smaller earthquakes which otherwise would not have been recorded.
How to cite: Grecu, B., Tiganescu, A., Poiata, N., Borleanu, F., Dinescu, R., and Tataru, D.: The impact of the COVID-19 lockdown measures on the seismic monitoring in the Bucharest (Romania) metropolitan area, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8385, https://doi.org/10.5194/egusphere-egu21-8385, 2021.
EGU21-9346 | vPICO presentations | ITS1.1/NP0.2
Sanitary waste management under Covid-19 restrictions in EcuadorKaterine Elizabeth Ponce Ochoa, Javier Rodrigo-Ilarri, and María-Elena Rodrigo-Clavero
Ecuador, with a population of approximately 17.08 million inhabitants, is one of the most COVID-19 affected countries in the world. On March 16th, 2020, a countrywide state of exception was declared by the national government, therefore applying measures to restrict mobility, suspension of working hours and closure of borders. This situation caused an increase in the massive demand for masks and gloves as the primary ways to preventing infection. These masks and gloves are single-used and discarded, causing an impact on the environment due to the time they take to decompose. In addition, syringes and other hospital may also become infectious waste.
Although hospitals may comply the regulations for the management and treatment of hazardous solid waste in Ecuador, the health emergency surprised all hospitals, clinics and health centers due to the increase in patients with coronavirus. This situation led to the establishment of new protocols for this type of waste and also for the management of corpses with COVID-19.
Health personnel are the ones that have been most affected during this time, so they have been working on the front line and have been the most exposed to contagion, increasing the use of disposable masks, gloves and gowns and contributing to the increase of waste from hospitals and health centers.
The objective of this study is to investigate and understand how the management of hospital waste has been developed in times of pandemic in the Ecuadorian Institute of Social Security (IESS) Manuel Ignacio Monteros in the city of Loja.
To carry out this study, information are taken from the records and databases generated in the IESS about the amount of hospital waste generated during the months of March to December 2020. Results are obtained making comparisons with the amount of hospital waste generated in the previous year 2019. The information was collected through surveys directed both to medical and administrative personnel who were in direct care of COVID-19 managing operations.
Results show that a considerable increase in the quantity and characteristics of hospital waste generated during the months of analysis was found. Hazardous hospital waste have been managed correctly as established by various protocols and agreements (Ministerial Agreement 0323) in full compliance with current legislation.
How to cite: Ponce Ochoa, K. E., Rodrigo-Ilarri, J., and Rodrigo-Clavero, M.-E.: Sanitary waste management under Covid-19 restrictions in Ecuador, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9346, https://doi.org/10.5194/egusphere-egu21-9346, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Ecuador, with a population of approximately 17.08 million inhabitants, is one of the most COVID-19 affected countries in the world. On March 16th, 2020, a countrywide state of exception was declared by the national government, therefore applying measures to restrict mobility, suspension of working hours and closure of borders. This situation caused an increase in the massive demand for masks and gloves as the primary ways to preventing infection. These masks and gloves are single-used and discarded, causing an impact on the environment due to the time they take to decompose. In addition, syringes and other hospital may also become infectious waste.
Although hospitals may comply the regulations for the management and treatment of hazardous solid waste in Ecuador, the health emergency surprised all hospitals, clinics and health centers due to the increase in patients with coronavirus. This situation led to the establishment of new protocols for this type of waste and also for the management of corpses with COVID-19.
Health personnel are the ones that have been most affected during this time, so they have been working on the front line and have been the most exposed to contagion, increasing the use of disposable masks, gloves and gowns and contributing to the increase of waste from hospitals and health centers.
The objective of this study is to investigate and understand how the management of hospital waste has been developed in times of pandemic in the Ecuadorian Institute of Social Security (IESS) Manuel Ignacio Monteros in the city of Loja.
To carry out this study, information are taken from the records and databases generated in the IESS about the amount of hospital waste generated during the months of March to December 2020. Results are obtained making comparisons with the amount of hospital waste generated in the previous year 2019. The information was collected through surveys directed both to medical and administrative personnel who were in direct care of COVID-19 managing operations.
Results show that a considerable increase in the quantity and characteristics of hospital waste generated during the months of analysis was found. Hazardous hospital waste have been managed correctly as established by various protocols and agreements (Ministerial Agreement 0323) in full compliance with current legislation.
How to cite: Ponce Ochoa, K. E., Rodrigo-Ilarri, J., and Rodrigo-Clavero, M.-E.: Sanitary waste management under Covid-19 restrictions in Ecuador, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9346, https://doi.org/10.5194/egusphere-egu21-9346, 2021.
EGU21-12035 | vPICO presentations | ITS1.1/NP0.2
Impacts of COVID-19 lockdown restrictions on urban NO2 and O3 level in Germany with consideration of meteorological impacts and seasonal variationVigneshkumar Balamurugan, Xiao Bi, Johannes Gensheimer, Jia Chen, Frank Keutsch, Shrutilipi Bhattacharjee, and Ankit Shekhar
In 2020, the entire world population has witnessed an unprecedented virus outbreak in terms of COVID-19, which led to restrictions in human activities across the world. Strict measures in Germany started on March-21, 2020 and ended on April-30, 2020, while more relaxed measures continued until July 2020. Vehicle traffic volume and industrial activities were drastically reduced, and, as a result, pollutant emission rates were expected to be reduced. Changes in atmospheric pollutant concentrations are an indicator for changes in emission rates although they are not directly proportional as concentrations are heavily influenced by meteorological conditions and as atmospheric photochemical reactions can be non-linear. Without accounting for the influence of meteorology and atmospheric photochemical reactions, a simple comparison of the lockdown period pollutant concentration values with pre-lockdown only to estimate emissions could be misleading. To normalize the effects of meteorological conditions and atmospheric chemical transformation and reactions, we adopted a method of comparing the predicted Business As Usual (BAU) NO2 and O3 concentrations, i.e., the expected value of NO2 and O3 concentration for 2020 meteorological conditions without lockdown restrictions, with the observed NO2 and O3 concentrations. BAU NO2 and O3 concentrations corresponding to 2020 meteorological conditions were predicted based on wind speed and sunshine duration (and season of the day) using the previous year NO2 and O3 concentrations as the references. Compared to BAU levels, big metropolitan cities in Germany show a decline in observed NO2 level (-24.5 to -37.7 %) in the strict lockdown period and rebound to the BAU level at the end of July 2020. In contrast, there is a marginal change in O3 level (+9.6 to -7.4 %). We anticipate that the imbalanced changes in precursors emission (decrease in NOX and increase in volatile organic compounds (VOCs) emission) are attributed to the marginal changes in observed O3 level compared to BAU level; decreased NOX would decrease the O3 concentration due to NOX-limited conditions, and increased VOCs would increase the O3 concentration. These results imply that the balanced emission control between the VOCs and NOX are required to limit the secondary pollutant (O3) formation.
How to cite: Balamurugan, V., Bi, X., Gensheimer, J., Chen, J., Keutsch, F., Bhattacharjee, S., and Shekhar, A.: Impacts of COVID-19 lockdown restrictions on urban NO2 and O3 level in Germany with consideration of meteorological impacts and seasonal variation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12035, https://doi.org/10.5194/egusphere-egu21-12035, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
In 2020, the entire world population has witnessed an unprecedented virus outbreak in terms of COVID-19, which led to restrictions in human activities across the world. Strict measures in Germany started on March-21, 2020 and ended on April-30, 2020, while more relaxed measures continued until July 2020. Vehicle traffic volume and industrial activities were drastically reduced, and, as a result, pollutant emission rates were expected to be reduced. Changes in atmospheric pollutant concentrations are an indicator for changes in emission rates although they are not directly proportional as concentrations are heavily influenced by meteorological conditions and as atmospheric photochemical reactions can be non-linear. Without accounting for the influence of meteorology and atmospheric photochemical reactions, a simple comparison of the lockdown period pollutant concentration values with pre-lockdown only to estimate emissions could be misleading. To normalize the effects of meteorological conditions and atmospheric chemical transformation and reactions, we adopted a method of comparing the predicted Business As Usual (BAU) NO2 and O3 concentrations, i.e., the expected value of NO2 and O3 concentration for 2020 meteorological conditions without lockdown restrictions, with the observed NO2 and O3 concentrations. BAU NO2 and O3 concentrations corresponding to 2020 meteorological conditions were predicted based on wind speed and sunshine duration (and season of the day) using the previous year NO2 and O3 concentrations as the references. Compared to BAU levels, big metropolitan cities in Germany show a decline in observed NO2 level (-24.5 to -37.7 %) in the strict lockdown period and rebound to the BAU level at the end of July 2020. In contrast, there is a marginal change in O3 level (+9.6 to -7.4 %). We anticipate that the imbalanced changes in precursors emission (decrease in NOX and increase in volatile organic compounds (VOCs) emission) are attributed to the marginal changes in observed O3 level compared to BAU level; decreased NOX would decrease the O3 concentration due to NOX-limited conditions, and increased VOCs would increase the O3 concentration. These results imply that the balanced emission control between the VOCs and NOX are required to limit the secondary pollutant (O3) formation.
How to cite: Balamurugan, V., Bi, X., Gensheimer, J., Chen, J., Keutsch, F., Bhattacharjee, S., and Shekhar, A.: Impacts of COVID-19 lockdown restrictions on urban NO2 and O3 level in Germany with consideration of meteorological impacts and seasonal variation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12035, https://doi.org/10.5194/egusphere-egu21-12035, 2021.
EGU21-15125 | vPICO presentations | ITS1.1/NP0.2
Investigating the effects of COVID-19 to crime rates through a geospatial approach: the case of New York, USAIoanna Tselka, Isidora Isis Demertzi, and George P. Petropoulos
Covid-19 pandemic has led to severe consequences to humanity worldwide. Yet, to our knowledge, little scientific evidence is available exploring the impact of the pandemic on criminality. Thus, it is imperative to examine their relationships spatially to obtain a better understanding of societal characteristics during the pandemic.
This study aims at demonstrating the use of geoinformation in analyzing the spatial patterns between crime properties and Covid-19 spread using as a case study New York City, USA, one of the largest metropolitan cities of the world. To address our objectives, geostatistical analysis and data visualization methods have been implemented in real-world crime data acquired from a web-GIS platform. Our analysis concerns two equal time periods before and after the lockdown implementation.
Results revealed some very interesting patterns spatially between the examined parameters and societal characteristics existing in the study region. The methodological framework presented underlined the added value of geoinformation as a robust and cost-effective approach in examining the impact of the pandemic to the society.
Keywords: Covid-19, pandemic, crime rates, geoinformation, New York
How to cite: Tselka, I., Demertzi, I. I., and Petropoulos, G. P.: Investigating the effects of COVID-19 to crime rates through a geospatial approach: the case of New York, USA, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15125, https://doi.org/10.5194/egusphere-egu21-15125, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Covid-19 pandemic has led to severe consequences to humanity worldwide. Yet, to our knowledge, little scientific evidence is available exploring the impact of the pandemic on criminality. Thus, it is imperative to examine their relationships spatially to obtain a better understanding of societal characteristics during the pandemic.
This study aims at demonstrating the use of geoinformation in analyzing the spatial patterns between crime properties and Covid-19 spread using as a case study New York City, USA, one of the largest metropolitan cities of the world. To address our objectives, geostatistical analysis and data visualization methods have been implemented in real-world crime data acquired from a web-GIS platform. Our analysis concerns two equal time periods before and after the lockdown implementation.
Results revealed some very interesting patterns spatially between the examined parameters and societal characteristics existing in the study region. The methodological framework presented underlined the added value of geoinformation as a robust and cost-effective approach in examining the impact of the pandemic to the society.
Keywords: Covid-19, pandemic, crime rates, geoinformation, New York
How to cite: Tselka, I., Demertzi, I. I., and Petropoulos, G. P.: Investigating the effects of COVID-19 to crime rates through a geospatial approach: the case of New York, USA, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15125, https://doi.org/10.5194/egusphere-egu21-15125, 2021.
EGU21-16098 | vPICO presentations | ITS1.1/NP0.2
Assessing the effectiveness of an urban CO2 monitoring network through the COVID-19 lockdown natural experimentJinghui Lian, Thomas Lauvaux, Hervé Utard, Grégoire Broquet, François-Marie Bréon, Michel Ramonet, Olivier Laurent, Karina Cucchi, and Philippe Ciais
Quantitative monitoring of CO2 sources and sinks over cities is needed to support the urban adaptation and mitigation measures, but it is a challenging task. The Paris metropolitan area is a highly built-up and densely populated region in France. The two national COVID-19 forced confinements that are 1) effective on March 17th, with a duration of 55 days until May 11th, 2) effective on October 30th, with a duration of 46 days until December 15th provide an opportunity to assess the behaviour and robustness of the dedicated atmospheric inversion system for estimating the city-scale CO2 emissions.
In this study, the atmospheric Bayesian inversion approach that couples six in-situ continuous CO2 monitoring stations with the WRF-Chem transport model at 1-km horizontal resolutions has been used to quantify the impacts of lockdown on CO2 emissions for the Paris megacity. The prior emission estimate was from the Origins inventory, a near-real-time dataset of fossil fuel CO2 emissions by sector (transportation, residential, tertiary, industry and sink) at 1km² and hourly resolution recently developed by Origins.earth. Estimates of CO2 emissions were retrieved from the inversion by assimilating CO2 concentration gradients between upwind-downwind stations using a refined configuration of the existing Parisian inversion system developed by Bréon et al. (2015) and Staufer et al. (2016). A set of experiments was performed to assess the sensitivity of the posterior CO2 estimates to the changes in different inversion setups, including the selection of observations, prior flux uncertainties and error correlations. We also analyzed the potential contribution of the expanding CO2 monitoring network, in particular the two newly built urban stations in the city center since 2014, to the inverse modeling systems.
The optimized CO2 estimates show decreases of around 42% and 25% in anthropogenic CO2 emissions during the first and second lockdowns respectively when compared with the same period in past two years. Both lockdown emission reduction estimates from the inversion are consistent with recent estimates from activity data (resp. 37% and 19%), suggesting that our near-real time monitoring system is able to detect and quantify short-term variations at the whole-city level.
How to cite: Lian, J., Lauvaux, T., Utard, H., Broquet, G., Bréon, F.-M., Ramonet, M., Laurent, O., Cucchi, K., and Ciais, P.: Assessing the effectiveness of an urban CO2 monitoring network through the COVID-19 lockdown natural experiment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16098, https://doi.org/10.5194/egusphere-egu21-16098, 2021.
Quantitative monitoring of CO2 sources and sinks over cities is needed to support the urban adaptation and mitigation measures, but it is a challenging task. The Paris metropolitan area is a highly built-up and densely populated region in France. The two national COVID-19 forced confinements that are 1) effective on March 17th, with a duration of 55 days until May 11th, 2) effective on October 30th, with a duration of 46 days until December 15th provide an opportunity to assess the behaviour and robustness of the dedicated atmospheric inversion system for estimating the city-scale CO2 emissions.
In this study, the atmospheric Bayesian inversion approach that couples six in-situ continuous CO2 monitoring stations with the WRF-Chem transport model at 1-km horizontal resolutions has been used to quantify the impacts of lockdown on CO2 emissions for the Paris megacity. The prior emission estimate was from the Origins inventory, a near-real-time dataset of fossil fuel CO2 emissions by sector (transportation, residential, tertiary, industry and sink) at 1km² and hourly resolution recently developed by Origins.earth. Estimates of CO2 emissions were retrieved from the inversion by assimilating CO2 concentration gradients between upwind-downwind stations using a refined configuration of the existing Parisian inversion system developed by Bréon et al. (2015) and Staufer et al. (2016). A set of experiments was performed to assess the sensitivity of the posterior CO2 estimates to the changes in different inversion setups, including the selection of observations, prior flux uncertainties and error correlations. We also analyzed the potential contribution of the expanding CO2 monitoring network, in particular the two newly built urban stations in the city center since 2014, to the inverse modeling systems.
The optimized CO2 estimates show decreases of around 42% and 25% in anthropogenic CO2 emissions during the first and second lockdowns respectively when compared with the same period in past two years. Both lockdown emission reduction estimates from the inversion are consistent with recent estimates from activity data (resp. 37% and 19%), suggesting that our near-real time monitoring system is able to detect and quantify short-term variations at the whole-city level.
How to cite: Lian, J., Lauvaux, T., Utard, H., Broquet, G., Bréon, F.-M., Ramonet, M., Laurent, O., Cucchi, K., and Ciais, P.: Assessing the effectiveness of an urban CO2 monitoring network through the COVID-19 lockdown natural experiment, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16098, https://doi.org/10.5194/egusphere-egu21-16098, 2021.
EGU21-1229 | vPICO presentations | ITS1.1/NP0.2 | Highlight
Geoscience Authors and Reviewers during the COVID-19 Pandemic: Demographic Analysis of AGU's Authors and Peer ReviewersPaige Wooden and Brooks Hanson
The COVID-19 pandemic has changed the way we work and live, and as of January 2020, the increase in cases and the initiation of the vaccine introduces even more uncertainty into the short-term future. With an increase in domestic responsibilities for many people, there is a heighted concern about the productivity of the Earth and space science research community, and especially the impact on student, early career researchers, and women. AGU's rich data has allowed us to investigate how the pandemic has affected our constituents, and in a poster presented at AGU 2020, we showed that submissions increased in 2020 with the same proportion of women submitting in 2020 and little monthly variation. Submissions from men and women in their 20s decreased in 2020 compared to 2019, while submissions from women in their 30s and 50s and men in their 40s increased. We saw minor monthly fluctuations in submissions by the country-region of submitting author, with an increase in total and proportional submissions from China continuing from 2019. Additionally, our editors were concerned about the time the most affected scientists could devote to research and peer reviewing. This analysis seeks to update demographics of submitting authors with Q1 2021 data and introduce an analysis of the effect the pandemic had on our article peer reviewers. Preliminary analysis shows very little difference in the invite rates of women in 2020 compared to 2019 (+1%), and only a 0.4% decrease in women's accept to review rates in 2020 compared to 2019. We also only see slight monthly fluctuations in invite and review accept rates. Invitations to review by country of reviewer are proportionally similar in 2020 to those in 2019. This analysis will also investigate any changes in invited and agreed reviewer age to see how the pandemic may have influenced those likely to have research, teaching, and family commitments.
How to cite: Wooden, P. and Hanson, B.: Geoscience Authors and Reviewers during the COVID-19 Pandemic: Demographic Analysis of AGU's Authors and Peer Reviewers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1229, https://doi.org/10.5194/egusphere-egu21-1229, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The COVID-19 pandemic has changed the way we work and live, and as of January 2020, the increase in cases and the initiation of the vaccine introduces even more uncertainty into the short-term future. With an increase in domestic responsibilities for many people, there is a heighted concern about the productivity of the Earth and space science research community, and especially the impact on student, early career researchers, and women. AGU's rich data has allowed us to investigate how the pandemic has affected our constituents, and in a poster presented at AGU 2020, we showed that submissions increased in 2020 with the same proportion of women submitting in 2020 and little monthly variation. Submissions from men and women in their 20s decreased in 2020 compared to 2019, while submissions from women in their 30s and 50s and men in their 40s increased. We saw minor monthly fluctuations in submissions by the country-region of submitting author, with an increase in total and proportional submissions from China continuing from 2019. Additionally, our editors were concerned about the time the most affected scientists could devote to research and peer reviewing. This analysis seeks to update demographics of submitting authors with Q1 2021 data and introduce an analysis of the effect the pandemic had on our article peer reviewers. Preliminary analysis shows very little difference in the invite rates of women in 2020 compared to 2019 (+1%), and only a 0.4% decrease in women's accept to review rates in 2020 compared to 2019. We also only see slight monthly fluctuations in invite and review accept rates. Invitations to review by country of reviewer are proportionally similar in 2020 to those in 2019. This analysis will also investigate any changes in invited and agreed reviewer age to see how the pandemic may have influenced those likely to have research, teaching, and family commitments.
How to cite: Wooden, P. and Hanson, B.: Geoscience Authors and Reviewers during the COVID-19 Pandemic: Demographic Analysis of AGU's Authors and Peer Reviewers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1229, https://doi.org/10.5194/egusphere-egu21-1229, 2021.
EGU21-2408 | vPICO presentations | ITS1.1/NP0.2 | Highlight
Epidemics, climate change and natural hazards: Impacts and risk perceptions under COVID-19Giuliano Di Baldassarre, Elena Mondino, and Elena Raffetti
Epidemics, climate change and natural hazards are increasingly affecting humankind and are plausibly re-shaping the way in which people perceive multiple risks. Here we integrate epidemiological, policy, climate and natural hazard data with the results of two waves of nationwide surveys in Italy and Sweden. These were conducted in two different phases of the COVID-19 pandemic corresponding to low (August 2020) and high (November 2020) levels of infection rates. We investigate the interplay between negative impacts and public perceptions of multiple hazards including epidemics, floods, droughts, wildfires, earthquakes, and climate change. Similarities and differences between Italy and Sweden allow us to investigate the role of policy, media coverage, and direct experience in explaining public perceptions of multiple hazards. The way in which people think about epidemics, for example, is expected to have been substantially influenced by the COVID-19 pandemic that has severely affected both countries, but to which the Italian and Swedish authorities responded differently. Indeed, we found that epidemics are perceived as less likely and more impactful in Italy compared to Sweden. In addition, when multiple hazards are considered, people are more worried about risks related to recently occurred events. This is in line with the cognitive process known as availability heuristic: individuals assess the risk associated with a given hazard based on how easily it comes to their mind. Furthermore, for the majority of hazards, we found that in both countries women and younger people are generally more concerned. These new insights about the interplay between multiple hazards and public perceptions can inform the development of sustainable policies to reduce disaster risk while promoting public health.
How to cite: Di Baldassarre, G., Mondino, E., and Raffetti, E.: Epidemics, climate change and natural hazards: Impacts and risk perceptions under COVID-19, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2408, https://doi.org/10.5194/egusphere-egu21-2408, 2021.
Epidemics, climate change and natural hazards are increasingly affecting humankind and are plausibly re-shaping the way in which people perceive multiple risks. Here we integrate epidemiological, policy, climate and natural hazard data with the results of two waves of nationwide surveys in Italy and Sweden. These were conducted in two different phases of the COVID-19 pandemic corresponding to low (August 2020) and high (November 2020) levels of infection rates. We investigate the interplay between negative impacts and public perceptions of multiple hazards including epidemics, floods, droughts, wildfires, earthquakes, and climate change. Similarities and differences between Italy and Sweden allow us to investigate the role of policy, media coverage, and direct experience in explaining public perceptions of multiple hazards. The way in which people think about epidemics, for example, is expected to have been substantially influenced by the COVID-19 pandemic that has severely affected both countries, but to which the Italian and Swedish authorities responded differently. Indeed, we found that epidemics are perceived as less likely and more impactful in Italy compared to Sweden. In addition, when multiple hazards are considered, people are more worried about risks related to recently occurred events. This is in line with the cognitive process known as availability heuristic: individuals assess the risk associated with a given hazard based on how easily it comes to their mind. Furthermore, for the majority of hazards, we found that in both countries women and younger people are generally more concerned. These new insights about the interplay between multiple hazards and public perceptions can inform the development of sustainable policies to reduce disaster risk while promoting public health.
How to cite: Di Baldassarre, G., Mondino, E., and Raffetti, E.: Epidemics, climate change and natural hazards: Impacts and risk perceptions under COVID-19, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2408, https://doi.org/10.5194/egusphere-egu21-2408, 2021.
EGU21-10438 | vPICO presentations | ITS1.1/NP0.2
Handwashing and water security in the context of a pandemicDavid M. Hannah, Iseult Lynch, Feng Mao, Joshua D. Miller, Sera L. Young, and Stefan Krause
The COVID-19 pandemic is a wake-up call for water security issues. It makes us acutely aware how crucial access, and ability, for adequate hand hygiene are for reducing transmission risks of communicable diseases. An estimated 40% of households globally lack access to basic handwashing facilities. A recent cross-cultural study of household water insecurity experiences (HWISE) found that nearly one in four of 6,637 randomly sampled households across 23 sites in 20 low- and middle-income countries. Similar water, sanitation and hygiene problems impact on poorer families in high-income nations too.
We explore the challenge of hand hygiene in a changing water world and reflect on the importance of making rapid progress towards “ensure availability and sustainable management of water and sanitation for all” (UN Sustainable Development Goal 6). We contest that urgent action on water security is essential to better prepare societies for the future, including global health crises. Drawing on the latest evidence, we provide recommendations on how to increase handwashing, and improve human health and wellbeing more broadly, by reducing water insecurity. Across our world, policymakers must focus on: investment in water infrastructure, water independent alternatives, and behavioural change and knowledge promotion. Moreover, we must prioritise holistic, evidence-based solutions that address 3 facets of water (in)security: availability, quality & accessibility.
How to cite: Hannah, D. M., Lynch, I., Mao, F., Miller, J. D., Young, S. L., and Krause, S.: Handwashing and water security in the context of a pandemic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10438, https://doi.org/10.5194/egusphere-egu21-10438, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The COVID-19 pandemic is a wake-up call for water security issues. It makes us acutely aware how crucial access, and ability, for adequate hand hygiene are for reducing transmission risks of communicable diseases. An estimated 40% of households globally lack access to basic handwashing facilities. A recent cross-cultural study of household water insecurity experiences (HWISE) found that nearly one in four of 6,637 randomly sampled households across 23 sites in 20 low- and middle-income countries. Similar water, sanitation and hygiene problems impact on poorer families in high-income nations too.
We explore the challenge of hand hygiene in a changing water world and reflect on the importance of making rapid progress towards “ensure availability and sustainable management of water and sanitation for all” (UN Sustainable Development Goal 6). We contest that urgent action on water security is essential to better prepare societies for the future, including global health crises. Drawing on the latest evidence, we provide recommendations on how to increase handwashing, and improve human health and wellbeing more broadly, by reducing water insecurity. Across our world, policymakers must focus on: investment in water infrastructure, water independent alternatives, and behavioural change and knowledge promotion. Moreover, we must prioritise holistic, evidence-based solutions that address 3 facets of water (in)security: availability, quality & accessibility.
How to cite: Hannah, D. M., Lynch, I., Mao, F., Miller, J. D., Young, S. L., and Krause, S.: Handwashing and water security in the context of a pandemic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10438, https://doi.org/10.5194/egusphere-egu21-10438, 2021.
EGU21-13561 | vPICO presentations | ITS1.1/NP0.2 | Highlight
Environmental factors during COVID – 19 pandemic in Campinas, BrazilBruno Kabke Bainy and Ana Maria Heuminski de Ávila
During COVID – 19 pandemic, the main strategy to prevent virus dissemination adopted worldwide was the social distancing, in different degrees (ranging from simple recommendations to the population, to complete lockdown). In this context, many studies were performed around the world to assess the impacts of such measures on the environment, specially on air quality. The reported results almost unanimously pointed to a reduction in air contaminants, mainly as a response to vehicular traffic depletion and, at some level, to reduced human and industrial activities. On March 24th, 2020, a partial lockdown was decreed in São Paulo state, Brazil, and since then it has undergone, back and forth, several stages of strictness according to contamination and hospitalization rates, being stricter whenever intensive care units (ICU) occupation increased. Our study aims to evaluate environmental aspects (air quality and meteorology) in Campinas city (São Paulo, Brazil), during the pandemic, from March 24th to December 31st, and compare it with the weeks prior to the social distancing and with the previous year. In addition to the environmental variables, the “social distancing index” (obtained by using mobile phone data to assess displacements) and medical data (hospital admissions and deaths) were employed to a preliminary analysis of the influence of environmental factors on COVID – 19 evolution in the city.
How to cite: Kabke Bainy, B. and Heuminski de Ávila, A. M.: Environmental factors during COVID – 19 pandemic in Campinas, Brazil, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13561, https://doi.org/10.5194/egusphere-egu21-13561, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
During COVID – 19 pandemic, the main strategy to prevent virus dissemination adopted worldwide was the social distancing, in different degrees (ranging from simple recommendations to the population, to complete lockdown). In this context, many studies were performed around the world to assess the impacts of such measures on the environment, specially on air quality. The reported results almost unanimously pointed to a reduction in air contaminants, mainly as a response to vehicular traffic depletion and, at some level, to reduced human and industrial activities. On March 24th, 2020, a partial lockdown was decreed in São Paulo state, Brazil, and since then it has undergone, back and forth, several stages of strictness according to contamination and hospitalization rates, being stricter whenever intensive care units (ICU) occupation increased. Our study aims to evaluate environmental aspects (air quality and meteorology) in Campinas city (São Paulo, Brazil), during the pandemic, from March 24th to December 31st, and compare it with the weeks prior to the social distancing and with the previous year. In addition to the environmental variables, the “social distancing index” (obtained by using mobile phone data to assess displacements) and medical data (hospital admissions and deaths) were employed to a preliminary analysis of the influence of environmental factors on COVID – 19 evolution in the city.
How to cite: Kabke Bainy, B. and Heuminski de Ávila, A. M.: Environmental factors during COVID – 19 pandemic in Campinas, Brazil, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13561, https://doi.org/10.5194/egusphere-egu21-13561, 2021.
EGU21-8622 | vPICO presentations | ITS1.1/NP0.2
Communicating ACTRIS science in times of COVID-19Giulia Saponaro, Ariane Dubost, Eija Juurola, and Paolo Laj
The identification of the severe COVID-19 virus in December 2019 led the World Health Organization to declare a global pandemic by March 2020. Up till recently with the first available vaccines, the only prevention measures include strict social, travel, and working restrictions in a so-called lockdown period that lasted for several weeks (mid-March to the end of April 2020 for most of Europe). This abrupt change in social behavior is expected to impact local but also regional atmospheric composition, and the environmental impact is potentially of high interest to policy and decision-makers.
The Aerosol, Clouds, and Trace Gases Research Infrastructure (ACTRIS) is a pan-European research infrastructure producing high-quality data and information on short-lived atmospheric constituents and on the processes leading to the variability of these constituents in natural and controlled atmospheres. Realizing the crucial scientific value of ACTRIS observations of atmospheric composition changes across Europe, the ACTRIS community promptly actioned internal communication [AD1] thread to organize and set-up COVID-19 related activities. Such reactive internal involvement of ACTRIS partners generated timely outcomes. In fact, during the lockdown period in spring 2020, most of the ACTRIS observational and exploratory platforms were operational providing continuous access to data on air quality and atmospheric composition and, as a tailored service arrangement, to reinvent ACTRIS simulation chambers for testing mask filtering efficiencies. [AD2]
ACTRIS response to the COVID-19 pandemic showcases multiple benefits to policy- and decision-makers focused on environmental and societal impacts of COVID-19 and the closing down of several sectors of society (e.g. transport, industry, services). To boost the visibility of ACTRIS COVID-19 response at the European level, ACTRIS actively engaged and collaborated with the wider community of Research Infrastructures (ESFRI, ENVRI, and ERF-AISBL) in Europe to support joint activities for SARS-CoV-2. The Open Science Session on COVID-19 during the ACTRIS week event brought together a broad audience and key-note speaker from major European agencies and organizations (ESA, ECMWF, FMI, ICOS). The online format of the event created the opportunity to open ACTRIS science to a broader public. At the national level, atmospheric scientists were interviewed on COVID impacts raising awareness on the work undertaken in the research infrastructure to the general public.
ACTRIS aims at establishing further engagement and direct communication with decision and policy-makers and, for that, envisage the implementation of ad-hoc efforts. This presentation will showcase the various efforts and success stories to capture society as well as policy- and decision-makers.
How to cite: Saponaro, G., Dubost, A., Juurola, E., and Laj, P.: Communicating ACTRIS science in times of COVID-19, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8622, https://doi.org/10.5194/egusphere-egu21-8622, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The identification of the severe COVID-19 virus in December 2019 led the World Health Organization to declare a global pandemic by March 2020. Up till recently with the first available vaccines, the only prevention measures include strict social, travel, and working restrictions in a so-called lockdown period that lasted for several weeks (mid-March to the end of April 2020 for most of Europe). This abrupt change in social behavior is expected to impact local but also regional atmospheric composition, and the environmental impact is potentially of high interest to policy and decision-makers.
The Aerosol, Clouds, and Trace Gases Research Infrastructure (ACTRIS) is a pan-European research infrastructure producing high-quality data and information on short-lived atmospheric constituents and on the processes leading to the variability of these constituents in natural and controlled atmospheres. Realizing the crucial scientific value of ACTRIS observations of atmospheric composition changes across Europe, the ACTRIS community promptly actioned internal communication [AD1] thread to organize and set-up COVID-19 related activities. Such reactive internal involvement of ACTRIS partners generated timely outcomes. In fact, during the lockdown period in spring 2020, most of the ACTRIS observational and exploratory platforms were operational providing continuous access to data on air quality and atmospheric composition and, as a tailored service arrangement, to reinvent ACTRIS simulation chambers for testing mask filtering efficiencies. [AD2]
ACTRIS response to the COVID-19 pandemic showcases multiple benefits to policy- and decision-makers focused on environmental and societal impacts of COVID-19 and the closing down of several sectors of society (e.g. transport, industry, services). To boost the visibility of ACTRIS COVID-19 response at the European level, ACTRIS actively engaged and collaborated with the wider community of Research Infrastructures (ESFRI, ENVRI, and ERF-AISBL) in Europe to support joint activities for SARS-CoV-2. The Open Science Session on COVID-19 during the ACTRIS week event brought together a broad audience and key-note speaker from major European agencies and organizations (ESA, ECMWF, FMI, ICOS). The online format of the event created the opportunity to open ACTRIS science to a broader public. At the national level, atmospheric scientists were interviewed on COVID impacts raising awareness on the work undertaken in the research infrastructure to the general public.
ACTRIS aims at establishing further engagement and direct communication with decision and policy-makers and, for that, envisage the implementation of ad-hoc efforts. This presentation will showcase the various efforts and success stories to capture society as well as policy- and decision-makers.
How to cite: Saponaro, G., Dubost, A., Juurola, E., and Laj, P.: Communicating ACTRIS science in times of COVID-19, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8622, https://doi.org/10.5194/egusphere-egu21-8622, 2021.
EGU21-15801 | vPICO presentations | ITS1.1/NP0.2 | Highlight
How the COVID-19 pandemic is teaching us to tackle the climate crisisJan R. Baiker, Nadia Castro-Izaguirre, Christian Huggel, Simon Allen, Fabian Drenkhan, and Veruska Muccione
More than one year after its first appearance, COVID-19 has spread to almost all territories around the world –including more than 93 million confirmed infections and 2 million reported deaths. The real numbers are probably substantially higher as unreported cases remain particularly high in countries with weak state welfare and institutions. To date the COVID-19 pandemic has had a strong impact on social, cultural and economic life, stretching from physical isolation to the exacerbation of global famines, and to the largest global economic recession since the Great Depression in the 1930s. It is therefore important to analyse and monitor in detail how this pandemic is being approached and managed by the different governments and in their specific environmental and socio-cultural contexts. Given the slow-onset character of climate change in developing clearly visible effects on a short term, the respective actions to tackle multiple impacts on natural and social systems lack priority and are often delayed. Nonetheless, the climate crisis is considered to be a comparatively fundamental existential threat to humanity.
Based on an extensive literature review, here we analyse the interactions between the COVID-19 pandemic and the climate crisis as compound impacts, i.e. systemic risks that have to be taken into consideration in national emergency programs and in disaster risk management. Human populations with limited resources and capacities tend to be more vulnerable to such exceptional crisis, and as such COVID-19 is exacerbating existing inequalities at national, regional and global levels. Nevertheless, the national responses to the pandemic and their accuracy are not only related to resources and capacities; there are also important political and social factors at play. For instance, the pandemic spread has triggered migration from cities to rural areas and, as a consequence, could lead to higher social-ecological pressures and accelerated land-use change dynamics including e.g. deforestation, changes in water provision and wetland loss in the rural areas. In turn, these impacts would most likely exacerbate the climate crisis. However, some of these risks can be transformed into long-term opportunities, such as a growing implementation of Nature-based Solutions in order to increase the resilience of ecosystems, virtual solutions that reduce travel and emissions (changing working conditions), renovation and diversification of the tourism sector towards more sustainability, and an increase in uptake of sustainable solutions (e.g., car-free days, improved / less energy consuming material and food supply-chains, agroecological production, etc.).
As a “stress test” this pandemic outbreak and ongoing crisis has already taught us several important lessons that should be considered for dealing with the climate crisis. These include the need and opportunity to redesign social-ecological systems as a whole, aiming for transformational change as a globally coordinated and locally implemented effort at all socio-political levels, in the framework of actions based on the principles of the 2030 Agenda for Sustainable Development and the Paris Agreement on Climate Change.
How to cite: Baiker, J. R., Castro-Izaguirre, N., Huggel, C., Allen, S., Drenkhan, F., and Muccione, V.: How the COVID-19 pandemic is teaching us to tackle the climate crisis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15801, https://doi.org/10.5194/egusphere-egu21-15801, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
More than one year after its first appearance, COVID-19 has spread to almost all territories around the world –including more than 93 million confirmed infections and 2 million reported deaths. The real numbers are probably substantially higher as unreported cases remain particularly high in countries with weak state welfare and institutions. To date the COVID-19 pandemic has had a strong impact on social, cultural and economic life, stretching from physical isolation to the exacerbation of global famines, and to the largest global economic recession since the Great Depression in the 1930s. It is therefore important to analyse and monitor in detail how this pandemic is being approached and managed by the different governments and in their specific environmental and socio-cultural contexts. Given the slow-onset character of climate change in developing clearly visible effects on a short term, the respective actions to tackle multiple impacts on natural and social systems lack priority and are often delayed. Nonetheless, the climate crisis is considered to be a comparatively fundamental existential threat to humanity.
Based on an extensive literature review, here we analyse the interactions between the COVID-19 pandemic and the climate crisis as compound impacts, i.e. systemic risks that have to be taken into consideration in national emergency programs and in disaster risk management. Human populations with limited resources and capacities tend to be more vulnerable to such exceptional crisis, and as such COVID-19 is exacerbating existing inequalities at national, regional and global levels. Nevertheless, the national responses to the pandemic and their accuracy are not only related to resources and capacities; there are also important political and social factors at play. For instance, the pandemic spread has triggered migration from cities to rural areas and, as a consequence, could lead to higher social-ecological pressures and accelerated land-use change dynamics including e.g. deforestation, changes in water provision and wetland loss in the rural areas. In turn, these impacts would most likely exacerbate the climate crisis. However, some of these risks can be transformed into long-term opportunities, such as a growing implementation of Nature-based Solutions in order to increase the resilience of ecosystems, virtual solutions that reduce travel and emissions (changing working conditions), renovation and diversification of the tourism sector towards more sustainability, and an increase in uptake of sustainable solutions (e.g., car-free days, improved / less energy consuming material and food supply-chains, agroecological production, etc.).
As a “stress test” this pandemic outbreak and ongoing crisis has already taught us several important lessons that should be considered for dealing with the climate crisis. These include the need and opportunity to redesign social-ecological systems as a whole, aiming for transformational change as a globally coordinated and locally implemented effort at all socio-political levels, in the framework of actions based on the principles of the 2030 Agenda for Sustainable Development and the Paris Agreement on Climate Change.
How to cite: Baiker, J. R., Castro-Izaguirre, N., Huggel, C., Allen, S., Drenkhan, F., and Muccione, V.: How the COVID-19 pandemic is teaching us to tackle the climate crisis, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15801, https://doi.org/10.5194/egusphere-egu21-15801, 2021.
ITS2.4/SSS2 – Bridging between Earth Science disciplines: Participatory Citizen Science and Open Science as a way to go
EGU21-10871 | vPICO presentations | ITS2.4/SSS2
Experiences from Recent Geo-Wiki Citizen Science Campaigns in the Creation and Sharing of New Reference Data Sets on Land Cover and Land UseJuan Carlos Laso Bayas, Linda See, Myroslava Lesiv, Martina Dürauer, Ivelina Georgieva, Dmitry Schepaschenko, Mathias Karner, Olga Danylo, Hedwig Bartl, Anto Subash, Santosh Karanam, Tobias Sturn, Ian McCallum, and Steffen Fritz
Geo-Wiki is an online platform for involving citizens in the visual interpretation of very high-resolution satellite imagery to collect reference data on land cover and land use. Instead of being an ongoing citizen science project, short intensive campaigns are organized in which citizens participate. The advantage of this approach is that large amounts of data are collected in a short amount of time with a clearly defined data collection target to reach. Participants can also schedule their time accordingly, with their past feedback indicating that this intensive approach was preferred. The reference data are then used in further scientific research to answer a range of questions such as: How much of the land’s surface is wild or impacted by humans? What is the size of agricultural fields globally? The campaigns are organized as competitions with prizes that include Amazon vouchers and co-authorship on a scientific publication. The scientific publication is the mechanism by which the data are openly shared so that other researchers can use this reference data set in other applications. The publication is usually in the form of a data paper, which explains the campaign in detail along with the data set collected. The data are uploaded to a repository such as Pangaea, ZENODO or IIASA’s own data repository, DARE. This approach from data collection, to opening up the data, to documentation via a scientific data paper also ensures transparency in the data collection process. There have been several Geo-Wiki citizen science campaigns that have been run over the last decade. Here we provide examples of experiences from five recent campaigns: (i) the Global Cropland mapping campaign to build a cropland validation data set; (ii) the Global Field Size campaign to characterize the size of agricultural fields around the world; (iii) the Human Impact on Forests campaign to produce the first global map of forest management; (iv) the Global Built-up Surface Validation campaign to collect data on built-up surfaces for validation of global built-up products such as the Global Human Settlement Layer (https://ghsl.jrc.ec.europa.eu/); and (v) the Drivers of Tropical Forest Loss campaign, which collected data on the main causes of deforestation in the tropics. In addition to outlining the campaign, the data sets collected and the sharing of the data online, we provide lessons learned from these campaigns, which have built upon experiences collected over the last decade. These include insights related to the quality and consistency of the classifications of the volunteers including different volunteer behaviors; best practices in creating control points for use in the gamification and quality assurance of the campaigns; different methods for training the volunteers in visual interpretation; difficulties in the interpretation of some features, which may need expert input instead as well as the inability of some features to be recognized from satellite imagery; and limitations in the approach regarding change detection due to temporal availability of open satellite imagery, among several others.
How to cite: Laso Bayas, J. C., See, L., Lesiv, M., Dürauer, M., Georgieva, I., Schepaschenko, D., Karner, M., Danylo, O., Bartl, H., Subash, A., Karanam, S., Sturn, T., McCallum, I., and Fritz, S.: Experiences from Recent Geo-Wiki Citizen Science Campaigns in the Creation and Sharing of New Reference Data Sets on Land Cover and Land Use , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10871, https://doi.org/10.5194/egusphere-egu21-10871, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Geo-Wiki is an online platform for involving citizens in the visual interpretation of very high-resolution satellite imagery to collect reference data on land cover and land use. Instead of being an ongoing citizen science project, short intensive campaigns are organized in which citizens participate. The advantage of this approach is that large amounts of data are collected in a short amount of time with a clearly defined data collection target to reach. Participants can also schedule their time accordingly, with their past feedback indicating that this intensive approach was preferred. The reference data are then used in further scientific research to answer a range of questions such as: How much of the land’s surface is wild or impacted by humans? What is the size of agricultural fields globally? The campaigns are organized as competitions with prizes that include Amazon vouchers and co-authorship on a scientific publication. The scientific publication is the mechanism by which the data are openly shared so that other researchers can use this reference data set in other applications. The publication is usually in the form of a data paper, which explains the campaign in detail along with the data set collected. The data are uploaded to a repository such as Pangaea, ZENODO or IIASA’s own data repository, DARE. This approach from data collection, to opening up the data, to documentation via a scientific data paper also ensures transparency in the data collection process. There have been several Geo-Wiki citizen science campaigns that have been run over the last decade. Here we provide examples of experiences from five recent campaigns: (i) the Global Cropland mapping campaign to build a cropland validation data set; (ii) the Global Field Size campaign to characterize the size of agricultural fields around the world; (iii) the Human Impact on Forests campaign to produce the first global map of forest management; (iv) the Global Built-up Surface Validation campaign to collect data on built-up surfaces for validation of global built-up products such as the Global Human Settlement Layer (https://ghsl.jrc.ec.europa.eu/); and (v) the Drivers of Tropical Forest Loss campaign, which collected data on the main causes of deforestation in the tropics. In addition to outlining the campaign, the data sets collected and the sharing of the data online, we provide lessons learned from these campaigns, which have built upon experiences collected over the last decade. These include insights related to the quality and consistency of the classifications of the volunteers including different volunteer behaviors; best practices in creating control points for use in the gamification and quality assurance of the campaigns; different methods for training the volunteers in visual interpretation; difficulties in the interpretation of some features, which may need expert input instead as well as the inability of some features to be recognized from satellite imagery; and limitations in the approach regarding change detection due to temporal availability of open satellite imagery, among several others.
How to cite: Laso Bayas, J. C., See, L., Lesiv, M., Dürauer, M., Georgieva, I., Schepaschenko, D., Karner, M., Danylo, O., Bartl, H., Subash, A., Karanam, S., Sturn, T., McCallum, I., and Fritz, S.: Experiences from Recent Geo-Wiki Citizen Science Campaigns in the Creation and Sharing of New Reference Data Sets on Land Cover and Land Use , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10871, https://doi.org/10.5194/egusphere-egu21-10871, 2021.
EGU21-9790 | vPICO presentations | ITS2.4/SSS2
The Home River Bioblitz: A World-Wide Collaboration Between Citizens to Show the Importance of Free-Flowing RiversJessica Droujko, Carlos Velazco-Macías, David Faro, Jens Benöhr, Vera Knook, and Kara Lena Virik
One challenge in collaborating with citizen scientists is to keep them motivated to continuously collect data in the long-term. The Home River Bioblitz event overcomes this roadblock by engaging hundreds of citizens around the world in one single day. In general, a bioblitz is a communal citizen-science effort to record a wide variety of species at a specific location within a certain timeframe. This single-day commitment enables large-spatial resolution data to be collected. The Home River Bioblitz was created by the River Collective, National Geographic, Bestias del sur Salvaje, and iNaturalist as part of the citizen science program supported by the National Geographic Society. The first event took place on September 20th, 2020 on 43 rivers located in 24 countries around the world. Over 500 participants from five continents used the iNaturalist app to log 5245 observations and 1772 species of flora and fauna, with at least 14 species under IUCN status, contributing to the Global Biodiversity Information Facility repository. This method of low-temporal and high-spatial data collection is used to identify new species, IUCN red list species, local endemic species, and invasive species. Not only does this event engage citizen-scientists to contribute to biodiversity findings, but it also connects people to their local environments by having them zoom into details they normally pass by. By celebrating the diversity of rivers and meeting the people around them, we were able to bring communities closer to knowing the species of their local rivers and raise awareness about the importance of free-flowing and healthy rivers around the world. An online post-event was dedicated to sharing these local river species and the scientific impact of certain observations with the participants. This event also opens up the possibility to collect other types of short term, large-spatial data around river ecosystems. In the next edition of the Home River Bioblitz, we would like to encourage the participants to collect hydro-morphological and water quality data by using open-access and low-cost citizen science tools, such as the Discharge app and the Waterrangers kit. The Home River Bioblitz event will not only be used to engage and educate participants on their local rivers, but the biodiversity and potentially chemico-physical and hydro-morphological data that will be collected could serve to develop time-series to help assess temporal variations and stressors.
How to cite: Droujko, J., Velazco-Macías, C., Faro, D., Benöhr, J., Knook, V., and Virik, K. L.: The Home River Bioblitz: A World-Wide Collaboration Between Citizens to Show the Importance of Free-Flowing Rivers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9790, https://doi.org/10.5194/egusphere-egu21-9790, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
One challenge in collaborating with citizen scientists is to keep them motivated to continuously collect data in the long-term. The Home River Bioblitz event overcomes this roadblock by engaging hundreds of citizens around the world in one single day. In general, a bioblitz is a communal citizen-science effort to record a wide variety of species at a specific location within a certain timeframe. This single-day commitment enables large-spatial resolution data to be collected. The Home River Bioblitz was created by the River Collective, National Geographic, Bestias del sur Salvaje, and iNaturalist as part of the citizen science program supported by the National Geographic Society. The first event took place on September 20th, 2020 on 43 rivers located in 24 countries around the world. Over 500 participants from five continents used the iNaturalist app to log 5245 observations and 1772 species of flora and fauna, with at least 14 species under IUCN status, contributing to the Global Biodiversity Information Facility repository. This method of low-temporal and high-spatial data collection is used to identify new species, IUCN red list species, local endemic species, and invasive species. Not only does this event engage citizen-scientists to contribute to biodiversity findings, but it also connects people to their local environments by having them zoom into details they normally pass by. By celebrating the diversity of rivers and meeting the people around them, we were able to bring communities closer to knowing the species of their local rivers and raise awareness about the importance of free-flowing and healthy rivers around the world. An online post-event was dedicated to sharing these local river species and the scientific impact of certain observations with the participants. This event also opens up the possibility to collect other types of short term, large-spatial data around river ecosystems. In the next edition of the Home River Bioblitz, we would like to encourage the participants to collect hydro-morphological and water quality data by using open-access and low-cost citizen science tools, such as the Discharge app and the Waterrangers kit. The Home River Bioblitz event will not only be used to engage and educate participants on their local rivers, but the biodiversity and potentially chemico-physical and hydro-morphological data that will be collected could serve to develop time-series to help assess temporal variations and stressors.
How to cite: Droujko, J., Velazco-Macías, C., Faro, D., Benöhr, J., Knook, V., and Virik, K. L.: The Home River Bioblitz: A World-Wide Collaboration Between Citizens to Show the Importance of Free-Flowing Rivers, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9790, https://doi.org/10.5194/egusphere-egu21-9790, 2021.
EGU21-9016 | vPICO presentations | ITS2.4/SSS2
Ensuring science-based climate action: Analysis of multi-stakeholder engagement in Nationally Determined ContributionsIsatis M. Cintron Rodriguez
Good environmental governance includes participatory, transparent and accountable decision-making. All sectors of society have an essential role in organizing climate action towards our shared future. Networking science into decision-making will allow us to build actionable resilience intelligence. Developed in 1992, Article 6 of the United Nations Framework Convention on Climate Change, Principle 10 of the Rio Convention, and the Article 12 of the 2015 Paris Agreement include specific mandates for public participation and engagement in climate actions. Governments have pledged, in international agreements, to broader public participation in environmental policy design processes facilitating access to information. Here we show how Latin-American countries are doing in regard to such responsibility by focusing on the reference to participatory processes and the inclusion in climate strategies of adequate instruments of participation in the contributions presented to the United Nations. This analysis provides a baseline from which we can ground truth and track progress of NDCs’ accelerating climate-smart future through stakeholder engagement. Our research shows there is a need for understanding and metrics for quality public participation and articulation of participatory processes
How to cite: Cintron Rodriguez, I. M.: Ensuring science-based climate action: Analysis of multi-stakeholder engagement in Nationally Determined Contributions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9016, https://doi.org/10.5194/egusphere-egu21-9016, 2021.
Good environmental governance includes participatory, transparent and accountable decision-making. All sectors of society have an essential role in organizing climate action towards our shared future. Networking science into decision-making will allow us to build actionable resilience intelligence. Developed in 1992, Article 6 of the United Nations Framework Convention on Climate Change, Principle 10 of the Rio Convention, and the Article 12 of the 2015 Paris Agreement include specific mandates for public participation and engagement in climate actions. Governments have pledged, in international agreements, to broader public participation in environmental policy design processes facilitating access to information. Here we show how Latin-American countries are doing in regard to such responsibility by focusing on the reference to participatory processes and the inclusion in climate strategies of adequate instruments of participation in the contributions presented to the United Nations. This analysis provides a baseline from which we can ground truth and track progress of NDCs’ accelerating climate-smart future through stakeholder engagement. Our research shows there is a need for understanding and metrics for quality public participation and articulation of participatory processes
How to cite: Cintron Rodriguez, I. M.: Ensuring science-based climate action: Analysis of multi-stakeholder engagement in Nationally Determined Contributions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9016, https://doi.org/10.5194/egusphere-egu21-9016, 2021.
EGU21-10386 | vPICO presentations | ITS2.4/SSS2
Co-Designing Mobile Applications for Data Collection: A Comparative Evaluation of Co-Design Processes in the Project "Nachtlicht-BüHNE"Friederike Klan, Christopher C.M. Kyba, Nona Schulte-Römer, Helga U. Kuechly, Jürgen Oberst, Anastasios Margonis, and Marius Hauenschild
Data collection via mobile software applications is playing an increasingly important role in Citizen Science projects. When developing such applications, it is important to consider both the requirements of the scientists interested in data collection and the needs of the citizen scientists who contribute data. Citizens and participating scientists therefore ideally work together when conceptualizing, designing, and testing such applications (co-design). In this way, both sides - scientists and citizens - can contribute their expectations, desires, knowledge, and engagement at an early stage, thereby improving the utility and acceptance of the resulting applications. How such a co-design process must and can be meaningfully designed depends very much on (1) the interests, skills and background knowledge of the project participants, (2) the complexity and type of the data collection methodology to be implemented, and (3) the time, financial and legal conditions under which the software is developed.
In our contribution, we address this point. We present two methodologies that enable the joint design and implementation of software applications for mobile data collection in citizen science projects. These represent quite different best practice approaches that emerged during the development of mobile applications on the topics of light pollution and meteor observation in our Citizen Science project Nachtlicht-BüHNE. We examine and compare the resulting methods with respect to their suitability for use under different conditions and thus provide future citizen science projects based on participatory developed mobile applications with decision support for the design of their co-design approach. We shed light on the two co-design methods with respect to the following criteria, among others: possible types of contributions by volunteers, requirements on expertise and knowledge of the contributors, flexibility of the method with respect to changing requirements, possibilities with respect to the design of complex data collection methods, costs incurred and time required for the implementation of the methodology.
How to cite: Klan, F., Kyba, C. C. M., Schulte-Römer, N., Kuechly, H. U., Oberst, J., Margonis, A., and Hauenschild, M.: Co-Designing Mobile Applications for Data Collection: A Comparative Evaluation of Co-Design Processes in the Project "Nachtlicht-BüHNE", EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10386, https://doi.org/10.5194/egusphere-egu21-10386, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Data collection via mobile software applications is playing an increasingly important role in Citizen Science projects. When developing such applications, it is important to consider both the requirements of the scientists interested in data collection and the needs of the citizen scientists who contribute data. Citizens and participating scientists therefore ideally work together when conceptualizing, designing, and testing such applications (co-design). In this way, both sides - scientists and citizens - can contribute their expectations, desires, knowledge, and engagement at an early stage, thereby improving the utility and acceptance of the resulting applications. How such a co-design process must and can be meaningfully designed depends very much on (1) the interests, skills and background knowledge of the project participants, (2) the complexity and type of the data collection methodology to be implemented, and (3) the time, financial and legal conditions under which the software is developed.
In our contribution, we address this point. We present two methodologies that enable the joint design and implementation of software applications for mobile data collection in citizen science projects. These represent quite different best practice approaches that emerged during the development of mobile applications on the topics of light pollution and meteor observation in our Citizen Science project Nachtlicht-BüHNE. We examine and compare the resulting methods with respect to their suitability for use under different conditions and thus provide future citizen science projects based on participatory developed mobile applications with decision support for the design of their co-design approach. We shed light on the two co-design methods with respect to the following criteria, among others: possible types of contributions by volunteers, requirements on expertise and knowledge of the contributors, flexibility of the method with respect to changing requirements, possibilities with respect to the design of complex data collection methods, costs incurred and time required for the implementation of the methodology.
How to cite: Klan, F., Kyba, C. C. M., Schulte-Römer, N., Kuechly, H. U., Oberst, J., Margonis, A., and Hauenschild, M.: Co-Designing Mobile Applications for Data Collection: A Comparative Evaluation of Co-Design Processes in the Project "Nachtlicht-BüHNE", EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10386, https://doi.org/10.5194/egusphere-egu21-10386, 2021.
EGU21-8292 | vPICO presentations | ITS2.4/SSS2 | Highlight
Integrated Soil Health Assessment bridging Local Knowledge and Soil Science in Conservation AgricultureThirze Hermans, Andrew Dougill, Stephen Whitfield, Caroline L. Peacock, Samuel Eze, and Christian Thierfelder
Climate change challenges across sub-Saharan Africa require more resilient food production systems. To improve agricultural resilience, the Climate Smart Agriculture (CSA) framework has been proposed including Conservation Agriculture (CA). CA has three key principles; 1) minimum soil disturbance, 2) crop residue cover, 3) crop diversification. Current soil health studies assessing CA’s impact have focused on 'scientific measurements', paying no attention to local knowledge. Local knowledge however influences farmers’ land decision making and their evaluation of CA. In this study, a participatory approach to evaluate CA’s soil health impacts is developed and implemented using farmers’ observations and soil measurements on farm trials in two Malawian communities. The on-farm trials compared conventional ridge and furrow systems (CP), with CA maize only (CAM) and CA maize-legume intercrop systems (CAML). This approach contextualizes the CA soil health outcomes and contributes to understanding how an integrated approach can explain farmer decision-making.
Based on a stepwise integrated soil assessment framework, firstly farmers’ soil health indicators were identified as crop performance, soil consistency, moisture content, erosion, colour and structure. These local indicators were consistent with conventional soil health indicators for quantitative measurements. Soil measurements and observations show that CA leads to soil structural change. Both soil moisture (Mwansambo: 7.54%-38.15% lower for CP; Lemu 1.57%-47.39% lower for CP) and infiltration improve under CA (Lemu CAM/CAML 0.15 cms-1, CP 0.09 cms-1; Mwansambo CP/CAM 0.14 cms-1, CAML 0.18 cms-1). Farmers perceive ridges as positive due to aeration, nutrient release and infiltration, which corresponds with higher exchangeable ammonium (Lemu CP 76.0 mgkg -1, CAM 49.4 mgkg -1, CAML 51.7 mgkg -1), and nitrate/nitrite (Mwansambo CP 200.7 mgkg -1, CAM 171.9 mgkg -1, CAML 103.3 mgkg -1). This perspective still contributes to the popularity of ridges, despite the higher yield and total nitrogen measurements under CA. The perceived carbon benefits of residues, and ridge advantages have encouraged farmers to bury residues in ridges.
This work shows that an integrated approach provides more nuanced and localized information about land management. The stepwise integrated soil assessment framework developed in this study can be used to understand the role of soil health in farmers’ land management decision-making. Thereby supporting a two-way learning process for scaling agricultural innovations and broadening the evidence base for sustainable agricultural innovations.
How to cite: Hermans, T., Dougill, A., Whitfield, S., Peacock, C. L., Eze, S., and Thierfelder, C.: Integrated Soil Health Assessment bridging Local Knowledge and Soil Science in Conservation Agriculture , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8292, https://doi.org/10.5194/egusphere-egu21-8292, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Climate change challenges across sub-Saharan Africa require more resilient food production systems. To improve agricultural resilience, the Climate Smart Agriculture (CSA) framework has been proposed including Conservation Agriculture (CA). CA has three key principles; 1) minimum soil disturbance, 2) crop residue cover, 3) crop diversification. Current soil health studies assessing CA’s impact have focused on 'scientific measurements', paying no attention to local knowledge. Local knowledge however influences farmers’ land decision making and their evaluation of CA. In this study, a participatory approach to evaluate CA’s soil health impacts is developed and implemented using farmers’ observations and soil measurements on farm trials in two Malawian communities. The on-farm trials compared conventional ridge and furrow systems (CP), with CA maize only (CAM) and CA maize-legume intercrop systems (CAML). This approach contextualizes the CA soil health outcomes and contributes to understanding how an integrated approach can explain farmer decision-making.
Based on a stepwise integrated soil assessment framework, firstly farmers’ soil health indicators were identified as crop performance, soil consistency, moisture content, erosion, colour and structure. These local indicators were consistent with conventional soil health indicators for quantitative measurements. Soil measurements and observations show that CA leads to soil structural change. Both soil moisture (Mwansambo: 7.54%-38.15% lower for CP; Lemu 1.57%-47.39% lower for CP) and infiltration improve under CA (Lemu CAM/CAML 0.15 cms-1, CP 0.09 cms-1; Mwansambo CP/CAM 0.14 cms-1, CAML 0.18 cms-1). Farmers perceive ridges as positive due to aeration, nutrient release and infiltration, which corresponds with higher exchangeable ammonium (Lemu CP 76.0 mgkg -1, CAM 49.4 mgkg -1, CAML 51.7 mgkg -1), and nitrate/nitrite (Mwansambo CP 200.7 mgkg -1, CAM 171.9 mgkg -1, CAML 103.3 mgkg -1). This perspective still contributes to the popularity of ridges, despite the higher yield and total nitrogen measurements under CA. The perceived carbon benefits of residues, and ridge advantages have encouraged farmers to bury residues in ridges.
This work shows that an integrated approach provides more nuanced and localized information about land management. The stepwise integrated soil assessment framework developed in this study can be used to understand the role of soil health in farmers’ land management decision-making. Thereby supporting a two-way learning process for scaling agricultural innovations and broadening the evidence base for sustainable agricultural innovations.
How to cite: Hermans, T., Dougill, A., Whitfield, S., Peacock, C. L., Eze, S., and Thierfelder, C.: Integrated Soil Health Assessment bridging Local Knowledge and Soil Science in Conservation Agriculture , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8292, https://doi.org/10.5194/egusphere-egu21-8292, 2021.
EGU21-12706 | vPICO presentations | ITS2.4/SSS2 | Highlight
Soils, Science and Community ActioN (SoilSCAN) to reduce land degradation in East AfricaAlex Taylor, Claire Kelly, Maarten Wynants, Aloyce Patrick, Francis Mkilema, Linus Munishi, Kelvin Mtei, Mona Nasseri, Patrick Ndakidemi, and Will Blake
East African farming communities face complex challenges regarding food and feed productivity. Primary production systems are under stress, nutritional choices are changing and the relationship between development and agriculture is undergoing profound transformation. In the face of severe threat of soil erosion, East African agro-pastoral systems are now at a tipping point and there has never been a greater urgency for evidence-led sustainable land management interventions to reverse degradation of natural resources that support food and water security. A key barrier, however, is a lack of high spatial resolution soil health data wherein collecting such information is beyond conventional research means. This research tests whether bridging this data gap can be achieved through a coordinated citizen science programme. Accessible and portable technology is currently available in the form of hand-held soil scanners that can enable farmers to become citizen scientists empowered to collect data to establish research data bases that support critical landscape decisions. The aim of the work was to test the potential for using soil scanners as a tool for mapping whole community soil health characteristics, using soil organic matter as an indicator, down to farm-scale; a resolution that is beyond that achievable in conventional research, with the ultimate objective to deliver information that empowers stakeholders to create a sustainable community landscape plan.
Key outcomes included:
(1) A training document for the usage of the soil scanner that includes a list of potential problems and their solutions. Moreover, a training session was organised in the Tanzanian partner institution to build capacity for the continuation of the project, wherein local researchers were trained in the application of the ‘Agrocares’ soil scanner to support continuing community engagement.
(2) Local farmers being provided an opportunity to circumvent traditional power and knowledge inequities. During the introductory meeting and field measurements, we noticed the development of locally-embedded scientific interests and skills that foster stronger community ownership and engagement in action research.
(3) A high resolution soil organic matter and nutrient status dataset in small-catchment and community setting. The citizen science data contributes to soil process and hydrological understanding of East African landscapes, which besides direct contribution to the scientific understanding, also supports co-design of effective management solutions to the soil erosion and land degradation challenges.
The inclusion of ‘big data’ digital data training and sharing platforms and has the potential to create more robust and better informed collective decision-making, as well as identifying key data gaps. Further it can expand the utility and applicability of existing techniques and data sets beyond the reach of conventional research. Challenges and opportunities for wider use of soil scanning technology by community groups are evaluated.
How to cite: Taylor, A., Kelly, C., Wynants, M., Patrick, A., Mkilema, F., Munishi, L., Mtei, K., Nasseri, M., Ndakidemi, P., and Blake, W.: Soils, Science and Community ActioN (SoilSCAN) to reduce land degradation in East Africa, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12706, https://doi.org/10.5194/egusphere-egu21-12706, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
East African farming communities face complex challenges regarding food and feed productivity. Primary production systems are under stress, nutritional choices are changing and the relationship between development and agriculture is undergoing profound transformation. In the face of severe threat of soil erosion, East African agro-pastoral systems are now at a tipping point and there has never been a greater urgency for evidence-led sustainable land management interventions to reverse degradation of natural resources that support food and water security. A key barrier, however, is a lack of high spatial resolution soil health data wherein collecting such information is beyond conventional research means. This research tests whether bridging this data gap can be achieved through a coordinated citizen science programme. Accessible and portable technology is currently available in the form of hand-held soil scanners that can enable farmers to become citizen scientists empowered to collect data to establish research data bases that support critical landscape decisions. The aim of the work was to test the potential for using soil scanners as a tool for mapping whole community soil health characteristics, using soil organic matter as an indicator, down to farm-scale; a resolution that is beyond that achievable in conventional research, with the ultimate objective to deliver information that empowers stakeholders to create a sustainable community landscape plan.
Key outcomes included:
(1) A training document for the usage of the soil scanner that includes a list of potential problems and their solutions. Moreover, a training session was organised in the Tanzanian partner institution to build capacity for the continuation of the project, wherein local researchers were trained in the application of the ‘Agrocares’ soil scanner to support continuing community engagement.
(2) Local farmers being provided an opportunity to circumvent traditional power and knowledge inequities. During the introductory meeting and field measurements, we noticed the development of locally-embedded scientific interests and skills that foster stronger community ownership and engagement in action research.
(3) A high resolution soil organic matter and nutrient status dataset in small-catchment and community setting. The citizen science data contributes to soil process and hydrological understanding of East African landscapes, which besides direct contribution to the scientific understanding, also supports co-design of effective management solutions to the soil erosion and land degradation challenges.
The inclusion of ‘big data’ digital data training and sharing platforms and has the potential to create more robust and better informed collective decision-making, as well as identifying key data gaps. Further it can expand the utility and applicability of existing techniques and data sets beyond the reach of conventional research. Challenges and opportunities for wider use of soil scanning technology by community groups are evaluated.
How to cite: Taylor, A., Kelly, C., Wynants, M., Patrick, A., Mkilema, F., Munishi, L., Mtei, K., Nasseri, M., Ndakidemi, P., and Blake, W.: Soils, Science and Community ActioN (SoilSCAN) to reduce land degradation in East Africa, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12706, https://doi.org/10.5194/egusphere-egu21-12706, 2021.
EGU21-13068 | vPICO presentations | ITS2.4/SSS2
Combining citizen science and artificial intelligence to facilitate geology outreach and capture geodiversity: prospects from the RockNet projectAntoine Bouziat, Sylvain Desroziers, Mathieu Feraille, Jean-Claude Lecomte, Christophe Cornet, François Cokelaer, and Renaud Divies
Popularizing and disseminating a basic level of geological knowledge and understanding to the general public has become an important issue, either to valorize and protect our natural heritage, or to facilitate public engagement in environmental and energy debates. Emergent technologies and the increasing digitalization of our societies broaden the range of tools available to address this topic. In this talk, we focus on the prospects enabled by the combination of citizen science and Artificial Intelligence (AI), building on the birth of the RockNetTM project.
Inspired by the sucess of the Pl@ntNet project for botanical science outreach, RockNetTM aims at developping a mobile application, whose users can photograph rock samples and get a lithological classification from an AI algorithm. By doing so, a participative data base of rock images is progressively gathered and shared among all users. Meanwhile the most expert ones can correct the automated facies identification to gradually improve the AI capabilities. Then the resulting tool collectively produced becomes a possible support for geoscience outreach, relying on the citizens' curiosity for their immediate geological environment.
A first prototype, handling 12 different lithological classes, has already been developed and trained on several thousand pictures. From this practical experience, we illustrate the potential of this kind of technology and the numerous challenges to consider before a large-scale diffusion of the application.
How to cite: Bouziat, A., Desroziers, S., Feraille, M., Lecomte, J.-C., Cornet, C., Cokelaer, F., and Divies, R.: Combining citizen science and artificial intelligence to facilitate geology outreach and capture geodiversity: prospects from the RockNet project, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13068, https://doi.org/10.5194/egusphere-egu21-13068, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Popularizing and disseminating a basic level of geological knowledge and understanding to the general public has become an important issue, either to valorize and protect our natural heritage, or to facilitate public engagement in environmental and energy debates. Emergent technologies and the increasing digitalization of our societies broaden the range of tools available to address this topic. In this talk, we focus on the prospects enabled by the combination of citizen science and Artificial Intelligence (AI), building on the birth of the RockNetTM project.
Inspired by the sucess of the Pl@ntNet project for botanical science outreach, RockNetTM aims at developping a mobile application, whose users can photograph rock samples and get a lithological classification from an AI algorithm. By doing so, a participative data base of rock images is progressively gathered and shared among all users. Meanwhile the most expert ones can correct the automated facies identification to gradually improve the AI capabilities. Then the resulting tool collectively produced becomes a possible support for geoscience outreach, relying on the citizens' curiosity for their immediate geological environment.
A first prototype, handling 12 different lithological classes, has already been developed and trained on several thousand pictures. From this practical experience, we illustrate the potential of this kind of technology and the numerous challenges to consider before a large-scale diffusion of the application.
How to cite: Bouziat, A., Desroziers, S., Feraille, M., Lecomte, J.-C., Cornet, C., Cokelaer, F., and Divies, R.: Combining citizen science and artificial intelligence to facilitate geology outreach and capture geodiversity: prospects from the RockNet project, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13068, https://doi.org/10.5194/egusphere-egu21-13068, 2021.
EGU21-11344 | vPICO presentations | ITS2.4/SSS2
Higher Education engagement in citizen enhanced open science: Between Humanities and Natural SciencesKaterina Zourou and Mariana Ziku
EGU21-14995 | vPICO presentations | ITS2.4/SSS2 | Highlight
Participation of pupils in atmospheric measurements -- Potential for increasing climate change risk awareness and data availability for weather and climate researchHenning Rust, Bianca Wentzel, Thomas Kox, Jonas Lehmke, Christopher Böttcher, Andreas Trojand, Elisabeth Freundl, and Martin Göber
Voluntarily measuring atmospheric characteristics by citizens has a long tradition. Possibilities has been increasing in the last years with the rise of smart devices and the internet-of-things (IoT). Atmospheric measurements are also prototypical project examples within the Maker community. Maker projects (i.e. IoT-/technology-oriented projects) are popular means of strengthening interest in STEM subjects among pupils. In the frame of two projects, we use an IoT-based weather station to be assembled by pupils as a participatory vehicle to a) raise interest in and understanding of weather and climate, as well as weather forecasts, and b) obtain additional data to be used in scientific projects.
In the project KARE-CS (funding: German Ministry for Education and Research, BMBF), a lay weather network has been set up together with pupils in the Bavarian Oberland south of Munich in 2020 and 2021. The students' devices measure temperature, pressure, humidity, solar radiation and precipitation in their direct environment, data is visualized on their smartphones (or any device running a browser) and updated every few minutes. Pupils also report weather impacts such as observed damages or their own concernment about weather events. These data are evaluated in workshops involving the students, their teachers, local partners and scientists. Atmospheric as well as impact data is evaluated for further use in scientifc studies, such as within the mother project KARE (). KARE-CS focuses on upper secondary school students as participants and aim at a development of competences among teachers as multipliers and pupils, particularly in terms of climate change adaptation, understanding natural hazards and risks and in taking personal precautions.
A similar setup is used for supporting the measurement campaing FESSTVaL ( initiated for 2021 by the Hans-Ertel-Centre for Weather Research ( ). The pupils' network will consist of 100 instruments within and close to the campaign's main site. Additionally to the communication and education-oriented goals mentioned above, the resulting spatially and temporally high-resolution data is used for research on thunderstorm development and cold pool characteristics within the Hans-Ertel-Centre.
How to cite: Rust, H., Wentzel, B., Kox, T., Lehmke, J., Böttcher, C., Trojand, A., Freundl, E., and Göber, M.: Participation of pupils in atmospheric measurements -- Potential for increasing climate change risk awareness and data availability for weather and climate research, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14995, https://doi.org/10.5194/egusphere-egu21-14995, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Voluntarily measuring atmospheric characteristics by citizens has a long tradition. Possibilities has been increasing in the last years with the rise of smart devices and the internet-of-things (IoT). Atmospheric measurements are also prototypical project examples within the Maker community. Maker projects (i.e. IoT-/technology-oriented projects) are popular means of strengthening interest in STEM subjects among pupils. In the frame of two projects, we use an IoT-based weather station to be assembled by pupils as a participatory vehicle to a) raise interest in and understanding of weather and climate, as well as weather forecasts, and b) obtain additional data to be used in scientific projects.
In the project KARE-CS (funding: German Ministry for Education and Research, BMBF), a lay weather network has been set up together with pupils in the Bavarian Oberland south of Munich in 2020 and 2021. The students' devices measure temperature, pressure, humidity, solar radiation and precipitation in their direct environment, data is visualized on their smartphones (or any device running a browser) and updated every few minutes. Pupils also report weather impacts such as observed damages or their own concernment about weather events. These data are evaluated in workshops involving the students, their teachers, local partners and scientists. Atmospheric as well as impact data is evaluated for further use in scientifc studies, such as within the mother project KARE (). KARE-CS focuses on upper secondary school students as participants and aim at a development of competences among teachers as multipliers and pupils, particularly in terms of climate change adaptation, understanding natural hazards and risks and in taking personal precautions.
A similar setup is used for supporting the measurement campaing FESSTVaL ( initiated for 2021 by the Hans-Ertel-Centre for Weather Research ( ). The pupils' network will consist of 100 instruments within and close to the campaign's main site. Additionally to the communication and education-oriented goals mentioned above, the resulting spatially and temporally high-resolution data is used for research on thunderstorm development and cold pool characteristics within the Hans-Ertel-Centre.
How to cite: Rust, H., Wentzel, B., Kox, T., Lehmke, J., Böttcher, C., Trojand, A., Freundl, E., and Göber, M.: Participation of pupils in atmospheric measurements -- Potential for increasing climate change risk awareness and data availability for weather and climate research, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14995, https://doi.org/10.5194/egusphere-egu21-14995, 2021.
EGU21-9302 | vPICO presentations | ITS2.4/SSS2 | Highlight
The role of citizen science as a tool of public information in water quality management in the Brantas catchment, IndonesiaReza Pramana, Schuyler Houser, Daru Rini, and Maurits Ertsen
Water quality in the rivers and tributaries of the Brantas catchment (about 12.000 km2) is deteriorating due to various reasons, including rapid economic development, insufficient domestic water treatment and waste management, and industrial pollution. Various parameters measured by agencies involved in water resource development and management and environmental management consistently demonstrate exceedance of the local water quality standards. Between the different agencies, water quality data are available – intermittently from 2009 until 2019 at 104 locations, but generally on a monthly basis. Still, opportunities to improve data availability are apparent, both to increase the amount and representability of the data sets. The opportunity to expand available data via citizen science is simultaneously an opportunity to provide education on water stewardship and empower citizens to participate in water quality management. We plan to involve people from eight communities living close to the river and researchers from two local universities in a citizen-science campaign. The community members would sample weekly at 10 locations, from upstream to downstream of the catchment. We will use probes and test strips to measure the temperature, electrical conductivity, pH, nitrate, phosphate, ammonia, iron, and dissolved oxygen. The results will potentially be combined with the data from government agencies to construct an integrated water quality data set to improve decision making and the quality of community engagement in water resource management.
How to cite: Pramana, R., Houser, S., Rini, D., and Ertsen, M.: The role of citizen science as a tool of public information in water quality management in the Brantas catchment, Indonesia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9302, https://doi.org/10.5194/egusphere-egu21-9302, 2021.
Water quality in the rivers and tributaries of the Brantas catchment (about 12.000 km2) is deteriorating due to various reasons, including rapid economic development, insufficient domestic water treatment and waste management, and industrial pollution. Various parameters measured by agencies involved in water resource development and management and environmental management consistently demonstrate exceedance of the local water quality standards. Between the different agencies, water quality data are available – intermittently from 2009 until 2019 at 104 locations, but generally on a monthly basis. Still, opportunities to improve data availability are apparent, both to increase the amount and representability of the data sets. The opportunity to expand available data via citizen science is simultaneously an opportunity to provide education on water stewardship and empower citizens to participate in water quality management. We plan to involve people from eight communities living close to the river and researchers from two local universities in a citizen-science campaign. The community members would sample weekly at 10 locations, from upstream to downstream of the catchment. We will use probes and test strips to measure the temperature, electrical conductivity, pH, nitrate, phosphate, ammonia, iron, and dissolved oxygen. The results will potentially be combined with the data from government agencies to construct an integrated water quality data set to improve decision making and the quality of community engagement in water resource management.
How to cite: Pramana, R., Houser, S., Rini, D., and Ertsen, M.: The role of citizen science as a tool of public information in water quality management in the Brantas catchment, Indonesia, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-9302, https://doi.org/10.5194/egusphere-egu21-9302, 2021.
EGU21-14721 | vPICO presentations | ITS2.4/SSS2
Incorporating citizen science in open science: a case study of participatory rainfall measurements in the context of a Technical UniversitySandra de Vries, Marit Bogert, Sabine Kunst, and Nicoleta Nastase
Citizen science has globally been recognized as a vital part of open science and as a way of doing research that enables new levels of science education and science communication. Due to its high levels of public participation, citizen science can be of great value in bringing society and science closer together. Universities across the world have acknowledged this value and aim to incorporate citizen science in their policies and daily practices as part of their open science practices.
The Delft University of Technology has set the goal to develop an open science program that includes citizen science. However, implementing and incorporating citizen science in an open science program is not a straightforward task and demands knowledge, understanding, and experience of the field as well as the practical implications. What should a university do to support the goals of various citizen science initiatives, within an open science context, and to assist and facilitate researchers to perform effective participatory science? To gain a deeper understanding of what a citizen science project entails within the context of a university, we performed a case-study implementing citizen science methods for hydrological research. The project, called Delft Measures Rain, was developed in collaboration with external partners and several internal departments and their staff, some already having experience with developing and coordinating citizen science projects. Citizens of Delft were encouraged to participate and work together with scientists from the Water Management department to investigate rainfall patterns within the city. In total, 95 citizens collaborated for two months to collect over 1900 individual rainfall measurements spread over the city and taken with home-made rain gauges. We developed tailored recruitment strategies, data collection and validation tools, data visuals, and communication strategies. Overall, the project has delivered valuable results, including reliable rainfall data, involvement and enthusiasm of citizens, and valuable feedback from participants. Additionally, this project has led to more cooperation of relevant institutions and civil society organizations (CSO) across the city and between different departments within the university itself.
This case-study has showcased how various stakeholders (researchers, citizens, civil servants, CSO’s, etc.) can benefit from co-developed participatory research implementing citizen science and open science principles. With this case study, we were able to identify the benefits, drawbacks, and opportunities for all stakeholders involved. Furthermore, we identified key tools and facilitation needs to assist researchers within the university to perform effective participatory science. During the session, we would like to share our methods, successes, challenges, and lessons learned. This project shows that, with the right knowledge and tools, citizen science can deliver what it promises and be of great value to universities and open science in general.
How to cite: de Vries, S., Bogert, M., Kunst, S., and Nastase, N.: Incorporating citizen science in open science: a case study of participatory rainfall measurements in the context of a Technical University, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14721, https://doi.org/10.5194/egusphere-egu21-14721, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Citizen science has globally been recognized as a vital part of open science and as a way of doing research that enables new levels of science education and science communication. Due to its high levels of public participation, citizen science can be of great value in bringing society and science closer together. Universities across the world have acknowledged this value and aim to incorporate citizen science in their policies and daily practices as part of their open science practices.
The Delft University of Technology has set the goal to develop an open science program that includes citizen science. However, implementing and incorporating citizen science in an open science program is not a straightforward task and demands knowledge, understanding, and experience of the field as well as the practical implications. What should a university do to support the goals of various citizen science initiatives, within an open science context, and to assist and facilitate researchers to perform effective participatory science? To gain a deeper understanding of what a citizen science project entails within the context of a university, we performed a case-study implementing citizen science methods for hydrological research. The project, called Delft Measures Rain, was developed in collaboration with external partners and several internal departments and their staff, some already having experience with developing and coordinating citizen science projects. Citizens of Delft were encouraged to participate and work together with scientists from the Water Management department to investigate rainfall patterns within the city. In total, 95 citizens collaborated for two months to collect over 1900 individual rainfall measurements spread over the city and taken with home-made rain gauges. We developed tailored recruitment strategies, data collection and validation tools, data visuals, and communication strategies. Overall, the project has delivered valuable results, including reliable rainfall data, involvement and enthusiasm of citizens, and valuable feedback from participants. Additionally, this project has led to more cooperation of relevant institutions and civil society organizations (CSO) across the city and between different departments within the university itself.
This case-study has showcased how various stakeholders (researchers, citizens, civil servants, CSO’s, etc.) can benefit from co-developed participatory research implementing citizen science and open science principles. With this case study, we were able to identify the benefits, drawbacks, and opportunities for all stakeholders involved. Furthermore, we identified key tools and facilitation needs to assist researchers within the university to perform effective participatory science. During the session, we would like to share our methods, successes, challenges, and lessons learned. This project shows that, with the right knowledge and tools, citizen science can deliver what it promises and be of great value to universities and open science in general.
How to cite: de Vries, S., Bogert, M., Kunst, S., and Nastase, N.: Incorporating citizen science in open science: a case study of participatory rainfall measurements in the context of a Technical University, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14721, https://doi.org/10.5194/egusphere-egu21-14721, 2021.
EGU21-2670 | vPICO presentations | ITS2.4/SSS2
The Dutch research infrastructure EPOS-NL: Access to Earth scientific research facilities and dataRonald Pijnenburg, Susanne Laumann, Richard Wessels, Geertje ter Maat, Lora Armstrong, Jarek Bieńkowski, Otto Lange, Reinoud Sleeman, Philip Vardon, David Bruhn, Auke Barnhoorn, André Niemeijer, Ernst Willingshofer, Oliver Plümper, Kees Wapenaar, Jeannot Trampert, and Martyn Drury
In response to the growing geo-societal challenges of our densely populated planet, current research frequently requires convergence of multiple research disciplines, and optimized use of openly available data, research facilities and funds. Such optimization is the main aim of many research infrastructures developing both at the national and international level. In the Netherlands, the European Plate Observing System – Netherlands (EPOS-NL) was formed, as the Dutch research infrastructure for solid Earth sciences. EPOS-NL aims to further develop world-class facilities for research into georesources and hazards, and to provide international access to these facilities and derived data. It is a partnership between Utrecht University, Delft University of Technology and the Royal Netherlands Meteorological Institute (KNMI) and is funded by the Dutch Research Council. EPOS-NL facilities include: 1) The Earth Simulation Lab at Utrecht University, 2) The Groningen gas field seismological network and the ORFEUS Data Center at KNMI, 3) The deep geothermal doublet (DAPwell), to be installed on the Delft university campus, and 4) A distributed facility for multi-scale imaging and tomography (MINT), shared between the Utrecht and Delft universities. EPOS-NL provides financial, technical and scientific support for access to these facilities. To get facility access, researchers can apply to a bi-annual call, with 2021 calls planned in Q1 and Q3. EPOS-NL further works with researchers, data centers and industry to provide access to essential data and models (e.g. pertaining to the seismogenic Groningen gas field) within the framework of the European infrastructure EPOS, conforming to FAIR (Findable, Accessible, Interoperable and Reusable) data principles. In that way, EPOS-NL contributes directly to a globally developing trend to make research facilities and data openly accessible to the international community. This supports cost-effective and multi-disciplinary research into the geo-societal challenges faced by our densely populated planet. See www.EPOS-NL.nl for more information.
How to cite: Pijnenburg, R., Laumann, S., Wessels, R., ter Maat, G., Armstrong, L., Bieńkowski, J., Lange, O., Sleeman, R., Vardon, P., Bruhn, D., Barnhoorn, A., Niemeijer, A., Willingshofer, E., Plümper, O., Wapenaar, K., Trampert, J., and Drury, M.: The Dutch research infrastructure EPOS-NL: Access to Earth scientific research facilities and data , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2670, https://doi.org/10.5194/egusphere-egu21-2670, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
In response to the growing geo-societal challenges of our densely populated planet, current research frequently requires convergence of multiple research disciplines, and optimized use of openly available data, research facilities and funds. Such optimization is the main aim of many research infrastructures developing both at the national and international level. In the Netherlands, the European Plate Observing System – Netherlands (EPOS-NL) was formed, as the Dutch research infrastructure for solid Earth sciences. EPOS-NL aims to further develop world-class facilities for research into georesources and hazards, and to provide international access to these facilities and derived data. It is a partnership between Utrecht University, Delft University of Technology and the Royal Netherlands Meteorological Institute (KNMI) and is funded by the Dutch Research Council. EPOS-NL facilities include: 1) The Earth Simulation Lab at Utrecht University, 2) The Groningen gas field seismological network and the ORFEUS Data Center at KNMI, 3) The deep geothermal doublet (DAPwell), to be installed on the Delft university campus, and 4) A distributed facility for multi-scale imaging and tomography (MINT), shared between the Utrecht and Delft universities. EPOS-NL provides financial, technical and scientific support for access to these facilities. To get facility access, researchers can apply to a bi-annual call, with 2021 calls planned in Q1 and Q3. EPOS-NL further works with researchers, data centers and industry to provide access to essential data and models (e.g. pertaining to the seismogenic Groningen gas field) within the framework of the European infrastructure EPOS, conforming to FAIR (Findable, Accessible, Interoperable and Reusable) data principles. In that way, EPOS-NL contributes directly to a globally developing trend to make research facilities and data openly accessible to the international community. This supports cost-effective and multi-disciplinary research into the geo-societal challenges faced by our densely populated planet. See www.EPOS-NL.nl for more information.
How to cite: Pijnenburg, R., Laumann, S., Wessels, R., ter Maat, G., Armstrong, L., Bieńkowski, J., Lange, O., Sleeman, R., Vardon, P., Bruhn, D., Barnhoorn, A., Niemeijer, A., Willingshofer, E., Plümper, O., Wapenaar, K., Trampert, J., and Drury, M.: The Dutch research infrastructure EPOS-NL: Access to Earth scientific research facilities and data , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2670, https://doi.org/10.5194/egusphere-egu21-2670, 2021.
EGU21-13177 | vPICO presentations | ITS2.4/SSS2
Data Stewardship Practices for Earth Observation Transient and Optimized Analysis PlatformsKaylin Bugbee, Rahul Ramachandran, Ge Peng, and Aaron Kaulfus
Access to valuable scientific research data is becoming increasingly more open, attracting a growing user community of scientists, decision makers and innovators. While these data are more openly available, accessibility continues to remain an issue due to the large volumes of complex, heterogeneous data that are available for analysis. This emerging accessibility issue is driving the development of specialized software stacks to instantiate new analysis platforms that enable users to quickly and efficiently work with large volumes of data. These platforms, typically found on the cloud or in a high performance computing environment, are optimized for large-scale data analysis. These platforms can be transient in nature, with a defined life span and a focus on improved capabilities as opposed to serving as an archive of record.
While these transient, optimized platforms are not held to the same stewardship standards as a traditional archive, data must still be managed in a standardized and uniform manner throughout the platform. Valuable scientific research is conducted in these platforms, making these platforms subject to open science principles such as reproducibility and accessibility. In this presentation, we examine the differences between various data stewardship models and describe where transient optimized platforms fit within those models. We then describe in more detail a data and information governance framework for Earth Observation transient optimized analysis platforms. We will end our presentation by sharing our experiences of developing such a framework for the Multi-Mission Algorithm and Analysis Platform (MAAP).
How to cite: Bugbee, K., Ramachandran, R., Peng, G., and Kaulfus, A.: Data Stewardship Practices for Earth Observation Transient and Optimized Analysis Platforms, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13177, https://doi.org/10.5194/egusphere-egu21-13177, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Access to valuable scientific research data is becoming increasingly more open, attracting a growing user community of scientists, decision makers and innovators. While these data are more openly available, accessibility continues to remain an issue due to the large volumes of complex, heterogeneous data that are available for analysis. This emerging accessibility issue is driving the development of specialized software stacks to instantiate new analysis platforms that enable users to quickly and efficiently work with large volumes of data. These platforms, typically found on the cloud or in a high performance computing environment, are optimized for large-scale data analysis. These platforms can be transient in nature, with a defined life span and a focus on improved capabilities as opposed to serving as an archive of record.
While these transient, optimized platforms are not held to the same stewardship standards as a traditional archive, data must still be managed in a standardized and uniform manner throughout the platform. Valuable scientific research is conducted in these platforms, making these platforms subject to open science principles such as reproducibility and accessibility. In this presentation, we examine the differences between various data stewardship models and describe where transient optimized platforms fit within those models. We then describe in more detail a data and information governance framework for Earth Observation transient optimized analysis platforms. We will end our presentation by sharing our experiences of developing such a framework for the Multi-Mission Algorithm and Analysis Platform (MAAP).
How to cite: Bugbee, K., Ramachandran, R., Peng, G., and Kaulfus, A.: Data Stewardship Practices for Earth Observation Transient and Optimized Analysis Platforms, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13177, https://doi.org/10.5194/egusphere-egu21-13177, 2021.
EGU21-12843 | vPICO presentations | ITS2.4/SSS2 | Highlight
Open Polar: a new freely search service of publications and research data of Polar RegionsTamer Abu-Alam, Karl Magnus Nilsen, Obiajulu Odu, Leif Longva, and Per Pippin Aspaas
Research data plays a key role in monitoring and predicting any natural phenomena, including changes in the Polar Regions. The limited access to data restricts the ability of researchers to monitor, predict and model environmental changes and their socio-economic repercussions. In a recent survey of 113 major polar research institutions, we found out that an estimated 60% of the existing polar research data is unfindable through common search engines and can only be accessed through institutional webpages. In social science and indigenous knowledge, this findability gap is even higher, approximately 84% of the total existing data. This raises an awareness sign and the call for the need of the scientific community to collect information on the global output of research data and publications related to the Polar Regions and present it in a homogenous, seamless database.
In this contribution, we present a new, open access discovery service, Open Polar, with the purpose of rendering polar research more visible and retrievable to the research community as well as to the interested public, teachers, students and decision-makers. The new service is currently under construction and will be hosted by UiT The Arctic University of Norway in close collaboration with the Norwegian Polar Institute and other international partners. The beta version of the Open Polar was made available in February 2021. We welcome comments and suggestions from the scientific community to the beta version, while we plan to launch the stable production version of the service by summer 2021. The beta version of the service can already be tested at the URL: www.openpolar.no
How to cite: Abu-Alam, T., Nilsen, K. M., Odu, O., Longva, L., and Aspaas, P. P.: Open Polar: a new freely search service of publications and research data of Polar Regions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12843, https://doi.org/10.5194/egusphere-egu21-12843, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Research data plays a key role in monitoring and predicting any natural phenomena, including changes in the Polar Regions. The limited access to data restricts the ability of researchers to monitor, predict and model environmental changes and their socio-economic repercussions. In a recent survey of 113 major polar research institutions, we found out that an estimated 60% of the existing polar research data is unfindable through common search engines and can only be accessed through institutional webpages. In social science and indigenous knowledge, this findability gap is even higher, approximately 84% of the total existing data. This raises an awareness sign and the call for the need of the scientific community to collect information on the global output of research data and publications related to the Polar Regions and present it in a homogenous, seamless database.
In this contribution, we present a new, open access discovery service, Open Polar, with the purpose of rendering polar research more visible and retrievable to the research community as well as to the interested public, teachers, students and decision-makers. The new service is currently under construction and will be hosted by UiT The Arctic University of Norway in close collaboration with the Norwegian Polar Institute and other international partners. The beta version of the Open Polar was made available in February 2021. We welcome comments and suggestions from the scientific community to the beta version, while we plan to launch the stable production version of the service by summer 2021. The beta version of the service can already be tested at the URL: www.openpolar.no
How to cite: Abu-Alam, T., Nilsen, K. M., Odu, O., Longva, L., and Aspaas, P. P.: Open Polar: a new freely search service of publications and research data of Polar Regions, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12843, https://doi.org/10.5194/egusphere-egu21-12843, 2021.
EGU21-15951 | vPICO presentations | ITS2.4/SSS2
Monitoring Svalbard’s environment and cultural heritage through citizen science by expedition cruisesMichael Poulsen
Monitoring Svalbard’s environment and cultural heritage through citizen science by expedition cruises
Michael K. Poulsen1, Lisbeth Iversen2, Ted Cheeseman3, Børge Damsgård4, Verena Meraldi5, Naja Elisabeth Mikkelsen6, Zdenka Sokolíčková7, Kai Sørensen8, Agnieszka Tatarek9, Penelope Wagner10, Stein Sandven2, and Finn Danielsen1
1NORDECO, 2NERSC, 3PCSC, 4UNIS, 5Hurtigruten, 6GEUS, 7University of Oslo, 8NIVA, 9IOPAN, 10MET Norway
Why expedition cruise monitoring is important for Svalbard. The Arctic environment is changing fast, largely due to increasing temperatures and human activities. The continuous areas of wilderness and the cultural heritage sites in Svalbard need to be managed based on a solid understanding.
The natural environment of Svalbard is rich compared to other polar regions. Historical remains are plentiful. The Svalbard Environmental Protection Act aims at regulating hunting, fishing, industrial activities, mining, commerce and tourism. Expedition cruises regularly reach otherwise rarely visited places.
Steps taken to improve environmental monitoring. A workshop for enhancing the environmental monitoring efforts of expedition cruise ships was held in Longyearbyen in 2019, facilitated by the INTAROS project and the Association of Arctic Expedition Cruise Operators (https://intaros.nersc.no/content/cruise-expedition-monitoring-workshop) with representatives of cruise operators, citizen science programs, local government and scientists. They agreed on a pilot assessment of monitoring programs during 2019.
Results show the importance of cruise ship observations. The provisional findings of the pilot assessment suggest thatexpedition cruises go almost everywhere around Svalbard and gather significant and relevant data on the environment, contributing for example to an improved understanding of thestatus and distribution of wildlife. Observations are often documented with photographs. More than 150 persons contributed observations during 2019 to eBird and Happywhale. iNaturalist, not part of the pilot assessment, also received many contributions. The pilot assessment was unable to establish a useful citizen science program for testing monitoring of cultural remains.
Conclusions relevant for monitoring and environmental management. Cruise ships collect environmental data that are valuable for the scientific community and for public decision-makers. The Governor of Svalbard isresponsible for environmental management in Svalbard. Data on the environment and on cultural remains from expedition cruises can be useful for the Governor’s office. Improved communication between citizen science programs and those responsible for environmental management decisions is likely to increase the quantity of relevant information that reaches public decision makers.
Recommendations for improving the use of cruise ship observations and monitoring.
- 1) All cruise expedition ships should be equipped with tablets containing the apps for the same small selection of citizen scienceprograms so that they can easily upload records.
- 2) Evaluation of data that can be created and how such data can contribute to monitoring programs, to ensure that data is made readily available in a form that is useful for institutions responsible for planning and improving environmental management.
- 3) Clear lines of communication between citizen science program participants, citizen science program organizers, the scientific community and decision makers should be further developed.
- 4) Developing expedition cruise monitoring is of high priority in Svalbard, but is also highly relevant to other polar regions.
- 5) Further work is necessary to fully understand the feasibility and potential of coordinated expedition cruise operator based environmental observing in the Arctic.
How to cite: Poulsen, M.: Monitoring Svalbard’s environment and cultural heritage through citizen science by expedition cruises, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15951, https://doi.org/10.5194/egusphere-egu21-15951, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Monitoring Svalbard’s environment and cultural heritage through citizen science by expedition cruises
Michael K. Poulsen1, Lisbeth Iversen2, Ted Cheeseman3, Børge Damsgård4, Verena Meraldi5, Naja Elisabeth Mikkelsen6, Zdenka Sokolíčková7, Kai Sørensen8, Agnieszka Tatarek9, Penelope Wagner10, Stein Sandven2, and Finn Danielsen1
1NORDECO, 2NERSC, 3PCSC, 4UNIS, 5Hurtigruten, 6GEUS, 7University of Oslo, 8NIVA, 9IOPAN, 10MET Norway
Why expedition cruise monitoring is important for Svalbard. The Arctic environment is changing fast, largely due to increasing temperatures and human activities. The continuous areas of wilderness and the cultural heritage sites in Svalbard need to be managed based on a solid understanding.
The natural environment of Svalbard is rich compared to other polar regions. Historical remains are plentiful. The Svalbard Environmental Protection Act aims at regulating hunting, fishing, industrial activities, mining, commerce and tourism. Expedition cruises regularly reach otherwise rarely visited places.
Steps taken to improve environmental monitoring. A workshop for enhancing the environmental monitoring efforts of expedition cruise ships was held in Longyearbyen in 2019, facilitated by the INTAROS project and the Association of Arctic Expedition Cruise Operators (https://intaros.nersc.no/content/cruise-expedition-monitoring-workshop) with representatives of cruise operators, citizen science programs, local government and scientists. They agreed on a pilot assessment of monitoring programs during 2019.
Results show the importance of cruise ship observations. The provisional findings of the pilot assessment suggest thatexpedition cruises go almost everywhere around Svalbard and gather significant and relevant data on the environment, contributing for example to an improved understanding of thestatus and distribution of wildlife. Observations are often documented with photographs. More than 150 persons contributed observations during 2019 to eBird and Happywhale. iNaturalist, not part of the pilot assessment, also received many contributions. The pilot assessment was unable to establish a useful citizen science program for testing monitoring of cultural remains.
Conclusions relevant for monitoring and environmental management. Cruise ships collect environmental data that are valuable for the scientific community and for public decision-makers. The Governor of Svalbard isresponsible for environmental management in Svalbard. Data on the environment and on cultural remains from expedition cruises can be useful for the Governor’s office. Improved communication between citizen science programs and those responsible for environmental management decisions is likely to increase the quantity of relevant information that reaches public decision makers.
Recommendations for improving the use of cruise ship observations and monitoring.
- 1) All cruise expedition ships should be equipped with tablets containing the apps for the same small selection of citizen scienceprograms so that they can easily upload records.
- 2) Evaluation of data that can be created and how such data can contribute to monitoring programs, to ensure that data is made readily available in a form that is useful for institutions responsible for planning and improving environmental management.
- 3) Clear lines of communication between citizen science program participants, citizen science program organizers, the scientific community and decision makers should be further developed.
- 4) Developing expedition cruise monitoring is of high priority in Svalbard, but is also highly relevant to other polar regions.
- 5) Further work is necessary to fully understand the feasibility and potential of coordinated expedition cruise operator based environmental observing in the Arctic.
How to cite: Poulsen, M.: Monitoring Svalbard’s environment and cultural heritage through citizen science by expedition cruises, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15951, https://doi.org/10.5194/egusphere-egu21-15951, 2021.
EGU21-13203 | vPICO presentations | ITS2.4/SSS2
Modular designed Apps – an opportunity to standardize data collection methods and to encourage the reuse of softwareSina C. Truckenbrodt, Maximilian Enderling, Carsten Pathe, Erik Borg, Christiane C. Schmullius, and Friederike Klan
Data collection strategies vary among different citizen science projects. This complicates the intercomparability of parameter values acquired in different studies (e.g., methodological and scale issues) and results in variable data quality. This creates problems regarding the merging of different data sets and hampers the reuse of data from different projects. Modular designed applications for mobile devices (Apps) represent a framework that helps to foster the standardisation of data collection methods. While they encourage the reuse of the software, they provide enough flexibility for an adjustment in accordance with the research question(s) of interest.
The currently developed App “FieldMApp” offers such a framework running under Android and iOS. The related concept includes predefined frame functionalities, like settings for the user account and the user interface, and adaptable application-related functionalities. The latter comprise several modules that are categorized as sensor test, basic functionality, parameter collection and data quality collection modules. The interdependencies of these modules are documented in a wiki. This enables an individual and context-based selection of functionalities. The FieldMApp is based on open-source software libraries (Xamarin, Open Development Kit (ODK), SQLite, CoreCLR-NCalc, LusoV.YamarinUsbSerialForAndroid, Newtonsoft.Json, SharpZipLib) and will be published as open-source software. Hence, the existing catalogue of functionalities can be augmented in the future. The premise for such extensions is that modules are published together with smart, universally applicable data quality recording routines and a proper documentation in the wiki.
In this contribution, we present the concept and the structure of the FieldMApp and some current fields of application that are related to the cultivation of arable land, soil mapping, forest monitoring, and Earth Observation. The extension of the functionality catalogue is exemplified by the newly implemented speech recognition module. A related quality recording routine will be introduced. With this contribution we would like to encourage citizens and scientists to elicit which requirements such an App should fulfil from their point of view.
How to cite: Truckenbrodt, S. C., Enderling, M., Pathe, C., Borg, E., Schmullius, C. C., and Klan, F.: Modular designed Apps – an opportunity to standardize data collection methods and to encourage the reuse of software, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13203, https://doi.org/10.5194/egusphere-egu21-13203, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Data collection strategies vary among different citizen science projects. This complicates the intercomparability of parameter values acquired in different studies (e.g., methodological and scale issues) and results in variable data quality. This creates problems regarding the merging of different data sets and hampers the reuse of data from different projects. Modular designed applications for mobile devices (Apps) represent a framework that helps to foster the standardisation of data collection methods. While they encourage the reuse of the software, they provide enough flexibility for an adjustment in accordance with the research question(s) of interest.
The currently developed App “FieldMApp” offers such a framework running under Android and iOS. The related concept includes predefined frame functionalities, like settings for the user account and the user interface, and adaptable application-related functionalities. The latter comprise several modules that are categorized as sensor test, basic functionality, parameter collection and data quality collection modules. The interdependencies of these modules are documented in a wiki. This enables an individual and context-based selection of functionalities. The FieldMApp is based on open-source software libraries (Xamarin, Open Development Kit (ODK), SQLite, CoreCLR-NCalc, LusoV.YamarinUsbSerialForAndroid, Newtonsoft.Json, SharpZipLib) and will be published as open-source software. Hence, the existing catalogue of functionalities can be augmented in the future. The premise for such extensions is that modules are published together with smart, universally applicable data quality recording routines and a proper documentation in the wiki.
In this contribution, we present the concept and the structure of the FieldMApp and some current fields of application that are related to the cultivation of arable land, soil mapping, forest monitoring, and Earth Observation. The extension of the functionality catalogue is exemplified by the newly implemented speech recognition module. A related quality recording routine will be introduced. With this contribution we would like to encourage citizens and scientists to elicit which requirements such an App should fulfil from their point of view.
How to cite: Truckenbrodt, S. C., Enderling, M., Pathe, C., Borg, E., Schmullius, C. C., and Klan, F.: Modular designed Apps – an opportunity to standardize data collection methods and to encourage the reuse of software, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13203, https://doi.org/10.5194/egusphere-egu21-13203, 2021.
EGU21-2770 | vPICO presentations | ITS2.4/SSS2
Nordic EPOS - A FAIR Nordic EPOS Data HubAnnakaisa Korja, Kuvvet Atakan, Peter H. Voss, Michael Roth, Kristin Vogfjord, Elena Kozlovskaya, Eija I. Tanskanen, Niina Junno, and Nordic Epos Working Group
Nordic EPOS - A FAIR Nordic EPOS Data Hub – is a consortium of the Nordic geophysical observatories financed by NordForsk. It is delivering on-line data to European Plate Observing System’s Thematic Core Services (EPOS’s TCSs). Nordic EPOS consortium comprises of the Universities of Helsinki, Bergen, Uppsala, Oulu and GEUS and Icelandic Meteorological Office. Nordic EPOS enhances and stimulates the ongoing active Nordic interactions related to Solid Earth Research Infrastructures (RIs) in general and EPOS in particular. Nordic EPOS develops expertise and tools designed to integrate Nordic RI data and to enhance their accessibility and usefulness to the Nordic research community. Together we can address global challenges in Norden and with Nordic data.
The Nordic EPOS’s main tasks are to advance the usage of multi-disciplinary Solid Earth data sets on scientific and societal problem solving, increase the amount of open, shared homogenized data sets, and increase the scientific expertise in creating sustainable societies in Nordic countries and especially in the Arctic region. In addition to developing services better suited for Nordic interest for EPOS, Nordic EPOS will also try to bring forward Nordic research interest, such as research of Arctic areas in TCSs and EPOS-ERIC governance and scientific boards.
The Nordic EPOS is organized into Tasks and Activities. The project has six main infrastructure TASKs: I - Training in usage of EPOS-RI data and services; II - Nordic data integration and FAIRness; III - Nordic station management of seismological networks, IV - Induced seismicity, safe society; V - Ash and gas monitoring; and VI- Geomagnetic hazards. In addition, the project has one transversal TASK VII on Communication and dissemination. The activities within the TASKs are workshops, tutorials, demos and training sessions (virtual and on-site), and communication and dissemination of EPOS data and metadata information at local, national and international workshops, meetings, and conferences.
How to cite: Korja, A., Atakan, K., Voss, P. H., Roth, M., Vogfjord, K., Kozlovskaya, E., Tanskanen, E. I., Junno, N., and Working Group, N. E.: Nordic EPOS - A FAIR Nordic EPOS Data Hub, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2770, https://doi.org/10.5194/egusphere-egu21-2770, 2021.
Nordic EPOS - A FAIR Nordic EPOS Data Hub – is a consortium of the Nordic geophysical observatories financed by NordForsk. It is delivering on-line data to European Plate Observing System’s Thematic Core Services (EPOS’s TCSs). Nordic EPOS consortium comprises of the Universities of Helsinki, Bergen, Uppsala, Oulu and GEUS and Icelandic Meteorological Office. Nordic EPOS enhances and stimulates the ongoing active Nordic interactions related to Solid Earth Research Infrastructures (RIs) in general and EPOS in particular. Nordic EPOS develops expertise and tools designed to integrate Nordic RI data and to enhance their accessibility and usefulness to the Nordic research community. Together we can address global challenges in Norden and with Nordic data.
The Nordic EPOS’s main tasks are to advance the usage of multi-disciplinary Solid Earth data sets on scientific and societal problem solving, increase the amount of open, shared homogenized data sets, and increase the scientific expertise in creating sustainable societies in Nordic countries and especially in the Arctic region. In addition to developing services better suited for Nordic interest for EPOS, Nordic EPOS will also try to bring forward Nordic research interest, such as research of Arctic areas in TCSs and EPOS-ERIC governance and scientific boards.
The Nordic EPOS is organized into Tasks and Activities. The project has six main infrastructure TASKs: I - Training in usage of EPOS-RI data and services; II - Nordic data integration and FAIRness; III - Nordic station management of seismological networks, IV - Induced seismicity, safe society; V - Ash and gas monitoring; and VI- Geomagnetic hazards. In addition, the project has one transversal TASK VII on Communication and dissemination. The activities within the TASKs are workshops, tutorials, demos and training sessions (virtual and on-site), and communication and dissemination of EPOS data and metadata information at local, national and international workshops, meetings, and conferences.
How to cite: Korja, A., Atakan, K., Voss, P. H., Roth, M., Vogfjord, K., Kozlovskaya, E., Tanskanen, E. I., Junno, N., and Working Group, N. E.: Nordic EPOS - A FAIR Nordic EPOS Data Hub, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2770, https://doi.org/10.5194/egusphere-egu21-2770, 2021.
EGU21-13042 | vPICO presentations | ITS2.4/SSS2
V3Geo: A cloud-based platform for sharing virtual 3D models in geoscienceSimon Buckley, John Howell, Nicole Naumann, Conor Lewis, Kari Ringdal, Joris Vanbiervliet, Bowei Tong, Gail Maxwell, and Magda Chmielewska
V3Geo is a cloud-based repository for virtual 3D models in geoscience, allowing storage, searching tools and visualisation of 3D models typically acquired through photogrammetry (structure-from-motion), laser scanning or other laboratory-based 3D modelling methods. The platform has been developed to store and access 3D models at the range of scales and applications required by geoscientists – from microscopic, hand samples and fossils through to outcrop sections covering metres to tens of kilometres. A 3D web viewer efficiently streams the model data over the Internet connection, allowing 3D models to be explored interactively. A measurement tool makes it possible for user to measure simple dimensions, such as widths, thicknesses, fault throws and more. V3Geo differs from other services in that it allows very large models (consisting of multiple sections), is designed to include additional interpretations in future versions, and focuses specifically on geoscience through metadata and a classification schema.
The initial version of V3Geo was released in 2020 in reaction to the COVID-19 pandemic, with the aim of providing virtual tools in a time of cancelled field excursions, field-based courses and fieldwork. The repository has been accepting community contributions, based on a guideline for preparing and submitting high quality 3D datasets. Contributions are subject to a technical review to ensure underlying quality and reliability for scientific and professional usage. Model description pages give an overview of the datasets, with references, and datasets themselves are assigned Creative Commons licences. The 3D viewer can be embedded in webpages, making it easy to include V3Geo models in virtual teaching resources. V3Geo allows increased accessibility to field localities when travel or mobility is restricted, as well as providing the foundation for virtual field trips. The database currently includes around 200 virtual 3D models from around the world, and will continue to develop and grow, aiming to become a valuable resource for the geoscience community. Future updates will include tools to facilitate upload and technical review, interpretations and Digital Object Identifiers.
How to cite: Buckley, S., Howell, J., Naumann, N., Lewis, C., Ringdal, K., Vanbiervliet, J., Tong, B., Maxwell, G., and Chmielewska, M.: V3Geo: A cloud-based platform for sharing virtual 3D models in geoscience, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13042, https://doi.org/10.5194/egusphere-egu21-13042, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
V3Geo is a cloud-based repository for virtual 3D models in geoscience, allowing storage, searching tools and visualisation of 3D models typically acquired through photogrammetry (structure-from-motion), laser scanning or other laboratory-based 3D modelling methods. The platform has been developed to store and access 3D models at the range of scales and applications required by geoscientists – from microscopic, hand samples and fossils through to outcrop sections covering metres to tens of kilometres. A 3D web viewer efficiently streams the model data over the Internet connection, allowing 3D models to be explored interactively. A measurement tool makes it possible for user to measure simple dimensions, such as widths, thicknesses, fault throws and more. V3Geo differs from other services in that it allows very large models (consisting of multiple sections), is designed to include additional interpretations in future versions, and focuses specifically on geoscience through metadata and a classification schema.
The initial version of V3Geo was released in 2020 in reaction to the COVID-19 pandemic, with the aim of providing virtual tools in a time of cancelled field excursions, field-based courses and fieldwork. The repository has been accepting community contributions, based on a guideline for preparing and submitting high quality 3D datasets. Contributions are subject to a technical review to ensure underlying quality and reliability for scientific and professional usage. Model description pages give an overview of the datasets, with references, and datasets themselves are assigned Creative Commons licences. The 3D viewer can be embedded in webpages, making it easy to include V3Geo models in virtual teaching resources. V3Geo allows increased accessibility to field localities when travel or mobility is restricted, as well as providing the foundation for virtual field trips. The database currently includes around 200 virtual 3D models from around the world, and will continue to develop and grow, aiming to become a valuable resource for the geoscience community. Future updates will include tools to facilitate upload and technical review, interpretations and Digital Object Identifiers.
How to cite: Buckley, S., Howell, J., Naumann, N., Lewis, C., Ringdal, K., Vanbiervliet, J., Tong, B., Maxwell, G., and Chmielewska, M.: V3Geo: A cloud-based platform for sharing virtual 3D models in geoscience, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-13042, https://doi.org/10.5194/egusphere-egu21-13042, 2021.
EGU21-12872 | vPICO presentations | ITS2.4/SSS2
A compiled open-access geological map of Dronning Maud Land, AntarcticaTamer Abu-Alam and Synnøve Elvevold
Geological mapping and investigation of the mountain chain in Dronning Maud Land (DML) has been carried out by a number of geologists from South Africa, Japan, India, Germany, Russia and Norway over the last 40-50 years. The produced geological maps of these teams are, for a large part, based on fairly old data which makes these maps inhomogeneous. The maps are at different scales, contain different levels of details, and the standards for classification of the rock units may also differ between the maps. This limits the ability to use these maps to draw an overview tectonic model of the evolution of Dronning Maud Land.
In this contribution, we present a newly compiled geological map and GIS database of the Dronning Maud Land. The map will be available soon as an open-access database, but the readers can test a test version of it at: https://geokart.npolar.no/Html5Viewer/index.html?viewer=Geology_DML. The geological importance of the Dronning Maud Land to understanding the evolution of the southern parts of the Gondwana supercontinent was the main motivation factor as the DML is considered as the missing link between the geology of South Africa, Australia and Indian subcontinent.
The new database covers the area between 20o W and 45o E and was compiled at a scale level of 1:250 000. However, the database provides another scale level of 1:5 000 000 to put the DML in the regional framework of the Gondwana. The geological map is descriptive based on the new topographic dataset of the Landsat 8. The project was based at the Norwegian Polar Institute from 2014 to 2018 and supported by a research grant from the Ministry of Foreign Affairs, Norway.
How to cite: Abu-Alam, T. and Elvevold, S.: A compiled open-access geological map of Dronning Maud Land, Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12872, https://doi.org/10.5194/egusphere-egu21-12872, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Geological mapping and investigation of the mountain chain in Dronning Maud Land (DML) has been carried out by a number of geologists from South Africa, Japan, India, Germany, Russia and Norway over the last 40-50 years. The produced geological maps of these teams are, for a large part, based on fairly old data which makes these maps inhomogeneous. The maps are at different scales, contain different levels of details, and the standards for classification of the rock units may also differ between the maps. This limits the ability to use these maps to draw an overview tectonic model of the evolution of Dronning Maud Land.
In this contribution, we present a newly compiled geological map and GIS database of the Dronning Maud Land. The map will be available soon as an open-access database, but the readers can test a test version of it at: https://geokart.npolar.no/Html5Viewer/index.html?viewer=Geology_DML. The geological importance of the Dronning Maud Land to understanding the evolution of the southern parts of the Gondwana supercontinent was the main motivation factor as the DML is considered as the missing link between the geology of South Africa, Australia and Indian subcontinent.
The new database covers the area between 20o W and 45o E and was compiled at a scale level of 1:250 000. However, the database provides another scale level of 1:5 000 000 to put the DML in the regional framework of the Gondwana. The geological map is descriptive based on the new topographic dataset of the Landsat 8. The project was based at the Norwegian Polar Institute from 2014 to 2018 and supported by a research grant from the Ministry of Foreign Affairs, Norway.
How to cite: Abu-Alam, T. and Elvevold, S.: A compiled open-access geological map of Dronning Maud Land, Antarctica, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12872, https://doi.org/10.5194/egusphere-egu21-12872, 2021.
EGU21-2929 | vPICO presentations | ITS2.4/SSS2
Sentinel-1 InSAR data by LiCSAR systemMilan Lazecky, Yasser Maghsoudi Mehrani, Scott Watson, Yu Morishita, John Elliott, Andrew Hooper, and Tim Wright
Looking Into the Continents from Space with Synthetic Aperture Radar (LiCSAR) is a system built for large-scale interferometric processing of Sentinel-1 data. LiCSAR automatically produces geocoded wrapped and unwrapped interferograms combining every acquisition epoch with four preceding epochs, and complementary data (coherence, amplitude, line-of-sight unit vectors, digital elevation model, metadata, and atmospheric phase screen estimates by the Generic Atmospheric Correction Online Service, GACOS).
The LiCSAR products are generated in frame units where a standard frame covers ~220x250 km, at 0.001° resolution (WGS-84 coordinate system). Frames are continuously updated for tectonic and volcanic priority areas. In 2020, the LiCSAR system covered about 1,500 global frames in which we have processed over 89,000 Sentinel-1 acquisitions and generated over 300,000 interferograms. Among these, 470 frames cover 1,024 global volcanoes. We aim to cover the global seismic mask defined by the Committee on Earth Observation Satellites (CEOS), but focus initially on the Alpine-Himalayan belt and East African Rift.
We serve the products as open and freely accessible through our web portal: https://comet.nerc.ac.uk/comet-lics-portal and aim to provide them to shared infrastructures as the European Plate Observing System (EPOS). We also generate rapid response coseismic interferograms for earthquakes with moment magnitude (Mw)> 5.5 a few hours after the postseismic data become available, and we update frames covering active volcanoes twice per day.
Our products can be directly converted to displacement time series and velocities using the LiCSBAS time series analysis software. We present solutions implemented in LiCSAR, and show several case studies that use LiCSAR and LiCSBAS products to measure tectonic and volcanic deformation.
How to cite: Lazecky, M., Maghsoudi Mehrani, Y., Watson, S., Morishita, Y., Elliott, J., Hooper, A., and Wright, T.: Sentinel-1 InSAR data by LiCSAR system, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2929, https://doi.org/10.5194/egusphere-egu21-2929, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Looking Into the Continents from Space with Synthetic Aperture Radar (LiCSAR) is a system built for large-scale interferometric processing of Sentinel-1 data. LiCSAR automatically produces geocoded wrapped and unwrapped interferograms combining every acquisition epoch with four preceding epochs, and complementary data (coherence, amplitude, line-of-sight unit vectors, digital elevation model, metadata, and atmospheric phase screen estimates by the Generic Atmospheric Correction Online Service, GACOS).
The LiCSAR products are generated in frame units where a standard frame covers ~220x250 km, at 0.001° resolution (WGS-84 coordinate system). Frames are continuously updated for tectonic and volcanic priority areas. In 2020, the LiCSAR system covered about 1,500 global frames in which we have processed over 89,000 Sentinel-1 acquisitions and generated over 300,000 interferograms. Among these, 470 frames cover 1,024 global volcanoes. We aim to cover the global seismic mask defined by the Committee on Earth Observation Satellites (CEOS), but focus initially on the Alpine-Himalayan belt and East African Rift.
We serve the products as open and freely accessible through our web portal: https://comet.nerc.ac.uk/comet-lics-portal and aim to provide them to shared infrastructures as the European Plate Observing System (EPOS). We also generate rapid response coseismic interferograms for earthquakes with moment magnitude (Mw)> 5.5 a few hours after the postseismic data become available, and we update frames covering active volcanoes twice per day.
Our products can be directly converted to displacement time series and velocities using the LiCSBAS time series analysis software. We present solutions implemented in LiCSAR, and show several case studies that use LiCSAR and LiCSBAS products to measure tectonic and volcanic deformation.
How to cite: Lazecky, M., Maghsoudi Mehrani, Y., Watson, S., Morishita, Y., Elliott, J., Hooper, A., and Wright, T.: Sentinel-1 InSAR data by LiCSAR system, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2929, https://doi.org/10.5194/egusphere-egu21-2929, 2021.
EGU21-7961 | vPICO presentations | ITS2.4/SSS2
Establishing a systematic regional scale identification of artificial ground in Catalan territory from geological perspectiveGuillem Subiela, Jordi Peña, Fus Micheo, and Miquel Vilà
Anthropization is the transformation that human actions exert on the environment. Artificial interventions modify the morphology of the ground and affect physical and chemical properties of natural terrain. Therefore, providing information on the distribution of artificial ground throughout the territory is necessary for land management, development and sustainability. Despite the effects of anthropization, from a geological approach, the systematic characterization of anthropic ground on a regional scale is scarcely developed in Catalonia.
In the last decade, one of the lines of work of Institut Cartogràfic i Geològic de Catalunya (the Catalan geological survey organisation) has been the development of the project Geoanthropic map of Catalonia, which incorporate information of active geological processes and artificial ground. Up to now, the activity in this project has broadly consisted of publishing several map sheets of 1:25.000 scale from different areas of Catalonia (5.000 km2 from 32.108,2 km2). Recently, in the framework of this project, it is proposed to refocus with the purpose of providing information on these two themes from all over the territory. In this process, in relation to artificial interventions, an analysis has been carried out to determine which anthropic terrains and related information can be obtained for its usefulness in a systematic way in the medium term.
In this analysis, firstly, the available reference information sources have been established from which information on anthropic lands in Catalonia can be extracted. Basically, these documents are topographic maps, geothematic maps, land use map, digital elevation models and other historical cartographic documents. Much of the existing information in these sources must be redirected to a more geological approach so that it can be used to address aspects related to geotechnics, natural hazards, soil pollution and other environmental concerns.
Secondly, based on data analysis, a series of certain anthropic lands have been evaluated which can be captured on a systematic identification at regional scale. Thereby, the following anthropogenic terrains have been established: built-up areas, agricultural areas, sealed ground, urban compacity, worked grounds (e.g., related to mineral excavations and transport infrastructures), engineered embankments, infilled excavations and other more singular anthropogenic deposits. Therefore, from a geological perspective, it will be feasible to identify and map these anthropic lands and provide this information throughout the Catalan territory in the medium term.
Bearing in mind all the above, the presentation will consist of this general analysis and the considerations that have been extracted regarding this. In addition, the preliminary results of the systematically characterized artificial ground will be shown.
How to cite: Subiela, G., Peña, J., Micheo, F., and Vilà, M.: Establishing a systematic regional scale identification of artificial ground in Catalan territory from geological perspective, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7961, https://doi.org/10.5194/egusphere-egu21-7961, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Anthropization is the transformation that human actions exert on the environment. Artificial interventions modify the morphology of the ground and affect physical and chemical properties of natural terrain. Therefore, providing information on the distribution of artificial ground throughout the territory is necessary for land management, development and sustainability. Despite the effects of anthropization, from a geological approach, the systematic characterization of anthropic ground on a regional scale is scarcely developed in Catalonia.
In the last decade, one of the lines of work of Institut Cartogràfic i Geològic de Catalunya (the Catalan geological survey organisation) has been the development of the project Geoanthropic map of Catalonia, which incorporate information of active geological processes and artificial ground. Up to now, the activity in this project has broadly consisted of publishing several map sheets of 1:25.000 scale from different areas of Catalonia (5.000 km2 from 32.108,2 km2). Recently, in the framework of this project, it is proposed to refocus with the purpose of providing information on these two themes from all over the territory. In this process, in relation to artificial interventions, an analysis has been carried out to determine which anthropic terrains and related information can be obtained for its usefulness in a systematic way in the medium term.
In this analysis, firstly, the available reference information sources have been established from which information on anthropic lands in Catalonia can be extracted. Basically, these documents are topographic maps, geothematic maps, land use map, digital elevation models and other historical cartographic documents. Much of the existing information in these sources must be redirected to a more geological approach so that it can be used to address aspects related to geotechnics, natural hazards, soil pollution and other environmental concerns.
Secondly, based on data analysis, a series of certain anthropic lands have been evaluated which can be captured on a systematic identification at regional scale. Thereby, the following anthropogenic terrains have been established: built-up areas, agricultural areas, sealed ground, urban compacity, worked grounds (e.g., related to mineral excavations and transport infrastructures), engineered embankments, infilled excavations and other more singular anthropogenic deposits. Therefore, from a geological perspective, it will be feasible to identify and map these anthropic lands and provide this information throughout the Catalan territory in the medium term.
Bearing in mind all the above, the presentation will consist of this general analysis and the considerations that have been extracted regarding this. In addition, the preliminary results of the systematically characterized artificial ground will be shown.
How to cite: Subiela, G., Peña, J., Micheo, F., and Vilà, M.: Establishing a systematic regional scale identification of artificial ground in Catalan territory from geological perspective, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7961, https://doi.org/10.5194/egusphere-egu21-7961, 2021.
ITS2.5/OS4.8 – Global plastic contamination: a journey towards scientifically informed policies and solutions
EGU21-274 | vPICO presentations | ITS2.5/OS4.8
Using machine learning techniques to predict beaching of marine debris on the Galapagos IslandsStefanie Ypma, Mikael Kaandorp, Jen Jones, Andy Donnelly, and Erik van Sebille
The Galapagos Archipelago and the Galapagos Marine Reserve host one of the world’s most unique ecosystems. Although being a UNESCO world heritage site and being isolated from any dense population, over 8 tonnes of plastic are collected on the islands each year. To decrease the impact of plastic waste in the region, scientific evidence is needed on the sources and fate of the marine debris. Here, we will assess the skill of machine learning techniques to predict beaching events on these islands. In order to do so, we combine various hydrodynamic fields from ocean-, wave-, wind- and tide-models using the OceanParcels particle tracking framework to track virtual particles through the marine reserve. In addition, a beaching parameterization has been developed and implemented to quantify where and when virtual particles wash ashore. The results show that the particle pathways and beaching probabilities strongly depend on the dry and wet seasons characteristic for the Galapagos Islands.
Therefore, it is expected that the beaching events can to some extent be predicted from the forecasts of currents, tides and waves - without performing a Lagrangian simulation. To test this hypothesis, PCA analysis and random forests are applied to a set of over 100 variables and their skill to explain the beaching variability given by the particle model is determined. In addition, the results are compared to a timeseries of observed beached litter on one of the Island of San Cristobal to apply the models in a realistic case study. This work, in combination with a growing observational data set, will form the basis of a predictive model that will support the Galapagos National Park in their efforts to free the Galapagos Archipelago from marine debris.
How to cite: Ypma, S., Kaandorp, M., Jones, J., Donnelly, A., and van Sebille, E.: Using machine learning techniques to predict beaching of marine debris on the Galapagos Islands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-274, https://doi.org/10.5194/egusphere-egu21-274, 2021.
The Galapagos Archipelago and the Galapagos Marine Reserve host one of the world’s most unique ecosystems. Although being a UNESCO world heritage site and being isolated from any dense population, over 8 tonnes of plastic are collected on the islands each year. To decrease the impact of plastic waste in the region, scientific evidence is needed on the sources and fate of the marine debris. Here, we will assess the skill of machine learning techniques to predict beaching events on these islands. In order to do so, we combine various hydrodynamic fields from ocean-, wave-, wind- and tide-models using the OceanParcels particle tracking framework to track virtual particles through the marine reserve. In addition, a beaching parameterization has been developed and implemented to quantify where and when virtual particles wash ashore. The results show that the particle pathways and beaching probabilities strongly depend on the dry and wet seasons characteristic for the Galapagos Islands.
Therefore, it is expected that the beaching events can to some extent be predicted from the forecasts of currents, tides and waves - without performing a Lagrangian simulation. To test this hypothesis, PCA analysis and random forests are applied to a set of over 100 variables and their skill to explain the beaching variability given by the particle model is determined. In addition, the results are compared to a timeseries of observed beached litter on one of the Island of San Cristobal to apply the models in a realistic case study. This work, in combination with a growing observational data set, will form the basis of a predictive model that will support the Galapagos National Park in their efforts to free the Galapagos Archipelago from marine debris.
How to cite: Ypma, S., Kaandorp, M., Jones, J., Donnelly, A., and van Sebille, E.: Using machine learning techniques to predict beaching of marine debris on the Galapagos Islands, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-274, https://doi.org/10.5194/egusphere-egu21-274, 2021.
EGU21-280 | vPICO presentations | ITS2.5/OS4.8 | Highlight
Global modeled sinking characteristics of biofouled microplasticDelphine Lobelle, Merel Kooi, Albert A. Koelmans, Charlotte Laufkotter, Cleo E. Jongedijk, Christian Kehl, and Erik van Sebille
Microplastic debris ending up at the sea surface has become a known major environmental issue. However, how microplastic particles move and when they sink in the ocean remains largely unknown. Here, we model microplastic subject to biofouling (algal growth on a substrate) to estimate sinking timescales and the time to reach the depth where particles stops sinking. We combine NEMO-MEDUSA 2.0 output, that represents hydrodynamic and biological properties of seawater, with a particle-tracking framework. Different sizes and densities of particles (for different types of plastic) are simulated, showing that the global distribution of sinking timescales is largely size-dependent as opposed to density-dependent. The smallest particles we simulate (0.1 μm) start sinking almost immediately around the globe and their trajectories produce the longest time to reach their first sinking depth (almost 40 days as a global median). In oligotrophic subtropical gyres with low algal concentrations, particles between 1 mm and 10 μm do not sink within the 90-day simulation time. This suggests that in addition to the comparatively well-known physical processes, biological processes might also contribute to the accumulation of floating plastic (of 1 mm to 10 μm) in subtropical gyres. Particles of 1 μm in the gyres start sinking largely due to vertical advection, whereas 0.1 μm particles sink both due to biofouling and advection. The qualitative impacts of seasonality on sinking timescales are small, however, localised sooner sinking due to spring algal blooms is seen. This study maps processes that affect the sinking of virtual microplastic globally, which could ultimately impact the ocean plastic budget.
How to cite: Lobelle, D., Kooi, M., Koelmans, A. A., Laufkotter, C., Jongedijk, C. E., Kehl, C., and van Sebille, E.: Global modeled sinking characteristics of biofouled microplastic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-280, https://doi.org/10.5194/egusphere-egu21-280, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Microplastic debris ending up at the sea surface has become a known major environmental issue. However, how microplastic particles move and when they sink in the ocean remains largely unknown. Here, we model microplastic subject to biofouling (algal growth on a substrate) to estimate sinking timescales and the time to reach the depth where particles stops sinking. We combine NEMO-MEDUSA 2.0 output, that represents hydrodynamic and biological properties of seawater, with a particle-tracking framework. Different sizes and densities of particles (for different types of plastic) are simulated, showing that the global distribution of sinking timescales is largely size-dependent as opposed to density-dependent. The smallest particles we simulate (0.1 μm) start sinking almost immediately around the globe and their trajectories produce the longest time to reach their first sinking depth (almost 40 days as a global median). In oligotrophic subtropical gyres with low algal concentrations, particles between 1 mm and 10 μm do not sink within the 90-day simulation time. This suggests that in addition to the comparatively well-known physical processes, biological processes might also contribute to the accumulation of floating plastic (of 1 mm to 10 μm) in subtropical gyres. Particles of 1 μm in the gyres start sinking largely due to vertical advection, whereas 0.1 μm particles sink both due to biofouling and advection. The qualitative impacts of seasonality on sinking timescales are small, however, localised sooner sinking due to spring algal blooms is seen. This study maps processes that affect the sinking of virtual microplastic globally, which could ultimately impact the ocean plastic budget.
How to cite: Lobelle, D., Kooi, M., Koelmans, A. A., Laufkotter, C., Jongedijk, C. E., Kehl, C., and van Sebille, E.: Global modeled sinking characteristics of biofouled microplastic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-280, https://doi.org/10.5194/egusphere-egu21-280, 2021.
EGU21-697 | vPICO presentations | ITS2.5/OS4.8
Wind erosion controls on microplastics from soils: linking soil surface properties with microplastic fluxAnnie Ockelford, Joanna Bullard, Cheryl McKenna Neuman, and Patrick O'Brien
Recent studies of soils in the Alps and Middle East indicate airborne transport of microplastics following wind erosion may be significant. Where microplastics have been entrained by wind they show substantial enrichment ratios compared to mineral particle erosion. Further, microplastic shape affects enrichment ratios with those for fibres greater than for microbeads which may reflect the lower density and asymmetric shape of microplastics compared to soil particles. This suggests that terrestrial to atmospheric transfer of microplastics could be a significant environmental transport pathway. However, currently we have very little understanding of how the properties, in particular the surface characteristics, of the sediment which they are being eroded from affects their entrainment potential.
This paper reports wind tunnel studies run to explore the impacts of soil surface characteristics on microplastic flux by wind erosion. Experiments were performed in a boundary layer simulation wind tunnel with an open-loop suction design. The tunnel has a working section of 12.5m x 0.7m x 0.76m and is housed in an environmental chamber which, for this study, was held constant at 20 oC and 20% RH. In experiments two types of low density microplastic (microbeads and fibres) were mixed into a poorly-sorted soil containing 13% organics. The polyethylene microbeads had a size range of 212-250 microns and density of 1.2 g cm3 and the polyester fibres were 5000 microns long and 500-1000 microns in width with a density of 1.38 g cm3. Microplastics were mixed into the sediment in concentrations ranging from 40-1040 mg kg-1. For each experiment, test surfaces were prepared by filling a 1.0m x 0.35m x 0.025m metal tray with the given mixture of test material which was lowered into the wind tunnel such that it was flush with the tunnel floor and levelled. The wind tunnel was then switched on and run with increasing wind speeds using 0.25 m s-1 increments until continuous saltation occurred. Soil surface roughness was scanned prior to and after each experiment using a high resolution laser scanner (0.5mm resolution over the entire test section). Transported soil and microplastic particles were captured in bulk using a 2 cm wide by 40 cm tall Guelph-Trent wedge trap that was positioned 2 m downwind of the test bed.
Discussion concentrates on linking the changes in soil surface topography to the magnitude of microplastic flux where data shows that there is a correlation between the development of the soil surfaces and overall microplastic flux. Specifically, soil surface roughness is seen as a significant control on microplastic flux where it has a greater overall effect on microplastic fibre flux as compared to the microplastic beads. The outcome of this research is pertinent to developing understanding surrounding the likely controls and hence propensity of microplastics to be entrained from soil by wind erosion.
How to cite: Ockelford, A., Bullard, J., McKenna Neuman, C., and O'Brien, P.: Wind erosion controls on microplastics from soils: linking soil surface properties with microplastic flux, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-697, https://doi.org/10.5194/egusphere-egu21-697, 2021.
Recent studies of soils in the Alps and Middle East indicate airborne transport of microplastics following wind erosion may be significant. Where microplastics have been entrained by wind they show substantial enrichment ratios compared to mineral particle erosion. Further, microplastic shape affects enrichment ratios with those for fibres greater than for microbeads which may reflect the lower density and asymmetric shape of microplastics compared to soil particles. This suggests that terrestrial to atmospheric transfer of microplastics could be a significant environmental transport pathway. However, currently we have very little understanding of how the properties, in particular the surface characteristics, of the sediment which they are being eroded from affects their entrainment potential.
This paper reports wind tunnel studies run to explore the impacts of soil surface characteristics on microplastic flux by wind erosion. Experiments were performed in a boundary layer simulation wind tunnel with an open-loop suction design. The tunnel has a working section of 12.5m x 0.7m x 0.76m and is housed in an environmental chamber which, for this study, was held constant at 20 oC and 20% RH. In experiments two types of low density microplastic (microbeads and fibres) were mixed into a poorly-sorted soil containing 13% organics. The polyethylene microbeads had a size range of 212-250 microns and density of 1.2 g cm3 and the polyester fibres were 5000 microns long and 500-1000 microns in width with a density of 1.38 g cm3. Microplastics were mixed into the sediment in concentrations ranging from 40-1040 mg kg-1. For each experiment, test surfaces were prepared by filling a 1.0m x 0.35m x 0.025m metal tray with the given mixture of test material which was lowered into the wind tunnel such that it was flush with the tunnel floor and levelled. The wind tunnel was then switched on and run with increasing wind speeds using 0.25 m s-1 increments until continuous saltation occurred. Soil surface roughness was scanned prior to and after each experiment using a high resolution laser scanner (0.5mm resolution over the entire test section). Transported soil and microplastic particles were captured in bulk using a 2 cm wide by 40 cm tall Guelph-Trent wedge trap that was positioned 2 m downwind of the test bed.
Discussion concentrates on linking the changes in soil surface topography to the magnitude of microplastic flux where data shows that there is a correlation between the development of the soil surfaces and overall microplastic flux. Specifically, soil surface roughness is seen as a significant control on microplastic flux where it has a greater overall effect on microplastic fibre flux as compared to the microplastic beads. The outcome of this research is pertinent to developing understanding surrounding the likely controls and hence propensity of microplastics to be entrained from soil by wind erosion.
How to cite: Ockelford, A., Bullard, J., McKenna Neuman, C., and O'Brien, P.: Wind erosion controls on microplastics from soils: linking soil surface properties with microplastic flux, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-697, https://doi.org/10.5194/egusphere-egu21-697, 2021.
EGU21-1022 | vPICO presentations | ITS2.5/OS4.8
Correlation of microplastic type and metal association: Croatian coast case study (Žirje Island)Hana Fajković, Neven Cukrov, Željko Kwokal, Kristina Pikelj, Laura Huljek, Iva Kostanjšek, and Vlado Cuculić
The aim of the study was to determine the correlation of metals on floating marine litter and weathered microplastic samples from the pristine area. Sampled were collected from the accumulated material on the natural beach in Mala Stupica Cove (Žirje Island, Croatia) in June 2020. In addition to weathered microplastic, the concentrations of dissolved metals in the seawater, at the same location were determined. According to these measurements, the sampling site can be considered pristine, with Cd and Pb concentrations as background values and Zn and Cu as elements that have no toxic effect, based on the classification proposed by Bakke et al., (2010). The metals of interest due to their high toxicity were Zn, Cd, Pb, and Cu.
After sampling, the collected material was sieved through a metal sieve with a 4 mesh size, resulting in 4 subsamples (>4 mm; 4-2 mm; 2-1 mm; 1-0.250 mm). The type of plastic particles from subsample >4 mm was determined by FTIR spectroscopy performed on Bruker Tensor 27 in the region from 400-4000 cm-1. On such defined particles and in the seawater sample, trace metal concentrations were determined by the electrochemical method differential pulse anodic stripping voltammetry (DPASV) with standard addition method by Metrohm Autolab modular potentiostat/galvanostat Autolab PGSTAT204. A static mercury drop electrode (SMDE) was used as the working electrode.
Plastic particles were isolated from additional two fractions (2-1 mm and 1-0.250 mm) as bulk samples, but without polystyrene, and the metal concentration was also determined using the same method. Due to the particle size, the type of plastic was not determined. Additional analyzes of metal concentrations on a defined and isolated polystyrene particles (PS) from a subsample (4-2 mm) and (2-1 mm) were also performed.
By analogy with sediment particles, one would expect smaller microplastic particles to have higher metal concentrations due to their larger specific surface area, but this was not observed in this study. The metal concentration varied with the type of plastic, and from the observed results, plastics could be ranked according to their affinity for the analyzed metals, as follows: polystyrene (PS)>Polypropylene (PP)>Low-density polyethylene (LDPE). According to an average concentration of all analyzed samples defined as LDPE, Zn could be single out as an element with around 7-time higher affinity for LDPE than other elements (Cd, Pb, and Cu). For samples defined as PP, the highest affinity is observed for Pb, even 30 times higher than in LDPE, followed by Zn and Cu, while Cd has similar values as in LDPE. For PS samples affinity of all elements is higher in comparison with the LDPE and PP, as follows: Pb>Cu> Zn>Cd, with a concentration of Pb 2.5 times higher than in PP and even 88 times higher than in LDPE.
A general conclusion could be drawn, but the observed wide ranges indicate the need for additional research to determine the relationship between the degree and type of weathering with the associated metals.
This work has been fully supported by Croatian Science Foundation under the project lP-2019-04-5832.
How to cite: Fajković, H., Cukrov, N., Kwokal, Ž., Pikelj, K., Huljek, L., Kostanjšek, I., and Cuculić, V.: Correlation of microplastic type and metal association: Croatian coast case study (Žirje Island), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1022, https://doi.org/10.5194/egusphere-egu21-1022, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The aim of the study was to determine the correlation of metals on floating marine litter and weathered microplastic samples from the pristine area. Sampled were collected from the accumulated material on the natural beach in Mala Stupica Cove (Žirje Island, Croatia) in June 2020. In addition to weathered microplastic, the concentrations of dissolved metals in the seawater, at the same location were determined. According to these measurements, the sampling site can be considered pristine, with Cd and Pb concentrations as background values and Zn and Cu as elements that have no toxic effect, based on the classification proposed by Bakke et al., (2010). The metals of interest due to their high toxicity were Zn, Cd, Pb, and Cu.
After sampling, the collected material was sieved through a metal sieve with a 4 mesh size, resulting in 4 subsamples (>4 mm; 4-2 mm; 2-1 mm; 1-0.250 mm). The type of plastic particles from subsample >4 mm was determined by FTIR spectroscopy performed on Bruker Tensor 27 in the region from 400-4000 cm-1. On such defined particles and in the seawater sample, trace metal concentrations were determined by the electrochemical method differential pulse anodic stripping voltammetry (DPASV) with standard addition method by Metrohm Autolab modular potentiostat/galvanostat Autolab PGSTAT204. A static mercury drop electrode (SMDE) was used as the working electrode.
Plastic particles were isolated from additional two fractions (2-1 mm and 1-0.250 mm) as bulk samples, but without polystyrene, and the metal concentration was also determined using the same method. Due to the particle size, the type of plastic was not determined. Additional analyzes of metal concentrations on a defined and isolated polystyrene particles (PS) from a subsample (4-2 mm) and (2-1 mm) were also performed.
By analogy with sediment particles, one would expect smaller microplastic particles to have higher metal concentrations due to their larger specific surface area, but this was not observed in this study. The metal concentration varied with the type of plastic, and from the observed results, plastics could be ranked according to their affinity for the analyzed metals, as follows: polystyrene (PS)>Polypropylene (PP)>Low-density polyethylene (LDPE). According to an average concentration of all analyzed samples defined as LDPE, Zn could be single out as an element with around 7-time higher affinity for LDPE than other elements (Cd, Pb, and Cu). For samples defined as PP, the highest affinity is observed for Pb, even 30 times higher than in LDPE, followed by Zn and Cu, while Cd has similar values as in LDPE. For PS samples affinity of all elements is higher in comparison with the LDPE and PP, as follows: Pb>Cu> Zn>Cd, with a concentration of Pb 2.5 times higher than in PP and even 88 times higher than in LDPE.
A general conclusion could be drawn, but the observed wide ranges indicate the need for additional research to determine the relationship between the degree and type of weathering with the associated metals.
This work has been fully supported by Croatian Science Foundation under the project lP-2019-04-5832.
How to cite: Fajković, H., Cukrov, N., Kwokal, Ž., Pikelj, K., Huljek, L., Kostanjšek, I., and Cuculić, V.: Correlation of microplastic type and metal association: Croatian coast case study (Žirje Island), EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1022, https://doi.org/10.5194/egusphere-egu21-1022, 2021.
EGU21-1149 | vPICO presentations | ITS2.5/OS4.8
Physical processes behind interactions of microplastic particles with iceIrina Chubarenko
Microplastic particles (MPs) are found in marine ice in larger quantities than in seawater, indicating that the ice is an important link in the chain of spreading of this contaminant. Some studies indicate larger MPs abundance near the ice surface, while others did not find any consistent pattern in the vertical distribution of MPs within sea ice cores. We discuss physical mechanisms of incorporation of MPs in the ice and present the results of laboratory tests, underpinning our conclusions.
First, plastic hydrophobicity is shown to cause the effect of pushing the floating MPs further up of the newly-forming ice. This leads to a concentration of MPs at the ice surface in the laboratory, while in the field the particles at the surface may by covered by snow and become a part of the upper ice layer. Under open-air test conditions, the bubbles of foamed polystyrene (density 0.04 g/cm3), initially floating at the water surface, were gone by weak wind when the firm ice was formed.
Second, the difference between freshwater and marine ice is considered. Since fresh water has its temperature of the density maximum (Tmd=3.98 C) well above the freezing point (Tfr=0 C), the freshwater ice is formed when the water column is stably stratified for a relatively long period of cooling from the Tmd down to the Tfr. Under such steady conditions, even just slightly positively/negatively buoyant MPs have enough time to rise to the surface / to settle to the bottom. In contrast, the ice in the ocean freezes when thermal convection is at work, further enhanced by the brine release. Thus, strong convection beneath the forming marine ice keeps slightly positively/negatively buoyant MPs in suspension and maintains the contact between the MPs and the forming ice. Laboratory tests show both the difference between the solid-and-transparent freshwater ice and the layered, filled with brine marine ice, and the difference in the level of their contamination.
Lastly, it is demonstrated that MPs tend to be incorporated in the ice together with air bubbles and in-between the ice plates (in brine channels). This is most probably due t plastics’ hydrophobicity.
Investigations are supported by the Russian Science Foundation, grant No 19-17-00041.
How to cite: Chubarenko, I.: Physical processes behind interactions of microplastic particles with ice, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1149, https://doi.org/10.5194/egusphere-egu21-1149, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Microplastic particles (MPs) are found in marine ice in larger quantities than in seawater, indicating that the ice is an important link in the chain of spreading of this contaminant. Some studies indicate larger MPs abundance near the ice surface, while others did not find any consistent pattern in the vertical distribution of MPs within sea ice cores. We discuss physical mechanisms of incorporation of MPs in the ice and present the results of laboratory tests, underpinning our conclusions.
First, plastic hydrophobicity is shown to cause the effect of pushing the floating MPs further up of the newly-forming ice. This leads to a concentration of MPs at the ice surface in the laboratory, while in the field the particles at the surface may by covered by snow and become a part of the upper ice layer. Under open-air test conditions, the bubbles of foamed polystyrene (density 0.04 g/cm3), initially floating at the water surface, were gone by weak wind when the firm ice was formed.
Second, the difference between freshwater and marine ice is considered. Since fresh water has its temperature of the density maximum (Tmd=3.98 C) well above the freezing point (Tfr=0 C), the freshwater ice is formed when the water column is stably stratified for a relatively long period of cooling from the Tmd down to the Tfr. Under such steady conditions, even just slightly positively/negatively buoyant MPs have enough time to rise to the surface / to settle to the bottom. In contrast, the ice in the ocean freezes when thermal convection is at work, further enhanced by the brine release. Thus, strong convection beneath the forming marine ice keeps slightly positively/negatively buoyant MPs in suspension and maintains the contact between the MPs and the forming ice. Laboratory tests show both the difference between the solid-and-transparent freshwater ice and the layered, filled with brine marine ice, and the difference in the level of their contamination.
Lastly, it is demonstrated that MPs tend to be incorporated in the ice together with air bubbles and in-between the ice plates (in brine channels). This is most probably due t plastics’ hydrophobicity.
Investigations are supported by the Russian Science Foundation, grant No 19-17-00041.
How to cite: Chubarenko, I.: Physical processes behind interactions of microplastic particles with ice, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1149, https://doi.org/10.5194/egusphere-egu21-1149, 2021.
EGU21-1171 | vPICO presentations | ITS2.5/OS4.8
Trace metals load on beached microplastics in the anthropogenically influenced estuarine environment - Croatian middle AdriaticVlado Cuculić, Hana Fajković, Željko Kwokal, and Renata Matekalo
Marine plastic litter can be a significant vector for ecotoxic trace metals into coastal areas. Eventually, it can be burried in sediment and in accumulated material on the beach with organic and inorganic material on its surface. In order to analyze the trace metal quantities (Cd, Cu, Pb and Zn) on different size particles in an anthropogenically affected environment, microplastics were sampled from the accumulated material on the Mala Martinska natural beach (Šibenik Bay, Croatia) in September 2019. The city of Šibenik and the Šibenik Bay are located in the lower part of the Krka River estuary (middle Adriatic). It is the main Croatian port for the phosphate ore import. Also, it was found earlier that Šibenik Bay was polluted by the ex-ferromanganese industry located in it, and the industrial slag spreading around the factory was the significant supply of trace metals in the Bay. The concentrations of dissolved and total metals in the surface seawater at the same location and at the reference point (coastal surface seawater at Jadrija, ~4 km SE from the sampling site) were determined in February and June 2020.
The collected material was sieved through a metal sieve with a 4 mesh size, resulting in 4 bulk (mixed microplastics) aliquots (> 4mm; 4-2 mm; 2-1 mm; 1-0.250 mm). From each of of the 4 bulk aliquots, subsamples of mixed plastics and polystyrene (PS) particles were isolated, resulting in 8 subsamples in total. The type of plastic particles (> 4mm; 4-2 mm and PS) was determined by FTIR spectroscopy performed on Bruker Tensor 27 in the region from 4000-400 cm-1. Trace metal concentrations on such defined particles and in seawater samples were determined using differential pulse anodic stripping voltammetry (DPASV) by Metrohm Autolab modular potentiostat/galvanostat Autolab PGSTAT204, connected with a three-electrode system Metrohm 663 VA STAND (Utrecht, The Netherlands). Working electrode used was static mercury drop electrode (SMDE).
In general, the amounts of trace metals associated with the plastic particles (Cd 0.02-0.35 µg/g; Pb 1.1-34.1 µg/g; Cu 1.7-32.9 µg/g and Zn 6-147 µg/g) were in the range of unpolluted and moderately affected sediments in the Adriatic Sea. The mass fractions of all tested trace metals increase with decreasing plastic particle size, probably due to the larger specific surface areas on the smaller particles. That was not the case for the plastic particles larger than 4 mm, both in mixed and PS samples, where the amounts of metal were higher compared to particles of 4-2 mm and 2-1 mm. Furthermore, all metals except cadmium showed a higher affinity for PS in comparison with mixed plastic samples of the same particle sizes (up to order of magnitude higher metal amounts), due to the PS highly developed specific surface area. In order to better understand the mechanism of association of trace metals with microplastics under different environmental conditions, further investigations are needed.
This work has been fully supported by Croatian Science Foundation under the project lP-2019-04-5832.
How to cite: Cuculić, V., Fajković, H., Kwokal, Ž., and Matekalo, R.: Trace metals load on beached microplastics in the anthropogenically influenced estuarine environment - Croatian middle Adriatic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1171, https://doi.org/10.5194/egusphere-egu21-1171, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Marine plastic litter can be a significant vector for ecotoxic trace metals into coastal areas. Eventually, it can be burried in sediment and in accumulated material on the beach with organic and inorganic material on its surface. In order to analyze the trace metal quantities (Cd, Cu, Pb and Zn) on different size particles in an anthropogenically affected environment, microplastics were sampled from the accumulated material on the Mala Martinska natural beach (Šibenik Bay, Croatia) in September 2019. The city of Šibenik and the Šibenik Bay are located in the lower part of the Krka River estuary (middle Adriatic). It is the main Croatian port for the phosphate ore import. Also, it was found earlier that Šibenik Bay was polluted by the ex-ferromanganese industry located in it, and the industrial slag spreading around the factory was the significant supply of trace metals in the Bay. The concentrations of dissolved and total metals in the surface seawater at the same location and at the reference point (coastal surface seawater at Jadrija, ~4 km SE from the sampling site) were determined in February and June 2020.
The collected material was sieved through a metal sieve with a 4 mesh size, resulting in 4 bulk (mixed microplastics) aliquots (> 4mm; 4-2 mm; 2-1 mm; 1-0.250 mm). From each of of the 4 bulk aliquots, subsamples of mixed plastics and polystyrene (PS) particles were isolated, resulting in 8 subsamples in total. The type of plastic particles (> 4mm; 4-2 mm and PS) was determined by FTIR spectroscopy performed on Bruker Tensor 27 in the region from 4000-400 cm-1. Trace metal concentrations on such defined particles and in seawater samples were determined using differential pulse anodic stripping voltammetry (DPASV) by Metrohm Autolab modular potentiostat/galvanostat Autolab PGSTAT204, connected with a three-electrode system Metrohm 663 VA STAND (Utrecht, The Netherlands). Working electrode used was static mercury drop electrode (SMDE).
In general, the amounts of trace metals associated with the plastic particles (Cd 0.02-0.35 µg/g; Pb 1.1-34.1 µg/g; Cu 1.7-32.9 µg/g and Zn 6-147 µg/g) were in the range of unpolluted and moderately affected sediments in the Adriatic Sea. The mass fractions of all tested trace metals increase with decreasing plastic particle size, probably due to the larger specific surface areas on the smaller particles. That was not the case for the plastic particles larger than 4 mm, both in mixed and PS samples, where the amounts of metal were higher compared to particles of 4-2 mm and 2-1 mm. Furthermore, all metals except cadmium showed a higher affinity for PS in comparison with mixed plastic samples of the same particle sizes (up to order of magnitude higher metal amounts), due to the PS highly developed specific surface area. In order to better understand the mechanism of association of trace metals with microplastics under different environmental conditions, further investigations are needed.
This work has been fully supported by Croatian Science Foundation under the project lP-2019-04-5832.
How to cite: Cuculić, V., Fajković, H., Kwokal, Ž., and Matekalo, R.: Trace metals load on beached microplastics in the anthropogenically influenced estuarine environment - Croatian middle Adriatic, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1171, https://doi.org/10.5194/egusphere-egu21-1171, 2021.
EGU21-1203 | vPICO presentations | ITS2.5/OS4.8
Sinking microplastics in the water column: simulations in the Mediterranean SeaRebeca de la Fuente, Gábor Drótos, Emilio Hernández, Cristóbal López, and Erik van Sebille
We study the vertical dispersion and distribution of negatively buoyant rigid microplastics within a realistic circulation model of the Mediterranean sea. We first propose an equation describing their idealized dynamics. In that framework, we evaluate the importance of some relevant physical effects: inertia, Coriolis force, small-scale turbulence and variable seawater density, and bound the relative error of simplifying the dynamics to a constant sinking velocity added to a large-scale velocity field. We then calculate the amount and vertical distribution of microplastic particles on the water column of the open ocean if their release from the sea surface is continuous at rates compatible with observations in the Mediterranean. The vertical distribution is found to be almost uniform with depth for the majority of our parameter range. Transient distributions from flash releases reveal a non-Gaussian character of the dispersion and various diffusion laws, both normal and anomalous. The origin of these behaviors is explored in terms of horizontal and vertical flow organization.
How to cite: de la Fuente, R., Drótos, G., Hernández, E., López, C., and van Sebille, E.: Sinking microplastics in the water column: simulations in the Mediterranean Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1203, https://doi.org/10.5194/egusphere-egu21-1203, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
We study the vertical dispersion and distribution of negatively buoyant rigid microplastics within a realistic circulation model of the Mediterranean sea. We first propose an equation describing their idealized dynamics. In that framework, we evaluate the importance of some relevant physical effects: inertia, Coriolis force, small-scale turbulence and variable seawater density, and bound the relative error of simplifying the dynamics to a constant sinking velocity added to a large-scale velocity field. We then calculate the amount and vertical distribution of microplastic particles on the water column of the open ocean if their release from the sea surface is continuous at rates compatible with observations in the Mediterranean. The vertical distribution is found to be almost uniform with depth for the majority of our parameter range. Transient distributions from flash releases reveal a non-Gaussian character of the dispersion and various diffusion laws, both normal and anomalous. The origin of these behaviors is explored in terms of horizontal and vertical flow organization.
How to cite: de la Fuente, R., Drótos, G., Hernández, E., López, C., and van Sebille, E.: Sinking microplastics in the water column: simulations in the Mediterranean Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1203, https://doi.org/10.5194/egusphere-egu21-1203, 2021.
EGU21-1293 | vPICO presentations | ITS2.5/OS4.8 | Highlight
Biodegradability of single-use polypropylene-based face masks, littered during the COVID-19 pandemic – a first approachHeike Knicker and Marta Velasco-Molina
The COVID-19 pandemic caused a massive use of disposable sanitary face masks. Based on data provided by Prata et al. (2020), we estimated that if only 0.1% of those masks are improperly discarded and enter the soil, approximately 361t of polypropylene (PP) will be monthly added to the soil, threatening the ecological balance of terrestrial systems, the health of wild animals and even humans. For a first evaluation of the environmental consequences of the mask littering during COVID-19, we compared the microbial degradability of 10 x 10 mm cuts of the single masks layers and the complete mask blended with topsoil from a Cambisol of the Sierra de Aznalcóllar, Southern Spain with natural soil organic matter (SOM) by measuring the CO2 release during a three-month decomposition experiment performed with a soil moisture of 75% of its maximal water holding capacity and at 25°C. In order to focus on biodegradation and to avoid abiotic impact of physical and chemical processes, the masks were not pretreated or exposed to UV-irradiation or natural daylight prior to decomposition. In addition, the incubation occurred in the dark. We identified an easily decomposable fraction with a mean residence time (MRTfast) of 2 to 3 days, releasing approximately 3 to 5% of the total mask carbon as CO2. Solid-state nuclear magnetic resonance (NMR) spectroscopy confirmed that all three layers of the mask were composed of PP without contributions of more than 2-3% of other additives. Microbial degradation resulted in a cut-off of terminal PP units as a main degradation mechanism. Assuming again that about 0.1% of the masks used during the COVID-19 crises may enter soil systems, we estimated that this fast pool may cause an additional CO2 emission of 41 to 68 t year-1. This corresponds to the globally averaged annual CO2-footprint of 10 to 17 persons (4 t year-1 person-1). The slow turning fraction was mineralized with a rate constant of 0.05 to 0.14 year-1 corresponding to a MRTslow between 7 and 18 years. This is two to four times longer than that determined for the SOM pure reference soil but still lies in the range reported for humified SOM derived from other topsoils of the Sierra de Aznalcóllar. Our results allow us to confirm our hypothesis that in soil, microbes exist that can decompose PP, although their nature still has to be revealed in future attempts. Studies investigating the impact of pre-exposure to daylight and moisture on their degradability in soils are in process.
Prata, J.C., Silva, A.L.P., Walker, T.R., Duarte, A.C., Rocha-Santos, T., 2020. COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 54, 7760–7765. https://doi.org/10.1021/acs.est.0c02178
How to cite: Knicker, H. and Velasco-Molina, M.: Biodegradability of single-use polypropylene-based face masks, littered during the COVID-19 pandemic – a first approach , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1293, https://doi.org/10.5194/egusphere-egu21-1293, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The COVID-19 pandemic caused a massive use of disposable sanitary face masks. Based on data provided by Prata et al. (2020), we estimated that if only 0.1% of those masks are improperly discarded and enter the soil, approximately 361t of polypropylene (PP) will be monthly added to the soil, threatening the ecological balance of terrestrial systems, the health of wild animals and even humans. For a first evaluation of the environmental consequences of the mask littering during COVID-19, we compared the microbial degradability of 10 x 10 mm cuts of the single masks layers and the complete mask blended with topsoil from a Cambisol of the Sierra de Aznalcóllar, Southern Spain with natural soil organic matter (SOM) by measuring the CO2 release during a three-month decomposition experiment performed with a soil moisture of 75% of its maximal water holding capacity and at 25°C. In order to focus on biodegradation and to avoid abiotic impact of physical and chemical processes, the masks were not pretreated or exposed to UV-irradiation or natural daylight prior to decomposition. In addition, the incubation occurred in the dark. We identified an easily decomposable fraction with a mean residence time (MRTfast) of 2 to 3 days, releasing approximately 3 to 5% of the total mask carbon as CO2. Solid-state nuclear magnetic resonance (NMR) spectroscopy confirmed that all three layers of the mask were composed of PP without contributions of more than 2-3% of other additives. Microbial degradation resulted in a cut-off of terminal PP units as a main degradation mechanism. Assuming again that about 0.1% of the masks used during the COVID-19 crises may enter soil systems, we estimated that this fast pool may cause an additional CO2 emission of 41 to 68 t year-1. This corresponds to the globally averaged annual CO2-footprint of 10 to 17 persons (4 t year-1 person-1). The slow turning fraction was mineralized with a rate constant of 0.05 to 0.14 year-1 corresponding to a MRTslow between 7 and 18 years. This is two to four times longer than that determined for the SOM pure reference soil but still lies in the range reported for humified SOM derived from other topsoils of the Sierra de Aznalcóllar. Our results allow us to confirm our hypothesis that in soil, microbes exist that can decompose PP, although their nature still has to be revealed in future attempts. Studies investigating the impact of pre-exposure to daylight and moisture on their degradability in soils are in process.
Prata, J.C., Silva, A.L.P., Walker, T.R., Duarte, A.C., Rocha-Santos, T., 2020. COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 54, 7760–7765. https://doi.org/10.1021/acs.est.0c02178
How to cite: Knicker, H. and Velasco-Molina, M.: Biodegradability of single-use polypropylene-based face masks, littered during the COVID-19 pandemic – a first approach , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1293, https://doi.org/10.5194/egusphere-egu21-1293, 2021.
EGU21-1791 | vPICO presentations | ITS2.5/OS4.8
Different microplastics versus different bottom sediments: transport and accumulation pattern in the open-channel flow experimentsIgor Isachenko and Irina Chubarenko
Initiation of motion, resuspension, transport, and accumulation of microplastic particles (MPs) at the sea bottom are prescribed by their physical properties – density, size, and shape, as it is known for natural sediment grains. However, from sedimentological approaches, not much can be said about the behavior of non-spherical particles at the bottom covered by another type of material. Thus, experimental disclosure of general features of the MPs transport and accumulation pattern should aid a lot further theoretical description of such a complex process.
Laboratory experiments on the MPs transport by the open-channel flow and their accumulation in regions with various bottom roughness were carried out in 10 m long and 0.33 m wide hydrodynamic flume. The bottom had 4 sections (ca. 2 m long each) with the roughness increasing downstream: smooth-bottom section, followed by the sections covered by natural calibrated coarse sand (particle diameter 1-1.5 mm), marine granules (3-4 mm), and small pebbles (1-2 cm). The upper sediment surface was carefully horizontally leveled. The set of MPs included 1d (flexible and rigid), 2d (square/round/elongated; flexible/rigid), and 3d (round/cubic) particles made of polystyrene, polyester, polyamide (nylon), and polyethylene terephthalat (material density ranging from 1.05 to 1.41 g/cm3). Principal sizes of MPs ranged from 0.5 mm (smaller than the smallest sediment grain) to 5 cm (larger than the largest sediment grain). At the beginning of the experiment, MPs were placed on the smooth bottom. Thereafter, the flow rate was increased step-by-step by small increments. At each step, after at least 5 min since the last particle movement, the coordinates of the particles in their (new) stationary positions were registered.
Although we did not aim to achieve a similarity between a laboratory experiment and natural conditions, the results of the present study can be useful for a qualitative interpretation of field observations and further theoretical efforts. The results show, that the initiation of motion of particular MPs is dependent both on MPs size and the sediment characteristics. The cumulative curve, integrating coordinates of all the kinds of MPs in their stationary locations at all the flow steps, indicates the potential for the existence of MP accumulation zones in the regions right after the change in the bottom roughness, at the side of coarser sediment.
Investigations are supported by the Russian Science Foundation, grant No 19-17-00041.
How to cite: Isachenko, I. and Chubarenko, I.: Different microplastics versus different bottom sediments: transport and accumulation pattern in the open-channel flow experiments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1791, https://doi.org/10.5194/egusphere-egu21-1791, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Initiation of motion, resuspension, transport, and accumulation of microplastic particles (MPs) at the sea bottom are prescribed by their physical properties – density, size, and shape, as it is known for natural sediment grains. However, from sedimentological approaches, not much can be said about the behavior of non-spherical particles at the bottom covered by another type of material. Thus, experimental disclosure of general features of the MPs transport and accumulation pattern should aid a lot further theoretical description of such a complex process.
Laboratory experiments on the MPs transport by the open-channel flow and their accumulation in regions with various bottom roughness were carried out in 10 m long and 0.33 m wide hydrodynamic flume. The bottom had 4 sections (ca. 2 m long each) with the roughness increasing downstream: smooth-bottom section, followed by the sections covered by natural calibrated coarse sand (particle diameter 1-1.5 mm), marine granules (3-4 mm), and small pebbles (1-2 cm). The upper sediment surface was carefully horizontally leveled. The set of MPs included 1d (flexible and rigid), 2d (square/round/elongated; flexible/rigid), and 3d (round/cubic) particles made of polystyrene, polyester, polyamide (nylon), and polyethylene terephthalat (material density ranging from 1.05 to 1.41 g/cm3). Principal sizes of MPs ranged from 0.5 mm (smaller than the smallest sediment grain) to 5 cm (larger than the largest sediment grain). At the beginning of the experiment, MPs were placed on the smooth bottom. Thereafter, the flow rate was increased step-by-step by small increments. At each step, after at least 5 min since the last particle movement, the coordinates of the particles in their (new) stationary positions were registered.
Although we did not aim to achieve a similarity between a laboratory experiment and natural conditions, the results of the present study can be useful for a qualitative interpretation of field observations and further theoretical efforts. The results show, that the initiation of motion of particular MPs is dependent both on MPs size and the sediment characteristics. The cumulative curve, integrating coordinates of all the kinds of MPs in their stationary locations at all the flow steps, indicates the potential for the existence of MP accumulation zones in the regions right after the change in the bottom roughness, at the side of coarser sediment.
Investigations are supported by the Russian Science Foundation, grant No 19-17-00041.
How to cite: Isachenko, I. and Chubarenko, I.: Different microplastics versus different bottom sediments: transport and accumulation pattern in the open-channel flow experiments, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-1791, https://doi.org/10.5194/egusphere-egu21-1791, 2021.
EGU21-2301 | vPICO presentations | ITS2.5/OS4.8
From rivers to retailers: using cross-sector stakeholder engagement to broaden dissemination and guide future researchThomas Stanton, Paul Kay, Rachel Gomes, Matthew Johnson, and Jason Weeks
Concern for the fate and impacts of plastic waste has motivated cross-sector engagement with the environment and society’s impact on it. Though efforts to minimise plastic pollution should not be discouraged, it is important that such efforts do not exacerbate the environmental impacts associated with plastic alternatives; acknowledge that plastic per se is not the root of the plastic pollution problem; and recognise that environmentally conscious consumption is a privilege not currently afforded to all. Cross-sector communication and cooperation can maximise the impact of plastic pollution research and are vital tools in ensuring research can inform positive change. Here we report on the use of stakeholder engagement spanning UK industry, government, not-for-profit organisations and academia to share knowledge, motivations and priorities, in order to broaden research impact beyond academia.
Informed by our own work, microplastic researchers at the University of Nottingham hosted a cross-sector workshop to recognise evidence requirements, focus key questions, highlight misunderstandings and ultimately identify knowledge gaps across multiple sectors. This engagement identified key areas for improvement from the scientific community in order to better inform and engage decision makers. These included: a need for greater clarity from the scientific community as to the extent of the plastic pollution problem; communication of the implications of methodological inconsistencies in the science that informs industry; and the importance of placing the impacts of plastic pollution within the context of broader environmental quality for non-scientific stakeholders.
This workshop and engagement led to outputs that included: the writing of a policy brief; the writing of an opinion article on the topic of plastic pollution with authors from not-for profits, the wastewater industry and government organisations; and the public dissemination of these activities through press releases, articles for The Conversation, and their reproductions in UK news media. These outputs are designed to guide and inform individuals, industry, decision makers, and future research.
Concern for the problems posed by plastic pollution presents a generational opportunity for science to inform industries, governments and consumers, and enthuse their environmental action beyond plastic pollution. Our work highlights the value of considering, and where feasible engaging with, these stakeholders with environmental research from conception to dissemination.
How to cite: Stanton, T., Kay, P., Gomes, R., Johnson, M., and Weeks, J.: From rivers to retailers: using cross-sector stakeholder engagement to broaden dissemination and guide future research, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2301, https://doi.org/10.5194/egusphere-egu21-2301, 2021.
Concern for the fate and impacts of plastic waste has motivated cross-sector engagement with the environment and society’s impact on it. Though efforts to minimise plastic pollution should not be discouraged, it is important that such efforts do not exacerbate the environmental impacts associated with plastic alternatives; acknowledge that plastic per se is not the root of the plastic pollution problem; and recognise that environmentally conscious consumption is a privilege not currently afforded to all. Cross-sector communication and cooperation can maximise the impact of plastic pollution research and are vital tools in ensuring research can inform positive change. Here we report on the use of stakeholder engagement spanning UK industry, government, not-for-profit organisations and academia to share knowledge, motivations and priorities, in order to broaden research impact beyond academia.
Informed by our own work, microplastic researchers at the University of Nottingham hosted a cross-sector workshop to recognise evidence requirements, focus key questions, highlight misunderstandings and ultimately identify knowledge gaps across multiple sectors. This engagement identified key areas for improvement from the scientific community in order to better inform and engage decision makers. These included: a need for greater clarity from the scientific community as to the extent of the plastic pollution problem; communication of the implications of methodological inconsistencies in the science that informs industry; and the importance of placing the impacts of plastic pollution within the context of broader environmental quality for non-scientific stakeholders.
This workshop and engagement led to outputs that included: the writing of a policy brief; the writing of an opinion article on the topic of plastic pollution with authors from not-for profits, the wastewater industry and government organisations; and the public dissemination of these activities through press releases, articles for The Conversation, and their reproductions in UK news media. These outputs are designed to guide and inform individuals, industry, decision makers, and future research.
Concern for the problems posed by plastic pollution presents a generational opportunity for science to inform industries, governments and consumers, and enthuse their environmental action beyond plastic pollution. Our work highlights the value of considering, and where feasible engaging with, these stakeholders with environmental research from conception to dissemination.
How to cite: Stanton, T., Kay, P., Gomes, R., Johnson, M., and Weeks, J.: From rivers to retailers: using cross-sector stakeholder engagement to broaden dissemination and guide future research, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2301, https://doi.org/10.5194/egusphere-egu21-2301, 2021.
EGU21-2361 | vPICO presentations | ITS2.5/OS4.8
Using line transect sampling to detect cetaceans and floating litter during vessel survey in western Black SeaRomulus-Marian Paiu, Arda M. Tonay, Costin Timofte, Angelica Paiu, Mihaela Mirea Candea, Anca-Maria Gheorghe, Violeta Slabakova, Ayaka Amaha Ozturk, and Dumitru Murariu
The quality of the Black Sea ecosystem is partly but importantly dependent on the survival and sustainability of the top predator populations. It is difficult to foresee all consequences for the regional biodiversity if cetaceans disappear as it had happened with the Mediterranean monk seals in the past. During 7 days, between 30 September and 7 October, 2019, a joint oceanographical survey was made with a multipurpose R/V Mare Nigrum in offshore as well as deep sea locations, within the Romanian (RO), Bulgarian (BG) and western Turkish (TK) national waters of the Black Sea in the frame of ANEMONE project. The total track line was around 700 nautical miles and the sampled area covered 9754,58 km2. Observations were made of cetaceans and floating litter, following line transect sampling method, with a single platform (2 observers, on the left and right of the vessel bridge) over 380.44 km of transects. A total of 54 cetacean sightings and 81 floating litter items were recorded. All the three species, short-beaked common dolphin (Delphinus delphis ssp. ponticus), Black Sea bottlenose dolphin (Tursiops truncatus ssp. ponticus), and Black Sea harbour porpoise (Phocoena phocoena ssp. relicta), were registered with a similar density (individuals/km2), 0.012 for RO sector and 0.013 for BG-TK sector. The number of debris varied between 1 and 24 items, reaching 5.26± 5.93 items on average. Among the transects, 53% contained less than 5 items and only 13% were with more than 10 items. Based on these results, the average density of floating macro-litter in BG waters was found 2.43 ± 2.4 items/km2, 1.73 ± 1.24 items/km2 in the RO waters and 2.43±2.17 items/km2 in TR waters. This study was the first to make a joint and continuous survey effort for both cetaceans and litter simultaneously in the Black Sea.
Key words: Black Sea, cetaceans, marine litter, joint cruise, ANEMONE project.
How to cite: Paiu, R.-M., Tonay, A. M., Timofte, C., Paiu, A., Mirea Candea, M., Gheorghe, A.-M., Slabakova, V., Amaha Ozturk, A., and Murariu, D.: Using line transect sampling to detect cetaceans and floating litter during vessel survey in western Black Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2361, https://doi.org/10.5194/egusphere-egu21-2361, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The quality of the Black Sea ecosystem is partly but importantly dependent on the survival and sustainability of the top predator populations. It is difficult to foresee all consequences for the regional biodiversity if cetaceans disappear as it had happened with the Mediterranean monk seals in the past. During 7 days, between 30 September and 7 October, 2019, a joint oceanographical survey was made with a multipurpose R/V Mare Nigrum in offshore as well as deep sea locations, within the Romanian (RO), Bulgarian (BG) and western Turkish (TK) national waters of the Black Sea in the frame of ANEMONE project. The total track line was around 700 nautical miles and the sampled area covered 9754,58 km2. Observations were made of cetaceans and floating litter, following line transect sampling method, with a single platform (2 observers, on the left and right of the vessel bridge) over 380.44 km of transects. A total of 54 cetacean sightings and 81 floating litter items were recorded. All the three species, short-beaked common dolphin (Delphinus delphis ssp. ponticus), Black Sea bottlenose dolphin (Tursiops truncatus ssp. ponticus), and Black Sea harbour porpoise (Phocoena phocoena ssp. relicta), were registered with a similar density (individuals/km2), 0.012 for RO sector and 0.013 for BG-TK sector. The number of debris varied between 1 and 24 items, reaching 5.26± 5.93 items on average. Among the transects, 53% contained less than 5 items and only 13% were with more than 10 items. Based on these results, the average density of floating macro-litter in BG waters was found 2.43 ± 2.4 items/km2, 1.73 ± 1.24 items/km2 in the RO waters and 2.43±2.17 items/km2 in TR waters. This study was the first to make a joint and continuous survey effort for both cetaceans and litter simultaneously in the Black Sea.
Key words: Black Sea, cetaceans, marine litter, joint cruise, ANEMONE project.
How to cite: Paiu, R.-M., Tonay, A. M., Timofte, C., Paiu, A., Mirea Candea, M., Gheorghe, A.-M., Slabakova, V., Amaha Ozturk, A., and Murariu, D.: Using line transect sampling to detect cetaceans and floating litter during vessel survey in western Black Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2361, https://doi.org/10.5194/egusphere-egu21-2361, 2021.
EGU21-2418 | vPICO presentations | ITS2.5/OS4.8 | Highlight
Plastic pollution research in Indonesia: State of science and future research directions.Paul Vriend, Hidayat Hidayat, Reza Cordova, Noir. P. Purba, Ansje Lohr, Nining Ningsih, Kirana Agustina, Semeidi Husrin, Devi D. Suryono, Inneke Hantoro, Budi Widianarko, Judith van Leeuwen, Bart Vermeulen, and Tim van Emmerik
Observational and modeling studies have suggested that Indonesia among the top plastic polluting countries globally. Data on the presence of plastic pollution are crucial to designing effective plastic reduction and mitigation strategies. Research quantifying plastic pollution in Indonesia has increased in recent years. However, most plastic research to date has been done with different goals, methods, and data formats. In this study, we present a meta-analysis of 85 studies published on plastic pollution in Indonesia to uncover gaps and biases in current research, and to use these insights to suggest ways to improve future research to fill these gaps. Research gaps and biases identified include a clear preference for marine research, and a bias towards certain environmental compartments within the marine, riverine, and terrestrial ecosystems, which are compartments that are easier to quantify such as riverbanks and beaches. Moreover, we identify polypropylene (PP) and polyethylene variants (HDPE, LDPE, PE) to be among the most frequently found polymers in both macro- and microplastic pollution, though polymer identification is lacking in most studies. Plastic research is mostly done on Java (57%). We recommend a shift in ecosystem focus of research towards the riverine and terrestrial environments, and a shift of focus of environmental compartments analyzed within these ecosystems. Moreover, we recommend an increase in spatial coverage across Indonesia of research, a larger focus on polymer characterization, and lastly, the harmonization of methods used to quantify plastic. With these changes, we envision future research that can aid with the design of effective reduction and mitigation strategies.
How to cite: Vriend, P., Hidayat, H., Cordova, R., Purba, N. P., Lohr, A., Ningsih, N., Agustina, K., Husrin, S., Suryono, D. D., Hantoro, I., Widianarko, B., van Leeuwen, J., Vermeulen, B., and van Emmerik, T.: Plastic pollution research in Indonesia: State of science and future research directions., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2418, https://doi.org/10.5194/egusphere-egu21-2418, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Observational and modeling studies have suggested that Indonesia among the top plastic polluting countries globally. Data on the presence of plastic pollution are crucial to designing effective plastic reduction and mitigation strategies. Research quantifying plastic pollution in Indonesia has increased in recent years. However, most plastic research to date has been done with different goals, methods, and data formats. In this study, we present a meta-analysis of 85 studies published on plastic pollution in Indonesia to uncover gaps and biases in current research, and to use these insights to suggest ways to improve future research to fill these gaps. Research gaps and biases identified include a clear preference for marine research, and a bias towards certain environmental compartments within the marine, riverine, and terrestrial ecosystems, which are compartments that are easier to quantify such as riverbanks and beaches. Moreover, we identify polypropylene (PP) and polyethylene variants (HDPE, LDPE, PE) to be among the most frequently found polymers in both macro- and microplastic pollution, though polymer identification is lacking in most studies. Plastic research is mostly done on Java (57%). We recommend a shift in ecosystem focus of research towards the riverine and terrestrial environments, and a shift of focus of environmental compartments analyzed within these ecosystems. Moreover, we recommend an increase in spatial coverage across Indonesia of research, a larger focus on polymer characterization, and lastly, the harmonization of methods used to quantify plastic. With these changes, we envision future research that can aid with the design of effective reduction and mitigation strategies.
How to cite: Vriend, P., Hidayat, H., Cordova, R., Purba, N. P., Lohr, A., Ningsih, N., Agustina, K., Husrin, S., Suryono, D. D., Hantoro, I., Widianarko, B., van Leeuwen, J., Vermeulen, B., and van Emmerik, T.: Plastic pollution research in Indonesia: State of science and future research directions., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-2418, https://doi.org/10.5194/egusphere-egu21-2418, 2021.
EGU21-4092 | vPICO presentations | ITS2.5/OS4.8
Global modelling of plastic beaching indicates coastlines and coastal waters as significant plastic reservoirsVictor Onink, Cleo Jongedijk, Matthew Hoffman, Erik van Sebille, and Charlotte Laufkötter
The distribution of plastic in the ocean is poorly constrained, with the mass of floating plastic at the ocean surface being orders of magnitude smaller than estimated plastic inputs. Coastlines likely contain significant amounts of plastic, but inconsistent methodologies between beached plastic observations prevent determining the mass and distribution of globally beached plastic. We present Lagrangian model sensitivity experiments to estimate the beached fraction of marine plastic and to investigate the global distribution of beached plastic on coastlines.
We perform simulations where particles, representing masses of floating plastic, are inserted at the ocean coasts. The particles are then advected by surface currents (HYCOM/NCODA global reanalysis and surface Stokes drift from the WaveWatch III global reanalysis) for 5 years. Beaching is parametrized stochastically using exponentional probability. Here, we test the sensitivity to e-folding time scales between 1 and 100 days, applied when plastic is within the coastal zone, within 10km of the nearest coastline. Resuspension of beached plastic is parameterised exponentially with an e-folding timescale between 69 and 273 days. No other loss processes are implemented.
Between 39-95% of floating plastic mass is beached after 5 years, with the beached fraction depending on the ratio between the beaching and resuspension timescales. In all simulations, at least 77% of floating plastic mass is found either beached or within the coastal zone, indicating coastal regions are a significant reservoir of mismanaged terrestrial plastic. However, plastic entering the ocean from islands or near energetic boundary currents is more likely to reach the open ocean. The distribution of beached plastic is closely related to the input distribution, with the highest concentrations found in Southeast Asia and the Mediterranean.
Our results highlight coastlines and coastal waters as important reservoirs of marine plastic debris and indicate a need for greater understanding of plastic transport near and at the coastlines. Furthermore, improved representation of plastic beaching can help study marine plastic fragmentation, as mechanical stress during the transitions between coastlines and coastal waters and the increased UV exposure of beached plastic likely contribute to the fragmentation.
How to cite: Onink, V., Jongedijk, C., Hoffman, M., van Sebille, E., and Laufkötter, C.: Global modelling of plastic beaching indicates coastlines and coastal waters as significant plastic reservoirs, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4092, https://doi.org/10.5194/egusphere-egu21-4092, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The distribution of plastic in the ocean is poorly constrained, with the mass of floating plastic at the ocean surface being orders of magnitude smaller than estimated plastic inputs. Coastlines likely contain significant amounts of plastic, but inconsistent methodologies between beached plastic observations prevent determining the mass and distribution of globally beached plastic. We present Lagrangian model sensitivity experiments to estimate the beached fraction of marine plastic and to investigate the global distribution of beached plastic on coastlines.
We perform simulations where particles, representing masses of floating plastic, are inserted at the ocean coasts. The particles are then advected by surface currents (HYCOM/NCODA global reanalysis and surface Stokes drift from the WaveWatch III global reanalysis) for 5 years. Beaching is parametrized stochastically using exponentional probability. Here, we test the sensitivity to e-folding time scales between 1 and 100 days, applied when plastic is within the coastal zone, within 10km of the nearest coastline. Resuspension of beached plastic is parameterised exponentially with an e-folding timescale between 69 and 273 days. No other loss processes are implemented.
Between 39-95% of floating plastic mass is beached after 5 years, with the beached fraction depending on the ratio between the beaching and resuspension timescales. In all simulations, at least 77% of floating plastic mass is found either beached or within the coastal zone, indicating coastal regions are a significant reservoir of mismanaged terrestrial plastic. However, plastic entering the ocean from islands or near energetic boundary currents is more likely to reach the open ocean. The distribution of beached plastic is closely related to the input distribution, with the highest concentrations found in Southeast Asia and the Mediterranean.
Our results highlight coastlines and coastal waters as important reservoirs of marine plastic debris and indicate a need for greater understanding of plastic transport near and at the coastlines. Furthermore, improved representation of plastic beaching can help study marine plastic fragmentation, as mechanical stress during the transitions between coastlines and coastal waters and the increased UV exposure of beached plastic likely contribute to the fragmentation.
How to cite: Onink, V., Jongedijk, C., Hoffman, M., van Sebille, E., and Laufkötter, C.: Global modelling of plastic beaching indicates coastlines and coastal waters as significant plastic reservoirs, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4092, https://doi.org/10.5194/egusphere-egu21-4092, 2021.
EGU21-4342 | vPICO presentations | ITS2.5/OS4.8
Modelling size distributions of marine plastics under the influence of continuous cascading fragmentationMikael Kaandorp, Henk Dijkstra, and Erik van Sebille
Field studies have shown that plastic fragments make up the majority of plastic pollution in the oceans in terms of abundance. How quickly environmental plastics fragment is not well understood, however. Here, we study this process by considering a model which captures continuous fragmentation of particles over time in a cascading fashion. With this cascading fragmentation model, we simulate particle size distributions (PSDs), specifying the abundance or mass of particles for different size classes.
The fragmentation model is coupled to an environmental box model, simulating the distributions of plastic particles in the ocean, coastal waters, and on the beach. Transport in the box model is based on a previous study regarding a previous study regarding sources and sinks of marine plastics in the Mediterranean Sea. We compare the modelled PSDs to available observations, and use the results to illustrate the effect of size-selective processes such as vertical mixing in the water column and resuspension of particles from the beach into coastal waters.
Using the coupled fragmentation and environmental box model, we quantify the role of fragmentation on the marine plastic mass budget. While fragmentation is a major source of (secondary) plastic particles in terms of abundance, it seems to have a minor effect on the total mass of particles larger than 0.1 mm. Future comparison to observed PSD data should allow us to understand size-selective plastic transport in the environment, and potentially inform us on plastic longevity.
How to cite: Kaandorp, M., Dijkstra, H., and van Sebille, E.: Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4342, https://doi.org/10.5194/egusphere-egu21-4342, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Field studies have shown that plastic fragments make up the majority of plastic pollution in the oceans in terms of abundance. How quickly environmental plastics fragment is not well understood, however. Here, we study this process by considering a model which captures continuous fragmentation of particles over time in a cascading fashion. With this cascading fragmentation model, we simulate particle size distributions (PSDs), specifying the abundance or mass of particles for different size classes.
The fragmentation model is coupled to an environmental box model, simulating the distributions of plastic particles in the ocean, coastal waters, and on the beach. Transport in the box model is based on a previous study regarding a previous study regarding sources and sinks of marine plastics in the Mediterranean Sea. We compare the modelled PSDs to available observations, and use the results to illustrate the effect of size-selective processes such as vertical mixing in the water column and resuspension of particles from the beach into coastal waters.
Using the coupled fragmentation and environmental box model, we quantify the role of fragmentation on the marine plastic mass budget. While fragmentation is a major source of (secondary) plastic particles in terms of abundance, it seems to have a minor effect on the total mass of particles larger than 0.1 mm. Future comparison to observed PSD data should allow us to understand size-selective plastic transport in the environment, and potentially inform us on plastic longevity.
How to cite: Kaandorp, M., Dijkstra, H., and van Sebille, E.: Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4342, https://doi.org/10.5194/egusphere-egu21-4342, 2021.
EGU21-5026 | vPICO presentations | ITS2.5/OS4.8
Uncertainties on plastic concentration estimates at seaMatthieu Mercier, Marie Poulain-Zarcos, Alexandra ter Halle, Marion Saint-Martin, and Florian Simatos
The large difference between the estimates of global plastic input in mass in the oceans (Jambeck et al., Science 347, 2015) and current global predictions from numerical models (van Sebille et al., Environ. Res. Lett. 10, 2015) or observations (Cózar et al., P. Natl. Acad. Sci., 111, 2014) is one of the most important issue regarding oceanic plastic litter. Yet, global predictions are based on observations, and uncertainties on the latter are rarely considered to provide error bounds on the former.
We discuss here the sources of uncertainties on plastic concentrations estimates (in number and mass), based on a recent model presented in (Poulain et al., Environ. Sci. Technol. 53, 2019). The two main sources of error are the plastic rise velocity and the model for the turbulent diffusivity, although they do not have the same importance. We validated the model with controlled laboratory experiments. Applying this model to global predictions provides us with more realistic encompassing values for the mass of plastic at sea, with a more important correction concerning small microplastics (with characteristic dimensions smaller than ~1mm).
How to cite: Mercier, M., Poulain-Zarcos, M., ter Halle, A., Saint-Martin, M., and Simatos, F.: Uncertainties on plastic concentration estimates at sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5026, https://doi.org/10.5194/egusphere-egu21-5026, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
The large difference between the estimates of global plastic input in mass in the oceans (Jambeck et al., Science 347, 2015) and current global predictions from numerical models (van Sebille et al., Environ. Res. Lett. 10, 2015) or observations (Cózar et al., P. Natl. Acad. Sci., 111, 2014) is one of the most important issue regarding oceanic plastic litter. Yet, global predictions are based on observations, and uncertainties on the latter are rarely considered to provide error bounds on the former.
We discuss here the sources of uncertainties on plastic concentrations estimates (in number and mass), based on a recent model presented in (Poulain et al., Environ. Sci. Technol. 53, 2019). The two main sources of error are the plastic rise velocity and the model for the turbulent diffusivity, although they do not have the same importance. We validated the model with controlled laboratory experiments. Applying this model to global predictions provides us with more realistic encompassing values for the mass of plastic at sea, with a more important correction concerning small microplastics (with characteristic dimensions smaller than ~1mm).
How to cite: Mercier, M., Poulain-Zarcos, M., ter Halle, A., Saint-Martin, M., and Simatos, F.: Uncertainties on plastic concentration estimates at sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-5026, https://doi.org/10.5194/egusphere-egu21-5026, 2021.
EGU21-6531 | vPICO presentations | ITS2.5/OS4.8
Modeling the influence of biogeochemical and ecosystem processes on microplastic transport in the Arctic seas on the example of OslofjordAnfisa Berezina, Evgeniy Yakushev, and Boris Ivanov
Currently, all natural environments, including the Arctic seas, are contaminated by microplastics (MP, plastic fragments less than 5 mm). Biogeochemical processes significantly affect the physical properties of MP, primarily its density due to biofouling.
The aim of this work is to develop a numerical model for assessing the fate of MP in the marine environment under the influence of natural biogeochemical cycles in the Arctic seas on the example of Oslofjord.
The biogeochemical model OxyDep (E. V. Yakushev et al., 2011) was used to reproduce the temporal variability of the phyto- and zooplankton, dissolved and particulate organic matter. The two-dimensional 2D benthic-pelagic transport model (2DBP), which considers the processes in the water column and bottom sediments together, is used as a hydrophysical model.
The separate module which describes the transformation of the MP under biogeochemical processes was developed. The biogeochemical and MP modules were coupled with the transport model using the Framework for Aquatic Biogeochemical Modeling (FABM) (Bruggeman & Bolding, 2014).
The results show, that there would be a decrease in the MP content in the surface layer in summer period due to the ingestion by zooplankton and its transfer to the sediments. Based on the obtained patterns, it is possible to predict zones of accumulation of MP for a specific water area, depending on the local ecosystem.
Funding: The reported study was funded by RFBR, project number 20-35-90056. This work was partly funded by the Norwegian Ministry of Climate and Environment project RUS-19/0001 “Establish regional capacity to measure and model the distribution and input of microplastics to the Barents Sea from rivers and currents (ESCIMO)” and the Russian Foundation for Basic Research, research project 19-55-80004.
How to cite: Berezina, A., Yakushev, E., and Ivanov, B.: Modeling the influence of biogeochemical and ecosystem processes on microplastic transport in the Arctic seas on the example of Oslofjord, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6531, https://doi.org/10.5194/egusphere-egu21-6531, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.
Currently, all natural environments, including the Arctic seas, are contaminated by microplastics (MP, plastic fragments less than 5 mm). Biogeochemical processes significantly affect the physical properties of MP, primarily its density due to biofouling.
The aim of this work is to develop a numerical model for assessing the fate of MP in the marine environment under the influence of natural biogeochemical cycles in the Arctic seas on the example of Oslofjord.
The biogeochemical model OxyDep (E. V. Yakushev et al., 2011) was used to reproduce the temporal variability of the phyto- and zooplankton, dissolved and particulate organic matter. The two-dimensional 2D benthic-pelagic transport model (2DBP), which considers the processes in the water column and bottom sediments together, is used as a hydrophysical model.
The separate module which describes the transformation of the MP under biogeochemical processes was developed. The biogeochemical and MP modules were coupled with the transport model using the Framework for Aquatic Biogeochemical Modeling (FABM) (Bruggeman & Bolding, 2014).
The results show, that there would be a decrease in the MP content in the surface layer in summer period due to the ingestion by zooplankton and its transfer to the sediments. Based on the obtained patterns, it is possible to predict zones of accumulation of MP for a specific water area, depending on the local ecosystem.
Funding: The reported study was funded by RFBR, project number 20-35-90056. This work was partly funded by the Norwegian Ministry of Climate and Environment project RUS-19/0001 “Establish regional capacity to measure and model the distribution and input of microplastics to the Barents Sea from rivers and currents (ESCIMO)” and the Russian Foundation for Basic Research, research project 19-55-80004.
How to cite: Berezina, A., Yakushev, E., and Ivanov, B.: Modeling the influence of biogeochemical and ecosystem processes on microplastic transport in the Arctic seas on the example of Oslofjord, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-6531, https://doi.org/10.5194/egusphere-egu21-6531, 2021.
EGU21-7376 | vPICO presentations | ITS2.5/OS4.8
Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast SpainNicolas Beriot, Joost Peek, Raul Zornoza, Violette Geissen, and Esperanza Huerta Lwanga
One of the main sources of plastic pollution in agricultural fields is the plastic mulch used by farmers to improve crop production. The plastic mulch is often not removed completely from the fields after harvest. Over time, the plastic mulch that is left of the fields is broken down into smaller particles which are dispersed by the wind or runoff. In the Region of Murcia in Spain, plastic mulch is heavily used for intensive vegetable farming. After harvest, sheep are released into the fields to graze on the vegetable residues. The objective of the study was to assess the plastic contamination in agricultural soil in Spain and the ingestion of plastic by sheep. Therefore, three research questions were established: i) What is the plastic content in agricultural soils where plastic mulch is commonly used? ii) Do livestock ingest the microplastics found in the soil? iii) How much plastic could be transported by the livestock? To answer these questions, we sampled top soils (0–10 cm) from 6 vegetable fields and collected sheep faeces from 5 different herds. The microplastic content was measured using density separation and visual identification. We found ~2 × 103 particles∙kg−1 in the soil and ~103 particles∙kg−1 in the faeces. The data show that plastic particles were present in the soil and that livestock ingested them. After ingesting plastic from one field, the sheep can become a source of microplastic contamination as they graze on other farms or grasslands. The potential transport of microplastics due to a herd of 1000 sheep was estimated to be ~106 particles∙ha−1∙y−1. Further studies should focus on: assessing how much of the plastic found in faeces comes directly from plastic mulching, estimating the plastic degradation in the guts of sheep and understanding the potential effects of these plastic residues on the health of livestock.
How to cite: Beriot, N., Peek, J., Zornoza, R., Geissen, V., and Huerta Lwanga, E.: Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-7376, https://doi.org/10.5194/egusphere-egu21-7376, 2021.
Please decide on your access
Please use the buttons below to download the presentation materials or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
Forward to presentation link
You are going to open an external link to the presentation as indicated by the authors. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
We are sorry, but presentations are only available for users who registered for the conference. Thank you.